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Points périodiques des fonctions rationnelles dans I’espace
hyperbolique p-adique

Juan Rivera-Letelier

Abstract. We study the dynamics of rational maps with coefficients in the field C, acting on
the hyperbolic space H,. Our main result is that the number of periodic points in H, of such
a rational map is either O, 1 or 0o, and we characterize those rational maps having precisely 0
or 1 periodic points.

The main property we obtain is a criterion for the existence of infinitely many periodic points
(of a special kind) in hyperbolic space. The proof of this criterion is analogous to G. Julia’s proof
of the density of repelling periodic points in the Julia set of a complex rational map.

Mathematics Subject Classification (2000). 11599, 37F10, 51M10, 37E25.

Keywords. p-adic fields, rational maps, hyperbolic space, periodic points.

Soit p un nombre premier. On désigne par Q, le corps des nombres p-adiques et par
Cp le complété d’une cloture algébrique de Q.

Cet article est la suite de [R2]" dans lequel on a étudié la dynamique des fonctions
rationnelles a coefficients dans C,, agissant sur la droite projective P(C)), ainsi que
sur I’espace hyperbolique p-adique H,.

Cet espace est un arbre réel séparable et complet, isométrique a I'immeuble de
Bruhat-Tits de SL(2, C,). De plus, il a un rapport étroit avec I’espace analytique
induit par P(C)), au sens de V. G. Berkovich.

Dans ce travail on étudie les points de H, qui sont périodiques sous 1’action
d’une fonction rationnelle donnée. Essentiellement, chaque point (rationnel) de H,
qui est fixé par une fonction rationnelle, est en correspondance avec une coordonnée
de P(C,) dans laquelle la fonction rationnelle a réduction non triviale. On dit qu’une
fonction rationnelle R a réduction non triviale lorsqu’il existe une fonction rationnelle
R acoefficients dans le corps résiduel C pde Cp, etun sous-ensemble fini E de P(C )

1 es résultats de cet article, ainsi que ceux de [R2], ont paru dans le Preprint IMS at Stony Brook #2001/12.
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tel qu’on ait le diagramme commutatif suivant

P(C,) \ 7~ L(B) —2=P(C))

P(C,) \ E — P(C,)

voir [R2]. Ici 7w désigne la projection de P(C,) vers IP’(((NI p).
Le résultat principal qu’on obtient ici est une caractérisation des fonctions ration-
nelles n’ayant qu’un nombre fini de points périodiques dans H,.

Théoreme 1. Le nombre de points périodiques dans H, d’une fonction rationnelle
est égal a 0, 1 ou 0.

Autrement dit, pour une fonction rationnelle n’ayant qu’un nombre fini de points
périodiques dans H, il y a deux cas : soit la fonction rationnelle ne posséde aucun
point périodique dans H, ; soit la fonction rationnelle posséde un et un seul point
périodique dans H, (dans ce dernier cas le point périodique est un point fixe de la
fonction rationnelle).

Dans les théoremes 2 et 3 ci-dessous on caractérise chacun de ces deux cas. Une
fonctionrationnelle R a bonne réduction lorsque elle aréduction non triviale et lorsque
I’ensemble E ci-dessus est vide, voir § 6 pour une définition plus précise.

Théoreme 2. Une fonction rationnelle a un et un seul point périodique dans H, si et
seulement si, apres changement de coordonnée, elle a bonne réduction inséparable.
Dans ce cas, tous les points périodiques de la fonction rationnelle dans P(Cy) sont
artractifs.

Lanotion de bonne réduction d une fonction rationnelle a ét€ introduite par Morton
et Silverman dans [MS], voir aussi [Ben2].

Théoreéme 3. Pour une fonction rationnelle R de degré au moins 2 a coefficients dans
C,, les propriétés suivantes sont équivalentes.

a) R ne posséde aucun point périodique dans H,.
b) R posséde un seul point périodique non répulsif dans P(C,).
¢) R a un nombre fini de points périodiques non répulsifs dans P(Cp).

Dans ce cas R aun point fixe attractif dans P(C ) et tous les autres points périodiques
de R dans P(C,) sont répulsifs.
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Rappelons que toute fonction rationnelle a un point fixe non répulsif dans P(C,)
[Benl]. Donc, les fonctions rationnelles qui n’ont pas de point périodique dans H,
correspondent au cas extréme ou le nombre des points périodiques non répulsifs
(comptés avec multiplicité) dans P(C) est égal a 1, voir Théoréme A de [R2].

On montrera ailleurs que toute fonction rationnelle dont I’ensemble de Julia est
compact et non vide est comme dans 1’énoncé du Théoreme 3. Ceci généralise aux
fonctions rationnelles la Proposition A de [Bez].

Exemple. Fixonsunentier d > 2. Pour ¢ € C,, on définit P.(z) = P4ce Cplzl. 1l
est facile de voir que si |d%c4=1| > 1, alors les points périodiques de P, dans C,, sont
répulsifs. Le Théoréme 3 implique que le polyndme P, n’a pas de points périodiques
dans H,.

D’autre part, Qans le cas ou |c| < 1, le polyndme P, a bonne réduction, donnée
par le polyndme P.(z) = z% + ¢. Ainsi, lorsque p divise d, le Théoréme 2 implique
que P aun et un seul point périodique dans H,.

Le Théoreme 3 est une conséquence des résultats établis dans [R2]. Dans la
démonstration des théorémes 1 et 2, les points exceptionnels dans H, jouent un role
essentiel. Un point de H, est dit exceptionnel lorsque son orbite inverse est finie.

Théoreme 4 (Ensemble Exceptionnel). L’ensemble exceptionnel dans H, contient
au plus un point. De plus, il est non vide si et seulement si, aprés changement de
coordonnée, la fonction rationnelle a bonne réduction.

On peut comparer au cas complexe ou I’ensemble exceptionnel contient au plus 2
points, cf. [Mi]. Les démonstrations des théoremes 1 et 2 se déduisent alors du lemme
suivant.

Lemme Principal. Soir R € C,(z) une fonction rationnelle ayant un point pério-
dique inséparable dans H,, qui n’est pas un point exceptionnel. Alors R, a une infinité
de points périodiques inséparables dans H,,.

Ladémonstration du lemme est analogue a la démonstration de G. Julia concernant
la densité des points périodiques sur 1’ensemble qui porte son nom (voir [Mi]).

D’une fagon surprenante, un raisonnement assez proche de la démonstration du
Théoréme 4 permet de donner une preuve « conceptuelle » du théoréme suivant, di a
R. Benedetto.

Théoréme (|[Ben2], Theorem B). Si R € Cp(z) est une fonction rationnelle de degré
au moins deux et si n est un entier positif, alors R" a bonne réduction si et seulement
si R a bonne réduction.
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Plan de Particle. Dans les paragraphes 1, 2 et 3 on rappelle quelque définitions
et résultats concernant le corps C,, et I’espace H,. Dans les paragraphes 4 et 5 on
étudie les points périodiques inséparables. Dans les paragraphes 6 et 7 on étudie
I’ensemble exceptionnel dans H,, et on donne la démonstration du Théoréme 4.
Dans I’appendice (paragraphe 12) on établit une propriété générale qui est nécessaire
pour la démonstration du Théoreme 4.

Dans le paragraphe 8 on obtient les théorémes 1 et 2 a partir du Lemme Principal.
On montre aussi le Théoréme 3 avec les résultats de [R2]. Les paragraphes 9, 10 et 11
sont consacrés a la démonstration du Lemme Principal.

Remerciements. Jeremercie J. C. Yoccoz et R. Benedetto pour plusieurs remarques
et corrections qu’ils ont faites concernant une version préliminaire de ce travail. Je
remercie aussi le Collége de France pour son hospitalité. Je remercie le rapporteur
dont ses remarques et corrections ont beaucoup aidées a améliorer 1’ exposition de cet
article.

1. Préliminaires

Soit p > 1 un nombre premier, Q, le corps des nombres p-adiques et C,, le complété
d’une cloture algébrique de Q.

On désigne par | - | la norme sur C,, et C;, = €, \ {0} le groupe multiplicatif de
Cp. On appelle

IC3l = {lz] | z € 5}
= {r > 0| log, r estrationnel}

le groupe de valuation de (C;.

On désigne par Op = {z € C, | |z| < 1} Vanneau des entiers. L'ensemble
m, = {z € C, | |z| < 1} est un idéal maximal de @,. Le corps ((NZI, = Op/my est
appelé le corps résiduel de C,. 11 est isomorphe a une cloture algébrique Ep du corps
fini F,. On identifie C, 2 F,.

Pour z € @, on désigne par Z la projection de z dans Ej. Pour ¢ € E, on pose
B(¢) = {z = ¢}, de sorte qu’on a la partition,

Op = g B(Z).

1.1. La droite projective. On considére la droite projective P(C,), qui est I’en-
semble des droites dans C,, x C,, passant par (0, 0). Pour (x, y) € C, xC, \{(0, 0)},
on désigne par [x, y] € P(C,) le point correspondant a 1a droite {(Ax, 2y) | A € Cp}.
On désigne par oo le point [1, 0] € P(C,), et on identifie P(C,) \ {c0} a C, par
I’application [A, 1] — A.
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On étend la projection de C,, vers F, en une projection de P(C,) = C,, U {oc}
vers P(F,,) = IF, U {oo}, par Z = oo, pour z € {|z| > 1} U {oc0}. On pose B(c0) =
{z = 00} = {|z] > 1} U {oo}. On a alors la partition canonique

P(Cp) = up(ﬁp)B(é)- (N

Pour chaque @, b, ¢, d € C, tel que ad — bc # 0 I’application linéaire (x, y) —
(ax+by, cx +dy) de C, x C, dans lui méme induit une application de P(C,) dans
lui m&me, qu’on appelle transformation projective. Les transformations projectives
forment un groupe isomorphe 2 PGL(2, C,) : I’élément (] §) € PGL(2, Cp) corres-
pond ala transformation projective de P(C,,) induite par (x, y) +— (ax+by, cx+dy).

Le sous-groupe PGL(2, @,) de PGL(2, C,) correspond a celui constitué des
transformations projectives qui préservent la partition (1). De plus, la transformation
projective de IP(C,) associ€ a (‘; 2) € PGL(2, Op) préserve chaque élément de la
partition (1) si et seulementsia,d € 1 +my eth, c € my,.

1.2. Boules et couronnes. Ftant donnés r € IC}l et a € Cp, on appelle les en-
sembles
{zeCpllz—al<r} e {z€Cyllz—al=r}

boule ouverte de Cp, et boule fermée de Cp, respectivement. Sir ¢ |Cj| alors ces
deux ensembles coincident et constituent ce qu’on appelle une boule irrationnelle de
C,. Notons que par définition une boule B de C,, est irrationnelle si et seulement si
diam(B) ¢ |C7|; en particulier, si B est ouverte ou fermée alors diam(B) € |C7|.

Etant donnés deux boules B et B’ de C,, ayant une intersection non vide, il y a
deux possibilités : soit B C B’, soit B’ C B.

’image d’une boule ouverte (resp. fermée, irrationnelle) par une transformation
affine de C,, est une boule de méme nature.

Une boule ouverte (resp. fermée, irrationnelle) de P(C,) est soit une boule de
C, de méme nature, soit le complémentaire d’une boule fermée (resp. ouverte, resp.
irrationnelle) de C,,. Dans ce qui suit le mot boule désignera une boule de P(C,).

