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Points périodiques des fonctions rationnelles dans l'espace
hyperbolique /7-adique

Juan Rivera-Letelier

Abstract. We study the dynamics of rational maps with coefficients in the field Cp acting on
the hyperbolic space Mp. Our main result is that the number of periodic points in Mp of such

a rational map is either 0, 1 or oo, and we characterize those rational maps having precisely 0

or 1 periodic points.

The main property we obtain is a criterion for the existence of infinitely many periodic points
(of a special kind) in hyperbolic space. The proof of this criterion is analogous to G. Julia's proof
of the density of repelling periodic points in the Julia set of a complex rational map.

Mathematics Subject Classification (2000). 11S99, 37F10, 51M10, 37E25.

Keywords, p-adic fields, rational maps, hyperbolic space, periodic points.

Soit p un nombre premier. On désigne par Qp le corps des nombres /?-adiques et par
Cp le complété d'une clôture algébrique de Qp.

Cet article est la suite de [R2]1 dans lequel on a étudié la dynamique des fonctions
rationnelles à coefficients dans Cp, agissant sur la droite projective P(CP), ainsi que
sur l'espace hyperbolique /?-adique Mp.

Cet espace est un arbre réel separable et complet, isométrique à l'immeuble de

Bruhat-Tits de SL(2, Cp). De plus, il a un rapport étroit avec l'espace analytique
induit par P(CP), au sens de V. G. Berkovich.

Dans ce travail on étudie les points de Mp qui sont périodiques sous l'action
d'une fonction rationnelle donnée. Essentiellement, chaque point (rationnel) de Mp
qui est fixé par une fonction rationnelle, est en correspondance avec une coordonnée
de P(Cp) dans laquelle la fonction rationnelle a réduction non triviale. On dit qu'une
fonction rationnelle R a réduction non triviale lorsqu'il existe une fonction rationnelle
R à coefficients dans le corps résiduel Cp de Cp et un sous-ensemble fini H de P(CP

Les résultats de cet article, ainsi que ceux de [R2], ont paru dans le Preprint IMS at Stony Brook #2001/12.
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tel qu'on ait le diagramme commutatif suivant

,)\3

voir [R2]. Ici n désigne la projection de P(CP) vers

Le résultat principal qu'on obtient ici est une caractérisation des fonctions rationnelles

n'ayant qu'un nombre fini de points périodiques dans Mp.

Théorème 1. Le nombre de points périodiques dans Mp d'une fonction rationnelle
est égal à 0, 1 ou oo.

Autrement dit, pour une fonction rationnelle n'ayant qu'un nombre fini de points
périodiques dans Mp il y a deux cas : soit la fonction rationnelle ne possède aucun

point périodique dans Mp ; soit la fonction rationnelle possède un et un seul point
périodique dans Mp (dans ce dernier cas le point périodique est un point fixe de la
fonction rationnelle).

Dans les théorèmes 2 et 3 ci-dessous on caractérise chacun de ces deux cas. Une
fonction rationnelle R a bonne réduction lorsque elle a réduction non triviale et lorsque
l'ensemble H ci-dessus est vide, voir § 6 pour une définition plus précise.

Théorème 2. Une fonction rationnelle a un et un seul point périodique dans Mp si et
seulement si, après changement de coordonnée, elle a bonne réduction inséparable.
Dans ce cas, tous les points périodiques de la fonction rationnelle dans P(CP) sont
attractifs.

La notion de bonne réduction d'une fonction rationnelle a été introduitepar Morton
et Silverman dans [MS], voir aussi [Ben2].

Théorème 3. Pour une fonction rationnelle R de degré au moins 2 à coefficients dans

Cp, les propriétés suivantes sont équivalentes.

a) R ne possède aucun point périodique dans Mp.

b) R possède un seul point périodique non répulsif dans ¥(CP).

c) Raun nombre fini de points périodiques non répulsifs dans P(CP).

Dans ce cas R a un pointfixe attractifdans F(Cp) et tous les autres points périodiques
de R dans P(CP) sont répulsifs.
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Rappelons que toute fonction rationnelle a un point fixe non répulsif dans P(CP)
[Benl]. Donc, les fonctions rationnelles qui n'ont pas de point périodique dans Mp
correspondent au cas extrême où le nombre des points périodiques non répulsifs
(comptés avec multiplicité) dans P(CP) est égal à 1, voir Théorème A de [R2].

On montrera ailleurs que toute fonction rationnelle dont l'ensemble de Julia est

compact et non vide est comme dans l'énoncé du Théorème 3. Ceci généralise aux
fonctions rationnelles la Proposition A de [Bez].

Exemple. Fixons un entier d > 2. Pour c g Cp on définit Pc{z) zd + c g Cp[z].I1
est facile de voir que si \ddcd~l\ > 1, alors les points périodiques de Pc dansCp sont

répulsifs. Le Théorème 3 implique que le polynôme Pc n'a pas de points périodiques
dans Mp.

D'autre part, dans le cas où \c\ < 1, le polynôme Pc a bonne réduction, donnée

par le polynôme Pc(z) zd + c. Ainsi, lorsque p divise d, le Théorème 2 implique
que Pc a un et un seul point périodique dans Mp.

Le Théorème 3 est une conséquence des résultats établis dans [R2]. Dans la
démonstration des théorèmes 1 et 2, les points exceptionnels dans Mp jouent un rôle
essentiel. Un point de Mp est dit exceptionnel lorsque son orbite inverse est finie.

Théorème 4 (Ensemble Exceptionnel). L'ensemble exceptionnel dans Mp contient
au plus un point. De plus, il est non vide si et seulement si, après changement de

coordonnée, la fonction rationnelle a bonne réduction.

On peut comparer au cas complexe où l'ensemble exceptionnel contient au plus 2

points, cf. [Mi]. Les démonstrations des théorèmes 1 et 2 se déduisent alors du lemme
suivant.

Lemme Principal. Soit R G Cp (z) une fonction rationnelle ayant un point périodique

inséparable dans Mp qui n 'estpas un point exceptionnel. Alors R* a une infinité
de points périodiques inséparables dans Mp.

La démonstration du lemme est analogue à la démonstration de G. Julia concernant
la densité des points périodiques sur l'ensemble qui porte son nom (voir [Mi]).

D'une façon surprenante, un raisonnement assez proche de la démonstration du
Théorème 4 permet de donner une preuve « conceptuelle » du théorème suivant, dû à

R. Benedetto.

Théorème ([Ben2], TheoremB). Si R G Cp(z) est une fonction rationnelle de degré

au moins deux et si n est un entier positif, alors Rn a bonne réduction si et seulement
si R a bonne réduction.
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Plan de l'article. Dans les paragraphes 1, 2 et 3 on rappelle quelque définitions
et résultats concernant le corps Cp et l'espace Mp. Dans les paragraphes 4 et 5 on
étudie les points périodiques inséparables. Dans les paragraphes 6 et 7 on étudie
l'ensemble exceptionnel dans Mp, et on donne la démonstration du Théorème 4.

Dans l'appendice (paragraphe 12) on établit une propriété générale qui est nécessaire

pour la démonstration du Théorème 4.

Dans le paragraphe 8 on obtient les théorèmes 1 et 2 à partir du Lemme Principal.
On montre aussi le Théorème 3 avec les résultats de [R2]. Les paragraphes 9,10 et 11

sont consacrés à la démonstration du Lemme Principal.

Remerciements. Je remercie J. C. Yoccoz et R. Benedetto pour plusieurs remarques
et corrections qu'ils ont faites concernant une version préliminaire de ce travail. Je

remercie aussi le Collège de France pour son hospitalité. Je remercie le rapporteur
dont ses remarques et corrections ont beaucoup aidées à améliorer l'exposition de cet
article.

1. Préliminaires

Soit p > 1 un nombre premier, Qp le corps des nombres /?-adiques et Cp le complété
d'une clôture algébrique de Qp.

On désigne par | -1 la norme sur Cp et C* Cp \ {0} le groupe multiplicatif de

Cp. On appelle

\C*\ {\z\\zeC*}
{r > 0 | logp r est rationnel}

le groupe de valuation de C*.
On désigne par Gp {z g Cp \ \z\ < 1} Vanneau des entiers. L'ensemble

mp {z g Cp | \z\ < 1} est un idéal maximal de &p. Le corps Cp Op/xnp est

appelé le corps résiduel de Cp. Il est isomorphe à une clôture algébrique ¥p du corps
fini Fp. On identifie Cp à ¥p.

Pour z g Op on désigne par z la projection de z dans ¥p. Pour f g ¥p on pose
{z Ç}, de sorte qu'on a la partition,

1.1. La droite projective. On considère la droite projective P(CP), qui est
l'ensemble des droites dans Cp x Cp passant par (0, 0).Pour (x, y) g Cp xCp\{(0, 0)},
on désigne par [x, y] g P(Cp) le point correspondant à la droite {(Ajc, Xy) \ X g Cp).
On désigne par oo le point [1,0] g P(CP), et on identifie P(CP) \ {ex)} à Cp par
l'application [X, 1] *--* X.
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On étend la projection de Cp vers ¥p en une projection de P(CP) Cp U {oo}

vers P(Fp) ¥p U {oo}, par z oo, pour z g {|z| > 1} U {oo}. On pose 5(oo)
{z oo} {\z\ > 1} U {oo}. On a alors lapartition canonique

¥(Cp) unfp)B(X). (1)

Pour chaque a, b,c,d g Cp tel que ad — bc ^0 l'application linéaire (x, y) i->

(ax + by, ex + dy) de Cp x Cp dans lui même induit une application de P(CP) dans

lui même, qu'on appelle transformation projective. Les transformations projectives
forment un groupe isomorphe à PGL(2, Cp) : l'élément (ab cd) G PGL(2, Cp) correspond

à la transformation projective de P(CP) induite par (x, y) i->- (ax+by, cx+dy).
Le sous-groupe PGL(2, 6P) de PGL(2, Cp) correspond à celui constitué des

transformations projectives qui préservent la partition (1). De plus, la transformation

projective de P(CP) associé à \acbd) g PGL(2, Qp) préserve chaque élément de la

partition (1) si et seulement si a, d g 1 + mp et b, c g mp.

1.2. Boules et couronnes. Étant donnés r g |C*| et a g Cp, on appelle les

ensembles

{z G Cp | \z-a\ < r} et {z G Cp \ \z - a\ < r}
boule ouverte de Cp et boule fermée de Cp, respectivement. Si r g |C* | alors ces

deux ensembles coïncident et constituent ce qu'on appelle une boule irrationnelle de

Cp. Notons que par définition une boule B de Cp est irrationnelle si et seulement si

diam(5) g |C* | ; en particulier, si B est ouverte ou fermée alors diam(5) g |C* |.

Étant donnés deux boules B et B' de Cp ayant une intersection non vide, il y a

deux possibilités : soit B c B', soit B' c B.

L'image d'une boule ouverte (resp. fermée, irrationnelle) par une transformation
affine de Cp est une boule de même nature.

