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On the cohomology of generalized triangle groups

Graham Ellis and Gerald Williams*

Abstract. We describe a general approach to constructing small free ZI'-resolutions for certain
infinite isometry groups I". We apply the method to a class of generalized triangle groups and
use the resolution to compute the integral homology of these groups. In illustrating the method
we also obtain resolutions for the classical triangle groups and for their infinite cyclic central
extensions, considered previously by Strebel.

Mathematics Subject Classification (2000). 20J06, 30F40, 57M60.
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1. Introduction

It was explained in [4] how, for an arbitrary finite group H, one can construct a small
free ZH -resolution of Z by first choosing a faithful linear representation «: H —
GL(R") and then considering the cellular chain complex of the convex hull of the
orbit of a suitable point v € R”. Our present aim is to show that the method can also
be applied to infinite groups I" for which one has an appropriate representation as a
group of isometries of some suitable space X. For such groups our first approximation
to a free resolution is the cellular chain complex of X corresponding to a tessellation
arising from the action of I'.

As an application, we calculate resolutions for most of the groups defined by the
following presentation:

G, m,n) = (x,y|x' = y" =[x, )" = 1), ey
where [x, y] = xyx~!ly~! and, as throughout this paper, [, m, n denote integers
with |I|, |m|, |n| > 2. The groups G(l, m, n) have a long history, dating back to
Coxeter and Sinkov [3], [18]. More recently they have been of interest in the con-
text of generalized triangle groups [5], [9], [10], [14], [16]. (A generalized triangle

*This work was carried out when the second author was working at NUT Galway, supported by Marie Curie
fellowship HPMD-CT-2001-00079.
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group is a group that can be presented in the form (x, y | =y =wx, )t =1),
where w(x, y) is an element of the free product { x, y | xl = y™ =1).) Generalized
triangle groups have been studied for a variety of algebraic, geometric and topolog-
ical reasons [1], [5], [6], [9], [10], [13], [15], [20]; Euler characteristics have been
calculated [7], [23], but the cohomology of generalized triangle groups has not yet
been considered. Our results can therefore be regarded as a first step towards such
investigations.

This paper is structured as follows. In Section 2 we describe the method we use to
obtain the resolutions. In Section 5 we use the method to provide a free ZG-resolution
for the generalized triangle group G = G(I, m, n) (with some restrictions on/, m, n),
from which we calculate the integral homology. In the construction of this resolution
we will require resolutions for the classical triangle groups

Td,m,n)={(ab|ld =b" =@hH"=1). )

For this reason, in Section 3 we use the triangle groups to illustrate our method
and to provide the necessary resolutions. As a slight digression, in Section 4 we
also construct a resolution for the following cyclic central extensions of the classical
triangle groups, whenever these are infinite:

S, m,n) = {a,b|a =b™ = (@b~ H"). (3)

A different resolution for these extensions has previously been derived by Strebel [19]
using alternative methods.

2. General method
Let Y denote either euclidean space E™ or hyperbolic space H", and let I" be a group
with a representation as isometries of Y. We shall make the following assumptions:

(1) Y can be embedded into some contractible CW-space X such that the action of
I" on Y extends to a cellular action on X.

(2) For the stabilizer group I', of each cell e of X we have some free ZI",-resolution
R}:e: e —> Rge — R{e — Rge
of the integers.

The CW-space X can often be constructed as follows. Suppose v € Y is a vector
such that the orbit vT' = {gv | ¢ € I'}is adiscrete subset of Y. The Dirichlet—Voronoi
region centred at v is the set

Dr(v)={x e ¥ ||x—v|l <|lx —gv| foralll #£¢ eI}
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This region is a convex polyhedron which tessellates ¥ under the action of I'. If
the region is bounded and an intersection of only finitely many half planes then the
tessellation induces a CW-structurcon ¥ and weset X = Y. Iftheregionis unbounded
but still an intersection of only finitely many half planes, then the tessellation induces
a CW-structure on a contractible space X formed by suitably adjoining a discrete set
of points to Y.