Etant données deux boules B et B’ de P(C,) qui s’intersectent, il y a trois pos-
sibilités : soit B C B’, soit B’ C B, soit B U B’ = P(C,). Dans ce demier cas les
complémentaires de B et B’ sont disjoints ; si de plus B et B’ ne sont pas fermées
alors on dit que B N B’ est une couronne. Aprés changement de coordonnée, on peut
supposer B = {|z| < r}et B’ = {|z] > r'} U {oo} avec ¥’ < r; alors

BNB ={zeCp|r <|z| <r}

On définit mod(B N B’) = log, r —log, r’ > 0. La valeur de cette expression ne
dépend pas du choix de coordonnée, et on 1’appelle le module de la couronne BN B’.

’image d’une boule ouverte (resp. fermée, irrationnelle) par une transformation
projective de P(C,) est une boule de méme nature.
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1.3. Séries convergentes. Dans ce paragraphe on considére quelques résultats ba-
siques d’analyse ultramétrique. Pour les démonstrations le lecteur pourra consulter,
par exemple, [BGR].

Une série f(z) = ap + a1z + - - - a coefficients dans C, converge sur la boule
{lz| < r} si et seulement si limsup; ,  |a;|'/* < r~'. Lorsque r € |C¥| la série f
converge sur la boule fermée {|z| < r} si et seulement si lim sup;_, ., |@; Irt < oo.
Dans ces deux cas pour tout ro € (0,r]ona

1£1lro := sup{| ()| | Iz] < ro} = sup{lairy | i > 0}.

Lorsque f converge sur {|z| < ro} on a aussi || fl,, = sup{|f ()| | |z| < ro}. De
plus, f est injective sur la boule {|z| < r} si et seulement si a; # 0 et pour tout
i >1lonala|ri~! < l|a|. Dans ce cas I’'image de {|z| < r} par f est égal a la boule
{lz — aol < lay|r}.

Toute fonction rationnelle a coefficients dans C, admet un développement en
série en chaque point zo de €, qui n’est pas un pole. Le rayon de convergence est
égal a la plus petite distance entre zo et un podle.

Si f est une série convergente sur une boule B de C,, alors I'image par f d’une
boule ouverte (resp. irrationnelle, fermée) strictement contenue dans B est une boule
de méme nature.

Lemme 1.1. Soient f et ¢ des séries convergentes sur une boule B de C,. Si D est
une boule strictement contenue dans B et sup{|e(z)| | z € D} < diam(f (D)), alors

(f +e)(D) = f(D).

Preuve. Onsaitque (f+e)(D)et f(D) sontdes boules de méme nature. L’hypothése
implique que (f + &)(D) C f(D) et que diam((f + &)(D)) = diam(f(D)). On a
donc (f +¢e)(D) = f(D). O

Lemme 1.2. Soient r, v’ > O et considérons une série f convergente sur {|z| < r},
telle que f({|z| < r}) C {lz| < #’'}. Alors pour toute boule D C {|z| < r}ona

%diam(f(D)) < %diam(D).

Si de plus diam(D) < r, alors on a I’égalité si et seulement si f induit une bijection
entre {|z| < r}et{lz| <r'}

Preuve. Soita € D et posons g(z) = f(z+ a) = by + b1z + - - - . Par hypothese
on a '
I£1- = llgll- = sup{|b;|r' | i = 0} <r".

Sil’on pose ro = diam(D), alors on a

diam(f (D)) = llg = boll, = supf{|bilrj | i > 1}.
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Mais pour chaque entier i > 1 on a |b;|r) < r'(ro/r)' < r'(ro/r), d’ol on obtient
I’inégalité désirée. Lorsque ro < r, on a I’égalité si et seulement si |b1| = r'/r. Mais
g (et donc f) induit une bijection entre {|z| < r} et {|z] < r’'} si et seulement si
|b1| =71"/r. -

2. Espace hyperbolique H,

Dans ce paragraphe on fait des rappels sur I’espace hyperbolique H,,. On trouvera
les détails dans les paragraphes 3 et 4 de [R2].

2.1. Bouts. Soit {B;};>0 une suite croissante de boules fermées ou irrationnelles telle
que B = |J,~( Bi soit une boule ouverte ou irrationnelle, ou soit égale a IP(C,,). Alors
{B\Bi}i>0 est soit une suite décroissante de couronnes, soit une suite décroissante de
boules, respectivement. On appelle {B \ B;};>o chaine évanescente. Notons qu’on a

(\(B\B) =0
i>0
et par conséquent B \ B; C C,,, pour i assez grand. De plus, diam(B \ B;) converge
vers un nombre positif lorsque i — o0.
On dit que deux chaines évanescentes {B\ B; };>o et {B’\ Bl.’ }i=0 sont équivalentes
sipourtout N > Oilexisten > N telque By C B et By, C B,.Danscecas B = B’

Définition 2.1. Un bout est une classe d’équivalence de chaines évanescentes.

Soit P un bout et { B\ B;}; >0 une chaine évanescente définissante. Alors B dépend
seulement de & et on pose Bp = B.

Si Bp = IP(C,), alors on dit que & est un bout singulier. Sinon By est une
boule ouverte ou irrationnelle qui est déterminée par . Si By est une boule ouverte
(resp. irrationnelle) alors on dit que & est rationnel (resp. irrationnel). On a une
correspondance entre les boules ouvertes (resp. irrationnelles) et les bouts rationnels
(resp. irrationnels).

Chaque transformation projective ¢ de P(C,) induit une bijection sur les bouts
rationnels (resp. irrationnels, singuliers). On désigne cette action par ¢.

2.2. Partitions de la droite projective et points de H,. L’espace hyperbolique,
qu’on désigne par H,, est par définition un ensemble de points, qu’on décrit ci-
dessous. Il y a trois types de points de H, : les points singuliers, rationnels et irra-
tionnels.

2.2.1. Points singuliers. Les points singuliers de H, sont par définition les en-
sembles de la forme 4 = {#}, ot & est un bout singulier.
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2.2.2. Points non singuliers. On dit que deux boules ouvertes ou irrationnelles By
et By sont associées, si Bo N By = ¥ et si By et By sont maximales pour cette
propriété. Autrement dit, sii € {0, 1} et B estune boule ouverte ou irrationnelle telle
que B; C B/ et B/N B1_; =¥, alors B/ = B;.

Lemme 2.2. Soient By et By associées a B. Alors Bo = B1 ou Bo N By = {. Dans
ce dernier cas By est associée a Bj.

Preuve. La premiere assertion suit par maximalité. Supposons By N By = . Soiti €

{0, 1} et soit B/ une boule ouverte ou irrationnelle telle que B; C B/ et B/NBi_; = .
Alors B ¢ B/, car B_; estassociée a B, donc B/ N B = (. Par conséquent B = B;,
car B; est associée a B. ]

Un point non singulier 4 de H, est par définition un ensemble de bouts rationnels
ou irrationnels tel que pour tous Py et P € 4 distincts, les boules By, et By, soient
associées, et maximales pour cette propriété. Dans ce cas on dit qu’une boule By,
avec P € 4, estassociée d 8.

Notons que ’'union d’une suite croissante de boules ouvertes ou irrationnelles
disjointes d une boule donnée, est une boule ouverte ou irrationnelle. Par conséquent
chaque point non singulier 4 de H, contient au moins deux éléments, et on a la
partition

P(Cp) = UgBp.
2.2.3. Points irrationnels. Ftant donné un bout irrationnel &, les ensembles B » et
P(C,) \ By sont des boules irrationnelles. Alors {, 5’} est un point non singulier
de H,, ot 2’ est le bout associé¢ A P(C,) \ Byp. On appelle {2, '} point irrationnel.

2.2.4. Le point canonique. Rappelons que pour ¢ € ]P’(E,) on désigne par B(¢) la
boule {z € P(C,) | Z = ¢} ; voir Préliminaires. On a la partition canonique

P(Cp) = Upg,)B(O)-

Soit £ (¢) le bout correspondant a B(¢). Il est facile de voir que Scan = {P ({)}P@p)
est un point non singulier. On I’appelle le point canonique.

2.2.5. Points rationnels. Soit # un bout rationnel et soit ¢ une transformation
projective de P(Cp) tel que ¢({|z] < 1}) = Bp. Alors £ = ¢.(P(0)) et 8 =
{(p*(ﬂ’(é))}[@@p) est un point non singulier contenant ». On appelle 8 € H, point
rationnel. En particulier, $cqn €St un point rationnel.

Notons qu’on a un paramétrage de § par ]P’(Fp) qui est unique, modulo un chan-
gement de coordonnée projective de ]P’(Fp).
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2.2.6. Définition de I’espace hyperbolique

Définition 2.3. L'espace hyperbolique p-adique, qu’on désigne par H,, est ’en-
semble des points rationnels, irrationnels et singuliers. De plus, on désigne par Hj,lfg
(resp. Hg) I’ensemble des points non singuliers (resp. rationnels) de H,.

Notons que tout bout (resp. bout non singulier, bout rationnel) est contenu dans
exactement un point de H,, (resp. H%, H(g).

I estclair que le groupe PGL(2, C,,) des transformations projectives de P(C ) agit
sur H,, en préservant ]HIE et Hg. Cette action est transitive sur ]ng etle stabilisateur du
point 8¢, correspond au sous-groupe PGL(2, @ ). Par conséquent on a une bijection
entre PGL(2, C,)/ PGL(2, @)) et Hg. Etant donné une transformation projective ¢
de IP(C,), on désigne par ¢, I’action sur Hl, induite par ¢.

2.3. Propriété de séparation

Définition 2.4. Soit 8 € H, et X C P(C,).

1. Si48 € H% est non singulier et si X intersecte au moins deux boules associées a
4, alors on dit que 4§ sépare X, et onnote 8§ < X.

2. Si 8§ = {#} € H, est singulier et si pour toute chaine évanescente {D;};>o
définissant & et touti > Qona D; N X # {4, alors on écrit § < X

Soient 4 € H, et X, Y C P(Cp). Alors (8 < X et X C V) implique § < Y.
Notons que pour un point singulier § = {#} il suffit de vérifier la propriété 2 pour
une chaine évanescente définissant # quelconque.

Lemme 2.5. Soient 8 et 8’ € H, des points distincts. Alors il existe un unique bout
P e Stelque 8 < Bp.

Lemme 2.6. Soient 8, 8 € ]HI;I? distincts. Soit B (resp. B’) la boule associée a §
(resp. 8') telle que 8’ < B (resp. 8 < B’). Alors BN B’ est une couronne.

2.4. Propriété de séparation dans H,. Fixonsunpoint 8 € H,. Parle Lemme 2.5,
chaque point 8’ € H, différent de 8 détermine un bout P € 4 tel que 8’ < Byp.

Comme P(C,) = ugByp est une partition de P(C,), chaque point 7’ € P(C,)
détermine un bout & € 4 tel que ' € Byp. On écrit 7/ < Bp.

Définition 2.7. Soient 8y, 41 € H, UP(C,) et § € H,, des points deux a deux
distincts. Pour i € {0, 1} soit ; € 4 le bout tel que 8; < Bp,. On dit que 4 est entre
4o et 81 s1 Py # P1. On dit aussi que 8 sépare 8o et 1.