Une boule ouverte (resp. fermée, irrationnelle) de P(CP) est soit une boule de

Cp de même nature, soit le complémentaire d'une boule fermée (resp. ouverte, resp.
irrationnelle) de Cp. Dans ce qui suit le mot boule désignera une boule de P(CP).

Étant données deux boules B et B' de P(CP) qui s'intersectent, il y a trois
possibilités : soit B c B', soit B' c B, soit B U B' P(CP). Dans ce dernier cas les

complémentaires de B et B' sont disjoints ; si de plus B et B' ne sont pas fermées

alors on dit que B n B' est une couronne. Après changement de coordonnée, on peut
supposer B {\z\ < r} et B' {\z\ > r'} U {oo} avec r' < r ; alors

BDB' {z &Cp | r' < \z\ < r}.

On définit mod(5 n B') logp r - logp r' > 0. La valeur de cette expression ne

dépend pas du choix de coordonnée, et on l'appelle le module de la couronne B n B'.
L'image d'une boule ouverte (resp. fermée, irrationnelle) par une transformation

projective de P(CP) est une boule de même nature.
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1.3. Séries convergentes. Dans ce paragraphe on considère quelques résultats
basiques d'analyse ultramétrique. Pour les démonstrations le lecteur pourra consulter,

par exemple, [BGR].
Une série /(z) ao + a\z + ¦ ¦ ¦ à coefficients dans Cp converge sur la boule

{\z\ < r} si et seulement si limsup,^,^ |a,-|1/f < r"1. Lorsque r g |C*| la série /
converge sur la boule fermée {\z\ < r} si et seulement si lim sup, ^^ \a\\rl < oo.
Dans ces deux cas pour tout ro G (0, r] on a

II/IU := sup{|/(z)| | \z\ < r0} suplk-ko" I i > 0}.

Lorsque / converge sur {|z| < ro} on a aussi ||/||ro sup{|/(z)| I \z\ < ro}. De
plus, / est injective sur la boule {\z\ < r} si et seulement si ai ^ 0 et pour tout
i > 1 on a \a\ \rl~l < \a\\. Dans ce cas l'image de {\z\ < r} par / est égal à la boule

{|z-ao| < |ai|r}.
Toute fonction rationnelle à coefficients dans Cp admet un développement en

série en chaque point zo de Cp qui n'est pas un pôle. Le rayon de convergence est

égal à la plus petite distance entre zo et un pôle.
Si / est une série convergente sur une boule B de Cp, alors l'image par / d'une

boule ouverte (resp. irrationnelle, fermée) strictement contenue dans B est une boule
de même nature.

Lemme 1.1. Soient f et e des séries convergentes sur une boule B de Cp. Si D est

une boule strictement contenue dans B et sup{|e(z)| | z g D} < diam(/(D)), alors

(f + e)(D) f(D).

Preuve. On sait que (/+e) (D) et / (D) sont des boules de même nature. L'hypothèse
implique que (/ + e)(D) c f(D) et que diam((/ + e)(D)) diam(/(D)). On a

donc (/ + £)(£>) /(£>).

Lemme 1.2. Soient r, r' > 0 et considérons une série f convergente sur {\z\ < r},
telle que f({\z\ < r}) c {\z\ < r'}. Alors pour toute boule D c {\z\ < r} on a

-diam(/(D)) < -diam(D).r' r
Si déplus diam(D) < r, alors on a l'égalité si et seulement si f induit une bijection
entre {\z\ < r} et {\z\ < r'}.

Preuve. Soit a g D et posons g(z) f(z + a) bo + b\z + • • ¦ Par hypothèse
on a

'r' \ i > 0} < r'.

Si l'on pose ro diam(D), alors on a

diam(/(D)) ||g - bo\\ro sup{\bi\r'o \ i > 1}.
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Mais pour chaque entier i > 1 on a \bj\r'o < r'(ro/r)1 < r'(ro/r), d'où on obtient

l'inégalité désirée. Lorsque ro < r, on a l'égalité si et seulement si \b\ \ r'/r. Mais

g (et donc /) induit une bijection entre {\z\ < r) et {\z\ < r'} si et seulement si

\bi\=r'/r.

2. Espace hyperbolique Mp

Dans ce paragraphe on fait des rappels sur l'espace hyperbolique Mp. On trouvera
les détails dans les paragraphes 3 et 4 de [R2].

2.1. Bouts. Soit {Bj }j >o une suite croissante de boules fermées ou irrationnelles telle

que 5 U ; >o ^'soit um boule ouverte ou irrationnelle, ou soit égale à P(CP Alors

{B\B{ }i >o est soit une suite décroissante de couronnes, soit une suite décroissante de

boules, respectivement. On appelle {B \ 5;};>o chaîne évanescente. Notons qu'on a

et par conséquent B \ 5, cCp, pour i assez grand. De plus, diam(5 \ B;) converge
vers un nombre positif lorsque i —>¦ oo.

On dit que deux chaînes évanescentes {B \ 5, },>o et {B' \ B- },->o sont équivalentes
si pour tout JV > Oil existe« > JV tel que Bn C B'netB'N c Bn. Dans ce cas B B'.

Définition 2.1. Un bout est une classe d'équivalence de chaînes évanescentes.

Soit P un bout et {B \ 5,}, >o une chaîne évanescente définissante. Alors B dépend
seulement de P et on pose B<p B.

Si Bp P(Cp), alors on dit que P est un bout singulier. Sinon B$> est une
boule ouverte ou irrationnelle qui est déterminée par P. Si B<p est une boule ouverte
(resp. irrationnelle) alors on dit que P est rationnel (resp. irrationnel). On a une
correspondance entre les boules ouvertes (resp. irrationnelles) et les bouts rationnels

(resp. irrationnels).
Chaque transformation projective cp de P(CP) induit une bijection sur les bouts

rationnels (resp. irrationnels, singuliers). On désigne cette action par </v

2.2. Partitions de la droite projective et points de Mp. L'espace hyperbolique,
qu'on désigne par Mp, est par définition un ensemble de points, qu'on décrit ci-
dessous. Il y a trois types de points de Mp : les points singuliers, rationnels et
irrationnels.

2.2.1. Points singuliers. Les points singuliers de Mp sont par définition les
ensembles de la forme S {P}, où P est un bout singulier.
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2.2.2. Points non singuliers. On dit que deux boules ouvertes ou irrationnelles Bq

et B\ sont associées, si 5o n B\ =0 et si 5o et B\ sont maximales pour cette
propriété. Autrement dit, si i G {0,1} et B[ est une boule ouverte ou irrationnelle telle

que Bi c B[ et B[ n B\-i 0, alors B[ Bt.

Lemme 2.2. Soient Bq et B\ associées à B. Alors Bq B\ ou BqC\B\ 0. Dans
ce dernier cas Bq est associée à B\.

Preuve. La première assertion suit par maximalité. Supposons Bç, n B\ 0. Soit i G

{0,1} et soit B[ une boule ouverte ou irrationnelle telle que 5, c BietBinBi--, 0.

Alors B <jL Bi, car 5i_, est associée à B, donc B- n B =0. Par conséquent Bi 5,,
car Bj est associée à B.

Un point non singulier S de Mp est par définition un ensemble de bouts rationnels

ou irrationnels tel que pour tous Pc, et P\ g S distincts, les boules Bp0 et Bpx soient
associées, et maximales pour cette propriété. Dans ce cas on dit qu'une boule B$>,

avec P g S, est associée à S.

Notons que l'union d'une suite croissante de boules ouvertes ou irrationnelles
disjointes d'une boule donnée, est une boule ouverte ou irrationnelle. Par conséquent
chaque point non singulier S de Mp contient au moins deux éléments, et on a la

partition

2.2.3. Points irrationnels. Étant donné un bout irrationnel P, les ensembles B<p et

P(Cp) \ B<p sont des boules irrationnelles. Alors {P, P'} est un point non singulier
de Mp, où P' est le bout associé à P(CP) \ Bp. On appelle {P,P'} point irrationnel.

2.2.4. Le point canonique. Rappelons que pour f g P(Fp) on désigne par 5(f la
boule {z g P(Cp) | z f} ; voir Préliminaires. On a la partition canonique

Soit P(X) le bout correspondant à B{£). Il est facile de voir que Scan {(est un point non singulier. On l'appelle le point canonique.

2.2.5. Points rationnels. Soit P un bout rationnel et soit <p une transformation

projective de P(CP) tel que <p({\z\ < 1}) Bj>. Alors P (p*(P(0)) et S

{q)*(P(X))}pcf -, est un point non singulier contenant P. On appelle S G Hp pomf
rationnel. En particulier, 4can est un point rationnel.

Notons qu'on a un paramétrage de S par P(FP) qui est unique, modulo un

changement de coordonnée projective de P(FP).
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2.2.6. Définition de l'espace hyperbolique

Définition 2.3. L'espace hyperbolique p-adique, qu'on désigne par Mp, est
l'ensemble des points rationnels, irrationnels et singuliers. De plus, on désigne par H^
(resp. Hp l'ensemble des points non singuliers (resp. rationnels) de Mp.

Notons que tout bout (resp. bout non singulier, bout rationnel) est contenu dans

exactement un point de Mp (resp. H^, H^
Il est clair que le groupe PGL(2, Cp) des transformations projectives de P(CP) agit

sur Mp, en préservant H^ et Mp. Cette action est transitive sur Mp et le stabilisateur du

point 4can correspond au sous-groupe PGL(2, Qp). Par conséquent on a une bijection
entre PGL(2, Cp)/ PGL(2, Gp) et Mp. Étant donné une transformation projective cp

de P(Cp), on désigne par </?* l'action sur Mp induite par cp.

2.3. Propriété de séparation

Définition 2.4. Soit ^€H?etIc P(CP).
1. Si S g Hp est non singulier et si X intersecte au moins deux boules associées à

S, alors on dit que S sépare X, et on note S < X.

2. Si S {P} g Mp est singulier et si pour toute chaîne évanescente {A};>o
définissant P et tout i > 0 on a D; n X ^ 0, alors on écrit S <X.

Soient ^eipetljc P(CP). Alors (^Xetlcf) implique 4^7.
Notons que pour un point singulier S {<f} il suffit de vérifier la propriété 2 pour
une chaîne évanescente définissant P quelconque.

Lemme 2.5. Soient S et S' £ Mp des points distincts. Alors il existe un unique bout
,9 g S tel que S' < BrP.

Lemme 2.6. Soient S, S' G HÇ distincts. Soit B (resp. B') la boule associée à S

(resp. S') telle que S' < B (resp. S < B'). Alors B n B' est une couronne.

2.4. Propriété de séparation dans Mp. Fixons un point S G Mp. Par le Lemme 2.5,

chaque point S' G Mp différent de S détermine un bout P G S tel que S' < B<p.

Comme P(CP) u%B<p est une partition de P(CP), chaque point z' g P(Cp)
détermine un bout P G S tel que z' g 5^. On écrit z' < B<p.