The cellular chain complex C,. (X)) is our first approximation to a free ZI"-resolution
of Z. The action of I" on X induces an action of I on C,(X). Since X is contractible
the chain complex C..(X) is certainly a ZI"-resolution of Z, but in general it is not free.
However, by adapting a technique of Wall [21], the resolutions R can be combined
with C(X) to obtain a free ZI"-resolution of the integers, as we now describe.

Let [e] denote the orbit of a cell e in X under the action of I', and let Orb(k)
denote the orbits of the k-cells. The module C,(X) is a direct sum of ZI"-modules

Cp(X) = @ (ZT ®zr, Z).

[e]€Orb(p)
By defining
Fro:= D (2 @, RyY)
[e]€Orb(p)
we obtain a free ZI"-resolution
Fpo: o —>Fpyg— —>Fps—F,1 —> Fppo

of the module C,(X).

The boundary maps in C,(X) induce chain maps 8" : F, , — F,_1 4 in the sys-
tem F, , of free ZI'-modules depicted in Figure 1. By construction, the ‘vertical’ maps
v: Fpy — Fp 41 satisfy 0¥0Y = 0; however F, , is not in general a bicomplex
because the ‘horizontal’ maps 8" do not necessarily square to zero. Nevertheless, we
can construct a free ZI'-chain complex R with R} = P p+q=n Fp.q and differential
d given by d|p,, = 3" + (=1)P8" + ¢, where e: Rl — R,lz_l is a ‘perturbation’.
The perturbation is an infinite sum of module homomorphisms ¢ = & 4+ &3 + - --
where ex: Fy v — Fip ++k—1. (The maps 2 and &3 are indicated in Figure 1 by
dotted and dashed arrows, respectively.) On any given summand I, , only finitely
many terms & are non-zero. The existence of such a perturbation follows from an
easy generalization of a theorem of Wall [21] (see also [4]), but for our examples we
show its existence by defining the map explicitly. The filtration on R. arising from
the filtration by columns of F, , yields a spectral sequence with E;v g = Hy(Fp ).
This spectral sequence implies, as in [21], that R} is a resolution of Z. We shall refer
to the free ZI'-resolution R}; as the total complex of the system F, .. We shall use
the notation £ to denote free generators of a summand F ;.
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Figure 1. System F, , of free ZI"-modules.

3. Triangle groups

We illustrate the method on the infinite triangle groups T = T'(I, m, n). Let Y denote
the hyperbolic plane HZif 1/|l|+1/|m| +1/|n| is less than 1, or the euclidean plane
E2if 1/)l| + 1/|m| + 1/|n| is equal to 1. We define an action of 7 on Y as follows.
Let vy, vy be distinct points in ¥, and let the generator a of T" act as clockwise rotation
about vq through an angle 277/|/|, and let b act as clockwise rotation about vy through
an angle 277 /|m|. It follows that (ab—1) acts as anticlockwise rotation about some
point v3 € Y by an angle 2 /|n|. Let A denote the triangle with vertices vy, v2, v3
and let o denote reflection in the side viv. Then the region

D:=AUo(D)

is a fundamental region for T'. (In fact it is a Dirichlet—Voronoi region.)

Since D is a finite polyhedron (a quadrilateral) the tessellation of ¥ by D under
the action of T yields a CW-structure, and so we set X = Y. The cellular action of
T on X is summarized in Table 1. In this table the O-cells e(l), e(z), eg are the points

v1, v2, v3; the boundary of a j-dimensional cell eij is an element of the (not necessarily
free) ZT-module C;_1(X). (We use the notation K8 = ¢ 'Kg.) The cellular chain
complex C,(X) is 2-dimensional and of the form

0— ZT —> ZT @ ZT —> (ZT Z%Z) o (ZT 8 Z) ® (ZT Z(%l)Z).
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Table 1. Cellular action of T'(I, m, n).