On désigne par (8o, 81) C H, I’ensemble de tous les points entre 4y et 81. De
plus, on pose [8o, 81) = (81, So] = (8o, 81) U {So} et [8o, 1] = [8o, 1) U {$1}.
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Notons qu’un point § € H,, peut séparer deux éléments de H, U P(C,) si et
seulement si 4 € IHI]S. Cette définition généralise la définition 2.4 dans la mesure ou
un point 4 € IH[E sépare deux points zg et z1 € IP(C,) distincts si et seulement si §
sépare ’ensemble {zo, z1} C P(C,) (dans le sens de la définition 2.4).

Lemme 2.8. Soient 8o, 41 et 8, € H, UP(C,) des points distincts tels que 8; ne
soit pas entre 8 et 8k, pour toutes les choix de {i, j, k} = {0, 1, 2}. Alors il existe
un unique point 8 € M, tel que 8 est entre 8¢ et 81, entre 81 et 8> et entre §; et 4.

Dans ce cas 8 € ]ng.

Lemme 2.9. Soit # un bout et soient 8y, 81 € H, des points distincts tels que
80. 81 < Bp. Alors il existe un point § € HLy tel que 8 < By et tel que

[50. 8) N [51. ) =[5, 5),
ou 8 est le point de H,, contenant P.

2.5. Distance sur H,. IL’espace hyperbolique H, est muni d’une distance 4, pour
laquelle il est un arbre réel séparable et complet, voir le paragraphe 3 de [R2]. De
plus, cette distance est invariante par 1’action des homographies sur H,.

Pour des points non singuliers distincts 4§ et 4’ de Hﬂs, cette distance est définie
comme suit. Soit B la boule associée a 4 telle que 8’ < B et soit B’ 1a boule associée
a 8’ telle que 4 < B’ (voir Lemme 2.5). Par le Lemme 2.6, B N B’ est une couronne
et alors

d(8,8) =mod(BNB).

I1 est facile de voir que si D (resp. D’) est une boule de C,, associée a § (resp. 47)
ona
diam(D U D’)?

(8, 8) =1 ‘
(8. 8) =02y (D) diam(D’)

)]

Les segments géodésiques de I’arbre réel (H,, 4) sont les ensembles de la forme
[4, 4’1, voir Définition 2.7. On sait que les points rationnels sont denses sur chaque
segment géodésique.

Pour z,z’ € P(C,) on dit que (z,2) C H% est la géodésique joignant z et 7.
Chaque géodesique est isométrique a R. Dans le cas ou 4 € H, et z € P(C,),
on dit que [4, z) est une demi-géodésique. Si 4 appartient a ]HI% alors il existe une
transformation projective de P(C,) envoyant z a co et 4 dans (0, oc). Par conséquent
[4, z) estisométrique a [0, o0) C R.

Lorsqu’on fixe 4 € H, et 4’ se rapproche (sur une géodésique) d’un point de
P(C,), alors la distance d(4, §') tend vers I’infini.
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2.6. Remarques a propos de I’espace de Berkovich. Comme ensemble, 1’espace
analytique de Berkovich IPZ;“p induit par P(C,) s’identifie de fagon naturelle a I’en-
semble IP(C,) L H,. Les points de P(C,) s’identifient aux points de type (i) de P?C“p
et les points rationnels (resp. irrationnels, singuliers) de H, s’identifient aux points
de type (i) (resp. (iii), (iv)) de ]P’g‘p.

L’espace Pg{‘p est munit d’une topologie pour laquelle il est compact et connexe
par arcs. La topologie sur H,, induite par %“p est strictement moins fine que celle
induite par la distance d.

Etant donné un point § de P(C,) UH, = IP?C‘; et une boule B de P(C,), on a
4 < B siet seulement si 8 € B, ou B*" désigne 1’espace analytique de Berkovich
induit par B. De plus, pour chaque point 8 € H, on a la partition

C, \ {8} = Upes BE

(Lemme 2.5), laquelle est la partition en composantes connexes de P’j‘cnp \ {8}.

3. Action des fonctions rationnelles sur H,

Fixons une fonction rationnelle R € C,(z) qui ne soit pas constante. Dans ce para-
graphe on décrit I’action d’une fonction rationnelle sur les bouts et sur H,, ; pour les
démonstrations on pourra consulter le paragraphe 4 de [R2].

Etant donné un point w € P(C)), le degré local de R en w, que 1’on désigne par
degp (w), est défini comme suit. On considere des coordonnées telles que w = 0 et
R(0) = 0. Alors R est localement de la forme

adzd+ad+1zd+l+~~, oud>1letag #0;

on définit degp(w) = d et on dit que degp(w) est la multiplicité de w comme
antécédent de R(w). Il n’est pas difficile de voir que deg z (w) ne dépend pas du choix
des coordonnées.

Pour w e P(C,) ona

Z degp(z) = deg(R) (3)
R(z)=w
etpour Q € Cp(z) onadegy g(w) = degy(R(w)) - degg(w).

Etant donnés X, Y C P(Cy) tels que R(X) C Y,onditque R: X — Y estde
degré d,oud > 1,sipourtouty € Y

> degg(x) =d.
xeX, R(x)=y

De facon équivalente, tout point dans Y a exactement d antécédents dans X comptés
avec multiplicité.
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3.1. Action d’une fonction rationnelle sur les bouts. Fixons une fonction ration-
nelle R € C,(z) non constante.

Proposition 3.1. Soit P un bout rationnel (resp. irrationnel, singulier). Alors il existe
un bout ' de méme nature et un entier d > 1 tel que pour toute chaine évanescente
{Ci}izo définissant P, il existe N > 1 tel qu’on ait les propriétés suivantes.

1. {R(Cy)}isn est une chaine évanescente définissant P’.

2. Pourtouti > N, R: C; — R(C;) estde degré d.

Le bout #’ seranoté R, (). De plus I’entier d sera noté deg () et appelé degré
local de R en P.

Lemme 3.2. Soit P un bout non singulier. Alors il existe un entier N > 0 tel qu’on
ait les propriétés suivantes.

1. Chaque point'y € Bg,(») a N + degr(P) antécédents par R dans Bp.
2. Chaque point'y & Br,(p) a N antécédents par R dans Bp.

En particulier, si N = 0 alors R(Bp) = Br,(p) et R: Bp — Bg, (p) est de degré
degr (&), si N est strictement positif alors R(Bp) =P(Cp).

3.2. Action d’une fonction rationnelle sur H,. Pour chaque point § ¢ H, on
définit un point R, (8) € H, et un entier degz($) > 1 qu’on appelle degré local de
Ren 8.

Si 8 = {P} € H, est un point singulier, on note R.(8) = {R.(P)} € H,, et
degr(8) = degr(?) > 1.Si 8 = {P, P’} € H, est un point irrationnel, alors
degp(P) = degp(P’) > 1 et {R(P), Ri(P’)} est un point irrationnel de H,. On
les note respectivement deg (8) et R« (8) € H.

La proposition suivante décrit 1’action d’une fonction rationnelle sur les points
rationnels de Hi, ; voir [R1], Proposition 2.4.

Proposition 3.3. Soit R € C,(z) une fonction rationnelle non constante et soit
8 € H(g un point rationnel. Alors on a les propriétés suivantes.

1. II existe un unique point rationnel 8’ € Hg tel que pour tout P € 8 on a
R.(P) e 4.

2. Considérons des paramétrages
8= {:P(S)}ge]p(ﬁp) er 8 = {?/(5)}§€P(ﬁp)-

Alors il existe une fonction rationnelle Re Fp (z) telle que pour fout & € ]P’(Fp)
on ait

Ru(P (&) = P/(R(E)) et degp(P(£)) = degz(€).
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Donc pour tout P’ € 8’

> degp(?) = deg(R).

PES,R(P)=F"

3. Il existe un sous-ensemble fini T de & tel que pour tout P € T onait R(Bp) =
P(C,) et tel que pour tout P € 8\ T la image de Bp par R soit Bg,(p) et
Papplication R: Bp — Bp,(p) soit de degré degp(P).

Le point 48’ sera noté R, (8). Le degré de R sera noté degr (4) et ne dépend pas
du choix des coordonnées.

3.3. Action locale d’une fonction rationnelle

Proposition 3.4. Soit R € C,(z) une fonction rationnelle non constante fixant 0 €
P(C,) et localement de la forme R(z) = az% + agy12%t 4 -+, ot d = degg(0).
Alors pour r > 0O petit on a

Ri(8:) = Bjgypa et degp(8) =d = degg(0),

ou 8, € H, est le point associé a la boule {|z] < r}.
Proposition 3.5. Soit R € C,(z) une fonction rationnelle non constante. Soit P un
bout et soit 8 € H, le point qui contient P. Alors il existe un point 5e H, tel que
8 < By et tel que [’on ait les propriétés suivantes.

1. Ri((8,8)) = (R.(8), Ri(8)) et Ry est injective sur (8, 8).

2. Pour tout 8' € (8, 8) on adegg(8) = degp(P).

3. d(Ry(8), Ri(8)) = degp(P) - d(8, 8).

Corollaire 3.6. Soit R € C,(z) une fonction rationnelle non constante. Alors pour
tout 8 et 8’ e Hy ona

d(R.(8), Ry(8')) < deg(R) -d(5,5').
En particulier action sur H, induite par une fonction rationnelle est continue.

Corollaire 3.7. Considérons un segment de H, paramétré par {$;}o<i<y, de telle
facon que d(8sy, 81) = |to — t1] pour 0 < 1o < 11 < t’. Supposons que R € Cp(z)
soit une fonction rationnelle telle que R, est injective sur [8o, 8;/]. Alors

l/
d(Ry(80), R+(81)) =/0 degg(8)dr.

En particulier on a d(Ry(80), R«(8y)) = d(B0, 8y/).
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4. Fonctions rationnelles en caractéristique positive

Dans ce paragraphe on considere des propri€tés de fonctions rationnelles a coefficients
dans IF,. Comme la caractéristique de IF,, est positive, parfois il y a des propriétés
assez différentes du cas de caractéristique z€ro ; par exemple le polyndme z7 € Fp [z]
induit une bijection sur ]P’(Fp).

Rappelons que pour toute puissance ¢ de p on a Fp = Unzl Fyn.

Lemme 4.1. Soit R € Fp(z) une fonction rationnelle.
1. Si deg(ﬁ) = 1 alors tout élément de IF’(FP) est périodique par R

2. Si deg(ﬁ) > 1 alors tout élément de IP’(E,) est prépériodique par Ret R aune
infinité de points périodiques.

Preuve. Soitg > 1une puissance de p telle que Re F, (). Alors pour chaque n > 1
I'ensemble P(IF n) = Fyn U{oo} est invariant par R. Puisque ]P’(Fp) = Un>1 P(F,n),
tout élément de ]P)(Fp) est prépériodique par R. Etant donné un entier » > 0 on
désignera par R" la fonction rationnelle itérée R o --- o R.
Qo2
r

1.51 deg(R) = 1 alors R induit une bljectlon sur chaque IP(IF ;) et par conséquent
tout élément de P(F,) est périodique par R.

2. Supposons deg(R) > 1. Soient &1, ..., € IP(FP) les points fixes de R et
soient A1, ..., A leurs multiplicateurs. Pour chaque 1 < i < k tel que A; # 0 soit
n; > 1 le plus petit entier tel que A" = 1.