Définition 2.7. Soient So, Si G Mp U P(CP) et ^ e H? des points deux à deux
distincts. Pour i g {0, 1} soit <f; G 4 le bout tel que 4; -< 5^>.. On dit que S est entre
So et 4i si Pq ^ P\. On dit aussi que S sépare So et 4i.

On désigne par (So, S\) c Mp l'ensemble de tous les points entre So et S\. De
plus, on pose [So, S\) (Si,S0] (So, S\) U {So} et [So, Si] [So, S\) U {Si}.
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Notons qu'un point S G Mp peut séparer deux éléments de Mp U P(CP) si et
seulement si S g HÇ. Cette définition généralise la définition 2.4 dans la mesure où

un point leij sépare deux points zo et z\ g P(Cp) distincts si et seulement si 4

sépare l'ensemble {zo» z\) C P(CP) (dans le sens de la définition 2.4).

Lemme 2.8. 5oienr <$o, Si et ^ e HP U P(CP) des points distincts tels que Si ne

soit pas entre Sj et Su, pour toutes les choix de {i, j, k] {0,1, 2}. Alors il existe

un unique point S g Mp tel que S est entre So et Si, entre Si et Si et entre Si et So-

Dans ce cas S g Mp

Lemme 2.9. Soit 3> un bout et soient So, Si G Mp des points distincts tels que

So, Si < Bp. Alors il existe un point S g H^ tel que S < B$> et tel que

[So, S) n [Si, S) [S,S),

où S est le point de Mp contenant P.

2.5. Distance sur Mp. L'espace hyperbolique Mp est muni d'une distance d, pour
laquelle il est un arbre réel separable et complet, voir le paragraphe 3 de [R2]. De

plus, cette distance est invariante par l'action des homographies sur Mp.
Pour des points non singuliers distincts S et S' de HÇ, cette distance est définie

comme suit. Soit B la boule associée à S telle que S' < B et soit B' la boule associée
à S'telle que S < B' (voir Lemme 2.5). Par le Lemme 2.6, B H B' est une couronne
et alors

d(S,S') =mod(5n5/)-
II est facile de voir que si D (resp. D') est une boule de Cp associée à S (resp. S')
on a

diam(D U D')2

Les segments géodésiques de l'arbre réel (Mp, d) sont les ensembles de la forme
[S, S'], voir Définition 2.7. On sait que les points rationnels sont denses sur chaque

segment géodésique.
Pour z, z' g P(Cp) on dit que (z, z') C H^ est la géodésique joignant z et z'¦

Chaque géodésique est isométrique à R. Dans le cas où S g Mp et z g ¥(Cp),
on dit que [S, z) est une demi-géodésique. Si S appartient à H^ alors il existe une
transformation projective de P(CP envoyant z à oo et S dans (0, oo). Par conséquent
[S, z) est isométrique à [0, oo) c M.

Lorsqu'on fixe S G Mp et S' se rapproche (sur une géodésique) d'un point de

alors la distance d(S, S') tend vers l'infini.
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2.6. Remarques à propos de l'espace de Berkovich. Comme ensemble, l'espace
analytique de Berkovich P™ induit par P(CP) s'identifie de façon naturelle à

l'ensemble P(Cp) u Mp. Les points de P(CP) s'identifient aux points de type (i) de P™

et les points rationnels (resp. irrationnels, singuliers) de Mp s'identifient aux points
de type (n) (resp. (iii), (iv)) de P^n

L'espace P™ est munit d'une topologie pour laquelle il est compact et connexe

par arcs. La topologie sur Mp induite par P™ est strictement moins fine que celle

induite par la distance d.
Étant donné un point S de P(CP) uMp Pg1 et une boule B de W(CP), on a

S < B si et seulement si S g 5an, où 5an désigne l'espace analytique de Berkovich
induit par B. De plus, pour chaque point S G Mp on a la partition

(Lemme 2.5), laquelle est la partition en composantes connexes de P^11 \ {S}.

3. Action des fonctions rationnelles sur Mp

Fixons une fonction rationnelle R G Cp (z) qui ne soit pas constante. Dans ce

paragraphe on décrit l'action d'une fonction rationnelle sur les bouts et sur Mp ; pour les

démonstrations on pourra consulter le paragraphe 4 de [R2].
Étant donné un point vu g ¥(Cp), le degré local de R en vu, que l'on désigne par

degR(vu), est défini comme suit. On considère des coordonnées telles que vu 0 et

R(0) =0. Alors R est localement de la forme

adZd + ad+izd+l -\ où d > 1 et ad ^ 0 ;

on définit degÄ(w) d et on dit que degÄ(w) est la multiplicité de vu comme
antécédent de R(vu). Iln'estpas difficile de voir que degR(vu) ne dépend pas du choix
des coordonnées.

Pour«; eP(Cp)ona

degÄ(z) degCR) (3)

R(z)=w

et pour Q g Cp(z) onadegßoÄ(w;) degQ(R(vu)) degR(vu).

Étant donnés X,Y c P(CP) tels que R(X) c Y, on dit que R : X -> Y est de

degré d, où d > 1, si pour tout y G Y

degÄ(x) d.

xeX, R(x)=y

De façon équivalente, tout point dans Y a exactement d antécédents dans X comptés

avec multiplicité.
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3.1. Action d'une fonction rationnelle sur les bouts. Fixons une fonction rationnelle

R G Cp (z) non constante.

Proposition 3.1. Soit P un bout rationnel {resp. irrationnel, singulier). Alors il existe

un bout P' de même nature et un entier d > 1 tel que pour toute chaîne évanescente

{Ci}t>o définissant P, il existe N > 1 tel qu'on ait les propriétés suivantes.

1. {R{Ci)}i>N est une chaîne évanescente définissant P'.
2. Pour tout i > N, R: Q -> R(Q) est de degré d.

Le bout S3' sera noté R*(S3). De plus 1 'entier d sera noté degR(P) et appelé degré
local de R en P.

Lemme 3.2. Soit P un bout non singulier. Alors il existe un entier N > 0 tel qu'on
ait les propriétés suivantes.

1. Chaque point y g Br^p) a N + degR(P) antécédents par R dans Bp.
2. Chaque point y g Br^j>) a N antécédents par R dans B$>.

En particulier, si N 0 alors R(Bj>) Br^j>) et R : B<p --* Br^j>) est de degré

ào.gR{JP); si N est strictement positif alors R{Bj>) P(CP).

3.2. Action d'une fonction rationnelle sur M.p. Pour chaque point S G Mp on
définit un point R*(S) g Mp et un entier degÄ(4) > 1 qu'on appelle degré local de

Ren S.

Si S {P} G Mp est un point singulier, on note R*(S) {R*(P)} G Mp et

degÄ(4) degÄ(^P) > 1. Si S {P, P'} g Mp est un point irrationnel, alors

degÄ(^P) degÄ(^0 > 1 et {R*(P), R*(P')} est un point irrationnel de Mp. On
les note respectivement degÄ(4) et R*(S) g Mp.

La proposition suivante décrit l'action d'une fonction rationnelle sur les points
rationnels de Mp ; voir [RI], Proposition 2.4.

Proposition 3.3. Soit R g Cp (z) une fonction rationnelle non constante et soit

S g Mp un point rationnel. Alors on a les propriétés suivantes.

1. // existe un unique point rationnel S' g H^ tel que pour tout P £ S on a

R*(P) g S'.

2. Considérons des paramétrages

Alors il existe une fonction rationnelle R g ¥p(z) telle que pour toute, g P(Fp)
on ait

RA(è)) '(M)) et deg((Ç d(£)
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Donc pour tout ,9' G S'

J2 deg(R).

3. // existe un sous-ensemble fini T de S tel que pour tout P g T on ait R(Bj>)
P(Cp) et tel que pour tout 3> g S \ T la image de B$> par R soit Br^j>) et

l'application R: B<p --* Br^j>) soit de degré degÄ(^P).

Le point S'sera noté R*{S). Le degré de R sera noté AegR(S) et ne dépend pas
du choix des coordonnées.

3.3. Action locale d'une fonction rationnelle

Proposition 3.4. Soit R g Cp (z) une fonction rationnelle non constante fixant 0 g

P(Cp) et localement de la forme R(z) adzd + ad+izd+1 H où d degÄ(0).
Alors pour r > 0 petit on a

R*(Sr) <$\ad\r« et degÄ(4r) =d degÄ(0),

ou %r g Mp est le point associé à la boule {\z\ < r}.

Proposition 3.5. Soit R g Cp(z) une fonction rationnelle non constante. Soit P un

bout et soit S e!p le point qui contient P. Alors il existe un point ielp tel que

$ < Bp et tel que l'on ait les propriétés suivantes.

1. R*{{$, S)) (R*(S), R*(S)) et R* est injective sur {$, S).

2. Pour tout £'&(£, S) on a degÄ(4') deg

3. d{R*{$), R*{$)) degÄ(^P) ¦ d{$, S).

Corollaire 3.6. Soit R g Cp (z) une fonction rationnelle non constante. Alors pour

R^(S')) < deg(R) ¦ d(S, S').

tout S et S' g Mp on a

En particulier l'action sur Mp induite par une fonction rationnelle est continue.

Corollaire 3.7. Considérons un segment de Mp paramétré par {$t)o<t<t, de telle

façon que d(Sto, Stl) \tç> — h\ pour 0 < to < h < t'. Supposons que R g Cp(z)
soit une fonction rationnelle telle que R* est injective sur [So, St\ Alors

d(R^o), R*(*t>)) I
Jo

En particulier on a d{R*{$o), R*{£f)) > d(S0, -$t)
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4. Fonctions rationnelles en caractéristique positive

Dans ce paragraphe on considère des propriétés de fonctions rationnelles à coefficients
dans Wp. Comme la caractéristique de ¥p est positive, parfois il y a des propriétés
assez différentes du cas de caractéristique zéro ; par exemple le polynôme zp g ¥p [z]

induit une bijection sur F(¥p).
Rappelons que pour toute puissance q de p on a ¥p U«>i ^V •

Lemme 4.1. Soit R G ¥p(z) une fonction rationnelle.

1. Si deg(/?) 1 alors tout élément de F{¥p) est périodique par R.

2. Si deg(R) > 1 alors tout élément de F(¥p) est prépériodique par R et R a une

infinité de points périodiques.

Preuve. Soit q > lune puissance dep telle que R G ¥q (z). Alors pour chaque n > 1

l'ensemble P(F?«) F?« U{co} est invariant par £. Puisque P(FP) |J„>i P(F?«),

tout élément de F(¥p) est prépériodique par i?. Étant donné un entier r > 0 on
désignera par Rr la fonction rationnelle itérée R o ¦ ¦ ¦ o R.

r
1. Si deg(/î) 1 alors i? induit une bijection sur chaque P(F?«) et par conséquent

tout élément de F(¥p) est périodique par R.

2. Supposons deg(R) > 1. Soient fi,..., ^ g P(Fp) les points fixes de R et
soient A.i, k^ leurs multiplicateurs. Pour chaque 1 < i < k tel que À, 7^ 0 soit

m > 1 le plus petit entier tel que à"' 1.

