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Path-components of Morse mappings spaces of surfaces

Sergey Maksymenko*

Abstract. Let M be a connected compact surface, P be either R! or S!, and ¥ (M, P) be the
space of Morse mappings M — P with compact-open topology. The classification of path-
components of ¥ (M, P) was independently obtained by S. V. Matveev and V. V. Sharko for
the case P = R!, and by the author for orientable surfaces and P = S!. In this paper we give
a new independent and unified proof of this classification for all compact surfaces in the case
P = R, and for orientable surfaces in the case P = S'. We also extend the author’s initial proof
to non-orientable surfaces.

Mathematics Subject Classification (2000). 37E30, 58B05.

Keywords. Surface, Morse mapping, mapping class group, Torelli group.

1. Introduction

Let M be a smooth (C*) connected compact surface with boundary dM (possibly
empty) and let P be a one-dimensional manifold, i.e. either the real line R! or the
circle S!. Consider the subspace F (M, P) of C*°(M, P) consisting of Morse map-
pings M — P. Itis well-known that ¥ (M, P) is an everywhere dense open subset
of C*°(M, P) in the compact-open topology of C*(M, P). The homotopy type of
this space is of great importance in differential topology and dynamical systems, see
e.g. [H], [1], [HT], [HH], [KE], [SV1], [M], [IS].

Recently, S. V. Matveev and V. V. Sharko [SV1] have obtained a full description
of path-components of the space # (M, R!). Matveev’s proof is included and gen-
eralized in the paper [KE] of E. Kudryavtseva to numerated Morse functions. Their
proofs were independent and based on different ideas. The classification of path-
components of ¥ (M, S') for orientable surfaces was given in the author’s Ph.D.
thesis, see [M].

These results (which we will refer to as Main Theorem) can be summarized as
follows: two Morse mappings f, g: M — P belong to same path-component of
F (M, P) if and only if they are homotopic as continuous maps and have the same

*The author is partially supported by the grant of Government Fond of Fundamental Researches no. 1.7/132
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number of critical points at each index and the same sets of positive and negative
boundary components (in the sense described below.)

In this paper we give a unified and independent proof of this theorem for all
compact surfaces in the case P = R. The case of Morse mappings M — S requires
information on the subgroup of the mapping class group of M preserving a given
element in the cohomology group H'(M, Z). We also find the generators of this
group for orientable surfaces and extend the presented method to Morse mappings
from orientable surfaces into S

In fact, the proof given in [M] for this case almost literally extends to non-
orientable surfaces as well. Since [M] was never published in English, we give
this proof for all surfaces in the Appendix. Thus the Main Theorem is proved here
for all cases of M and P.

Our approach has a relation to the paper [HT] of A. Hatcher and W. Thurston, who
used deformations of Morse functions to construct a representation for the mapping
class group of a surface. In constrast to this approach, we exploit generators of this
group to find a deformation between Morse mappings in (M, P). The principal
observation is that “elementary diffeomorphisms” like Dehn twists, boundary and
crosscap slides generating mapping class groups of surfaces preserve certain Morse
functions.

2. Preliminaries

Let M be a compact surface. A surface obtained by shrinking every connected com-
ponent of M to a point will be denoted by M. Thus M is closed and is homeomorphic
with a connected sum of the formeither S #;_, T (orientable case, g > 0) or#5_, P?
(non-orientable case, g > 1). In each of the cases the number g is called the germ
of M. All homology and cohomology groups will be taken with integer coefficients.
The term simple closed curve will be abbreviated to SCC. The circle ST will be re-
garded as the subset {z € C : |z] = 1} of the complex plane C. For a topological
space X let #[ X ] denote the number of its connected components.

2.1. Morse mappings. Let us fix, once and for all, an orientation of P. Consider
a smooth mapping f: M — P. Apoint z € M is critical for f if df(z) = 0. A
critical point z of f is non-degenerate if the Hessian of f at z is non-degenerate.
Suppose that z is a non-degenerate critical point of f. Then by Morse lemma there
are embeddings p: R> — M and ¢: R' — P onto open neighborhoods of z and
S (z) respectively such that p(0,0) = z, ¢(0) = f(z), g preserves orientation, and
g~ 'o fop(x,y) = £x? & y2. The number of minuses in this representation does
not depend on a particular choice of such embeddings and is called the index of a
critical point z.
A C®-mapping f: M — P is Morse if the following conditions hold:
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(1) all critical points of f are non-degenerate and belong to the interior of M

(2) f is constant at each boundary component of M while its values on different
components may differ each from other.

The subspace of C*°(M, P) consisting of Morse mappings will be denoted by
F (M, P). We endow C*(M, P) with the compact-open topology. Then this topol-
ogy induces some topology on ¥ (M, P).

2.2. X-homotopies. Let f, g € F (M, P) be two Morse mappings and ¢: [0, 1] —
C°(M, P) be a path between them in the space of Morse mappings. Thus ¢ is
continuous, ¢ (0) = f, (1) = g and ¢(¢) is Morse for all ¢ € [0, 1]. Then ¢ yields
a continuous mapping (homotopy) F: M x I — P such that Fo = f, F1 = g, and
F;is Morse forall 7 € I. In particular, F is C*™ in x € M but may be just continuous
int € [0, 1]. Conversely, every such mapping F gives rise to a path between f and
gin F (M, P).

We will call the mapping I a X-homotopy or X-deformation between f and g

F, by . o
and write f ~ g. The term f ~ g will also be used to indicate that f and g are
2 -homotopic.

Remark 2.1. In [SV1], [KE], Z-homotopies are called isotopies of Morse functions.
We will use another term in order to avoid confusions with isotopies of diffeomor-
phisms.

2.3. Invariants of X-homotopies. Let f € £ (M, P). The objects (i) homotopy
class, (i1) number of critical points in each index, and (iii) positive and negative
boundary components are invariant under >-homotopies of f.

2.3.1. Homotopy class. First suppose that P = S!. Let& € H'(S!) be a generator
defining the chosen orientation of S'. If f : M — S! is a continuous mapping,
then the correspondence f — f*(&) € H 075 yields a bijection between the set of
homotopy classes of mappings [M, S'] and the cohomology group H'(M). Since
by our definition Morse mappings are constant at the connected components of dM,
it follows that the set of homotopy classes of Morse mappings M — S 1 is bijective
to the group H'! (M ) for the corresponding closed surface M.

Let g be a genus of M. A simple calculation shows that H! (1\7 ) is isomorphic
with Z", where r is either 2g or g — 1 provided M is orientable or not. Let us fix a
basis for H'! (M ). Then the homotopy class of f is an integer vector

@1s - qr) = f(E) e HN(M) = 7"

For P = R we will assume that (g1, ...,¢9,) = (0,...,0).
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2.3.2. Number of critical points in each index. Denotebyc;(f) =¢; (i =0, 1, 2)
the number of critical points of f of index ;. Then by Morse equalities we have

co(f) +c1(f) — 2(f) = x (M). 2.1

2.3.3. Positive and negative components of dM. Let V be a component of M,
z € Vand let £ € TM; be a tangent vector at z directed outward M. Denote by
£ (V) the sign of the value df (z)§. Since f has no critical points on V, we see that
£¢(V) = &1 and does not depend on a particular choice of a point z € V and a
vector & € T M as above. Thus we get a function e ¢ : mgd M — {£=1}. We may also
think of & ¢ as an element of {£1}?, where b is the number of connected components
of oM.

We will call V either f-positive or f-negative in accordance with (V). Let
d4+ M (resp. d_ M) betheunion of f-positive (resp. f-negative) boundary components
of M, and let b4 (resp. b_) denote the numbers of these components.

The following collection of numbers

K(f):{QIy--er, €0, C1, €2, 8f}

will be called the critical type of a Morse mapping f. It can be regarded as a point
in Z" x N} x {£1}” belonging to the “hyperplane” defined by Eq. (2.1), where
No = NU {0}. If we choose another orientation of P, then cg(f) exchanges with
c2(f), c1(f) remains unchanged, & ¢ and every g; change their signs.

Our aim is to give a new proof of the following theorem:

Main Theorem (Matveev [KE], Sharko [SV1], Maksymenko [M]). Two Morse map-
pings f,g: M — P belong to the same path-component of ¥ (M, P) if and only if
K(f) = K(g), i.e. they are homotopic, have the same number of critical points in
each index, and the same sets of positive and negative components of M.

The necessity is obvious therefore we confine ourself to the sufficiency. Let us
briefly review the known proofs of this theorem. First consider the case P = R,
Let f and g be two Morse functions with equal critical types. In both proofs [KE],
[SV1] the problem was reduced to minimal Morse functions with no critical points
of index 0 and 2.