Soit r un nombre premier strictement supérieur a p et aux n;. Soit ¢ une racine
de R’(z) —z.81¢ = ¢ et A; = 0, alors ¢ est une racine simple de Rr(z) —z. Si
¢ = ¢, A #0etn; > 1,1l en est de méme (car r n’est pas un multlplgde ni). Si
¢ =&, A #0etn; =1, alors les multiplicités de & comme racine de R(z) — z et
R’ (z) —z sont les mémes. I1 existe donc une racine ¢ de R” (z) — z distincte des ¢; (car
deg(ﬁ’ (z) —2) > deg(ﬁ (z) — 2)). C’estun point périodique de période minimale 7.

O

4.1. Inséparabilité

Définition 4.2. On dit qu’une fonction rationnelle R e Fp(z) est inséparable s’il
existe une fonction rationnelle Q € IF,,(z) telle que R(z) = Q(z?).

Notons que I’application z — z? est un automorphisme du corps Fp. Par consé-
quent pour toute fonction rationnelle @ € IF,(z) il existe une fonction rationnelle
0 € Fp (z) telle qu’on ait Q(zP) = (Q1(z))?. On conclut alors que, si R appartient
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aF p(2)ety, {D sont des trallsformations projectives de IP(FP), alors R est inséparable
si et seulement si @ o R o ¢ I’est. _

Ftant donnée une fonction rationnelle R € Fp(z), on dit que ¢ € ]P)(E)) est
un point critique de R si degg(¢) > 1. Dans ce cas on dit que degz(¢) — 1 estla
multiplicité de ¢ comme point critique de R.

Lapropriété suivante découle de la formule de Riemann—Hurwitz (voir par exemple
[Ha], page 301, Collorary 2.4). Elle n’est pas difficile a montrer directement.

Proposition 4.3. Soit Re Fp (z) une fonction rationnelle ayant plus de 2 deg(ﬁ) -2
points critiques, comptés avec multiplicité. Alors R est inséparable.

_Le corollaire suivant est immédiat. En effet il découle du résultat plus faible que,
si R € P (z) est une fonction rationnelle qui n’est pas inséparable, alors 1’ensemble
de ces points critiques est fini.

Corollaire 4.4. Soit R € Fp(z) une fonction rationnelle qui n’est pas inséparable.
Alors il existe une infinité des points périodiques ¢ € ]P’(Fp) tels que degza(¢) =1,
oun > 1estlapériode de ¢.

5. Points périodiques dans [,

Fixons une fonction rationnelle non constante R € C,(z) et considérons I’action R,
sur H, induite par R. On dit qu’un point 8 € H, est périodique par R, s’il existe
n > 1tel que R?(8) = 4. Dans ce cas on dit que 4§ est indifférent si degpn(8) =1,
et on dit que 4§ est répulsif si degpn(8) > 1.

Dans le paragraphe 5.2 on introduit les points périodiques inséparables, qui seront
trés importants dans ce qui suit.

5.1. Points périodiques indifférents. Pour une démonstration de la proposition
suivante voir [R2], Proposition 5.8.

Proposition 5.1. Soit R € C,(z) une fonction rationnelle de degré au moins deux.
Alors les propriétés suivantes sont équivalentes.

1. Ry a un point périodique indifférent dans H,.

2. Ry a une infinité de points périodiques indifférents dans H,.

3. R aun point périodique indifférent dans P(Cp).

4. R a une infinité de points périodiques indifférents dans P(Cp).
Dans ce cas Ry posséde aussi un point périodique répulsif dans H.

On aura besoin de la proposition suivante dans le paragraphe 9.1.
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Proposition 5.2. Soit R € C,(z) une fonction rationnelle non constante et soit
8 € Hy, un point irrationnel ou singulier fixé par R. Alors 4 est indifférent et il
est adhérent a I’ensemble des points fixes rationnels de Ry. En particulier tout point
périodique répulsif de Ry est rationnel.

11 est en fait vrai que I’ensemble des points périodiques indifférents dans H,, est
ouvert, mais on n’aurait pas besoin de ce résultat plus fort. La démonstration de cette
proposition s’appuie sur le lemme suivant.

Lemme 5.3. Soit C une couronne et soit R € C,(z) une fonction rationnelle telle que
R(C) est aussi une couronne. Alors il existe un entier d > 1 tel que R: C — R(C)
est de degré d et on a,

mod(R(C)) = d - mod(C).

Preuve. Apres changement de coordonnée on suppose que C = {rg < |z] < r1} et
que R(C) = {r} < |z| < r{}. En particulier R n’a pas de z¢ro ni de pole sur C. On
pose R = P/Q,ou

P(z)=ap+aiz+---+ap7" € Cylz] et

Q@) =bo+biz+-+byi" € Cplzl.

< la|r& (resp.
bjlrd < |bplrE) pour 0 < i < k (resp. 0 < j < K)et |ailri < |aklrk (resp.
1bjlr] < |bplr¥)pour k <i < n(resp. k' < j <n).
Comme R(C) = {ry < |z| < r{}onak # k/, et quitte & changer R par %, on
suppose k > k’. Alors R: C — R(C) est de degré d = k — k’. Remarquons d’autre
part que 7, = (|ak|/|bp|)rd etr) = (la|/|bp|)r{. Par conséquent

Alors il existe 0 < k < n (resp. 0 < k' < n/) tel que |ai|r6

mod(R(C)) =log,,(r{/r}) =log,(r{ /r§) = d - mod(C). ]

Preuve de la Proposition 5.2. Cas § irrationnel. Apres changement de coordonnée,
on suppose que 4 est le point associé a {|z| < r}. Posons R = P/Q, avec

P(z) =ag+aiz+ - +asz® € Cplzlet

Q@) =bo+biz+ - +byz? € Cplzl.
Soit) <n <d(resp. 0 <n' <d ) le plus petit entier qui maximise lan|r™ (resp.
|bn/|r”/). Comme r ¢ |(C;| onalai|rt < |an|r" (resp. |bjlr! < |[by|r" )pouri # n

(resp. j #n’). Donc |R(z)| = lan /by 2" pour tout z tel que |z| est assez proche
de r. Par suite, |an /by [r"™" =r,etcommer ¢ |C[, onadegp(P) =n — n =1
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Par conséquent 4 est un point fixe indifférent et R, fixe le point associé a {|z] < r’}
pour tout ’ proche de r.

Cas 8 singulier. Soit {D;};>o une chaine évanescente définissant 4 et soit ro =
lim;_, o diam(D;) > 0. Pour » > 0 on désigne par D, C C, la boule ouverte ou
irrationnelle de diamétre  telle que 8 < D,. Notons que pour r < r’ ona D, C D,

Fixons r1 > rg assez proche de ry tel que D, ne contient pas de point fixe de R,
tel que R(D;) C Cpettel que R: D, — R(D,,) soit de degré d = degz(8). Pour
r € (ro,r1)ona R(D,) C R(D,) C C,etlorsquer’ € (r,r1)ona R(D,) C R(D,)
(Lemme 3.2). On désigne par p(r) le diametre de la boule R(D,); ona R(D,) =
Dy Comme R, (8) = 8, 0na p(r) — rg lorsque r — ry.

Par le choix de r, pour tout r € (rg, r1) I'application R: D, — R(D,) est de
degré d. Par conséquent, sir ¢ |Cj|, alors I'image de la couronne Dy, \ Dy est la
couronne R(D, )\ R(D,), et application R: D, \ D, — R(D,) \ R(D,) estde
degré d. Par le lemme précédent ona (p(rq1)/p (r))? = r1/r. En faisant tendre r vers
ro on obtient p (r1)? = rg(rl /ro). Par conséquent on a p(r1) > rp avec égalité si et
seulement sid = 1.

Supposons par ’absurde que d > 1. D’apres ce qui précede on a p(r1) > rp et
alors le Lemme 1.1 implique que (R — id)(D») = R(D;) = {|z| < p(r1)}. En
particulier D, contient un point fixe de R. On obtient donc une contradiction et on
conclut que degg(P) = d = 1. Par conséquent, pour r € (ro,r1) ona p(r) =ret
alors le point de H, associé a la boule D, est fixé par R,. a

5.2. Points périodiques inséparables. Etant donnés une fonction rationnelle R €
C,(z) et un point rationnel 4 € Hg, on dit que R, est inséparable en 4 si I’action
de R, en 4 est inséparable, c’est-a-dire si degr(#) > 1 pour tout (une infinité de)
P € 4§ ; voir Proposition 4.3.

Définition 5.4. Soit R € C,(z) une fonction rationnelle de degré au moins deux. On
dit qu’un point périodique 4 € H, de R, de période n > 1 est inséparable si 8 est
rationnel et si (R,)" est inséparable en 4.

Remarquons que tout point périodique inséparable est répulsif.
Proposition 5.5. Soit R € C,(z) une fonction rationnelle telle que Ry n’a pas de
points périodiques indifférents dans H,,. Alors tous les points périodiques de R, dans
H,, sont inséparables.

La démontration de cette proposition s’appuie sur le lemme suivant.

Lemme 5.6. Soit R € C,(z) une fonction rationnelle et soit P un bout non singulier
tel gue R(Bp) = Bp. Alors :
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1. Si degp(P) = 1, alors tout point 8 de H, tel que 8 < By est périodique
indifférent.

2. Sidegr(P) > 1, alors la boule By contient un seul point périodique de R dans
By, qui est un point fixe attractif.

Preuve. Onposed = degp (). Apres changement de coordonnée on suppose By =
{lz] < r}. Larestriction de R a {|z| < r} est alors donnée par une série de la forme
ag+aiz+ -+, 0l la;|rl < rpour0 <i < d,|aglr® =retla;|lr/ <rpourj > d.

1. Supposons d = 1 et soit k tel que |a{‘ — 1] < 1. Etant donné ry € (|aol, r)
on pose By = {|z| < ro}. Il suffit de montrer que RM" converge uniformément
vers I'identité sur By lorsque m — o¢. Notons qu’on a |R¥(z) — Zllry < ro. Plus
généralement, on montrera que pour toute série f convergente sur la boule By et telle
que || f(z) — zll, < 7o, lasuite { f P }m>0 converge uniformément vers I’identité sur
By, lorsque m — 0.

Soit y = || f(z) — zlln/ro < 1 et pour chaque entier n > 1 posons 7,(z) =
f™(z) — z. Par récurrence il suffit de montrer que pour tout entier £ > 1 on a

ITp-ellry < max{|pl, v} - ITellr,-
Notons que pour tous £,n > 1 on a
Tue=Te+Teo f+---+Teo f*N.