Soit r un nombre premier strictement supérieur à p et aux n\. Soit f une racine
de Rr(z) - z. Si f ^ et À, 0, alors f est une racine simple de i?r(z) - z. Si

f fi, A, 7^ 0 et ni > 1, il en est de même (car r n'est pas un multiple de n;). Si

f fi, À, 7^ 0 et «,• 1, alors les multiplicités de & comme racine de R(z) — z et
Rr (z) - z sont les mêmes. Il existe donc une racine f de i?r (z) - z distincte des f, (car

deg(i?r (z) — z) > deg(R(z) — z)). C'est un point périodique de période minimale r.
D

4.1. Inséparabilité

Définition 4.2. On dit qu'une fonction rationnelle R G ¥p(z) est inséparable s'il
existe une fonction rationnelle g g ¥p(z) telle que i?(z) Q(zp).

Notons que l'application z )--* zp est un automorphisme du corps ¥p. Par conséquent

pour toute fonction rationnelle Q G ¥p (z) il existe une fonction rationnelle

ôi g ¥p(z) telle qu'on ait Q{zp) (Qi(z))p'. On conclut alors que, si i? appartient
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à ¥p (z) et <p, tp sont des transformations projectives de P(FP), alors R est inséparable
si et seulement si <p o R o ty l'est.

Étant donnée une fonction rationnelle R G Fp(z), on dit que f G P(FP) est

un point critique de i? si deg£(f > 1. Dans ce cas on dit que deg£(f) — 1 est la

multiplicité de f comme point critique de i?.

La propriété suivante découle de la formule de Riemann-Hurwitz (voir par exemple
[Ha], page 301, Collorary 2.4). Elle n'est pas difficile à montrer directement.

Proposition 4.3. Soit R g ¥p(z) une fonction rationnelle ayant plus de 2 deg(/î) — 2

points critiques, comptés avec multiplicité. Alors R est inséparable.

Le corollaire suivant est immédiat. En effet il découle du résultat plus faible que,
si R g ¥p(z) est une fonction rationnelle qui n'est pas inséparable, alors l'ensemble
de ces points critiques est fini.

Corollaire 4.4. Soit R g ¥p (z) une fonction rationnelle qui n 'est pas inséparable.
Alors il existe une infinité des points périodiques Ç g P(FP) tels que deg^n(f 1,

où n > 1 est la période de t,.

5. Points périodiques dans Mp

Fixons une fonction rationnelle non constante R G Cp(z) et considérons l'action R*
sur Mp induite par R. On dit qu'un point lelp est périodique par R* s'il existe
n > 1 tel que R%(S) S. Dans ce cas on dit que S est indifférent si Ao.gRn(S) 1,

et on dit que S est répulsif si degÄ« (4) > 1.

Dans le paragraphe 5.2 on introduit les points périodiques inséparables, qui seront
très importants dans ce qui suit.

5.1. Points périodiques indifférents. Pour une démonstration de la proposition
suivante voir [R2], Proposition 5.8.

Proposition 5.1. Soit R g Cp(z) une fonction rationnelle de degré au moins deux.

Alors les propriétés suivantes sont équivalentes.

1. R*aun point périodique indifférent dans Mp.

2. R* a une infinité de points périodiques indifférents dans Mp.

3. R a un point périodique indifférent dans P(CP).
A. R a une infinité de points périodiques indifférents dans P(CP).

Dans ce cas R* possède aussi un point périodique répulsif dans Mp.

On aura besoin de la proposition suivante dans le paragraphe 9.1.
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Proposition 5.2. Soit R g Cp (z) une fonction rationnelle non constante et soit
S G Mp un point irrationnel ou singulier fixé par R*. Alors S est indifférent et il
est adhérent à l'ensemble des points fixes rationnels de R*. En particulier tout point
périodique répulsif de R* est rationnel.

Il est en fait vrai que l'ensemble des points périodiques indifférents dans Mp est

ouvert, mais on n'aurait pas besoin de ce résultat plus fort. La démonstration de cette

proposition s'appuie sur le lemme suivant.

Lemme 5.3. Soit C une couronne et soit R g Cp (z) une fonction rationnelle telle que
R(C) est aussi une couronne. Alors il existe un entier d > 1 tel que R: C —* R(C)
est de degré d et on a,

mod{R{C)) d-mod(C).

Preuve. Après changement de coordonnée on suppose que C {ro < \z\ < ri} et

que R(C) {r0 < \z\ < r[). En particulier R n'a pas de zéro ni de pôle sur C. On

pose R P/Q, où

P(z) a0 + aiz + ¦ ¦ ¦ + anzn G £p[z] et

Q(z) =bo + hz-\ h bn'Zn' G Cp[z].

Alors il existe 0 < k < n (resp. 0 < k' < n') tel que |a;lrô < \ak\fQ (resp.

\b,

0

r30 < l&fe'ko') Pour 0 < i < £ (resp. 0 < j < k') et \ai\r\ < \ak\r\ (resp.

r( < l&jt'kf) pour k < i < n (resp. k' < j < n').
Comme R(C) {r'o < \z\ < r[} on a k ^ k', et quitte à changer R par -^, on

suppose k > k'. Alors R: C —* R(C) est de degré d k — k'. Remarquons d'autre

part que r'o (\ak\/\bt\)r$ etr[ (\ak\/\bk/\)rf. Par conséquent

mod(R(Q) logp(rî/r0) logp(rf/rg) d ¦ mod(C).

Preuve de la Proposition 5.2. Cas S irrationnel. Après changement de coordonnée,
on suppose que S est le point associé à {\z\ < r}. Posons R P/Q, avec

P(z) a0 + a1Z H h adZd G Cp[z] et

Ô(z) bo + bu + ¦ ¦ ¦ + bdizd' g Cp[zl

Soit 0 < n < d (resp. 0 < n' < d') le plus petit entier qui maximise \an\rn (resp.

\bni\rn Comme r ^ |C* | on a \ai\rl < \an\rn (resp. lèylr7 < |èn'|r" pour i ^n
(resp. j t^ «0- Donc | R{z) \ \an/bn/1 |z|" "' pour tout z tel que \z\ est assez proche
de r. Par suite, \an/bn'\rn~n r, et comme r ^ |C* |, on a degÄ(^P) n — n' \.
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Par conséquent S est un point fixe indifférent et R* fixe le point associé à {\z\ < r'}
pour tout r' proche de r.

Cas S singulier. Soit {A};>o um chaîne évanescente définissant S et soit ro

linij^oo diam(Dj) > 0. Pour r > 0 on désigne par Dr c Cp la boule ouverte ou
irrationnelle de diamètre r telle que S < Dr. Notons que pour r < r' on a Dr c Dr/.

Fixons r\ > ro assez proche de ro tel que Dn ne contient pas de point fixe de R,

telque#(Dn) c Cp et tel que R : Dn -> R(Dn) soit de degré d degR(S). Pour

r g (r0,ri)onai?(Dr) c R(Dn) c Cp etlorsquer' g (r, n) ona#(Dr) c #(ör)
(Lemme 3.2). On désigne par p(r) le diamètre de la boule R(Dr) ; on a R(Dr)
Dp(j). Comme R*{$) S, on a p{r) -> ro lorsque r -> ro.

Par le choix de r\, pour tout r g (ro, n) l'application R: Dr ->¦ i?(Dr) est de

degré <i. Par conséquent, si r ^ |C* |, alors l'image de la couronne Dn \ Dr est la

couronne R(Dn) \ R(Dr), et l'application R: Dn \ Dr -+ R{Dn) \ R{Dr) est de

degré d. Par le lemme précédent on a (ß(r\)/p(r))d r\/r. En faisant tendre r vers

ro on obtient p(r\)d r^(ri/ro). Par conséquent on a p(r\) > ri avec égalité si et
seulement si d 1.

Supposons par l'absurde que d > 1. D'après ce qui précède on a p(n) > ri et
alors le Lemme 1.1 implique que (R — id)(Dn) R{Dn) {\z\ < p(r\)}. En

particulier Dn contient un point fixe de R. On obtient donc une contradiction et on
conclut que degÄ(^P) d 1. Par conséquent, pour r g (ro, n) on a p(r) r et
alors le point de Mp associé à la boule Dr est fixé par R*.

5.2. Points périodiques inséparables. Étant donnés une fonction rationnelle R G

Cp(z) et un point rationnel S G Wp, on dit que R* est inséparable en S si l'action
de i?* en S est inséparable, c'est-à-dire si degÄ(^P) > 1 pour tout (une infinité de)

P G S ; voir Proposition 4.3.

Définition 5.4. Soit R e Cp (z) une fonction rationnelle de degré au moins deux. On
dit qu'un point périodique S G Mp de R* de période n > 1 est inséparable si 4 est

rationnel et si (/?*)" est inséparable en 4.

Remarquons que tout point périodique inséparable est répulsif.

Proposition 5.5. Soit R g Cp (z) une fonction rationnelle telle que R* n 'a pas de

points périodiques indifférents dans Mp. Alors tous les points périodiques de R* dans

Mp sont inséparables.

La démontration de cette proposition s'appuie sur le lemme suivant.

Lemme 5.6. Soit R G Cp (z) une fonction rationnelle et soit P un bout non singulier
tel que R(Bj>) Brp. Alors :
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1. Si degÄ(^P) 1, a/ors tout point S de Mp tel que S < B<p est périodique
indifférent.

2. Si degÄ(^P) > 1, a/or* /a 6o«/e 5^ contient un seul point périodique de R dans

B<p, qui est un point fixe attractif.

Preuve. On pose d degÄ(^P Après changement de coordonnée on suppose B$>

{\z\ < r}. La restriction de R à {\z\ < r} est alors donnée par une série de la forme

aç, + a\z + ---, où \a\\rl < r pour 0 < i < d, \ad\rd r et \aj\rî < r pour j > d.
1. Supposons d 1 et soit £ tel que |aj — 1| < 1. Étant donné ro G (|aol, ?")

on pose 5o {kl < a"o}- H suffit de montrer que Rkpm converge uniformément
vers l'identité sur Bq lorsque m --* cxd. Notons qu'on a \\Rk(z) — z\\ro < ro- Plus

généralement, on montrera que pour toute série / convergente sur la boule #o et telle

que \\f(z) — z\\r0 < ro, la suite {fpm}m>o converge uniformément vers l'identité sur
Bq, lorsque m ->¦ oo.

Soit y ll/(z) - zWro/ro < 1 et pour chaque entier n > 1 posons Tn{z)

fn(z) — z. Par récurrence il suffit de montrer que pour tout entier £ > 1 on a

\\Tp.i\\ro <max{|jo|,y}- ||7^||ro.

Notons que pour tous £, n > 1 on a

Tnl Tt + Tt o / + ¦¦¦ + Ttofn~\

Lorsque £ 1, l'inégalité ultramétrique implique ||T„||ro < ||Ti||ro yrç,. Par

conséquent, si l'on fixe zo ^ ^o et on pose D {\z — zo\ < yo}» alors pour tout
n > 1 on a /"(zo) G Ö et le Lemme 1.2 implique qu'on a

d'où on obtient \\Tt o /" - Tt\\m < y ¦ \\Tt\\m. On a donc

0<n<p-l

<max{\p\,y}-\\Te\\ro.