Let F be a gradient-like vector field for a minimal Morse function f. Consider a
union of f-negative boundary components of M with trajectories of F that finish at
critical points of f. This set is called a spine of M. Matveev (see Kudryavtseva [KE])
notes that the space of Morse functions with isotopic spines is path-connected. He
further suggested elementary transformations of spines which induce ¥-homotopies
of Morse function and showed that any two spines can be connected by a finite
sequence of these transformations.
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Sharko [SV1] reduced the problem to minimal Morse functions on a surface M
with only one positive and only one negative boundary component.Such a surface
can be regarded as a “framed” chords diagram in which the union of all chords and
a negative boundary component constitute the spine of M. Notice that 71 M is free.
Choose a basis of this group. Then the edges of any other chords diagram in M can
be written down as words in the terms of a given basis. These words also form the
basis of w1 M and determine chord diagrams up to equivalence. Moreover, by the
well-known Nielsen theorem any two bases of a finitely generated free group are
related by a finite sequence of Nielsen transformations. Sharko proved that Nielsen
transformations yield X-homotopies between corresponding Morse functions, and
that Morse functions with equivalent diagrams are 2-homotopic.

The extension of the proof of [M] for P = ST and all surfaces is given in the
Appendix.

2.4. Plan of the present proof. First the problem will be reduced to the case when
g = f oh, where / is a diffeomorphism of M and f is of a special “canonical” form.

It is convenient to say that a diffeomorphism % is f-admissible if f & f o h. Using
a special type of f, we will choose a system of generators for M (M) and show that
if P =R, then all of them are f-admissible. This will prove the Main Theorem for
this case.

For the case P = S, M is orientable, and f is not null-homotopic we shall see
that one of the generators chosen above is not f-admissible. Nevertheless, since f
and f o h are homotopic, it will be possible to reduce the problem to the case when £
acts trivially on the homology group H; (M, dM), i.e. h belongs to the Torelli group
of M. Generators of this group are known from [P], [J], [MG]. This information will

b3
allow us to show that f ~ f o h.

2.5. Structure of the paper. In Section 3 we prove some technical results con-
cerning Morse mappings to the circle. In Section 4 we recall the definition of the
Kronrod—Reeb graph of a Morse mapping and define “canonical” Morse mappings.
In Section 5 we reduce the Main Theorem to the case when f is canonical and g
differs from f by a diffeomorphism. This was done by Kudryavtseva in [KE] for
Morse functions. We consider the case P = S!. In Section 6 we show that elemen-
tary diffeomorphisms generating mapping class groups M (M) of M (Dehn twists,
boundary and crosscap slides) preserve certain Morse functions. In Section 7 we
recall the generators of mapping class groups for surfaces with boundary. Every
canonical Morse mapping gives a “canonical” set of such generators whose admis-
sibility (or nonadmissibility) for this map is almost obvious. We also complete the
Main Theorem for P = R (statement (i) of Lemma 7.3).

In Section 8 we give the plan of the proof of the Main Theorem for the case M is
orientable and P = S'. For this in Section 9 we consider the stabilizers of elements
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of Z*# with respect to the action of the symplectic groups Spye(Z), in Section 10 we
study minimal Morse functions. Section 11 includes one technical lemma. Finally,
in Sections 12-14 we complete the proof.

3. Cutting M along a regular level-set of f

We prove here two lemmas which will be used in the proof of Proposition 5.2.

Let ¢ be a regular value of a Morse mapping f: M — S'. Then f~!(c)is a
disjoint union of SCCs on M. Suppose that f~ le)ynaM = @. We cut M along
£~ Y(c) and denote the new surfacebyM M(f ¢). Similarly, we cutStat f(c)and
obtain [0, 1]. Let p: M- M andg: [0, 1] — S! be the correspondngg factor-maps,
where ¢ (1) = 27t 1 ¢ [0, 1]. Then there exists a Morse function ¥’ M — [0, 1]
such that the following diagram is commutative:

i
— [0, 1]

pl lq (3.1)

Mt s g
Thus N
Fx) = exp (27i f(p~(x))) forall x € M. (3.2)

Denote By = £-1(0), By = f-1(1), and B = By U By. Then there is a natural
correspondence between X-homotopies f; of f with respect to some neighborhood
of B and X-homotopies f; of f with respect to some neighborhood of y. The
corresponding maps f; and f; are related by the commutative diagram (3.1).

Since M is connected, it follows that every connected component X of M intersects
B non trivially. Elowever, it is possible that X N B; = & for some ¢ = 0, 1. Thus the
components of M can be divided into the following mutually disjoint sets

Qo= Qo(fic), Qb=0if o), 0'=0%f0 (3.3)

consiting of those components that (respectively) have non-empty intersections only
with By, with both sets By and By, and with B; only.

It follows that for every connected component X of Q(l)( f,eyand t € [0, 1] we
have X N f~1(1) # @.

Lemma 3.1. (1) Let V be an f -positive (resp. f negative) component of oM and
v = f (V). Then for every w > v (resp. w < v) there exists a X-homotopy ft
changing f only in an arbitrary small neighborhood of V and such that f1 (V) =w,
see Figure 3.1a).
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(2) Let X be a connected component 0f M. For every w € (0 1) there exists
a x- h0m0t0pyﬁ M — [0, 1] such that fo = f ft = f on (M\X) U B, and
F 'Hnx = Flw)nx, see Figure 3.1b).

(3) Let X be a connected component of M. Then there exists a 2-homotopy
fii M — [0, 1]with fo = fandf[ Fon(M\X)UB, suchlhatf ( NX =2,
whenever X € Qo U Q1 and #[f1 (5) N X1 =1, whenever X C Q}.

a) b)

Figure 3.1

Proof. (1) Suppose that V is an f -positive component of IM. By definition, ]7
has no critical points on V. Then there exist an ¢ > 0, a neighborhood N of V,
and a diffeomorphism h: S x (v — 2¢,v] — N such that ~(S' x {v}) = V and
foh(x,t)=tfor (x,1) € S! x (v —2e,v].

Let H; be an isotopy of R fixed on (—00, v — ¢] and such that H(v) = w.
Then the X-homotopy f; defined by the formulas ft(x) f (x) forx e M\ N and
ft (x) = Hy o f(x) for x € N satisfies the statement (1) of the lemma. The proof for
f -negative components is similar.

(2) Notice that, for any v e (O 1), there exists an isotopy H; of R! fixed near 0
and 1 and such that Ih (s) . Then the % homotopy Ji: M — [0, 1] defined by
the formulas f; H; o f on X and ft f on M \ X satisfies the statement (2) of
the lemma.

(3) It follows from the definition that for every connected component X of QoU o
there exists a number v € (0, 1) such that f~!(v) N X = @. Therefore, if X C
Qo U Q! then our statement follows from (2).

LetX C Q(l). If for some i = 0, 1 the intersection X N B; is connected, then for
every t in some neighborhood of i we have that X N ]7 ~1(¢) is connected. By (1) of
the lemma we can choose t = %

Suppose now that the intersections X N B;, ¢ = 0, 1 are not connected. By (1)
and (2) we assume that

0< f(plo_M)NX) < % < f(ZpnX) < % < fpteeMnXx) <1,
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where % 7 is the set of critical points of f Thus all critical values of fl x belong to
(%, %), the values on f -negative boundary components of X except for f (XNBp) =0
are in (O, %); and the values on ]7 -positive boundary components of X except for
F(XNBy) =1arein (% 1). In particular, % is a regular value of /.

Denote n = #[ Vi (3)] and suppose that n > 1. Our object is to reduce n. Let
F be a gradient-like Morse—Smale vector field of X for the function fl x. It follows
from Morse theory that the union of f | x-positive boundary components d; X with
the set of trajectories that start at saddle critical points of f |x and finish at 0, X is
a strong deformation retract of X. Since X is connected, we see that there exists
a saddle critical point z of ]7 |x such that the trajectories starting from z finish at
different components of 9+ X. We denote these trajectories by @1 and s.

Then (Mllnor [MIJ1], Theorem 4.1) there exists a X-homotopy ft of fo = f |x
that changes 7] |x only in an arbitrary small neighborhood of (w7 U a;) N £~ (— %]
such that 4 3 < f1 (z) < 1,but fl(z/ ) < 5 for all other critical point 7’ of f1. It follows
that % is aregular value for ]71 and the level-set fl_l (%) has precisely n — 1 connected
components. Now (3) follows by induction on #. O

Lemma 3.2. Every Morse mapping f: M — S Lis X-homotopic to a Morse mapping
g such that for some regular value c of g we have:

(A) if f is null-homotopic, then g~ (¢c) =
(B) otherwise, #{g~1(c)] is equal to the index of f,.,(H1(M)) in Hi(Sh.

Proof. Let ¢ be a regular value of f such that f~ LeynoM = @ and letn =
#[f~1(c)]. We cut M and obtain the surface M = M (f, ¢) and the function f M —
[0, 1] as above.

By Lemma 3.1, if Qo U Q! # @ or if for some connected component X of Q(l) the
intersection X N By has more than one component, then there exists a X-homotopy
f¢ of £ with respect to some neighborhood of B such that #[ /,(1)] < n. As noted
above, this X-homotopy yields a X-homotopy f; of f = fo to a Morse mapping
J1 with respect to some neighborhood of f ~1(¢) such that #[ fl_1 (¢1)] < n, where
c1=gq (%) is a regular value of fi.