Lorsque ¢ = 1, I'inégalité ultramétrique implique |7, < 71, = yro. Par
conséquent, si I’on fixe zo € Bg et on pose D = {|z — z0| < yro}, alors pour tout
n>1lona f*(z0) € D etle Lemme 1.2 implique qu’on a
|Te o f"(z0) — Te(zo)| < diam(T¢(D))
< (diam(D)/ro) - | Tellry = v - 1Tellry»

d’oti on obtient ||T¢ o f™* — Tell;y, < ¥ - ITells,. On a donc

1Tl < WpTely + | > Teof" =T

O<n<p-1

< max{|pl, ¥} [ Tellr-

1o

2. Supposons d > 1. Dans ce cas on a R'(z) < 1 sur {|z] < r}, et I’équation
R(z) — z = 0 a une solution zg sur {|z| < r}; elle est un point fixe attractif de R.
De plus, il est facile de voir que pour |z| < r la suite R"(z) converge vers zg lorsque
n — 0. Dong, zg est le seul point périodique de R dans {|z| < r}. O

Preuve de la Proposition 5.5. Soit 8 € H, un point périodique de R,. Par hypothese
4 est répulsif, et par conséquent il est rationnel. Quitte a changer R par un itéré, on
suppose que 4 est fixé par R,.
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Soit 7 I’ensemble fini des bouts & € 4 tel que R(Bp) # Bg,(»). Comme § est
répulsif, il existe une infinité de cycles de bouts dans 4 (Lemme 4.1). Par conséquent
il existe une infinité de bouts P tels que (Ry)"($) = P pour un certain » et tels que
(R (P) € 8\ T pour tout i > 0. Dans ce cas on a R*(Bp) = Bgp. Or, le lemme
précédent implique que degp () > 1, car R, n’a aucun point périodique indifférent.
Comme ceci est vrai pour une infinité de bouts &# € 4, on conclut que I’action de R,
est inséparable en 4. O

6. Bonne réduction

En coordonnées homogenes une fonction rationnelle s’écrit sous la forme [ Py, P1], 0t
Py et P1 € Cplzo, z1] sont des polyndmes homogeénes de méme degré, égal au degré
de la fonction rationnelle. Pour A € (C}*,, [APo, A P1] représente la méme fonction
rationnelle.

Etant donné un polyndme P € O plzo, z1] on désigne par P sa projection dans
Fylzo, z1].

Définition 6.1. Considérons une fonction rationnelle R € C,(z) donnée en coor-
données homogenes par [Py, P1]. Quitte a remplacer Py et Py par APy et APy res-
pectivement, on suppose Py et P A coefficients entiers et tel qu’au moins 1’un des
coefﬁ01ents de Py oude P soit de norme égale a 1.

Si Po et P1 n’ont pas de racine commune sur ]F X IF autre que (0, 0), alors on
dit que R a bonne réduction. Dans ce cas la fOIlC[lOIl rationnelle ReF p(z), donnée
en coordonnées homogenes par [Po, P1] satisfait deg(R) = deg(R), et on dit que R
est la réduction de R.

De fagon équivalente, une fonction rationnelle a bonne réduction si et seulement
s elle s’étende en un endomorphisme du schéma ]P’}9 . Lanotion de bonne réduction a
été introduite par Morton et Silverman dans [MS], voir aussi le paragraphe 7, [Ben2]
et [R1].

Il est facile de voir qu’une fonction rationnelle R € C,(z) admet bonne réduction
si et seulement si le point canonique 8can € H, est fixé par Ry et degR(&aH) =
deg(R), cf. [R1]. Dans le cas ou ceci a lieu, la fonction rationnelle R € F,(z)
coincide avec la fonction rationnelle donnée par la Proposition 3.3.

La proposition suivante est une conséquence immédiate du Lemme 6.3 ci-dessous.

Proposition 6.2. Soit R € C,(z) une fonction rationnelle ayant bonne réduction.
Alors pour toute boule B associée 4 8.y, I'ensemble R(B) est une boule associée
a 5can~
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Lemme 6.3. Soit R € C,(z) une fonction rationnelle non constante. Si 8 € H,, est
tel que degp (8) = deg(R), alors pour toute boule B associée a 8, I’ensemble R(B)
est une boule associée a Ry (8).

Preuve. 1. assertion est triviale si 4 est singulier. On suppose désormais 4 non singu-

lier. Etant donné un bout & € R,.(4), soient P1, ..., P € 4 toutes les antécédents
de R.(P) par R, dans 4. D’apres la Proposition 3.3 on a
> degg(Pi) = degg(8) = deg(R). )
1<i<k

Fixons un point zop € Bp. Par le Lemme 3.2 la boule By, contient au moins
degr (#;) antécédents par R comptés avec multiplicité, et I’égalité a lieu si et seule-
ment si R(Bp,) = Bg,(»,). Puisque le nombre d’antécédents de zo par R, comptés
avec multiplicité, est égaladeg(R),I’équation (4) impliquequ'ona R(Bp,) = Bgr, (2
pour 1 <i <k. O

Le reste de ce paragraphe est consacré a démontrer la proposition suivante.

Proposition 6.4. Soit R € C,(z) une fonction rationnelle ayant bonne réduction.
Alors on a les propriétés suivantes.

1. Pour tout point 8 € H, on a
d(R*(8>3 ’Scan) 2 d(g’ 508.11)'

2. Si la réduction de R est inséparable, alors pour tout point 8 € H,, distinct
de 8can Uinégalité précédente est stricte. En particulier S.ay est le seul point
périodique de R, dans H,.

3. Silaréduction de R est inséparable, alors tous les points périodiques de R dans
P(C,) sont attractifs.

Lemme 6.5. Soit R € C,(z) une fonction rationnelle et soit B une boule ouverte ou
irrationnelle telle que B’ = R(B) soit une boule; on désigne par d > 1 le degré de
R: B — B’. Soit 8 € H,, le point associé a B et soit 8 € Hy, un point tel que § < B.

Alors on a _ 5
d(Ry(8), R«(8)) = d(8, 8),

avec égalité si et seulement sid = 1.

Preuve. Apres changement de coordonnée au départ et a I’arrivée on suppose B =
{lz] < r}et B’ = {|z| < r’}. Soit D C B une boule différente de B. Par le Lemme 1.2
ona

l/ diam(R(D)) < * diam(D), (5)
r r
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avec €galit€ si et seulement si d = 1. Ceci montre I'inégalité désirée dans le cas
ou le point 5 est non singulier. Si d = 1 on a I’égalité dans (5), et donc on obtient
I’égalité désirée dans le cas ol le point £ est non singulier. [’égalité dans le cas ou 5
est singulier découle du cas précédent par continuite.

Considérons lecasoud > 1 et § estsingulier. Soit {D; };>1 une chaine évanescente
répresentant 5 telle que Do C B et Dy # B. Le Lemme 1.2 implique

1 1
—/diam(R(Do)) < —diam(Dy),
r r

etpouri > 1,

diam(R(D;)) diam(D )
diam(R(Dg)) — d1am(D0)

Comme i
d(R*(g), R.(8)) = lim —logp <—/ diam(R(Di))> et
1—=00 r

5o 1
d(s,8) = ll_lglo —logp (; diam(Di)) ,

on conclut que d(R.(5), R.(8)) > d(5, 8). O

Preuve de la Proposition 6.4. 1. et 2. Soit 8 € H,, distinct de $ca, et soit B la boule
associée a Scap telle que 4 < B. Comme I’ensemble R(B) est une boule (Proposi-
tion 6.2), le Lemme 6.5 implique que d(R.(8), Scan) > d (8, Scan)-

Si la réduction de R est inséparable, alors R: B — R(B) est de degré au moins
p > 1, etle Lemme 6.5 implique que I’inégalité précédente est stricte.

3. Si zo € P(Cy) est un point périodique de R de période n > 1, alors la boule
B associée a $cap qui contient zo satisfait R”(B) = B. Le Lemme 5.6 implique ainsi
que zo est attractif. O

7. Bonne réduction et I’ensemble exceptionnel

Dans ce paragraphe on considere 1’ensemble exceptionnel de I’action sur H, in-
duite par une fonction rationnelle. Cet ensemble est défini de fagon analogue au
cas complexe, voir par exemple [Mi]. On peut consulter aussi [Hs] pour I’ensemble
exceptionnel dans P(C,) d’une fonction rationnelle a coefficients dans C,.

Définition 7.1. On dit qu’un point 8 € H, est un point exceptionnel de R si ’en-
semble | J,~q Ry (8) est fini.

Notons que tout antécédent d’un point exceptionnel est aussi un point exception-
nel.
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Le but de ce paragraphe est de montrer le théoréme suivant, qui est un énoncé
plus précis du Théoréme 4 de I’introduction.

Théoreme 5 (Ensemble Exceptionnel). Soit R € C,(z) une fonction rationnelle de
degré au moins deux et soit Ry action sur W, induite par R.

L’ensemble exceptionnel de R, contient au plus 1 point. 1l est non vide si et
seulement si, apres changement de coordonnée, R a bonne réduction. Inversement,
si R a bonne réduction, alors le point Scan est le seul point exceptionnel de R..

Dans la démonstration de ce théoréme on montre qu’un point § € H, est ex-
ceptionnel pour R, si et seulement si R.(8) = 4 et degp(4) = deg(R); dans ce
cas le point 4 est rationnel et R a bonne réduction dans une coordonnée ¢ telle que
W*(’S ) = 50an~

En suivant la terminologie introduite dans [R1], on dit qu’une fonction rationnelle
R est simple s’il existe une coordonnée dans laquelle R a bonne réduction. On obtient
ainsi le corollaire immédiat suivant du théoreme précédent.

Corollaire 7.2. Soit R € C,(2) une fonction rationnelle de degré au moins deux.
Si R n’est pas simple, alors pour tout point 8 de H, I’ensemble Unzo R (8) est
infini.

La démonstration du Théoréme 5 est une conséquence de la Proposition 7.3 ci-
dessous. Une autre conséquence de cette proposition est une démonstration « concep-
tuelle » du théoreme de Benedetto, énoncé dans 1’introduction.

Proposition 7.3. Soit R € C,(z) une fonction rationnelle de degré au moins 2.
Supposons que E C H,, est un ensemble fini tel que R,(E) C E er tel que I’on ait
degr(8) = deg(R) pour tout 8 € E. Alors E contient au plus un point.

Cette proposition est une conséquence immédiate du lemme suivant.

Lemme 7.4. Soit R € C,(z) une fonction rationnelle non constante. Si 80, 81 € H,,
satisfont degr(80) = degr(81) = deg(R), alors

d(R4(50), R«(81)) = deg(R) - d(50. 81).

Preyve. Notons que la Proposition 3.5 implique qu’on a degz (8) = deg(R) pour tout
48 € (40, 41) proche de 4y ou de 41. Donc, on peut supposer 4o et 41 non singuliers.

Pour i € {0, 1}, soit B; la boule associée a 4; telle que 8;—; < B;. Alors C =
BoN By estune couronne (Lemme 2.6) et mod(C) = d(4p, 41) (voir paragraphe 2.5).
Par le Lemme 6.3, I’ensemble B/ = R(B;) est une boule. Comme By N By # @ et
BoU By = P(C,), les boules By et B satisfont les mémes propriétés. Par conséquent
C’ = By N Bj estune couronne, avec mod(C’) = d (R, (80), R« (51)).
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Pour i € {0, 1} onpose D; = P(Cy) \ B; et D; = IP(Cp) \ B/. Notons qu’on a
Di—; C Biet

RYUD;_)=P(C,)\ R"Y(B]_;) c D1_; C B;.

Comme B! = R(B;) le Lemme 3.2 implique que le degré local de R au bout de B;
est égal & deg(R). On a donc R~Y(B)) = B; et R-1(D}) = D;. Puisque P(C,) =
DouCuDyetP(Cp) = DyuC’uDj,on conclut que R~1(C"y = C. Par conséquent
R: C — (' estde degré deg(R), et le Lemme 5.3 implique

mod(C’) = deg(R) - mod(C). a

On aura besoin de la propriété générale suivante, laquelle est démontrée dans
I’ Appendice A.