2. Supposons d > 1. Dans ce cas on a R'(z) < 1 sur {\z\ < r}, et l'équation
R(z) — z 0 a une solution zo sur {\z\ < r} ; elle est un point fixe attractif de R.

De plus, il est facile de voir que pour k| < r la suite Rn(z) converge vers zo lorsque
n ->¦ oo. Donc, zo est le seul point périodique de R dans {\z\ < r}.

Preuve de la Proposition 5.5. Soit S g Mp un point périodique de R*. Par hypothèse
S est répulsif, et par conséquent il est rationnel. Quitte à changer i? par un itéré, on

suppose que S est fixé par R*.
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Soit T l'ensemble fini des bouts ,9 g S tel que R(Bg>) ^ BRt(Jp). Comme S est

répulsif, il existe une infinité de cycles de bouts dans S (Lemme 4.1). Par conséquent
il existe une infinité de bouts P tels que {R*)n{JP) P pour un certain n et tels que
(/?*)' {P) G S \ T pour tout i > 0. Dans ce cas on a Rn{Bj>) Bj>. Or, le lemme

précédent implique que degÄ {JP) > 1, car R* n'a aucun point périodique indifférent.
Comme ceci est vrai pour une infinité de bouts P G S, on conclut que l'action de R*
est inséparable en S.

6. Bonne réduction

En coordonnées homogènes une fonction rationnelle s 'écrit sous la forme [ Po P\ ], où
Po et Pi g Cp[zo, zi] sont des polynômes homogènes de même degré, égal au degré
de la fonction rationnelle. Pour X g C*, [XPq,XPi] représente la même fonction
rationnelle.

Étant donné un polynôme P G Gp[zo, z\\ on désigne par P sa projection dans

Définition 6.1. Considérons une fonction rationnelle R G Cp(z) donnée en
coordonnées homogènes par [Pc,, P\]. Quitte à remplacer Po et P\ par XPç, et XP\
respectivement, on suppose Po et P\ à coefficients entiers et tel qu'au moins l'un des

coefficients de Po ou de P\ soit de norme égale à 1.

Si Po et P\ n'ont pas de racine commune sur ¥p x ¥p autre que (0, 0), alors on
dit que R a bonne réduction. Dans ce cas la fonction rationnelle R g Wp(z), donnée

en coordonnées homogènes par [Po, P\], satisfait deg(R) deg(R), et on dit que R

est la réduction de R.

De façon équivalente, une fonction rationnelle a bonne réduction si et seulement
si elle s ' étende en un endomorphisme du schéma P^ La notion de bonne réduction à

été introduite par Morton et Silverman dans [MS], voir aussi le paragraphe 7, [Ben2]
et [RI].

Il est facile de voir qu'une fonction rationnelle R g Cp (z) admet bonne réduction
si et seulement si le point canonique 4Can e Hp est fixé par R* et degjj(4Can)
deg(R), cf. [RI]. Dans le cas où ceci a lieu, la fonction rationnelle R g ¥p(z)
coïncide avec la fonction rationnelle donnée par la Proposition 3.3.

La proposition suivante est une conséquence immédiate du Lemme 6.3 ci-dessous.

Proposition 6.2. Soit R g Cp (z) une fonction rationnelle ayant bonne réduction.
Alors pour toute boule B associée à 4can, l'ensemble R(B) est une boule associée

à 4can-
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Lemme 6.3. Soit R g Cp(z) une fonction rationnelle non constante. Si S g Mp est

tel que do.gR(S) deg(R), alors pour toute boule B associée à S, l'ensemble R(B)
est une boule associée à /?*(-£).

Preuve. L'assertion est triviale si S est singulier. On suppose désormais S non singulier.

Étant donné un bout P g R*(£), soient P\,..., Pu £ ¦$ toutes les antécédents

de R*(P) par R* dans S. D'après la Proposition 3.3 on a

degÄW) degÄ(4) deg(R). (4)
\<i<k

Fixons un point zo £ 5^>. Par le Lemme 3.2 la boule 5^>. contient au moins
antécédents par R comptés avec multiplicité, et l'égalité a lieu si et seulement

si R(B<p.) Br^j>.). Puisque le nombre d'antécédents de zo par R, comptés

avec multiplicité, est égal à deg(R), l'équation (4) implique qu'on aR(Bpt Br^jp^
pour 1 < i < k.

Le reste de ce paragraphe est consacré à démontrer la proposition suivante.

Proposition 6.4. Soit R g Cp (z) une fonction rationnelle ayant bonne réduction.
Alors on a les propriétés suivantes.

1. Pour tout point S eip on a

2. Si la réduction de R est inséparable, alors pour tout point S g Mp distinct
de 4Can l'inégalité précédente est stricte. En particulier 4can est le seul point
périodique de R* dans Mp.

3. Si la réduction de R est inséparable, alors tous les points périodiques de R dans

P(Cp) sont attractifs.

Lemme 6.5. Soit R g Cp(z) une fonction rationnelle et soit B une boule ouverte ou
irrationnelle telle que B' R(B) soit une boule; on désigne par d > 1 le degré de

R: B ->¦ B'. Soit S G Mp le point associé à B et soit S G Mp un point tel que S < B.

Alors on a

avec égalité si et seulement si d 1.

Preuve. Après changement de coordonnée au départ et à l'arrivée on suppose B

{\z\ < r}etB' {\z\ < r'}. SoitD c B une boule différente de B. Par le Lemme 1.2

on a

-dmm(R(D)) < -diam(D), (5)
¦y' t*
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avec égalité si et seulement si d 1. Ceci montre l'inégalité désirée dans le cas

où le point S est non singulier. Si d 1 on a l'égalité dans (5), et donc on obtient

l'égalité désirée dans le cas où le point S est non singulier. L'égalité dans le cas où S

est singulier découle du cas précédent par continuité.
Considérons le cas oùd > 1 et S est singulier. Soit {D,}, >i une chaîne évanescente

représentant S telle que Do C B et Do ¥= B. Le Lemme 1.2 implique

et pour i > 1,

Comme

d{l

Idia

diai

diai

d(î, 4)

m(R(D(

k(R(Dî
n(R(D0

lim

lim -

< -diam(Do),
r

^ diam(Dj)
" diam(Do)

— log„ — diam(i?(L' \r'
-log„ (-diam(A)' \ r 1

et

on conclut que d(R*(S), R*(S)) > d(S, S).

Preuve de la Proposition 6.4. 1. et 2. Soit S g Mp distinct de 4can et soit B la boule
associée à SCAn telle que S < B. Comme l'ensemble R(B) est une boule (Proposition

6.2), le Lemme 6.5 implique que d(R*(S), Scw) > d(S, 4Can)-

Si la réduction de R est inséparable, alors R : B -> R (B) est de degré au moins

p > 1, et le Lemme 6.5 implique que l'inégalité précédente est stricte.
3. Si zo £ W(<Cp) est un point périodique de R de période n > 1, alors la boule

5 associée à 4Can qui contient zo satisfait i?"(5) 5. Le Lemme 5.6 implique ainsi

que zo est attractif.

7. Bonne réduction et l'ensemble exceptionnel

Dans ce paragraphe on considère l'ensemble exceptionnel de l'action sur Mp
induite par une fonction rationnelle. Cet ensemble est défini de façon analogue au

cas complexe, voir par exemple [Mi]. On peut consulter aussi [Hs] pour l'ensemble
exceptionnel dans P(CP) d'une fonction rationnelle à coefficients dans Cp.

Définition 7.1. On dit qu'un point S G Mp est un point exceptionnel de R si

l'ensemble U„>o #7" W est fini.

Notons que tout antécédent d'un point exceptionnel est aussi un point exceptionnel.
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Le but de ce paragraphe est de montrer le théorème suivant, qui est un énoncé

plus précis du Théorème 4 de l'introduction.

Théorème 5 (Ensemble Exceptionnel). Soit R G Cp(z) une fonction rationnelle de

degré au moins deux et soit R* l'action sur Mp induite par R.

L'ensemble exceptionnel de R* contient au plus 1 point. Il est non vide si et
seulement si, après changement de coordonnée, R a bonne réduction. Inversement,
si R a bonne réduction, alors le point SCim est le seul point exceptionnel de R*.

Dans la démonstration de ce théorème on montre qu'un point S e Mp est

exceptionnel pour R* si et seulement si R*(S) S et degR(S) deg(R) ; dans ce

cas le point S est rationnel et R a bonne réduction dans une coordonnée cp telle que
(p*(S) ^can-

En suivant la terminologie introduite dans [RI], on dit qu'une fonction rationnelle
R est simple s'il existe une coordonnée dans laquelle R a bonne réduction. On obtient
ainsi le corollaire immédiat suivant du théorème précédent.

Corollaire 7.2. Soit R g Cp (z) une fonction rationnelle de degré au moins deux.

Si R n'est pas simple, alors pour tout point S de Mp, l'ensemble U«>o ^* "W est

infini.

La démonstration du Théorème 5 est une conséquence de la Proposition 7.3 ci-
dessous. Une autre conséquence de cette proposition est une démonstration « conceptuelle

» du théorème de Benedetto, énoncé dans l'introduction.

Proposition 7.3. Soit R g Cp (z) une fonction rationnelle de degré au moins 2.

Supposons que E c M.p est un ensemble fini tel que R*(E) c E et tel que l'on ait
degR(S) deg(R) pour tout S & E. Alors E contient au plus un point.

Cette proposition est une conséquence immédiate du lemme suivant.

Lemme 7.4. Soit R g Cp(z) une fonction rationnelle non constante. Si So, S\ g Mp
satisfont degR(So) degÄ(^i) deg(R), alors

d(R*(So), R*(Si)) deg(R) ¦ d(S0, Si).

Preuve. Notons que la Proposition 3.5 implique qu'on a degÄ(4) do.g{R) pour tout
S g (Sq, S\) proche de So ou de S\. Donc, on peut supposer So et S\ non singuliers.

Pour i g {0,1}, soit 5, la boule associée à Si telle que S\-\ < B;. Alors C

BqCiBi est une couronne (Lemme 2.6) et mod(C) d(So, S\) (voir paragraphe 2.5).
Par le Lemme 6.3, l'ensemble B- R(Bt) est une boule. Comme 5o n B\ ^ 0 et
Bo U B\ P(Cp), les boules B'o et B[ satisfont les mêmes propriétés. Par conséquent
C B'o n B[ est une couronne, avec mod(C') d(R*(S0), R*(Si)).
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Pour i G {0, 1} on pose D} ¥(CP) \ B{ et Di ¥(CP) \ B[. Notons qu'on a

D\-\ c Bi et

R-^D'^j) nCp) \ R-^B'^j) c Di_î C Bt.

Comme B'; R(B{) le Lemme 3.2 implique que le degré local de R au bout de B;

est égal à deg(R). On a donc R'HBi) B} et R'HDi) A. Puisque P(CP)
Do u C u D\ et P(Cp) D'Q u C u D{, on conclut que R~l (C) C. Par conséquent
R : C --* C est de degré deg(i?), et le Lemme 5.3 implique

mod(C/) deg(R) ¦ mod(C).