Repeating these arguments for f; and c1, and using induction on n we will obtain
a Morse mapping f; and its regular value c; such that either (i) fk_l(ck) =g
or (i) Qo(fk,cx) = Q'(fr,cr) = @ and for every connected component X of
Q0 =M (fx, cx) the intersection X N B; ( f, cx) is non-empty and connected, whence
itis an SCC. ~

Suppose that fi is null-homotopic. Then fi lifts to a Morse function fi: M —
R! which must have a global minimum and maximum. Therefore, if fk_l(ck) £
@ (case (i), then Qo fx, cx) U O (fx, cx) # @, which contradicts (ii). Hence,
£ '(cx) = @. This proves (A).
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Suppose fx is not null-homotopic. For convenience we denote fi by f and i
by c. We will now lift f* onto the covering of ST corresponding to the subgroup
F(H(M)) of H(SY). Letm = #[M]andlet p,,: S' — S! be the m-sheet-covering
of S! defined by the formula p,, (¢27") = "> ¢ € [0, 1].

First notice, that the set of connected components of M admits a natural cyclic
ordering. Indeed, let Xo be any component of M. If Xi, (k > 0) is defined, then
there exists a unique connected component X1 of M such that p(Xz41 N By) =
p(Xx N By). Since M is connected, it follows that every connected component of M
is numbered in this way.

Then the following formula defines a lifting f: M — S'of f onto the m-sheet
covering of S

_ 2Tl ~
f(x):exp%(f(p_l(x))—i-k), xepXp, k=0,....m—1,

ie.pmof=1f.

Finally, let us prove that the homomorphism f, : Hy (M) — H;(SY) is onto. This
will imply that the index of f(H{(M)) in H,(SY) is m. For everyk=0,...,m —1
let wi: [0, 1] — Xj be a simple arc which is transversal to level-sets of f* and
such that f(wi (1)) = t, p(wk(l)) = p(@k41(0)) and p(wn-1(1)) = p(wo(0)).
Evidently, these arcs constitute an SCC w on M such that the restriction f|, is a
homeomorphism, whence f% is onto. Thus (B) is proved. O

3.1. Orientation of level-sets of f. Suppose that M is orientable. Let ¢ € S! be
a regular value of a Morse mapping f: M — S', L = f~!(¢) the corresponding
level-set of f, and F a gradient vector field for f taken in some Riemannian metric
on M. Then the orientation of M together with F yields an orientation of L so that
the homology class of an oriented cycle [ f 1)) € Hi(M, aM) does not depend on
a particular choice of a regular value ¢ and even on the homotopy class of f. For
every x € L let v, be a tangent vector to L at x such that the pair (v,, grad f(x))
gives a positive orientation of M. Then the orientation of L defined by v, satisfies
the conditions of the previous sentence.

Leté € HY (S bea generator that defines the positive orientation of S Land let w
be an intersection form on Hy (M, d M). Then for every oriented SCC y : st M,
regarded as an element of H; (M), we have

J(E)y) =(L,y) =deg(fly). (34)

Since f is constant on boundary components of M and is not null-homotopic
it follows that f(£) # 0in H'(M, 8M). The intersection form » on M yields an
isomorphism ¢: H'(M,3M) — Hy(M, 3 M) which by Eq. (3.4) maps f (&) to the
homology class [L].
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In particular, if h: M — M is a diffeomorphism such that f o & and f are
homotopic, then it follows that 1*(f(£)) = f(£) in HY (M, M) and h([L]) = [L]
in Hi(M,oM).

4. Kronrod-Reeb graph of a Morse mapping

Let f: M — P be a Morse mapping, ¢ € P, and y a connected component of
f~le). We call y regular 1if it contains no critical points of f; otherwise y is
critical.

Consider the partition of M by the connected components of level-sets of f. The
factor-space Iy of M by this partition has the structure of a one-dimensional CW-
complex and is called the Kronrod—Reeb graph or KR-graph of f (see e.g. [KA],
[KE], [SV2]). There is a unique decomposition

f* Jfr

fiM Ty P,

where f* is a factor map and for every open edge e of I'y the restriction fr|. is a
local homeomorphism. Notice that the orientation of P yields a unique orientation
of e preserved by fr. The mapping fr will be called KR-map associated with f.

The vertices of I' y correspond to the critical components of level-sets of f and to
the boundary circles of M. The last type of vertices will be denoted on the KR-graph
by circles o (see e.g. Figure 4.1). Notice that for non-orientable surfaces, KR-graphs
can possess vertices of degree 2 (e.g. [KE]). We will denote these vertices by stars .

Let f, g: M — P be Morse mappings. By an isomorphism between their KR-
graphs we will mean a homeomorphism I'; — I' ¢ preserving orientations of edges
and the sets of o- and x-vertices.

We will say that their KR-maps fr and gr are equivalent provided there exist
a preserving orientation diffeomorphism ¢ of P and an isomorphism o : I'y — I['¢
such that in the following diagram the right square is commutative:

M—=2->r1, 25 P
4l «| a1l @.1)
ML, p

The mappings f and g are said to be equivalent provided there exists a diffeo-
morphism /2 of M such that f o i = ¢ o g. In this case there is a unique equivalence
« between KR-maps of f and g such that the whole diagram (4.1) is commutative.

A Morse mapping f is called generic if every level-set of f contains at most one
critical point. Let f be a generic Morse mapping. If M is orientable, then the degree
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of each vertex of I'y is either 1 or 3. If M is non-orientable, then I' y may possess
vertices of degree 2.

The following lemma is well-known. Its different variants can be found in [BF],
[KE], [K], [SV2].

Lemma 4.1. Tivo generic Morse mappings f and g having equivalent KR-maps are
equivalent. O

We say that a Morse mapping f is canonical if its KR-map is equivalent to that
drawn in Figures 4.1 or 4.2,

First consider the case P = R, see Figure 4.1. The part of KR-graph under the
rectangle corresponds to the following cases of M:

a) M is orientable.

b) M is non-orientable of odd genus g.

¢) M is non-orientable of even genus g.

d) M is non-orientable, g > 3 and is odd. In this case we will use two types of
canonical Morse functions shown in Figure 4.1. They are related by a X-homotopy,
see [KE]. For the case P = S' a canonical Morse mapping f: M — S' can be

o f= Qf

N /
U y K
Q N
< \

Figure 4.1. KR-graphs and KR-maps of a canonical Morse function M — R.

described as follows: there is a regular value ¢ of f such that y = f~!(c) is an
SCC. Moreover, if we cut M along vy, then the restriction of f: M \ y — Sty e
is a canonical Morse function. Its KR-graph is hidden behind the rectangle, see
Figure 4.2.

Notice also that a canonical Morse mapping is generic and the homomorphism
fer Hi(M) — Hy(S!) is onto.

Lemma 4.2. Let f,g: M — P be two canonical Morse mappings of the same
critical type K(f) = K(g). Then they are equivalent.

Moreover, there is a X-homotopy of g to a canonical Morse mapping g1 such that
g1 = f o h, where h is a diffeomorphism of M.
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Figure 4.2. KR-graphs and KR-maps of a canonical Morse mapping M — S!.

Proof. Evidently, KR-graph and KR-map of a canonical Morse mapping is deter-
mined by the numbers ¢y, c2, b4, b_ and the (orientable or non-orientable) genus g
of M. Notice that ¢ is related to these numbers via Euler characteristic.

Hence the condition K () = K(g) implies that KR-maps of f and g are equiv-
alent. Then by Lemma 4.1, f and g are equivalent, i.e. p o g = f o h, where p is
a preserving orientation diffeomorphism of P and % is a diffeomorphism of M. It
follows that p is isotopic to idy. Let p; be an isotopy of p = p1 toidy = po. Then
g = progisaX-homotopyof g =gotog) =pr1og=pog=foh. O

5. Reduction of the problem

Let f,g: M — P be two Morse mappings such that K(f) = K(g). We have to
b2
prove that f ~ g.
In this section we reduce the proof of the Main Theorem to the case when f and

g are canonical, and g = f o h, where £ is a diffeomorphism of M. This was done
in [KE] for the case P = R. Let P = S!.

5.1. Step 1. It may be assumed that the homomorphism f, = g.: Hi(M) —
Hi(SY is surjective. In particular, f and g are not null-homotopic. This also implies
that M is neither a sphere nor a projective plane (with holes if 0M # &).

Indeed, suppose that the homomorphism f, = g, is notonto. Let p: S — Slbe
the covering of S corresponding to the subgroup f,(Hy(M)) C Hy(S') = mi(Sh)
andlet f,g: M — S be some liftings of f and g respectively which are evidently
Morse.

M

Lemma5.1. f % gifand only if f ~ %. O

The proof is easy and is left to the reader. It can be found in [M].
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5.2. Step 2. We may assume that f and g are canonical due to the following state-
ment:

Proposition 5.2 ([KE]). Every Morse mapping f: M — P such that the homo-
morphism f.(H1(M)) C Hi(SY) = 71(SY) is onto is 2-homotopic to a canonical
one.