Proposition. Soit R € C,(z) une fonction rationnelle non constante. Alors pour tout
point 8 € H, ensemble R;1(8) C H, des antécédents de 8 par Ry est fini, non
vide et on a
> degg(8) = deg(R).
R'(8)

Preuve du Théoreme 5. Soit 4 € H, un point exceptionnel de R, et considérons
I’ensemble fini £ = UizO R;"(8). Alors R™YE)CE, et par conséquent

Z #R-1(8)) = #R;N(E) <#E.
E

Comme R, est surjective, pour tout 4’ € Eona#R*‘l(/S’) = letdegp($) = deg(R),
cf. proposition précédente. Donc R, (E) = E etla Proposition 7.3 implique alors que
E = {38}. En particulier R.(8) = 4, et comme degp(8) = deg(R), on conclut
que 4 est rationnel et que R a bonne réduction dans une coordonnée ¢ telle que
©+(8) = Bcan ; voOIir paragraphe 6.

D’autre part, supposons que R a bonne réduction. Alors, d’apres le paragraphe 6,
on a Ry(8can) = Bcan, et degp(Scan) = deg(R). La proposition précédente implique
que R 1(8can) = Bcan et donc S,y est un point exceptionnel de R.

11 reste a montrer qu’il existe au plus 1 point exceptionnel ; supposons que 4 et
4’ sont des points exceptionnels de R,. D’aprés ce qui précéde on a deggp(8) =
degr(8’) = deg(R) et I’ensemble E = {4, 8’} satisfait R.(E) = E. Donc, la
Proposition 7.3 implique que § = §'. o

Notons que d’apres le paragraphe 6, le théoréme de Benedetto (énoncé dans I'in-
troduction) peut &tre reformulé comme suit : pour un entier positif 7 on a R} (8can) =
Bcan €t degpn (Bcan) = deg(R™) si et seulement si Ry (8can) = Scan €t degp (Scan) =
deg(R).
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Preuve du Théoréme de Benedetto. Clairement, si R a bonne réduction, alors il est
de méme pour tous les itérés de R.
D’autre part, supposons que R™ a bonne réduction et posons

E = {5canv R*(’Scan)y ceey Rz_l(’gcan)} C Hp-
Comme R} (8can) = Scan 0N a Ry (E) = E. D’autre part on a
Mg deg(8) = deggrn(Scan) = deg(R™) = deg(R)",

d’ou degp(8) = deg(R) pour tout § € E ; en particulier deg g (8can) = deg(R). La
Proposition 7.3 implique alors que E = {8can}, 00 Ry (Bcan) = Scan- O

8. Sur le nombre de points périodiques dans H,

Dans ce paragraphe on déduit les théorémes 1 et 2 a partir du Lemme Principal
ci-dessous. Ce lemme est démontré dans le paragraphe 11. Le Théoréme 3 est une
conséquence simple de [R2], sa démonstration est ci-dessous. Finalement, nous illus-
trons ces résultats a I’aide de quelques exemples développés a la fin de ce paragraphe.

Lemme Principal. Soit R € C,(2) une fonction rationnelle telle que Ry ait un point
périodique inséparable dans H, qui ne soit pas exceptionnel. Alors Ry a une infinité
de points périodiques inséparables.

Pour les démonstrations des théorémes 1, 2 et 3, considérons une fonction ration-
nelle R € C,(z) de degré égal a 1. Il y a deux cas.

1. R est conjuguée a 7 — Az, avec |A| < 1. Dans ce cas R, n’a pas de points
périodiques dans H,,. D’autre part, R a exactement deux points périodiques
dans P(C,) : un point fixe attractif et un point fixe répulsif.

2. Restconjuguéea z — z+1ouaz +— Az, avec |A| = 1. Dans ce cas tout point
de H,, est périodique par R,.
Les assertions des théoreémes 1, 2 et 3 sont faciles a vérifier dans ce cas. Ainsi on
se ramene au cas des fonctions rationnelles de degré au moins égal a 2.

Preyve du Théoréme 1. Soit R € C,(z) une fonction rationnelle de degré supérieure
ou égal a 2 ayant au moins 2 points périodiques dans H,,. Si R, a un point périodique
indifférent, alors R, en a une infinité (Proposition 5.1). On suppose donc que R,
n’a aucun point périodique indifférent. Alors tous les points périodiques de R, sont
répulsifs et aussi inséparables, voir Proposition 5.5.

Soit 4 un point périodique de R.. Si 4§ est exceptionnel, le Théoréme 5 implique
que, apres changement de coordonnée, R a bonne réduction. Par ce qui précéde
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cette réduction est inséparable, et la Proposition 6.4 implique que 4§ est le seul point
périodique de R.. Mais par hypoth¢se R, a au moins deux points périodiques dans
H,. Donc 4 n’est pas exceptionnel et le Lemme Principal implique que R, a une
infinité de points périodiques dans H,. o

Preuve du Théoréme 2. Dans le cas ou, apres changement de coordonnée, R a bonne
réduction inséparable, les assertions du théoréme ont été démontrées dans la Propo-
sition 6.4.

Supposons inversement que R, a exactement un point périodique dans H,,. Dans
ce cas R, n’a aucun point périodique indifférent dans H, (Proposition 5.1) et par
conséquent le (seul) point périodique de R, dans H, est inséparable (Proposition 5.5).
Le Lemme Principal implique que ¢’est un point exceptionnel, et par le Théoréme 5,
apres changement de coordonnée, la fonction rationnelle R a bonne réduction qui est
inséparable. o

Preuve du Théoréeme 3. D’apres [Benl], R a au moins un point fixe non répulsif
dans P(C,), voir aussi 'introduction de [R2]. L’implication a = b est donc une
conséquence du Théoreme A’ de [R2]. L’implication b = ¢ est triviale.

Montrons ¢ = a. Supposons par 1’absurde que R, a un point périodique dans
H,. D’aprés la Proposition 5.1, R, a un point périodique répulsif dans H, et le
Corollaire 5.6 de [R2] fournit la conclusion désirée.

Dans le cas ou les conditions équivalentes a, b et ¢ sont satisfaites, le seul point
périodique non répulsif de R est un point fixe. I1 est forcément attractif, car I’exis-
tence d’un point périodique indifférent implique I’existence d’une infinité de points
périodiques indifférents ; voir Corollaire 5.17 de [R1] pour une démonstration de ce
fait. O

Exemple 8.1. Considérons le polyndme Q(z) = z2 + pz? € Cplz]avecd > p. Le
point Scan € H est fixé par Q. et O, est inséparable en Scan. De plus deg ) (Scan) =
p < deg(Q), donc par le Théoreme 5 le point 4,y n’est pas un point exceptionnel
de Q.. Le Lemme Principal implique alors que 1’action Q. a une infinité de points
périodiques (inséparables) dans H,.

9. Applications propres et points fixes

Le but de ce paragraphe est de montrer un critere pour I’existence de points fixes
(Proposition 9.3), qu’on utilisera dans la démonstration du Lemme Principal pour
« produire » des points périodiques.

Fixons une fonction rationnelle R € C,(z). Etant donné un ouvert Vc H, on
dit que I’application R, : V R*("V) est propre si R*(E?’V) N R*("V) =¢.
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Lemme 9.1. Soit Y C_H, un ouvert tel que Iapplication R Vv — R*('V) soit
propre. Soit W C R*('V) un ouvert connexe et soit WV une composante connexe
de R 1(W/) NV. Alors R*(W) W et ‘application Ry W — R*(W) est propre.

Par exemple R,, vue comme une application de H dans Iui méme, est propre.
Comme conséquence du lemme, pour tout ouvert W H, et toute ¢ composante
connexe Wo de R, 1("W) on a R*(Wo) = Wetl apphcat10n Ry: Wo — W est
propre.

La démonstration du Lemme 9.1 dépend du lemme ci-dessous.

Lemme 9.2. Soit § ¢ H, P € S et soit 8’ € H, tel que 8’ < Bg, (). Alors il existe
8 e R, L8y tel que 8 < By, tel que R.((8,8)) = (R.(8),48') et tel que R, soit
injective sur |8, 81. En particulier

d(8,8) <d(R.(5), 8.

Preuve. La derniere assertion découle du Corollaire 3.7.

Posons ro = d(R4(8),8’) et pour 0 < r < rg soit 8, € [R.(8), 4'] le point tel
que d(R.(4), 8;) = r. En particulier 8; = R.(8) et 8, = &'

Posons 4o = 4. 11 suffit de montrer que pour O < r 5 ro on peut définir 4, € H,,
tel qu'on ait 8, < Bp, Ri(8,) = 8. et Ugep< {8} = [0, 8,]. Ceci est une
conséquence des considérations suivantes.

1. Supposons que 4, estdéjadéfinipour 0 < r <ry < ro.Soit P’ € 8, = Ry(4;,)
le bout tel que /S;O =< B;p/ et soit 1 € 4, un bout tel que R (P1) = P/ si
r1 = 0 on choisit P . Par la Proposition 3.5 il existe ¢ > 0 tel qu’on peut
définir &, € BJl pourr1 <r<ri+e.

2. Supposons que 4, estdéja définipour0 < r < ri.Alorspour0 < r < r’ < rjon
ad(8,, 8) <r’—r (Proposition 3.5). Comme H,, est complet (paragraphe 2.5),
il existe un point limite de {8, }o<r<r,» lorsque r — rq1. On définit 4,, comme
ce point limite. O

Preuve du Lemme 9.1. Fixons un point 8 € W et soit 8 € W \ {R*(/S)} Par le
Lemme 9.2 il existe § € R1(8) tel que Ri((, 8)) = (Ri($), 8)) C W C R ('V)
Comme I"application Ry : 'V — R*('V) est propre on a [4, 8] C V.Donc 8 € W et
par conséquent R, ( "W)

D’autre part soit § € a"vTJ. Side plus 8 € 37 alors R.(8) ¢ W C R.(V), car
R.:V — R.(V)estpropre. Si 8 € V alors R,(5) ¢ W', par définition de W. Donc
R.: W — ‘W estpropre. a
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9.1. Un critére pour Dexistence de point fixe

Proposition 9.3. Soit R € Cp(z) une fonction rationnelle et soit VC H, un ouvert
connexe tel que R* T s R*('V) soit propre et tel que R*('V) contient la fermeture
topologique 'V de V. Alors, soit V contient un point fixe rationnel de Ry, soit il existe
un point fixe répulsif zo € P(C,) de R tel que 'V contient une demi-géodésique issue
de zp.

Le corollaire suivant est une conséquence immédiate de cette proposition.

Corollaire 9.4. Soir W C Hp un ouvert connexe borné et soit V une composante
connexe de R 1("W) Si ‘W contient la Sfermeture de 'V alors V contient un point fixe
rationnel de R*

Preuve de la Proposition 9.3. Supposons que R, n’ait pas de point fixe rationnel dans
V. Alors R, n"a pas de point fixe dans V, voir Proposition 5.2.