On aura besoin de la propriété générale suivante, laquelle est démontrée dans

l'Appendice A.

Proposition. Soit R g Cp(z) une fonction rationnelle non constante. Alors pour tout
point S g Mp l'ensemble R^iS) c M.p des antécédents de S par R* est fini, non
vide et on a

Preuve du Théorème 5. Soit S g Mp un point exceptionnel de R* et considérons
l'ensemble fini E Uoo ^* " (¦*)• Alors R'1 (E) c E, et par conséquent

R~1(-8') =#R~1(E) <#E.

Commet est surjective, pour tout S' g Eon^#R~l{S') letdegÄ(-$0 deg(R),
cf. proposition précédente. Donc R*(E) £ et la Proposition 7.3 implique alors que
E {S}. En particulier R*{$) S, et comme degÄ(4) do.g{R), on conclut

que S est rationnel et que R a bonne réduction dans une coordonnée <p telle que
<p*{$) ^can ; voir paragraphe 6.

D'autre part, supposons que R a bonne réduction. Alors, d'après le paragraphe 6,

on a i?*(^can) ^can, et degÄ(4can) deg(/?). La proposition précédente implique
que R^1 (4Can) ^can et donc 4can est un point exceptionnel de R.

Il reste à montrer qu'il existe au plus 1 point exceptionnel ; supposons que S et
S' sont des points exceptionnels de R*. D'après ce qui précède on a degÄ(4)
degÄ(4') deg(Ä) et l'ensemble E {S, S'} satisfait R*(E) E. Donc, la

Proposition 7.3 implique que S S'.

Notons que d'après le paragraphe 6, le théorème de Benedetto (énoncé dans

l'introduction) peut être reformulé comme suit : pour un entier positif nonaÄj (^can)

^can et degÄ«(^can) de.g(Rn) si et seulement si R^Sca.n) Scw et degR(Scw)
deg(R).
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Preuve du Théorème de Benedetto. Clairement, si R a bonne réduction, alors il est

de même pour tous les itérés de R.

D'autre part, supposons que Rn a bonne réduction et posons

E {4can, R,^cw),..., Rt-l(Scw)} c Mp.

Comme i?"(4Can) ^can on a R*(E) E. D'autre part on a

nËdeg(4) deg^can) deg(Rn) deg(R)n,

d'où degÄ(4) deg(R) pour tout S g E ; en particulier degÄ(4Can) deg(/?)- La

Proposition 7.3 implique alors que E {4Can}, d'où R*(3Can) ^can- D

8. Sur le nombre de points périodiques dans Mp

Dans ce paragraphe on déduit les théorèmes 1 et 2 à partir du Lemme Principal
ci-dessous. Ce lemme est démontré dans le paragraphe 11. Le Théorème 3 est une
conséquence simple de [R2], sa démonstration est ci-dessous. Finalement, nous illustrons

ces résultats à l'aide de quelques exemples développés à la fin de ce paragraphe.

Lemme Principal. Soit fieCp (z) une fonction rationnelle telle que R* ait un point
périodique inséparable dans Mp qui ne soit pas exceptionnel. Alors R* a une infinité
de points périodiques inséparables.

Pour les démonstrations des théorèmes 1, 2 et 3, considérons une fonction rationnelle

R g Cp(z) de degré égal à 1. Il y a deux cas.

1. R est conjuguée à z \-+ kz, avec |A.| < 1. Dans ce cas R* n'a pas de points
périodiques dans Mp. D'autre part, R a exactement deux points périodiques
dans P(Cp) : un point fixe attractif et un point fixe répulsif.

2. R est conjuguée à z i->- z + 1 ou à z i->- kz, avec |A.| 1. Dans ce cas tout point
de Mp est périodique par R*.

Les assertions des théorèmes 1, 2 et 3 sont faciles à vérifier dans ce cas. Ainsi on
se ramène au cas des fonctions rationnelles de degré au moins égal à 2.

Preuve du Théorème 1. Soit R g Cp (z) une fonction rationnelle de degré supérieure
ou égal à 2 ayant au moins 2 points périodiques dans Mp. Si R* a un point périodique
indifférent, alors R* en a une infinité (Proposition 5.1). On suppose donc que R*
n'a aucun point périodique indifférent. Alors tous les points périodiques de R* sont

répulsifs et aussi inséparables, voir Proposition 5.5.

Soit S un point périodique de R*. Si S est exceptionnel, le Théorème 5 implique
que, après changement de coordonnée, R a bonne réduction. Par ce qui précède
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cette réduction est inséparable, et la Proposition 6.4 implique que S est le seul point
périodique de R*. Mais par hypothèse R* a au moins deux points périodiques dans

Mp. Donc S n'est pas exceptionnel et le Lemme Principal implique que R* a une
infinité de points périodiques dans Mp.

Preuve du Théorème 2. Dans le cas où, après changement de coordonnée, R a bonne
réduction inséparable, les assertions du théorème ont été démontrées dans la Proposition

6.4.

Supposons inversement que R* a exactement un point périodique dans Mp. Dans

ce cas R* n'a aucun point périodique indifférent dans Mp (Proposition 5.1) et par
conséquent le (seul) point périodique de R* dans Mp est inséparable (Proposition 5.5).
Le Lemme Principal implique que c'est un point exceptionnel, et par le Théorème 5,

après changement de coordonnée, la fonction rationnelle R a bonne réduction qui est

inséparable.

Preuve du Théorème 3. D'après [Benl], R a au moins un point fixe non répulsif
dans P(Cp), voir aussi l'introduction de [R2]. L'implication a =>¦ b est donc une
conséquence du Théorème A' de [R2]. L'implication b =^ c est triviale.

Montrons c =^ a. Supposons par l'absurde que R* a un point périodique dans

Mp. D'après la Proposition 5.1, R* a un point périodique répulsif dans Mp et le
Corollaire 5.6 de [R2] fournit la conclusion désirée.

Dans le cas où les conditions équivalentes a, b et c sont satisfaites, le seul point
périodique non répulsif de R est un point fixe. Il est forcément attractif, car l'existence

d'un point périodique indifférent implique l'existence d'une infinité de points
périodiques indifférents ; voir Corollaire 5.17 de [RI] pour une démonstration de ce
fait.

Exemple 8.1. Considérons le polynôme Q(z) zp + pzd £ <£p[z] avec d > p. Le

point ^can e Hp est fixé par g* et g* est inséparable en Scan. De plus degß {Scan)

p < deg(ß), donc par le Théorème 5 le point SCim n'est pas un point exceptionnel
de g*. Le Lemme Principal implique alors que l'action g* a une infinité de points
périodiques (inséparables) dans Mp.

9. Applications propres et points fixes

Le but de ce paragraphe est de montrer un critère pour l'existence de points fixes

(Proposition 9.3), qu'on utilisera dans la démonstration du Lemme Principal pour
« produire » des points périodiques.

Fixons une fonction rationnelle R G Cp (z) ¦ Étant donné un ouvert V c M.p on
dit que l'application R* : V -? R*(V) estpropre si R*(dV) n R*(V) 0.



618 J. Rivera-Letelier CMH

Lemme 9.1. Soit V C M.p un ouvert tel que l'application R*\ V —>¦ R*(V) soit

propre. Soit W c /?*(V) m« ouvert connexe et soit W c V «ne composante connexe
de R-1 C?0 n V. A/or* #*(T?) T?' et l'application R*: W ^» R*(W) est propre.

Par exemple i?*, vue comme une application de Mp dans lui même, est propre.
Comme conséquence du lemme, pour tout ouvert W c M.p et toute composante
connexe T?o de R'H'W), on a R*CW0) "W et l'application #*: i?0 -* "W est

propre.
La démonstration du Lemme 9.1 dépend du lemme ci-dessous.

Lemme 9.2. Soit S G Mp, P & S et soit S' G Hp feZ que S' < BR^j>). Alors il existe

S g R~l{$') tel que S < Bj>, tel que R*((S, S)) (RAS), S') et tel que R* soit

injective sur [S, S\ En particulier

Preuve. La dernière assertion découle du Corollaire 3.7.

Posons r0 d(R*(£), S') et pour 0 < r < r0 soit S'r G [R*{S), S'] le point tel

que d(R*(S), S'r) r. En particulier S'Q R*(S) et S'rQ S'.

Posons So S. Il suffit de montrer que pour 0 < r < ro on peut définir $r g Mp
tel qu'on ait Sr < B<p, R*(Sr) K et Uo<r'<r{^'l [So, Sri Ceci est une
conséquence des considérations suivantes.

1. Supposons que Sr est déjà défini pour 0 <r<n< ro.Soit^P' G S'n R*(Sn)
le bout tel que S'ro < Bg>i et soit P\ g Sn un bout tel que R*{<9\) ,9' ; si

ri 0 on choisit 3>\ 3>. Par la Proposition 3.5 il existe e > 0 tel qu'on peut
définir Sr G B$>x pour r\ < r < r\ + e.

2. Supposons que Sr est déjà défini pour 0 < r < ri. Alors pour 0 < r < r' < r\ on
ad(<Sr, Sri) < r'-r (Proposition 3.5). Comme Mp est complet (paragraphe 2.5),
il existe un point limite de {Sr)o<r<r\, lorsque r —* r\. On définit Sn comme
ce point limite.

Preuve du Lemme 9.1. Fixons un point S G W et soit S' G W' \ {R*(S)}. Par le

Lemme 9.2 il existe S G R~l{S') tel que R*{{S, S)) (R*(S),S') cf C /Î*(V).
Comme l'application/?* : 9 -^ /?+(V) est propre on a [4, S] c V. Donc I g W et

par conséquent ^(T?) W'.

D'autre part soit 4 g dW. Si de plus S e dV alors #*(4) ^ T?' c Ä+CV), car

R* : y -* Rjy) est propre. Si S G V alors ^(4) ^ T?', par définition de T?. Donc

#* : T? -^ W' est propre.
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9.1. Un critère pour l'existence de point fixe

Proposition 9.3. Soitji G Cp(z) une fonction rationnelle eUoit V cMp un ouvert
connexe tel que R* : V —>¦ R*(V) soit propre et tel que R*(V) contient la fermeture

topologique V de V. Alors, soit V contient un pointfixe rationnel de R*, soit il existe

un point fixe répulsifzo e P(CP) de R tel que V contient une demi-géodésique issue

de zo.

Le corollaire suivant est une conséquence immédiate de cette proposition.

Corollaire 9.4. Soit W cMp un ouvert connexe borné et soit V une composante
connexe de RJt1('W). Si W contient la fermeture de V, alors V contient unpointfixe
rationnel de R*.

Preuve de la Proposition 9.3. Supposons que R* n' ait pas de point fixe rationnel dans

y. Alors R* n'a pas de point fixe dans V, voir Proposition 5.2.