. % b3

It follows from this proposition that f ~ f; and g ~ g1, where f1 and g1

are canonical Morse mappings of the same critical type K(f) = K(g). Then by
Lemma4.2 g1 = f1 o h, where A is a diffeomorphism of M.

Proof. As noted above, this statement is proved in [KE] (Lemma 10) for closed
surfaces and P = R. The proof easily extends to surfaces with boundary. Suppose
that P = S!. Since S+ 18 onto, it follows from Lemma 3.2, that f is X-homotopic
to a Morse mapping fi such that ¢ = fl_1 (c) is an SCC, where c is a regular value
of f1. Cutting M along « as in Section 3 we obtain a surface M and a function
f : M — [0,1]. Then by the R-case of this proposition f is X-homotopic with
respect to a neighborhood of B to a canonical Morse function. This X-homotopy
yields a 2-homotopy of f to a canonical Morse mapping. O

6. Admissible diffeomorphisms and curves

Definition6.1. Let f: M — P beaMorse mapping. A diffeomorphism#i: M — M
will be called f-admissible provided f o h is Z-homotopic to f. Notice that f-
admissibility implies that /2 preserves the sets of f-positive and f-negative compo-
nents of dM and that f and f o & are homotopic.

LetA(f) C DM bethe setof all f-admissible diffeomorphisms, let Dig M be the
identity component of DM, and let C(f) be the path-component of f in ¥ (M, P).

Lemma 6.2. A(f) is a group consisting of full isotopy classes, i.e. DigM C A(f).
Moreover, if g € C(f), then A(g) = A(f).

® W,
Proof. Suppose that p,q € A(f) and let f ~ fopand f ~ fogq be Z-
homotopies. Then p o ¢ and p~ Y e A(f). Indeed,

0, byog _q P1gop7!
f~ foq ~ fopog and f=fopop ! T~

Thus A( f) is a group.

$roH,
Itp o p1 is an isotopy, then the homotopy f ~ ' f o p1 is a X-homotopy.
Thus A( f) consists of full isotopy classes.

fop~h
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Finally, if f b g is a X-homotopy, then g b i ) fop Ay g o p. Hence

p € Ag),1.e. A(f) C A(g). Similarly A(g) C A(S). O

We will now consider three types of “elementary diffeomorphisms” and show that
they preserve certain simple Morse functions.

6.1. Dehn twists. Let y be a two-sided oriented SCC in M. For the definition of
a Dehn twist along y see e.g. [D], [L1]. This diffeomorphism is supported in some
neighborhood of y and its effect on such a neighborhood is shown in Figure 6.1a).

S
o
a) b)

Figure 6.1. Dehn twist.

Definition 6.3. Let y be a two-sided SCC in M \ M. We say that y is f-admissible
if f is 2-homotopic to a Morse mapping g such that y is a connected component of
a regular level-set of g.

Lemma 6.4. Let v C IntM be an f-admissible oriented SCC in M. Then a Dehn
wist t, along y is f-admissible.

Proof. Let f L g be a Z-homotopy such that y is a connected component of a
regular level-set of g. We will construct a Dehn twist ¢, along ¥ such that g = go#,.
Then 1, is g-admissible, whence by (1) of Lemma 6.2 #,, is also f-admissible.
Since y is a regular component of a level set of g, there is a regular neighborhood
of y which is diffeomorphic to S* x I and such that the function g is the projection
to I, see Figure 6.1b). Then there is a Dehn twist £, along y that preserves the sets
of the form S x {r}. They are level-sets of g, whence f, preserves g. O

6.2. Boundary slides. Let A be an annulus and let Cg, C1 be the connected compo-
nents of dA. Divide C7 into four arcs of equal length 1, . . ., I4 so that /1 is opposite
to I3 and /> to l4. Let us identify the opposite points of /; and /3. Then the quotient is
a Mobius strip B with the hole C] =1 U ly.

Letr: A — A be a half-Dehn twist along C7, which exchanges /1 with /3 and I
with /4 and is the identity near Cp. Then 7 yields a certain diffeomorphism v of B
that “rotates C| by 7 and fixes Co”, see Figure 6.2a).
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Suppose that B is embedded into M so that C; is mapped onto a connected
component C of d M. Then v extends by the identity on all of M. This diffeomorphism
is called a boundary slide of C along B.

Notice that our description of boundary slide differs from ones given in [KM],
[SB]. The advantage is an evidence of the symmetry of v.

Now it is easy to see that there is a Morse function f: B’ — [0, 1] having a
unique critical point of index 1 and such that £~1(0) = Cy, f -y = C1. Tts critical
level sets and the KR-graph are shown in Figure 6.2b).

GO @

Figure 6.2. Boundary slide.
The following lemma is obvious.

Lemma 6.5. f: M — P be a Morse mapping on a non-orientable surface M.
Suppose that the KR-graph of f has an edge e such that one of its vertices, vi, has
degree 2 and another one, v,, corresponds to the boundary component of M, see
Figure 6.2b). Let N be a neighborhood of e containing no verfices of Iy but de.
Then B = fI 1(N ) C M is a Mébius band with hole and there exists a boundary
slide v: M — M of fr(v2) along B suchthat f oy = f. O

6.3. Crosscapslides. This type of diffeomorphisms was introduced by W. B. R. Lick-
orish [L2] and called a Y-diffeomorphism. In [KM], [SB] the term crosscap slide
is used. We recall the definition of this diffeomorphism (given in [BC]) via oriented
double coverings.

Let K be a Klein bottle with two holes and let p: T — K be its oriented double
covering, where T is a torus with 4 holes. We can assume that 7" is embedded into
R? so that it is symmetrical with respect to the origin 0. In other words it is invariant
under the involution & (x, y, z) = (—x, —y, —z) of R3, see Figure 6.3a).

Let V1, ..., V4 be the connected components of 97 numbered so that£(Vy) = V,
and £(V3) = Vj. Then there is a diffeomorphism y: T — T which is fixed near
V3 U V4, coincides with & near Vi U V5 and such that Yo & = & o y. Thus y can be
described as a “rotation” of T with respect to the z-axis by 7 with fixed boundary
components V3 and V4. For example, in Figure 6.3a) an arc and its image under &
are shown, It follows that y induces some diffeomorphism y of K fixed near 9K .
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Suppose that K C M is embedded into M. Then y extends by the identity to a

diffeomorphism of M. Such a diffeomorphism of M is called Y-diffeomorphism or
crosscap slide based in K .
__ Notice that there is a Morse function f: T — R with 4 critical points such that
foy = f see Figure 6.3a), where the critical level-sets of f are shown. Then f
yields a unique Morse function f: K — R having 2 critical points and such that
f oy = f. The KR-graphs Ff and I'y of f and f are shown in Figure 6.3b).

Vi D . Vs
...)

Vi d Va
a)

Figure 6.3. Crosscap slide on the orientable covering.

Lemma 6.6. Let f: M — P be a Morse mapping on a non-orientable surface M.
Suppose that the KR-graph of f has an edge e with vertices of degree 2. Let N be a
neighborhood of e containing no vertices of Iy but de. Then K = fr_l(N) CMis
a Klein bottle with two holes and there exists a Y -diffeomorphism y: M — M based
in K such that f oy = f. O

7. Mapping class group of a surface with boundary

Let M be a closed connected surface and let X = {x1,...,x,} be a set of mutually
distinct points of M. The extended mapping class group M, (M) of M is defined to
be the group of isotopy classes of diffeomorphisms of M which take X to itself. The
pure extended mappmg class group PM, (M) of M is the group of i isotopy classes of
diffeomorphisms of M which take X point-wise. The groups MO(M ) and ¥ OMO(M )
will be denoted by M (M ) and PM (M) respectively.

Let M be a connected surface with boundary d M consisting of » connected com-
ponents Vi, ..., V,. Regarding these components as punctures, we can identify the
groups M(M) and PM(M) with Mn(M) and 7 r’e/\/tn(M)

We recall the sets of generators of M (M) and PM(M) given in [B2], [G] for
orientable surfaces and in [KM] for nonorientable ones.



Vol. 80 (2005) Path-components of Morse mappings spaces of surfaces 671

7.1. Orientable case. Suppose that M is orientable. Consider the following 3 types
of diffeomorphisms of M:

(1) Let O be a reversing orientation diffeomorphism of M.

(2) Let oy, Bi, i, i, € be the SCC shown in Figures 7.1a), where the bold points
denote connected components of d M divided into two parts (positive and negative
components). We will refer to them as SCCs of configuration C. Denote by #,,, 15,
ly,, ls;, Ie; the corresponding Dehn twists.

(3) Forevery pair i < j = 1,...,n let o;; be an SCC that separates M into
two connected components so that one of them is a sphere S with 3 holes whose
boundary components are o;; and the connected components V; and V; of dM, see
Figure 7.1b). Let b;; be a diffeomorphism of M with support in S which permutes
boundary components V; and V; and preserves all others. Evidently, b?j is a Dehn
twist Loy along o;;.