1. Fixons 8o € V. Pour chaque r > 0 on définira 4; € V a distance 7 de 4 tel que
R, soitinjective sur [$o, 4;], tel que pour tout 8 € [4o, 4;] onait R.(8) € [R.«(40), )
et tel que

(50,81 = | (8} et [Ru(80), Ru(8)1= ] (Ru(81)}.
o=<t'<t o<t'<t
1.1. Soit 75 > 0 tel que 4; est déja défini pour 0 < ¢ < fy. On définira 4; pour
t > tp proche de .
Notons que par hypothése Ry (8;) € [R.(80), 84,), et donc

[R«(80), 81) = [Ri(80), R (815)]1 L (R (81, B1y)-

Soit 8 € R; (84,) donné par le Lemme 9.2, de telle facon que R, soit injective

sur [8;,, 8] et R.((8y,, 8)) = (R4(81y), 81,). Comme R, est injective sur [Sg, 8y, ] et

R ([80, 81,]1) = [R+(80), Ri(81,)], 0na 8y, € (8o, 5) e;t\R,k est injective sur (4o, /S).
Soit 11 > 1y assez proche de 1o tel que [8y,, 85,1 C V et tel que

d(81y, 81) + d(Ru(81y), Re(81))) < d(8sy, Ri(81y)), (6)
ou 8 € (4o, Z) est le point a distance #; de 4p, voir figure 1. Pour o < t < 11 soit
4; le point dans [4;,, 4 ] a distance ¢ de 4.

11 reste & montrer que pour tout fop < ¢ < ¢7 on a R.(8;) € [R.(4p), 4;). Comme
R.(8:) € (Ri(84), 81,), les bouts P, P € R.(8;) tels que 8, < By et R, (4;,) <
B/ respectivement, sont distincts. Alors §; < Bgp, car sinon R.(4;) € (84, ;] et
on aurait

d( 84, 81) = d (84, Ry(81)) = d (81, Ri(84))
= d(/gtor R*(/Sl‘o)) - d(R*(Sto)a R*(/Stl)) > d(’S[O, /Stl)y
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ou la dernicre inégalité découle de (6). Donc 8; < Bp et comme R,(48g) < By on
a R (8:) € (Ri(50), 81).

/g /gll gzo /SO
N
34 R.(3y)  Ri(3y) R.(80)
Figure 1

1.2. Soit 1y > 0 et supposons que 4; est déja défini pour 0 < ¢ < 5. On va
définir 4;,.

Comme H, est complet (paragraphe 2.5), il existe un point 4, € V tel que
[80, 81,) = U05t<t0{’5t}- En particulier, 4, est a distance 7o de 4o, R, est injective
sur [4o, ;] et par continuité on a R.(8;,) € [R.(80), 81 ]. Il reste & montrer que
R.(81,) € [R.(50). 81y)-

Supposons par l’absurdeﬂue Ry (84) = 481. On a donc R*(/Sto) = 8 € vV C
R*('V) Comme /So, 8,) C 'V et comme I’ apphcauon R.:V — R*('V) est propre,
onaR*(a”V)ﬂR*('V) =, d’otion conclut que 8y € V. On obtient une contradiction,
car par hypothése R, n’a aucun point fixe dans 'V

2. Comme conséquence de 1.1 et 1.2, on peut définir 8, € v, pour 1 > 0,
satisfaisant les propriétés dans 1. Pour ¢+ > 0 soit & € 4, le bout tel que &,/ € By 2
pour t' > 1.

Alors pour ¢ < ¢’ laboule By, contient Bﬂ’;/ strictement. Comme 4; est a distance
t de 8o, le diametre de B p, tend vers zéro lorsque t — 00. Comme P(C ) est complet,
il existe zo € P(Cp) tel que Ny>0Bp, = {z0}. La propriété R.(8;) € [R«(S0), 8;)
implique que zg est un point fixe de R. La propriété R, (8;) € [R.(8o), 8;) implique
aussi que zg est répulsif (cf. Proposition 3.4). O

10. Lemme d’Approximation et inséparabilité

Dans ce paragraphe on s’ occupe des propriétés générales qui sont indépendantes de la
dynamique. Notamment, on montre que la propriété locale d’inséparabilité se traduit
géométriquement en une expansion locale (Lemme 10.3).

10.1. Lemme d’Approximation. Soient R et Q € C,(z) deux fonctions ration-
nelles ayant la méme réduction non triviale, c’est-d-dire que

R*(/Scan) = Q*(’Scan) = ’Scan
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et R, et Q. coincident sur 8cay. Alors R, et Q. coincident sur un voisinage de Scay
dans H,.

La démonstration de ce lemme s’ appui sur le lemme suivant.

Lemme 10.1. Soit R € C,(z) une fonction rationnelle telle que Ry (8can) = Scan €t
soit X un affinoide ouvert tel que Scan < X et R(X) C C,. Alors pour toute fonction
rationnelle ¢ € C,(z) telle qu’il existe ro < 1 satisfaisant (X) C {|z] < ro}, les
actions Ry et (R + &)y coincident sur un voisinage de Scan dans H,,.

Preyve. Considérons un point rationnel § € Hg tel que 4 < X. Alors il existe une
boule B associée a 4 contenue dans X. Comme R(B) C R(X) C C,, I'’ensemble
R(B) estune boule (Lemme 3.2).

Si 4§ satisfait d(Ry(8), Scan) < log, %, alors la boule R(B) a un diametre plus
grand que ro, et comme &(B) C e(X) C {|z| < ro}, on conclut que (R + ¢)(B) =
R(B) (Lemme 1.1). Par conséquent (R + €)+(8) = Ry (8).

Comme R, et (R + ¢), sont continues (Corollaire 3.6), on conclut qu’elles coin-
cident sur I’ensemble

1
{4; €H, | 8 <X, d(Ri(8), Scan) < log,, %} ,

lequel est un voisinage de $can dans H,. o

Preyve du Lemme d’Approximation. Posons ¢ = Q — R € C,(2). Soit T C Bcan
un ensemble fini tel que pour P € Scan \ T on ait R(Bp) C C, et Q(Bp) C C,.
Dans ce cas, R(Bp) = Br,(p) et Q(Bp) = By, (p) (Lemme 3.2) etdonc R(Bp) =
Q(Bp) C {lz| = 1}. Par conséquent e(Bp) = (R — Q)(Bp) C {lz| < 1}.

On suppose d’abord que la fonction rationnelle ¢ n’est pas constante. Comme
I’ensemble T C Bcap est fini, on peut trouver Py, P1 € Sean \ T tels que 4. (Pp) et
£+(P1) soient distincts. Donc, 4 (8can) < {|z] < 1} et par conséquent il existe ro €
(0, 1) tel que &4 (Bcan) < {|z] < ro};pourtout P € Scan\T onae(Bp) C {|z] < ro}.
Pour chaque 2 € 7 soit C» C By une couronne de la forme Cp = Bp \ B:(P, ou
B, C By est une boule fermée, de telle fagon que

R(Cp) CCpete(Cp) C{Iz] < ro}.

Si la fonction rationnelle e est constante, égale a ¢, alors d’apres ce qui précede
on a |c| < 1. On choisit alors ro € (|c|, 1) et pour P € T on définit les couronnes
Cyp comme ci-dessus.

Notons que par construction I’affinoide ouvert X = P(C,) \ Uy B/, satisfait
Sean < X, R(X) C Cpete(X) C {|z|] < ro}. Le lemme découle alors du lemme
précédent. O
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10.2. Expansion locale

Proposition 10.2. Soit R € C,(z) une fonction rationnelle non constante. Alors,
pour un point rationnel 8 € ]HIQ, on a les propriétés suivantes.

L. R est inséparable en § si et seulement §’il existe un voisinage V de 8 dans
H, tel que degg(8’) = p pour tout 8’ € V. Dans ce cas on conclut que R est
mseparable en tout point rationnel contenu dans V.

2. 11 existe un voisinage V de § dans H, tel que pour tout point 5cVona
d(R*(/S) R.(8)) > d(8, 8). Si R* est inséparable en 8, alors on peut choisir
V tel que pour tout point 8 dans V on ait A(R.(8), R.(8)) = p -d(5, 8).

Pour montrer cette proposition, notons qu’aprés changement de coordonnée au
départ et a I’arrivée, on peut supposer R, (8) = 8 = Bcapn. Alors la proposition est
une conséquence immédiate du lemme suivant, voir aussi la Proposition 3.5.

Lemme 10.3. Soit R € C,(z) une fonction rationnelle ayant une réduction non
triviale R € F,(2). Etant donné un entier n > 0, les propriétés suivantes sont
équivalentes.

1. Onadeggp(8) = p" pour tout point 8 € H, dans un voisinage de can.
2. Onadeggr(P) = p" pour tout (resp. pour une infinité de) P € Scan.
3. Il existe une fonction rationnelle @ € Fp(z) telle que R (z) = @(zp").

Dans ce cas, pour tout point 8 € H, dans un voisinage de Bcan 01 a

A(R(8), Bcan) = p" - d(8, Bean).

Preuve. I’ implication 3 = 2 est triviale et I’'implication 2 = 3 découle de la Proposi-
tion 4.3, par récurrence sur # > 1. L’implication 1 = 2 découle de la Proposition 3.5.
Supposons que la propriété 3 soit vraie et montrons que la propri€té 1 est satisfaite.

Soit @ € C,(z) une fonction rationnelle ayant Q comme réduction et posons
F(z) = ", de telle facon que R et Q o F aient la méme réduction. Par le Lemme
d’ Approximation, les actions R, et (Q o F), coincident sur un voisinage de $cap.
Comme F, satisfait la propriété 1, R, satisfait aussi cette propriété.

Notons que pour tout 8 € H, dans un voisinage de Scan On a d(Fy(8), Scan) >
p" - d(8, Scan). Sil’on prend la fonction rationnelle Q € Cp(z) ayant le méme degré
que @, alors Q a bonne réduction et par conséquenton a d(Q«(4), Scan) > d(8, Scan)
pour tout 8 € H,, voir partie 1 de la Proposition 6.4. Le Lemme d’ Approximation
implique que (Q o F), et R, satisfont la derniere assertion de la proposition. a
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11. Incompressiblité et preuve du Lemme Principal

Dans ce paragraphe on termine la démonstration du Lemme Principal ; elle est dans
le paragraphe 11.2. Cette démonstration dépend de la Proposition 11.1, qu’on montre
dans le paragraphe suivant.

11.1. Considérons pour un instant une fonction rationnelle R a coefficients com-
plexes et soit zo € P(C) un point périodique répulsif de R. Alors pour tout voisinage
V de zo dans P(C) la famille {R"|y},>1 n’est pas normale, et un théoréme di a
Montel implique qu’on a

P(C)\E C | R (W),

n>1

ou E est I’ensemble exceptionnel de R, qui contient au plus deux points ; voir par
exemple [Mi].

La propriété analogue dans H, n’est pas valable pour tout point périodique ré-
pulsif, voir I’exemple 11.2 ci-dessous. Cependant, dans la proposition suivante on
montre qu’elle est vraie pour les points périodiques inséparables ; ceci est a compa-
rer avec [R3], paragraphe 5.

Proposition 11.1. Soit R une fonction rationnelle a coefficients dans C, et soit R,
Paction induite par R sur H,. Soit 8 € H, un point périodique inséparable de R,.
Alors pour tout voisinage 'V de 8 dans Hj, on a

U RV =H,.

n>1

Cette proposition est une conséquence simple du lemme suivant.
Etant donné un point § € H, et r > O on pose

B(8.r)={8 cH, | d(8.8) <r}.

Lemme d’Incompressibilité. Soit R € C,(z) une fonction rationnelle et soit 8 €
H,,. Alors pour toutr > Qon a

B(R.(8),7) C Ru(B(8,7)).