1. Fixons So g V. Pour chaque t > 0 on définira ^eVà distance t de So tel que
R* soit injective sur [So, St], tel que pour tout S g [So, St]onait R*{S) g [R*{So),S)
et tel que

[So,St]= (J {SA et [R,{S0),R,{St)] (J {R*(4t,)}.
0<t'<t 0<t'<t

1.1. Soit to > 0 tel que St est déjà défini pour 0 < t < to. On définira -& pour
t > fo proche de to.

Notons que par hypothèse R*(Sto) G [R*(So), Sto), et donc

St0) [R^So), R*(St0)] u (R*(St0), Sto).

Soit S g /?+ ^^q) donné par le Lemme 9.2, de telle façon que R* soit injective

sur [St0, S] et R*((Sto, S)) (R*(Sto), Sto). Comme R* est injective sur [So, StQ] et

R*([So,StJ) [R*(So),R*(Sto)],onaSto g {So, S) e\R* est injective sur {So, S).
Soit t\ > to assez proche de fo tel que [Sto, Sh ] C V et tel que

/?*(^)), (6)

où Stl g (4o, ^) est le point à distance t\ de So, voir figure 1. Pour to < t < t\ soit

-^ le point dans [Sto,Sh]k distance t de So¬

ll reste à montrer que pour tout to < t < t\ on a R*{St) G [/?+(^o)> %t)- Comme

R*(St) e (R*(St0), St0), les bouts ^P, J" g ä*(^) tels que ^0 -< 5^ et /î+(^0) -<

B<pi respectivement, sont distincts. Alors St < B<p, car sinon R*{St) G {Sto, St] et

on aurait

d{St0,St) > d{St0, R*{St)) > d{St0,

d{St0, R*{St0)) - d{R*{St0), R*{Sh)) > d{St0,Sh),
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où la dernière inégalité découle de (6). Donc St < Brp et comme R*(So) ¦< Bj>' on
(RASo),St).

Figure 1

1.2. Soit to > 0 et supposons que St est déjà défini pour 0 < t < to. On va

définir Sto.

Comme Mp est complet (paragraphe 2.5), il existe un point Sto £ V tel que
[Sq, Sto) \^Jo<t<to^t}- En particulier, Sto est à distance to de So, R* est injective
sur [So, Sto] et par continuité on a R*(Sto) G [R*(So), Sto]. Il reste à montrer que

Supposons par l'absurde^ue R*(Sto) Sto. On a doncJi*(St0) Sto g V C

/Î*(V). Comme [-$o, ^jcT et comme l'application /î+ : V -^ /Î*(V) est propre,
ona/?+(3V)n/?+CV) 0, d'où on conclut que 4^ G V. On obtient une contradiction,
car par hypothèse i?^ n'a aucun point fixe dans V.

2. Comme conséquence de 1.1 et 1.2, on peut définir St G V, pour t >^0,
satisfaisant les propriétés dans 1. Pour t > 0 soit ^ g 4( le bout tel que Sti g 5^
pour t' > f.

Alors pour t < t' la boule 5^( contient 5^(/ strictement. Comme -& est à distance

tù&So, le diamètre de 5^( tend vers zéro lorsque t --* oo. Comme P(CP) est complet,
il existe zo g P(Cp) tel que n(>o5^( {zo}- La propriété /î+(^) g [R*(So), St)
implique que zo est un point fixe de R. La propriété R*(St) G [R*(So), St) implique
aussi que zo est répulsif (cf. Proposition 3.4).

10. Lemme d'Approximation et inséparabilité

Dans ce paragraphe on s'occupe des propriétés générales qui sont indépendantes de la

dynamique. Notamment, on montre que la propriété locale d'insépambilité se traduit
géométriquement en une expansion locale (Lemme 10.3).

10.1. Lemme d'Approximation. Soient R et Q G Cp(z) deux fonctions rationnelles

ayant la même réduction non triviale, c 'est-à-dire que
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et R* et ô* coïncident sur 4can. Alors R* et ô* coïncident sur un voisinage de 4can

dans Mp.

La démonstration de ce lemme s'appui sur le lemme suivant.

Lemme 10.1. Soit R g Cp(z) une fonction rationnelle telle que R*(SCim) ^can et
soit X un affinoïde ouvert tel que -5can < X et R(X) c Cp. Alors pour toute fonction
rationnelle e g <Cp(z) telle qu'il existe ro < 1 satisfaisant e(X) c {\z\ < ro}, les

actions R* et (R + e)* coïncident sur un voisinage de SCim dans Mp.

Preuve. Considérons un point rationnel S G Mp tel que S < X. Alors il existe une
boule B associée à S contenue dans X. Comme R(B) c R(X) c Cp, l'ensemble

R(B) est une boule (Lemme 3.2).
Si S satisfait d(R*(S), SCiin) < logp j-, alors la boule R(B) a un diamètre plus

grand que ro, et comme e(B) c e(X) c {\z\ < ro}, on conclut que (R + e)(B)
R(B) (Lemme 1.1). Par conséquent (R + e)*(S) R*(S).

Comme R* et (R + e)* sont continues (Corollaire 3.6), on conclut qu'elles
coïncident sur l'ensemble

S G Mp | S < X, d(R*(S), Scw) < logp -
lequel est un voisinage de 4Can dans Mp.

Preuve du Lemme d'Approximation. Posons e Q — R g Cp(z). Soit T c 4Can

un ensemble fini tel que pour P g Scw \ T on ait R(Bj>) c Cp et Q(Bj>) c Cp.
Dans ce cas, R{Bj>) BRt(jp) et Q{Bj>) Bq^j>) (Lemme 3.2) et donc R{Bj>)
Qi.Bg>) C {|z| < 1}. Par conséquent e(BrP) (R - Q)(Bj>) C {|z| < 1}.

On suppose d'abord que la fonction rationnelle e n'est pas constante. Comme
l'ensemble T c 4Can est fini, on peut trouver Pq, 3>\ G 4Can \ T tels que e*(^Po) et

e*(^Pi) soient distincts. Donc, e*(4Can) < {\z\ < 1} et par conséquent il existe ro G

(0, l)telque£*GSCan) < {\z\ < r0}; pour tout P g <Sclin\T onae(Bp) c {\z\ < r0}.
Pour chaque P G T soit C<p c B<p une couronne de la forme C<p B<p \ B'<p, où

B'p c B<p est une boule fermée, de telle façon que

Si la fonction rationnelle e est constante, égale à c, alors d'après ce qui précède

on a \c\ < 1. On choisit alors ro G (|c|, 1) et pour P g T on définit les couronnes
Cp comme ci-dessus.

Notons que par construction l'affinoïde ouvert X P(CP) \ u^B'^ satisfait
^can < X, R{X) c Cp et e{X) c {\z\ < ro}. Le lemme découle alors du lemme

précédent.
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10.2. Expansion locale

Proposition 10.2. Soil R g Cp (z) une fonction rationnelle non constante. Alors,

pour un point rationnel S g Wp, on a les propriétés suivantes.

1. R* est inséparable en S si et seulement s'il existe un voisinage y de S dans

Wp tel que degÄ(^0 > p pour tout S' g V. Danser cas on conclut que R* est

inséparable en tout point rationnel contenu dans V.

2. Il existe un voisinage V de S dans Wp tel que pour tout point S g y on a

d(R*(%), R*(S)) > d(S, S). Si R* est inséparable en S, alors on peut choisir

y tel que pour tout point S dans y on ait d(R*(%), /?*(<$)) > p ¦ d(%, S).

Pour montrer cette proposition, notons qu'après changement de coordonnée au

départ et à l'arrivée, on peut supposer /?*(-£) S -5can. Alors la proposition est

une conséquence immédiate du lemme suivant, voir aussi la Proposition 3.5.

Lemme 10.3. Soit R e Cp (z) une fonction rationnelle ayant une réduction non
triviale R g Wp(z). Étant donné un entier n > 0, les propriétés suivantes sont

équivalentes.

1. On a degÄ(4) > pn pour tout point 3 eWp dans un voisinage de 4Can-

2. On a degÄ(^P) > pn pour tout (resp. pour une infinité de) P g 4can.

3. Il existe une fonction rationnelle Q g Wp(z) telle que R(z) Q(zpH).

Dans ce cas, pour tout point S g Mp dans un voisinage de Scm on a

d(R*(<S),<Sam)>pn.d(S,Sam).

Preuve. L'implication 3 =^ 2 est triviale et l'implication 2 =>• 3 découle de la Proposition

4.3, par récurrence sur« > 1. L'implication 1 =>• 2 découle de la Proposition 3.5.

Supposons que la propriété 3 soit vraie et montrons que la propriété 1 est satisfaite.
Soit Q G Cp(z) une fonction rationnelle ayant Q comme réduction et posons

F(z) zp", de telle façon que R et Q o F aient la même réduction. Par le Lemme

d'Approximation, les actions R* et (g o F)* coïncident sur un voisinage de SCAn.

Comme F* satisfait la propriété 1, R* satisfait aussi cette propriété.
Notons que pour tout S G Mp dans un voisinage de SCAn on a d{F^{S), $ca.n) >

pn -d{$, Scan). Si l'on prend la fonction rationnelle Q G Cp(z) ayant le même degré

que Q, alors Q a bonne réduction et par conséquent on a d(Q*(%), 4Can) > d(S, 4Can)

pour tout S G Wp, voir partie 1 de la Proposition 6.4. Le Lemme d'Approximation
implique que (Q o F)+ et R* satisfont la dernière assertion de la proposition.
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11. Incompressiblité et preuve du Lemme Principal

Dans ce paragraphe on termine la démonstration du Lemme Principal ; elle est dans

le paragraphe 11.2. Cette démonstration dépend de la Proposition 11.1, qu'on montre
dans le paragraphe suivant.

11.1. Considérons pour un instant une fonction rationnelle R à coefficients
complexes et soit zo e P(C) un point périodique répulsif de R. Alors pour tout voisinage
V de zo dans P(C) la famille {Rn\v)n>\ n'est pas normale, et un théorème dû à

Montel implique qu'on a

P(C)\£c [JRn(V),
n>\

où E est l'ensemble exceptionnel de R, qui contient au plus deux points ; voir par
exemple [Mi].

La propriété analogue dans Mp n'est pas valable pour tout point périodique
répulsif, voir l'exemple 11.2 ci-dessous. Cependant, dans la proposition suivante on
montre qu'elle est vraie pour les points périodiques inséparables ; ceci est à comparer

avec [R3], paragraphe 5.

Proposition 11.1. Soit R une fonction rationnelle à coefficients dans Cp et soit R*
l'action induite par R sur Mp. Soit 3 eMp un point périodique inséparable de R*.

Alors pour tout voisinage y de S dans Mp on a

\jRnJV)=
n>\

Cette proposition est une conséquence simple du lemme suivant.
Étant donné un point S G Mp et r > 0 on pose

B(S,r) {S' eHp | d(S,S') <r}.