Theorem 7.1 ([B2], [G]). The group M(M) is generated by
1) {0.b;; i, j=1,...,n}ifg=0;
() {#, 0. bijj:leC,i,j=1,...,n}ifg > L
The group PM(M) is generated by
0 (0.0} =ty th f =l ablfz=0;

* ¥ij
() {#,0:1eC,i,j=1,....n}ifg> L

aij

b)

Figure 7.1. The configuration €. Orientable case.

7.2. Generators for M (M). Non-orientable case. Suppose that M is non-orien-
table of genus g, see Figure 7.2, where the interiors of the shaded disks are removed
and then the antipodal points on each boundary component are to be identified.
Consider the following 4 types of diffeomorphisms of M:
(1) Let y be a crosscap slide of M. If ¢ > 3, then we additionally assume that
y? is a Dehn twist along a two-sided separating SCC both components of whose

complement are non-orientable.
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(2) and (3) Similarly to the oriented case we define the configuration € of SCCs
ai, Bi, vi, 8i, € shown in Figure 7.2, SCCs o}, the corresponding Dehn twists and
diffeomorphisms b;;.

(4) Let v; denote the boundary slide obtained by sliding the boundary component
V; along the loop p if g is odd and along 11 if g is even, see Figure 7.3. Also if g is
even, denote by w; the boundary slide obtained by sliding V; once along the loop 2.

Theorem 7.2 ([KM]). The group M (M) is generated by

) {ve.bijiisj,k=1,...,ni<jlifeg=1

(i) {tgy, y. vk, bij i, jk=1,...,ni < jlifg=2
(i) {t, y,vi,bij 1l eCi, j,k=1,...,n,i < j}ifg > 3isodd;
) {5, y, v, 0, by 11 €Ci, j,k=1,...,n,i < jlifg>4iseven.
Replacing every b;; by bizj = lo;; we obtain generators for PM(M).

€k+1

Figure 7.2. The configuration € for g = 2r + 1 and g = 2r + 2. Non-orientable case.

Figure 7.3. Boundary slides for g = 2r + 1 and g = 2r + 2.
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7.3. Generators of M (M) for canonical Morse mapping. Given a Morse map-
ping f, denote by M s(M) the subgroup of M (M) consisting of diffeomorphisms
that preserve the sets of f-positive and f-negative components of dM. Evidently,
Af) C My (M).

Lemma 7.3. Let f: M — P be a canonical Morse mapping. In the case P = S!
assume that M is orientable. Then there is a “canonical” set of generators for
M (M) such that

(1) forthe case P = R all of themare f-admissible, i.e. A(f) = My (M), whence
the Main Theorem holds for this case;

@) for P =S 1 (and orientable M) all but one of them are also f-admissible.

Remark 7.4. Recall that we do not give the proof of the Main Theorem (by the new
method) for the case that M is non-orientable and P = S'. Therefore we also do not
consider this case in Lemma 7.3 since it is more complicated and due to the length
of the paper, see also the last paragraph of this section.

Proof. Let f be a canonical Morse mapping. We will construct a set of generators
for M (M) described in Theorems 7.1 and 7.2 such that their f-admissibility is rather
evident.

First suppose M that is orientable and embedded into R? as it is shown in Fig-
ure 4.1. Then the canonical Morse mapping f is just the projection onto the vertical
line.

(1) Let O be a diffeomorphism of M that is a symmetry with respect to the plane
of this sheet. Then O reverses orientation of M and preserves f,ie. f = f o O.
Thus O is f-admissible.

(2) Comparing Figures 4.1 and 7.1 we see that «; and y; are regular components
of regular level-sets of f, whence the Dehn twists 7, and 7, are admissible. In
Figure 7.4 an f-admissibility of twists g, , {5, and f., is shown.

Figure 7.4. f-admissibility of configuration C.

(3) Let V; and V; be two f-positive components of d M. Then f is X-homotopic
to a Morse mapping f1 such that the KR-graph I', of fi includes a subgraph I'
shown in Figure 7.5a). Let o;; be an SCC corresponding to a point s € I'y. Then
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there exists a diffeomorphism b;; of M that exchanges V; and V;, preserves fi and
bx.zj is a Dehn twist along o;;. Then b;; and o;; are f-admissible.

Now let V; be f-positive and V; be f-negative. In this case a diffeomorphism
bi; permuting V; and V; is not f-admissible, since it does not preserve the sets of
f-positive and f-negative boundary components. Nevertheless we will now show
that its square b?j = lo;; 1s f-admissible. Consider two cases.

(a) Suppose that f has atleast one critical point of index either O or 2 or a boundary
component different from V; and V;. Then f is X-homotopic to a Morse mapping f;
whose KR-graph I' ¢, includes a subgraph I'; shown in Figure 7.5b). Then we define
oi; to be an SCC corresponding to a point s € I'>. Hence o;; is f-admissible.

(b) Otherwise, f has no local extremes and oM = Vi U Va. Let 012 be an SCC
that intersects every y; non trivially but no other SCCs of configuration C, separates
M in two components M and M, such that M is disk with two holes V; and V;, see
Figure 7.5¢).

We claim that o7 is not f-admissible. Otherwise the restriction of f to M, must
have extremes, which could be taken only on boundary components different from
V1 and V> or at critical points of indices 0 and 2. But all of them are absent on M>.

Nevertheless, it is well-known that a Dehn twist ¢, is a product of Dehn twists
along SCCs of configuration C exceptfor y;. Hence a Dehn twist #,,, is f-admissible.

Vi Y Vi
I
Fl Ml g M2
i s s v, o112
a) )

Figure 7.5. f-admissibility of b;; and o;.

Suppose that M is non-orientable of genus g (see Figure 7.2) and let f be a
canonical Morse mapping as in Figure 4.1. Again we define the generators of M (M)
associated with f.

(1) For the case g > 2 we will now define an f-admissible crosscap slide. If g is
odd then I" y has an edge e with vertices of degree 2. Otherwise, f is Z-homotopic
to a Morse function f; whose KR-graph has such an edge, see Figure 4.1d). Then by
Lemma 6.6, there exists a crosscap slide y such that f = f oy or fi = f1 oy inthe
second case. Hence y is f-admissible.

Definition and f-admissibility of generators of types (2) and (3) are similar to
the orientable case. We need to verify the admissibility of By and &y for the case
g=2r>2.

Let N be a neighborhood of e defined just above containing no vertices of I ¢
but de. Then K = fp_l(N) C M is a Klein bottle with two holes. Let p: T — K.
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Then T is a torus with four holes. We can assume that the function f = fop: T —- R
coincides with the one defined in Section 6.3, see Figure 6.3. Since So and §¢ are two
sided, their inverse images EO = p~Y(Bo) and 50 = p~1(80) in T consist of pair of
disjoint SCC. They are shown in Figure 7.6a).

Itis shown in Figure 7.6b) that Eo is aregular level-set of f This figure also shows
a symmetrical -homotopy of f fixed near 87 which makes 5o a regular level-set.
Hence Eo and SO are f-admissible, whence Bp and &g are f-admissible.

Figure 7.6. f-admissibility of By and d¢.

(4) It remains to construct f-admissible boundary slides v; and ;. Let V; be a
connected component of dM and z; € I' ¢ be the corresponding o-vertex.

First suppose that g is odd, so I' y has a unique vertex x of degree 2. Then f is
2 -homotopic to a Morse function f; such that z; and x will be the vertices of the
same edge, see Figure 7.7 for the cases when z; is f-negative or f-positive. Then
by Lemma 6.5, there exists a boundary slide v; of V; preserves fi. Whence v; is
f-admissible.

If g is even, then I'  has two vertices x1 and x; of degrees 2. As in the previous
case we define f-admissible boundary slices v; for V; and x1, and w; for V; and x;.

P Zi
xi .
Zi

Figure 7.7

Consider now the case P = S!. Let ¢ € S! be a regular value of f and o =
£~ 1(c) such that the restriction of f to M \ &1 is a canonical Morse function to S* \ c.

Suppose that M is orientable. Then the definition of the configuration C associated
with f is shown in Figure 7.8, where f is the “projection” to 81. Similarly to the
previous case we can define a diffeomorphism O, Dehn twists along the SCCs of
configuration C, and permutations of boundary components b;;. The same arguments
as in the case P = R show that all of them are admissible, except for 81, since f and
f o tg, are not even homotopic.
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If M is non-orientable, then the surface M \ ¢; can be orientable or non-orientable
as well. We do not consider this case, see 7.4. O

Figure 7.8. Configuration € if M is orientable and P = S

8. Proof of the Main Theorem

The case P = R is proved in statement (i) of Lemma 7.3. Before processing with
the case P = S! we recall the definition of the Torelli group and its generators.