Si de plus 8 € H, est un point rationnel et R, est inséparable en 8, alors il existe
ro > O tel que pour tout r > 0,

B(R.(8), 7+ (p — 1) -min{r, ro}) C R.(B(8,7)).
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Preyve. 1. Soit 8" € H, \ R*(E(/S, r)). Par le Lemme 9.2, il existe 8§ € R;(8")
tel que R, ((8, 8)) = (R.(8), 8') et tel que R, est injective sur (4, 4). De plus, on a
d(R,(8), 8") > d(8, 8).

Comme § € R7!(8)wappartientpasa B(8, r),onad(R,(8), 8)>d(8,8) >r.

2;Si R, estinséparable en 4, alors il existe ro > O tel que degp(48) > p > 1 pour
tout 8 € Hi,, a distance au plus rg de 4 (partie 1 de la Proposition 10.2).

Donc, si 8 € H,, est comme dans la partie 1, on a

d(R.(8),8") > d(8,8) + (p — 1) - min{r, ro}

(cf. Corollaire 3.7), et par conséquent ﬁ(R* (8), r+(p—1)-min{r, ro}) C Ry (E(/S, ).
Oa

Preuve de la Proposition 11.1. Soitr > O tel que B(4,r) C V et soit ro > 0 donné
par le lemme précédent. On montre aisément par récurrence sur n que

B(8,r + n(p — 1) min{r, ro}) C R*(B(8,r)). O

Exemple 11.2. Soit ¢ € C,, tel que |c| = 1 et considérons la fonction rationnelle
R(z) = zLd + ¢, o 'entier 4 > 2 n’est pas divisible par p. Elle a bonne réduction
R(z) = & + & € Fy(z) satisfaisant, R(0) = 0o, R(00) = & et degg(¢) = 1 pour
¢t elF, —{0}.

Il est facile de voir que, pour tout point 8 € H) tel que 8§ < {|z| = 1} ona
d(R.(8), Scan) = d (8, Scan). Par conséquent si c € C,, vérifie R*(¢) # 0 pour tout
n > 1, alors pour tout voisinage V borné de 8., dans H,, ’ensemble

U &)

n>1

est borné. Par exemple, on peut choisir ¢ € C, tel que R(?) soit fixé par R.

11.2. Démonstration du Lemme Principal. Soit § € Hg un point périodique
inséparable de R, qui n’est pas exceptionnel. Quitte a remplacer R par un itéré on
suppose que 4 est fixé par R.

1. Soit » > 0 suffisamment petlt tel que R, soit inséparable en tout pomt ra-
tionnel contenu dans la boule Vo = B(5 r) et tel que pour tout 8 dans Vo on ait
d(R.($),8)>p- d(/S 4) (partie 2 de la Proposition 10.2).

Pourk > 1soit V¢ la composante connexe de R k('Vo) qui contient §. Notons que
pour chaque k > 0 I'ouvert Vi1 est €gal a la composante connexe de R 1('Vk) qui
contient 4. Montrons par récurrence que pour toutk > 00na'Vk C B(/S p~%r). Cette
propriété est satisfaite pour k£ = 0 par définition. Supposons que I’entier & > 0 est tel
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que Vi € B(S, p‘kr) On a alors Vi C '/X}o et pour tout 8 € Vi ona d(R,(5), §) >
p- d(/S 4). Comme ’Vk C B(S p_kr) et 'Vk+1 est égal a la composante connexe de

R (Vi) qui contient 8, ona Vi1 C B(8, p~ Dy,

Notons en particulier que la fermeture topologique de 'Vl est contenue dans '/ﬁo
et que diam('Vy) — 0 lorsque kK — o0.

2. On montrera que pour chaque entier £ > 1 I’ouvert Vi contient un point
périodique inséparable de R, différent de 4. Ceci implique que R, a une infinité de
points périodiques inséparables. Fixons alors un entier k > 1.

Comme 4§ n’est pas exceptionnel, il existe un antécédent /S "€ Hp, de § par R,
différent de 8. Par la Proposition 11.1, on a (> R} ('Vk) H,. 11 existe donc un
point 8y € 'Vk et un entier n > 0 tels que R} (4p) = 4. Comme d1am("V ) — 0
lorsque m — oo, la partie 2 de la Proposition 10.2 implique qu’il existe un entier
m > 0 tel que la composante connexe W de Ry 1) ('/X;m) qui contient 4 est contenue
dans ’/V\k \ {8} ; voir Figure 2.

Figure 2

3. D’apres la remarque qui suit I’énoncé du Lemme 9.1, les applications R’“rl
W — P, et Ry 'Vm — 'Vo sont propres. [’ application Rl W — 'Vo est
donc propre. Commg\ W C 'Vk C 'V], la fermeture topologlque de W est contenue
dans Vg et I’ouvert ‘W contient un point périodique rationnel de R, (Corollaire 9.4).
Ce point périodique est inséparable, car R, est inséparable en chaque point rationnel
contenu dans Vk - 'Vo De plus il est différent de 4, car W C 'Vk \ {8} ]
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12. Appendice. Sur le nombre d’antécédents d’un point dans H),

Le but de ce paragraphe est de montrer la proposition suivante.

Proposition. Soit R € C,(z) une fonction rationnelle non constante. Alors pour tout
point 8 € H, Uensemble R;71(8) C H, des antécédents de 8 par Ry est fini, non
vide et on a
> degp(8') = deg(R).
RS

Ceci a €€ montré dans [R1] (Lemme 2.5) pour les points rationnels de H,,. Ce
résultat découle, dans le langage de Berkovich, du fait que R, est fini de degré deg(R)
et étale au-dessus de Hi,, ; ce fait lui méme est conséquence dur caractére fini, plat et
génériquement étale de 1’endomorphisme de la variété algébrique IP’}CP induit par R.
Je remercie le rapporteur pour cette derniere remarque.

Fixons une fonction rationnelle R € C,(z). On considere d’abord le lemme
suivant.

Lemme 12.1. Chaque point 8 € H;, a au plus un nombre fini d’antécédents par R..

Preuve. Soient 41, ..., 8 des antécédents distincts de 4 par R, ; on montrera que
k < deg(R). Choisissons un bout » € Setpour 1 < i < ksoit ; € 4 un
bout tel que R (F;) = P. De plus soient {C} ;>0 et {C; j};>0 chaines évanescentes
représentant & et f; respectivement.

Soit N > 0 assez grand tel que les C; y soient disjoints deux a deux et soit M > 0
tel que Cpy C R(C; ) pour 1 <i < k. Fixons w € Cyy. Alors chaque C; y contient
au moins un antécédent de w et par conséquent k < #R1(w) < deg(R). O

Preyve de la Proposition. 1. Supposons d’abord que le point 4 € H, ne soit pas
singulier. Aprés changement de coordonnée on suppose 4 € (0, 00) C H,. Pour
r > 0 on désigne par 4, € (0, 0o) le point de H, associé a la boule {|z] < f\}

L.1. Soit X C IP(C,) I'ensemble des zéros et des poles de R et soit X C H,
I’enveloppe convexe de X. Comme X a au moins deux €éléments, I’ensemble X est
non vide.

Soit 8’ € H, un point tel que R,.($") € (0, co). Alors il existe des bouts Py, P €
8" tel que 0 € Bg,(p,) et 00 € Bg,(2..). Par le Lemme 3.2, les boules By, et By,

intersectent X. Le point 8’ appartient donc 2 X et par conséquent R, 10, ) X.
1.2. Considérons la fonction

F > Z degr(8").

§eR;y(8))
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Elle prend 1a valeur deg(R) pour r > 0 petit (cf. Proposition 3.4 et (3)) ; il suffit alors
de montrer qu’elle est localement constante.

Fixons rog > 0 et soit Py € 4, le bout tel que 0 € Bgp,. Pour chaque 4’ €

R;'(8,,) et chaque P € 4 tel que R,(P") = P, soit 5(P) € H, un point
donné par la Proposmon 3.5, de telle facon N que R, soit injective sur (4, S(P)] et
tel qu’on ait degR(S) = degr(P’) pour 5 < (8,5(9)]. On peut supposer que
R.([8, 8(P)]) C (0, 00) et que 8(P') € X. On a donc [§/, S(PHC X.

Soit r € (0, rp) proche de rg. Alors chacun des segments (', 8(#’)] contient
exactement un antécédent de /S, par R,.

Considérons d’autre part & R; 1(8,); par la partie 1.1 on a 5 e X. Alors il
existe 4" € R 1(/Sro) a distance au plus ro—rded (Lemme 9.2). Si I’on désigne
par &’ le bout dans 4’ tel que 5 < Bp,alorsona 8 € (8, 3(P))], lorsque r est
suffisamment proche de rg, voir Lemme 2.9. En particulier, deg R(g ) = deg (9.

On a alors,

Y. degp(d) = Z Y. degg(?).

SerR7V(8,) 8 eR;(8,) P8 R(PH=F0

Lorsque ro € |C}| chaque point 8" € R 1(8,,) est rationnel et la Proposition 3.3
implique qu’on a
Y. degg(P) = degg(8).
Ples!, R (PH=Py
Lorsque ro ¢ |C}| chaque point 4 est irrationnel et contient un unique bout &’ tel
que R.(P") = Po. De plus degr(P’) = degp($') et donc I’égalité précédente est
aussi valable dans ce cas. Dans tous les cas on a donc

Y. degrB) = ) degg(s).

Sery'(5) S1eR (87

Le cas r > rg proche de rg est analogue.

2. Supposons maintenant 4 = {$} € H, singulier. Pour tout i compris entre 1
et k notons §; = {#;} € H, les antécédents de § par R,. Pour chaque 1 <i <k
soit 4; € H, donné par la Proposition 3.5, de telle fagon que R, soit injective sur
[8i. i1, Re([8:. 8i]) = [Ri(8i), Ru()] et tel que pour tout 5 € (4, 4] on ait
degp(8) = degp(Pi) = degg(4i).

Quitte & prendre les points &; plus proches des 4;, on suppose que les segments
[4;, 8] sont deux & deux disjoints et que 8 = R, (4;) est un point non singulier qui
nedépendpasde 1 <i <k.

2.1. Supposons par I’absurde qu’il existe un antécédent 3 de § distinct des 5.
Notons alors que pour chaque 1 < i < k le point 5 n’appartient a [4;, §;]. Le
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Lemme 9.2 implique qu’il existe 1 < i < k tel que R, soit injective sur [4;, 5] ]
Notons alors que 4; n’appartient pas a [8;, /S] De plus, le point 4; n’est pas entre 5
et 4; caril est singulier. Le Lemme 2.8 1mp11que alors qu’il existe un point rationnel

4’ qui est entre 5, et 5,, entre 5 5, et 5 et entre 5 et 4;.

Soient #, P € 4’ les bouts tels que §; < B et 3 = Bz, Comme pour
tout point 5 dans (%;,8;) on a degR({i) = degR(&) = degr(4’), on conclut que
degp(P) = degp(8) (cf. Proposition 3.5). On a donc Ry (P) # Ry(P) (cf. par-
tie 3 de la Proposition 3.3). Comme R, est injective sur [4§;, 51 (resp. [4i, 3]) on

asg = R*(&) < BR 7 (resp. 8 = R*(éi) < BR (j))) Comme les bouts R, (P P)

et R*(J ) sont distincts et appartiennent au méme point, les boules correspondantes
sont disjointes et on obtient une contradiction.
2.2. Par la partie 1 on a

Y. degp(8) = ) degp(i)= Y degg(5)

SeR7U(S) 1<i<k 1<i<k
= Y degg(8") = deg(R). o
$"eRT(S)
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