Lemme d'Incompressibilité. Soit R G Cp(z) une fonction rationnelle et soit S G

Mp. Alors pour tout r > 0 on a

Si de plus S g Mp est un point rationnel et R* est inséparable en S, alors il existe

ro > 0 tel que pour tout r > 0,

S), r + (p-\)- min{r, r0}) C R*(B(<8, r)).
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Preuve. 1. Soit S' G Mp \ R*(B(S, r)). Par le Lemme 9.2, il existe S G R~l(S')
tel que /?*((<$, S)) (R*(-8), S') et tel que R* est injective sur (S, S). De plus, on a

d(R*(<S),<S')_>d(<S,S).
Commet G R~l {$') n'appartient pas à B {S, r), on a d(R* {$), S') > d{$,$) > r.
2. Si R* est inséparable en S, alors il existe ro > 0 tel que degÄ(4) > p > 1 pour

tout 4 g Hp à distance au plus ro de S (partie 1 de la Proposition 10.2).

Donc, si S g Mp est comme dans la partie 1, on a

d{R*{$), $') > d{$, $) + {;p-Y)- min{r, r0}

(cf.Corollaire3.7),etparconséquent5(i?!l!(4), r+(p-l)min{r, r0}) C R*{B{$, r)).
D

Preuve de la Proposition 11.1. Soit r > 0 tel que 5(4, r) c V et soit ro > 0 donné

par le lemme précédent. On montre aisément par récurrence sur n que

B(S, r + n(p- 1) min{r, r0}) C R"(B(<S, r)).

Exemple 11.2. Soit c g Cp tel que \c\ 1 et considérons la fonction rationnelle

^(z) \ + c' ou l'entier <i > 2 n'est pas divisible par p. Elle a bonne réduction

R(z) ±i + c g Fp(z) satisfaisant, Ä(0) co, Ä(oo) c et deg^(f) 1 pour

f gFp-{0}.
Il est facile de voir que, pour tout point S g Mp tel que 4 -< {\z\ 1) ona

d{R^{S), 4Can) d{$, ^can)- Par_conséquent si c e Cp vérifie Rn{c) ^ 0 pour tout
n > 1, alors pour tout voisinage V borné de 4can dans Hp, l'ensemble

est borné. Par exemple, on peut choisir c g Cp tel que R(c) soit fixé par R.

11.2. Démonstration du Lemme Principal. Soit S G H^ un point périodique
inséparable de R* qui n'est pas exceptionnel. Quitte à remplacer R par un itéré on

suppose que S est fixé par R*.
1. Soit r > 0 suffisamment petit tel que R* soit inséparable en tout point

rationnel contenu dans la boule Vo B{S,r) et tel que pour tout S dans Vo on ait

d{R*{$), S) > p ¦ di-S, S) (partie 2 de la Proposition K).2).
Pour k > 1 soit V* la composante connexe de i?~^(Vo) qui contient S. Notons que

pour chaque k > 0 l'ouvert V^+i est égal à la composante connexe de i?"1 (V/t) qui
contient S. Montrons par récurrence que pour toutfc > 0onaV,t C B{$, p~kr). Cette

propriété est satisfaite pour k 0 par définition. Supposons que l'entier k > 0 est tel
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que Vt C B{S, p~kr). On a alors Vk c Vo et pour tout 4 G Vk on a d{R*{$), 4) >

p ¦ d{$, 4). Comme Vk c 5(4, p~kr)oi Vjt+i est égal à la composante connexe de

R* lCVk) qui contient 4, on a Vt+i c 5(4, /?~*+1)r).
Notons en particulier que la fermeture topologique de Vi est contenue dans Vo

et que diam(Vt) -> 0 lorsque k -> oo.
2. On montrera que pour chaque entier £ > 1 l'ouvert Vk contient un point

périodique inséparable de R* différent de 4. Ceci implique que R* a une infinité de

points périodiques inséparables. Fixons alors un entier k > 1.

Comme 4 n'est pas exceptionnel, il existe un antécédent 4' g Mp de 4 par i?*,
différent de 4. Par la Proposition 11.1, on a |Jn>1 i?"(V^) Mp. Il existe donc un

point 4o G Vt et un entier n > 0 tels que i?"(4o) 4'. Comme diam(Vm) —>¦ 0

lorsque m -^- oo, la partie 2 de la Proposition 10.2 implique qu'il existe un entier

m > 0 tel que la composante connexe W de R* (Vm) qui contient 4o est contenue
dans Vk \ {4} ; voir Figure 2.

\

/^\ V

\ \ * A
\ \ ^^\ -^--^^

Figure 2

3. D'après la remarque qui suit l'énoncé du Lemme 9.1, les applications ^
W -+ Vm et R™ : Vm^-^ Vo sontjjropres. L'application JR™+"+1 ^ -> Vo est

donc jjropre. Comme^TV c V^ c Vi, la fermeture topologique de W est contenue
dans Vo et l'ouvert W contient un point périodique rationnel de R* (Corollaire 9.4).
Ce point périodique est inséparable, car R* est inséparable en chaque point rationnel
contenu dans Vk c Vo. De plus il est différent de S, car W c Vk \ {S}. D
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12. Appendice. Sur le nombre d'antécédents d'un point dans Mp

Le but de ce paragraphe est de montrer la proposition suivante.

Proposition. Soit R g Cp(z) une fonction rationnelle non constante. Alors pour tout
point 3 e Wp l'ensemble R^iS) c Mp des antécédents de S par R* est fini, non
vide et on a

J2 degÄ(4') deg(R).

Ceci à été montré dans [RI] (Lemme 2.5) pour les points rationnels de Mp. Ce

résultat découle, dans le langage de Berkovich, du fait que R* est fini de degré deg(R)
et étale au-dessus de Mp ; ce fait lui même est conséquence dur caractère fini, plat et

génériquement étale de l'endomorphisme de la variété algébrique Pj-, induit par R.

Je remercie le rapporteur pour cette dernière remarque.
Fixons une fonction rationnelle R G Cp(z). On considère d'abord le lemme

suivant.

Lemme 12.1. Chaque point 3 eWp a au plus un nombre fini d'antécédents par R*.

Preuve. Soient S\,... ,Sk des antécédents distincts de S par R* ; on montrera que
k < deg(R). Choisissons un bout 3> G S et pour 1 < i < k soit 3>\ G Si un
bout tel que R*(JPï) P. De plus soient {C/}/>o et {Q,/}/>o chaînes évanescentes

représentant 3> et <f, respectivement.
Soit N >0 assez grand tel que les C-un soient disjoints deux à deux et soit M > 0

tel que CM C R(Ci)N) pour 1 < i < k. Fixons w g Cm. Alors chaque Ci)N contient
au moins un antécédent de w et par conséquent k < #R-1 (vu) < deg(R).

Preuve de la Proposition. 1. Supposons d'abord que le point S g Mp ne soit pas

singulier. Après changement de coordonnée on suppose S G (0, oo) c Mp. Pour

r > 0 on désigne par Sr G (0, oo) le point de Mp associé à la boule {\z\ < r}.
1.1. Soit X c P(Cp) l'ensemble des zéros et des pôles de R et soit X cJRP

l'enveloppe convexe de X. Comme X a au moins deux éléments, l'ensemble X est

non vide.

Soit S' g Mp un point tel que /?*(-£') g (0, oo). Alors il existe des bouts ^0,^00 e

4' tel que 0 g Br^j>q) et 00 g Br^p^. Par le Lemme 3.2, les boules Bj>0 et 5^
intersectent X. Le point 4' appartient donc à X et par conséquent R^1 ((0, 00)) C X.

1.2. Considérons la fonction
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Elle prend la valeur deg(R) pour r > 0 petit (cf. Proposition 3.4 et (3)) ; il suffit alors

de montrer qu'elle est localement constante.
Fixons ro > 0 et soit Po G Sro le bout tel que 0 G B<p0. Pour chaque S' G

K1^) et chaque P' g S' tel que R*(P') Po, soit S(P') g Mp un point
donné par la Proposition 3.5, de telle façon que R* soit injective sur (S'', S(P')] et

tel qu'on ait do.gR{S) degR(P') pour S g {S'', S(P')]. On peut supposer que

R*([S', 4(^0]) C (0, cx>) et que S(P') G X. On a donc [4', 4(^')] C X.
Soit r g (0, ro) proche de ro. Alors chacun des segments {S'', S(P')] contient

exactement un antécédent de Sr par R*.
Considérons d'autre part S g R~l{Sr); par la gartie 1.1 on a S g X. Alors il

existe S' g R^l(Sro) à distance au plus ro — r de S (Lemme 9.2). Si l'on désigne

par J" le bout dans S' tel que S < Bj>i, alors on a S g (4;, S(3^)], lorsque r est

suffisamment proche de ro, voir Lemme 2.9. En particulier, degÄ(4) AegR(JP').
On a alors,

Lorsque ro G |C* | chaque point 4' G i?"1^,,) est rationnel et la Proposition 3.3

implique qu'on a

Lorsque ro ^ |C* | chaque point S' est irrationnel et contient un unique bout P' tel

que R*{JP') Pc,. De plus degÄ(^P0 degÄ(4') et donc l'égalité précédente est

aussi valable dans ce cas. Dans tous les cas on a donc

Le cas r > ro proche de ro est analogue.
2. Supposons maintenant S {P} G Mp singulier. Pour tout i compris entre 1

et k notons S; {Pj} G Mp les antécédents de S par R*. Pour chaque 1 < i < k

soit Si g Mp donné par la Proposition 3.5, de telle façon que R* soit injective sur

[Si, Si], R*{[Sî, Sf]) [R*(Si), R*(Si)] et tel que pour tout S g {Si,S\\ on ait
degÄ(3) degÄ(^) degR(Sj).

Quitte à prendre les points Si plus proches des Si, on suppose que les segments

[Si, Si] sont deux à deux disjoints et que S R*(S~i) est un point non singulier qui
ne dépend pas de 1 < i < k.

2.1. Supposons par l'absurde qu'il existe un antécédent S de S distinct des Si.

Notons alors que pour chaque 1 < i < k le point S n'appartient à [Si, Sj]. Le
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Lemme 9.2 implique qu'il existe 1 < i < k tel que R* soit injective sur [Si, S].

Notons alors que Si n'appartient pas à [Si, S]. De plus, le point Si n'est pas entre S

et Si car il est singulier. Le Lemme 2.8 implique alors qu'il existe un point rationnel
S' qui est entre Si et Si, entre Si Si et S et entre S et Si.

Soient P', P e S' les bouts tels que Si < B^ et S < Bp. Comme pour

tout point S dans {Si, Si) on a àç.gR{S) degR{Si) degR(S'), on conclut que

degÄ(J>) degR(Sr) (cf. Proposition 3.5). On a donc R*(P) £ R^p) (cf. partie

3 de la Proposition 3.3). Comme R* est injective sur [Si, Si] (resp. [Si, S}) on

a S R*(S~i) < BRtiß) (resP- S R*(£) < BRixp))- Comme les bouts R*(P)
et R*(tP) sont distincts et appartiennent au même point, les boules correspondantes
sont disjointes et on obtient une contradiction.

2.2. Par la partie 1 on a

degR(S")=deg(R). a
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