8.1. Torelli group 7 (M). Let M be a closed orientable surface. Then the Torelli
group of M is a subgroup 7 (M) of PM (M) = M (M) consisting of diffeomorphisms
of M acting trivially on the homology group Hi(M). Evidently, 7 (M) is a normal
subgroup in PM(M).

Suppose now that dM # . Let us glue every connected component of 0 M by a
2-disk and denote the obtained closed surface by M. Then we obtain an epimorphism
ji PM(M) - PM (M ) induced by the inclusion M C M , see [B2]. Define the
Torelli group T (M) C PM(M) of M to be the inverse image j‘l(fT(A//i)).

The following theorem describes the generators of ker j.

Theorem 8.1 ([B1], [B2]). Let «; and B; be the curves of configuration C on M. For
every component V; of IM let a;y (Bir) be an SCCwhich together with o; (B;) bounds
in M a cylinder with a hole V;. Then the kernel of j is generated by the following
diffeomorphisms: sijp = «; o ozl.lk andrip = B;i o ﬁl.lk.

Theorem 8.2 ([B3], [P], [J], [IMG]). The Torelli group T (M) of M is generated by
the following types of diffeomorphisms:
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(a) Dehn twists along SCC separating M (if ¢ = 2 then these diffeomorphisms
generate all the group T (M), [MG]);

(b) products of Dehn twists of the form t,, o ty_zl, where the SCCs y1 and y; are
oriented, disjoint, and homologous.

Proof. This theorem was proved for closed surfaces [P] and surfaces with one bound-
ary component [J]. In fact it holds for arbitrary oriented surfaces.

Letr € T(M). Since M is closed, we have that j (¢) is generated by diffeomor-
phisms of types (a) and (b). Notice that we can choose the corresponding curves
so that they belong to M, whence j () yields some diffeomorphism #; of surf such
that ¢ Vot e kerj. By Theorem 8.1, this diffeomorphism is also generated by
diffeomorphisms s;; and r;; which evidently are of type (b). a

8.2. Proof of the Main Theorem for orientable M and P = S!. It suffices to
establish the following statement using the notations of Lemma 7.3.

Proposition 8.3. Let h € M (M) be a diffeomorphism such that the Morse map-
pings f and f o h: M — S are homotopic. Then h is isotopic to a product of
diffeomorphisms of the form p o c o t, where

(1) pis generated by O and those b;;j that belong M ¢ (M),
(2) cis generated by Dehn twists along the SCCs of configuration C but tg,;
3) te T (M).

Diffeomorphisms of types (1)—(3) are f-admissible, whence so is h.

Proof. Evidently & can be represented as a product p o k1, where hy € PM(M)
and preserves orientation of M and p is of type (1). Then, by Theorem 7.1, A1 is
generated by the Dehn twists along the curves of configuration C.

Notice that f and f o h; are homotopic. This condition will allow us to remove
tg, from the generators of /1 and replace this twist by diffeomorphisms of type (3).

Lemma 8.4. Let hy be a diffeomorphism of M generated by the Dehn twists along the
SCCs of configuration C and such that f and f o hy are homotopic. Then there exists
an f-admissible diffeomorphism c generated by the Dehn twists along the SCCs of
configuration C except for tg, such that the diffeomorphism t = ¢~V o hy belongs to
T(M).

Hence it remains to establish that every diffeomorphism ¢ € 7 (M) is f-admis-
sible. By Theorem 8.2 it suffices to prove this for diffeomorphisms of type (a) and
diffeomorphisms of type (b).
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Theorem 8.5. Let f: M — S' be a Morse mapping.

(1) Let y C M be an SCC and let t, be a Dehn twist along y. Then t, is f-ad-
missible if and only if the restriction f|, is null-homotopic. If y separates M, then
[y is null-homotopic, whence every diffeomorphism of type (a) is f-admissible.

(1) Every diffeomorphism of type (b) is f-admissible.

Thus in order to complete our proposition, and therefore the Main Theorem, it
remains to prove Theorem 8.5 (Sections 12 and 13) and Lemma 8.4 (Section 14).

9. Symplectic group

For the proof of Lemma 8.4 we need a description of generators of stabilizers in the
symplectic group Sp,, (Z). The representation of the group Sp,,(Z) is given in [B3].
We will also use the ideas from [OM].

Let Z28 be a free 2g-module with basis

a17~~~7ag71817'-‘7ﬁg7 (91)

let I be the unity g x g-matrix, and let ¢;; be a g x g-matrix, whose (i, j)-element
(the intersection of i-th row and j-th column) is equal to 1 and all other entries are
ZEros.

Let also @ be a skew-symmeltric 2-form whose matrix in the basis (9.1) is the

following:
0 |7

Thusw (o, B;) = landw (o, @) = w(B;, Bj) = w(oy, B;) =0fori, j =1,...,¢g.
The group of all linear isomorphisms of Z2¢ preserving o is denoted by Spye(Z) and
is called symplectic.

9.1. Transvections. For every y € Z?¢ the following automorphism t, of 728 de-
fined by the formula
t,(x) = (y,x) -y +x forallx e Z* (9.3)
is called the transvection along y. It is easy to see that 1, € Sp,,(Z) and
ty_l(x) =—w(y x)-y+x forallxeZ?.

Define the following elements of Sp,,(Z):
— -1
ij = lay ©laj O logays  Tij = 18 O 1p; ©lg1p,

B 9.4)
Vij = ly; © [ﬂj o tﬂli‘l'ﬂj'
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‘ H

Lemma 9.1. The following formulas hold true fori # j =1,..., g:

t_Iegi t—IO
“=NO[T |0 T e 1

I—ej| e
—ejj | I +eji

’ tDli‘Hsj = H

T | e ey FEg e

[ai+aj = 0 | i s

. 1 | 0

Pl = | —eis —ejy—eij—eii | T |

o 1 —€ij — €ji g 1 0
Hij =179 I o eij+eji | 1|’
— 1 + ejj | 0
W 0 | I —eji
Moreover, the matrices o, tg;, pij, ij, andvij (i #j =1,..., g) generate Sp,, (7).

Proof. The lemma can be established by direct calculations. The fact that these
matrices generate szg(Z) can be easily deduced from [OM, Ch. 2, §2.2.] or [B3].
0O

For each x € Z?¢ denote by T (x) the subgroup in Sp, o(Z) generated by transvec-
tions along elements of Z?¢ that are w-orthogonal to x, i.e.

Tx)={ty |y €Z*%¥, 0 (y,x) = 0). 9.5)
Also, let St(x) be the stabilizer of x in szg(Z), ie.
St(x) = {h € Spp,(Z) | h(x) = x}.
It easily follows from (9.3) that 7'(x) C St(x).

Proposition9.2. T («1) = St(«1). Moreover; this group is generated by the following
martrices:

Tay»  Tgi»  Mijs  Tijs  Vijs 9.6)
except fortg,, mi =ninandvit (it #j=1,...,8).
Proof. Evidently, the matrices (9.6) belong to 7'(«1). Let h € St(«1). We will show
that /4 is generated by (9.6). The proof consists of two steps.

Step 1. We will find an element /11 € Sp,,(Z) such that £ - hl_1 is generated
by (9.6) and /1 (f1) = p1. Let

hBr)=arc1 +bi1pr+aar+brpo+-- -,
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forsome a;, b; € Z, (i = 1, ..., g). Since h preserves the form » and h(«1) = o1,
we get
b1 = w (a1, h(B1)) = @ (h(e), h(B1)) = @ (a1, f1) = 1.

Consider now the effect of action of p1; and vi; on h(B1), j = 2,...,g. Let
t € Z. Then it is easy to verify that for j > 1 we have:
(1) o h(Br) = (a1 —thj)ar + P14+ (aj —)aj +b; B+,
i) o h(Br) = (a1 +taj)ar + P+ +ajo;j+ b —0) B+,

where the coefficients at other basis elements are not changed.
Define now k1 € Z?¢ by the formula

8 8
h1 = (ta) ™" ’H(Vlj)bj ’H(Mlj)aj -h,
=2 =2

where
g
ad =a — Zajbj.
i=2

We claim that 21 (B1) = B1.

Indeed, the product of 141; reduces the coefficients at «; and the product of vy
reduces the coefficients at 8; for every j = 2, ..., g. This also makes the coefficient
at o1 equal to a’. Since

lo (1) = a1 and  (1e)' (B1) = (@1 + 1) o1 + B1,

we obtain that the multiple (4, )'“/ reduces this coefficient.
Step 2. Consider the following submodules of Z?8:

P={,p1) and Q=(ei,fili=2,....8)

They are orthogonal with respect to the form » and /1|p = id. Since & preserves
w, it follows that 1 (Q) = Q. Thus k; can be regarded as an element of the group
Spag_2(Z) C Spy,(Z) consisting of isomorphisms that are the identity on P.

By Lemma 9.1 the group Sp,_,(Z) is generated by matrices (9.6) fori # j =
2, ..., g. In particular, they generate /7. O

10. Minimal Morse maps

For the proof of Theorem 8.5 we need the notion of minimal Morse mappings. Let
M be a compact surface, orientable or not. We say that a Morse map f: M — P
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is minimal if the number co(f) + c1(f) + c2(f) of critical points of f is minimal
among all possible Morse maps M — P having the same sets of positive and negative
boundary components as f. Let b4 and b_ be the number of f-positive and f-
negative boundary components of M. The following lemma is easy to prove:

Lemma 10.1. A Morse mapping f: M — P is minimal if and only if for every
connected component X of M the restriction f|x is minimal. A Morse function
f: M — R! on a connected surface M is minimal if and only if the following two
relations hold true:

)1, b =0, 1, ifbye =0,
olf) = { 0, ifb_ =0, 2= { 0, if by > 0. (0.0
Let f: M — S'be aMorse mapping which is not null-homotopic. Then f is minimal
if and only if co(f) = c2(f) = 0. o

We admit now that M may be not connected. Let f: M — [0, 1] be a Morse
function such that % € [0, 1] is its regular value. Denote

Vo=f7110,1/21, Vo=t /2,11.
Bo=f710), Bi=sr"N1, zZ=r7'1/2).

Lemma 10.2. Suppose that

(1) Bo, B1 and Z are nonempty, the union BoU By is included in d M and intersects
every connected component of M non trivially;

(2) the restriction fly, is a minimal Morse function fori =0, 1;

(3) foreveryconnected component X of M such that XNZ # @wehave XNB; # &
Jorbothi =0, 1.

Then f is a minimal Morse function on M.

Proof. Let X be a component of M. We will show that f|x is a minimal Morse
function. Denote X; =X NV; (i =0, 1).

If XN Z = @, then X is a connected component of either one of the sets V or
V1. Then the restriction of f onto X is minimal.

Suppose that X N Z # &. Then X N B; # @ fori = 0, 1 by (3). Evidently, the
components of the intersection X N Z # & are negative for the restriction f|y, and
positive for the restriction f|x,. Therefore, by Lemma 10.1, we have

c2(flxo) = co(f1x) = 0. 10.2)
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Similarly, the intersection X N By (resp. X N By) consists of some negative (resp.
positive) components of f|x and f|x, (resp. f|x,). Then from Lemma 10.1, we also
get

co(flxe) = c2(flx;) = 0.

Combining this with (10.2), we obtain

ci(flx) = ci(flxe) +ci(flx) =0, =02

Hence by Lemma 10.1 f|x is minimal. O

11. Minimization of intersections with a level-set

Let M be a compact surface (orientable or not), let £ : M — S! be a Morse mapping,
and let yq, ..., ¥m C M be disjoint SCCs.

Lemma 11.1. f is X-homotopic to a Morse mapping g such that for some level-set
L of g and for everyi = 1,...,m the curve y; does not pass through the critical
points of g and

(1) ifthe restriction f|,, is not null-homotopic, then y; transversely intersects every
level-set of g;

(i) otherwise y; N L = @.

Proof. Letc € S' be a regular value of f. Set

P=Jw. n=#f"NTL and d=>|degflyl.
i=1

i:l

Then #[f ~1(c) N y;] > deg fly, fori = 0,1, whence n > d. Moreover, n = d if
and only if #[ £ ~1(c) N »;] = deg fly,.

Claim 11.2. Suppose that n > d. Then f is X-homotopic to a Morse map f1 such
that #[fl_l(cl) NTI'] < n for some regular value c1 of fi.

Proof. We will exploit the notations and the construction of Section 3. Cutting M
along f _Nl(c) we obtain the surface M and the Morse function f: M — [0, 1]. Let
also p: M — M be the factor-map, B; = f~!(i) fori =0,1,and B = ByU By =
p (o).

Let L = p~ (") and let I1, ..., I be the connected components of L. Then
the intersection /; N B is either empty (whence [; is an SCC) or consists of two

points (whence /; is a simple arc with ends in B). Let us divide L into four groups
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Lz, Lo, L(l), L' consisting of arcs that respectively do not intersect B, have non-
empty intersections only with By, with both sets B1 and By, and with By only. Thus
L=LsULoUL{U L. Notice that #{L N Byl = #[L N B1] = n, #[Lo] = #[L'],
and the sets Lo and L' are non-empty if and only if n > d. _

Let Q(l) C M be the union of those connected components of M which intersect
both sets By and B non trivially. Consider the set

G = QLN (ByU Ly).

By definition, GN (L5 U L") = @. Then there exists a regular neighborhood W of G
which does not intersect L U L' and such that the boundary Z = 9 W transversely
intersects every component of L1 at a unique point. Hence, ZNL = Z N L(l).
Evidently, Z separates M between Bo and B1. Moreover, #[Z N LO] < n.

We will now construct a Morse function g : M — [0, 1] which coincides with ]7 in
some neighborhood of BU 9 M, has the critical type of ]7 and such that g~ (%) =Z.

Letgo: Vo — [0, 2] andg1: V] — [2, 1] be two minimal Morse functions such
that

&N =By, Fa/y=z'a/=2z F'Q)=B5B,

and the Morse function g : M — [0, 1] defined by glvl =g (1 =0,1)is C*, has

the same sets of positive and negative components as f and coincides with f in some
neighborhood of B U IM. _

We claim that g is minimal. Indeed, let X be a component of M such that
XNZ#@. Since Z=3W C QJ, we obtain that X ¢ Q}. Denote X; = X N V;,
then X N B; = X; N B; # @, by the definition of Q(l). It follows from Lemma 10.2
that g is minimal.

Adding critical points o g outside of B U Z we can change its critical type to
the critical type of f. Let us denote this new function by fi. Then fj satisfies the
statement of our claim.

Indeed, denote ¢ = q(%) By the case P = R! of the Main Theorem we obtain

that f X ]71 with respect to some neighborhood of B U dM. This 2 -homotopy
induces a X-homotopy (with respect to f “1(e)UaM)of f toa Morse mapping f;
such that #[ £ (¢)) N '] < n. o

We now proceed with the proof of Lemma 11.1. By Claim 11.2 we can assume that
n = d. As noted above this is equivalent to the statement #[ f Teynyl= deg f1,,.
In particular, if the restriction f|,, is null-homotopic, then #[ f Nyl =0ie
v N f~1(¢) = @, whence (ii) holds true. _

Letus assume that /; is given by an embedding /; : [0, 1] — M sothat; N; = &
for j # i. To establish (i) we prove that following claim:
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Claim 11.3. Suppose that I;(0) € By, li(1)_€ By, and that the intersection l; N B
is transversal for eachi = 1, ..., k. Then f is X-homotopic to a Morse function'g
such that l; is transversal to level-sets of g.

It follows that a X-homotopy of this claim yields a X-homotopy f ) g with
respectto f ~1(¢) such that every y; is transversal to level-sets of g. This will complete
Lemma 11.1.

Proof of Claim 11.3. We will constructa Morse function fi and a gradient-like vector
field F for f such that for every i =1, ..., m the arc /; is a trajectory of F. Then
adding or canceling the proper number of pairs of critical points of f; outside of
(U, &i we obtain a Morse function g having the critical type of f and such that F is a
gradient-like for g.

Foreveryi = 1,...,mlet ¢;: [0,1] x [-1,1] — M be a smooth embedding
such that the image V; = Im¢, is aneighborhood of /;, ¢; (¢, 0) = [; (¢) for t € [0, 1],
¢~V (Bs) = {s} x [—1,1] for s = 0, 1. Since the /; are mutually disjoint, we can
assume that so are the V;. Denote V = [J/L; V; and define a functiong: V — [0, 1]
by the formula g(x) = p20¢'i_1(x)f0rx e Vi, where pp: [0, 1] x[—1,1] —» [—1, 1]
is the natural projection.

Slightly changing g outside some neighborhood of | J; /; we can extend g over all
of M. Moreover, this extension may be assumed Morse whose positive and negative
boundary components coincide with the ones of f though the number of critical
pomts of g and f may be different. Now we show how to change the critical type
K( f ) of g by adding or canceling pairs of critical pomts outside of |J; ;.

Recall that a vector field F* on a manifold M is gradient-like for a function
f M — Rlif df(F)(x) > () at each regular point x of f N _

Let W be any gradient-like vector field for the function g on M and let $ be the
gradient vector field fgr the function p, on [0, 1] x [—1, 1], i.e. $(s,1) = (0, 1).
Using ¢; we transfer @ to V;. This gives us a vector field ® on V such that /; is a
trajectory of & fori =1,...,m.

Finally, we glue W and &. Let V' be a neighborhood of | J; ; such that V/ ¢ V
andlet W = M \ V'. Then VU W = M.

Letpr, po: M — [0, 1]be a partition of unity corresponding to the open covering
{V,W}of M,ie.supp u1 C V,supp po C W,and pq + pp = 1. Define a vector
field F on M by the formula

F(x) = pi(x) - ®(x) + pa(x) - W(x), x€M.

Evidently, F is gradient-like for g and coincides with & near | J; /;. In particular,
every [; is a trajectory of F, whence /; transversely intersects level-sets of g.

It remains to show that g can be changed outside of | J; /; to have the critical type
of f First we show how to make g a minimal Morse function.
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Suppose that g has a critical point zo either of index 0 or 2. Since the sets of
positive and negative boundary components of g are non-empty, there exists a critical
points z1 of index 1 and a trajectory w of F with ends at zo and z;. This trajectory
does not intersect | J/;. Hence g can be changed in some neighborhood N of o to
have no critical points in N (see [HM], [MJ1]). Thus the number of critical points is
reduced. By a similar procedure we can add pairs of critical points outside of | J; /;.

Therefore we can change the critical type K ( f ) of g leaving /; transversal to level-sets
of 2. m]

12. Proof of (i) of Theorem 8.5

Let y C M be a simple closed curve and let 1, be a Dehn twist along y .

Necessity. Suppose that 1, is f-admissible. Then f and f o ¢, are homotopic.
We should show that deg /|, = 0. We can assume that there is a regular value ¢ of
f such that @ = f~!(c) is an SCC. Denote o’ = t,, ().

Since f and f o t,, are homotopic, we obtain from the last paragraph of Section 3.1
that [o'] = [«] in Hi(M,dM), ie. 1, fixes [«]. Then by Eq. (9.3) for the action of
Dehn twists in Hy (M, 0 M) we get

] =1y ([e]) =@ ([¥]. [a]) - [y]+ [«] = deg fl - [¥]+ [«],

whence deg f|, = 0.

Sufficiency. Suppose that f|, is null-homotopic. By Lemma 11.1, f is 2-
homotopic to a Morse mapping g such that g~!(¢) Ny = @ for some regular value ¢
of g. We now apply the construction of Section 3. Cutting M along g7 1) we obtain
a surface M = M(g, ¢), a Morse function g: M — [0,1], and an SCCy Cc M
corresponding to y. From the case P = R! of the Main Theorem, 15 is g-admissible.
Then 1, is g-admissible and therefore f-admissible. a

13. Proof of (ii) of Theorem 8.5

Let f: M — S! be a Morse mapping, let 1, y» be disjoint oriented homologous
simple closed curves in M, andlett =1, o ty—21 be the product of Dehn twists along
these curves. We must prove that ¢ is f-admissible.

Since these curves are homologous, it follows that the restrictions of f to them
are homotopic. If these restrictions are null-homotopic, then by the case (i) of this
theorem ¢ 1s f-admissible. Therefore we will assume that f|,, 7 0.

By Lemma 11.1 we can also assume that y; transversely intersects each level-set
of g. Then the statement (ii) of Theorem 8.5 is a direct corollary of the following
lemma:



686 S. Maksymenko CMH

Lemma 13.1. Let f: M — S' be a Morse mapping, let y1, y» be two disjoint
homologous SCCs in M, and lett = t,, o ty_zl. Suppose that both of the y; transversely

)
intersect every level-set of f. Then f ~ f ot.

Proof. Let X C M be the closure of one of the connected components of M\ (y1Uyz)
bounded by the curves y; and y». Since y; (k = 1, 2) transversely intersects level-
sets of g, there exists an embedding ¢y of S 1'% [=2, 2] onto some neighborhood Ny
of v such that

Pr(S' X (O) =y, (S x [0,2]) C X, (13.1)
and the following diagram is commutative:

S1x[=2,2] - %5 NocM

pll lg (13.2)

st — > st
Here p is a projection onto the first coordinate and o is a covering mapping of degree
d =deg f1,, = deg f|,, defined by the formula o (z) = z%. Thus

godn(z, 1) =77 (13.3)

We can also assume that Ny N Ny = &. To simplify notation, for each pair a, b €
[—2, 2] we denote
[a,b] _ 1
N7 = (S x [a, b]).

Let w: [—2,2] — [0,1] be a C* function such that u[—2, —1] = 0 and
w[1, 2] = 1. Then the Dehn twist £, along y; can be defined so that = 1, o t),_z1
will have the form

2 M\ (N1 UN3),
t(z,t):{x e MA )

. 134
(ze¥ ) 5y, x =¢(z,8) € Np, k=1,2. ( )

Now a X-homotopy G: M x [0, 1] — S I petween g and g o  can be defined by
the formula

g0 e, xe X\ (NPT UNPY),
G(x,t)=4go (bk(zezmu(s)'t, $), x=q¢(z,s) € Np.k=1,2,
g(x), xeM\ (XU Nl[—l,o] U N2[—1,0]).

Remark 13.2. A geometrical meaning of this formula is that the mapping G “moves”
d times the part X between the curves y; and y» “around S'” leaving the the com-
plement M \ X fixed.
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Let us verify, that G is in fact a ¥-homotopy connecting g with g o ¢.

Proof. 1t is clear that Gy = g. Moreover, it follows from (13.1) and (13.2) that ¢
preserves orientation of S1 x [—2,2] while ¢, reverses it. Hence by (13.4) we get
G| = goty 011/_21.

Evidently, the continuity of G will imply its smoothness. To prove that G is
continuous we should verify that the second formula coincides with the first one on
NP U NIV and with the third one on N[5 U N2

Letx = ¢p(z,5) € N,El’z] for k =1, 2, then nu(s) = 1, whence, using (13.3), we
st g 0 dp(g ETIEN gy — 7d J2midl _ gy 2idi

Letnow x = ¢x(z,5) € N >~ for k = 1,2, then pu(s) = 0, whence

g ohi(z I 5y = gopi(z,5) = g(x).

Notice that for every pointx € M there exists a neighborhood on which G; differs
from g by a diffeomorphism of either S L or M. Hence G, is Morse forall ¢ € [0, 1],
i.e. G is a X-homotopy. ]

14. Proof of Lemma 8.4

Suppose that 1 € PM(M) is generated by {#; : I € C} and such that the mappings f
and fo h arehomotopic. We have to prove that z isin fact generated by {t; : [ € C\p1}.

Recall that Hi(M,oM) is a free module generated by homology classes of
A1, ..., 0, B1, ..., Be. Moreover, the matrix of @ in this basis has the form (9.2).
Since A, preserves this « we may suppose that i, € Sp,,(Z).

Notice that h,[c1] = [e1], since «q is a level-set of f, whence /., belongs to the
stabilizer St([«1]) of ¢1 in szg(Z).

Let t, be a Dehn twist along a simple closed curve y. Then it acts on Iy (M, M)
by the following formula:

(ty)e(x) =0 (¥], x) - [yl +x forall x € Hi (M), (14.1)

thus it is a transvection along [y ], see Eq. (9.3).

Hence the products of transvections pi;;, nij, vi; defined by Formula (9.4) can
be realized by products of Dehn twists. It follows from Theorem 8.5 that all these
diffeomorphisms except for n1; = n;1 and v;; are f-admissible.

On the other hand, by Proposition 9.2, k., is generated by the linear isomorphisms
Tays gy Mijs Nijs Vijs exceptfor Ig; N1i = Mi1 and vj;, where: #j=1,...,¢g.

Hence, there exists an f-admissible diffeomorphism ¢ of M which induces the
same isomorphism of H as &,. Thent = ¢~! o & belongs to T (M). O
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Appendix. Proof of the Main Theorem. Case P = S!

We extend here our proof of the Main Theorem given in [M] to the case when M is
arbitrary and P = S

Let f,g: M — S! be two Morse mappings of the same critical type, let ¢ be
their common regular value, ¢ = ), and let y = g7 (o). By Lemma 5.1 we
can assume that the homomorphism f, = g.: HHi(M) — Hi(SY) is onto and by
Lemma 3.2 that « and y are connected, i.e. SCCs. _ ~

Letus cut M along o and denote the obtained surface by M. Letalso p: M — M
be the factor-mapping, f: M — [0, 1] the corresponding Morse function induced by
f,Bo= f~10), By = f~1(1),and B = ByU By (we use the notations of Section 3).

Claim 14.1. Ifa = y, then f ~ g.

Proof. Since f and g are homotopic, we can assume (by small X-homotopy) that they
coincide near «v. Then g also yields a Morse functiong : M — [0, 1] which coincides

near B with f and K (f) = K (2). By the R-case of the Main Theorem f ~ g with
respect to aneighborhood of B. Then this X-homotopy yields a X-homotopy between
f and g with respect to a neighborhood of «. O

Suppose that « # y. Since f and g are homotopic, it follows that the restriction
[, isnull-homotopic. Then by Lemma 11.1 we can additionally assume thate Ny =
.

In this case ¥ = p~!(y) separates M between By and B;. Using the method of
Claim 11.2 we can construct a Morse function f1: M — [0, 1] which coincides with
£ near BoU By, has the critical type of £, and such that # (3) =¥. Then 1 yields
a Morse mapping f1: M — S! which coincides with f in a neighborhood of « and
such that fl_l(p(%)) = y. Thus « and y are level-sets of f;. Then by Claim 14.1

% B
we get f ~ f1 ~ g. 0
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