Cell Boundary Stabilizer group
&2 9e? det =(1—a Vel +(1-b7hel | 1

e% Be% 8e% = —e(l) + eg 1

a_le% a_lae% 1

e% 8@% 86% = 6(2) — eg 1

blel | b1de] 1

g | — (a)

8 | — (b)

& — (ab™1)

a_leg — (ab—1)a

The stabilizer groups of the O-cells are the cyclic groups (a), (b), (ab™1), so we
can use the free resolutions

-1 i -1 i 3
RP. . E2 gy gy 22 my L ma,
mlpi _ m—1pi .
RY., . Z0 gy L gy T g L g,
_ 11 p—1yi 1
R, L @ -ty L

ﬂ:l b*]i -
0@ b=y L gty

of the integers to obtain the free resolution

Fou: - — (2T % @ 2 @) 2 21

of Co(X), where «, @ are given in Table 2. The stabilizers of the cells e}, e%, e? are

all trivial so we immediately have the free resolutions

Fiu: 0— (ZT)%,
Fou: 0 — (ZT),
of C1(X) and C2(X) respectively. We thus obtain the system of free Z T -modules in

Figure 2, where the vertical maps «, «, the induced horizontal maps 82, 81, and the
perturbation map & are given in Table 2. The total complex of this system is then the
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Table 2. Boundary maps for system of free ZT -modules.

Summand Boundary map
Fao (2% =@!'-DA+ET-DA
§U20 = ‘1f01—b Ut —att
Fip sy ==
510/, =—f20’°+f30’0
Foq () = (a0
@z |aR) = (T lb’) o
a0 = (X5 1<ab W
Fo2q+1 a(fP = (@ -
(g =0) a(fy2 = 0 - 1)1
a(fy )= @b — ) S
following free ZT -resolution of the integerS'
2 @ZT? 5 zZT S 2 S zr)?

4
@ % @nt L ary A @)

where dy, dp are given by
di =a+6,

dy=a+686+E&.

The resolution can be used to make calculations. For instance, in dimensions
k > 3 we have the known result that

for any ZT -module A. Also H)(T,Z) = Z

Free resolutions for finite triangle groups 7' can be obtained using the methods
of [4]. In Section 5 we will require free resolutions of the integers for the group
T (3,3, 2) (isomorphic to T (3, 2, 3) and the alternating group A4) and for the group
T(2,2, n) (isomorphic to the dihedral group of order |2n|, Dp2,). We sketch the
derivation of a resolution for 7' = T'(3, 2, 3).

Suppose : T — Ay is an isomorphism. Assume that g € T acts on a vector
o = (a1, ap, a3, og) € R* by

g - & = (Uy(g-1)(1) Uy (=12 Ly (= 1)(3)» Dyr(g=1)(4))-
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i

@T)?

|

@T)?

7

0 0 —= (ZT)°

(ZT) = (ZT)? (ZT)?

82 31

Figure 2. System of free ZT-modules.

Figure 3. Polytope P.

Under this action the orbit of the vector v = (1, 2, 3, 1) is a collection of 12 vectors
whose convex hull is the 3-dimensional polytope P pictured in Figure 3. Here the
triangular faces have boundary label 2 and the hexagonal faces have boundary label
(ab=1)3. The triangles have stabilizer group (a |a> ), the hexagons have stabilizer
group ( (ab~1) | (ab~1)3), the edges labelled a have trivial stabilizer group, and the
edges labelled b have stabilizer group (b |b? ).

The action of 7 on R* induces a cellular action of 7 on P. The cellular chain
complex C,(P) can be regarded as a 3-dimensional chain complex of ZT -modules.
Now P is contractible so H(P,Z) = 0 for k > 1 and Hyo(P,Z) = 7Z. Since
C3(P) = Z we can splice together copies of C,(P) to form a ZG-resolution of the
integers

CL(P): -+ —> C1(P) —> Co(P) —> C3(P) —> C1(P)
— Co(P) —> Co(P) —> C1(P) —> Co(P).
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As Z T -modules we have
Co(P) = (ZT),

Ci(P) = (ZT T Z),
(P =(zT) @ ( ) )
CP) = (2T © Z)e(ZI _© Z).
Z{a) Ziab™1)
Using Wall’s perturbation technique to combine standard free resolutions for the
cyclic groups (a|a®), (b|b*), ((ab™1)| (ab~1)3) with the (non-free) resolution
C.(P) we obtain a free ZT -resolution of the integers

R,: -+-—>Rs—>R;—>Ry—> Ry —> R)— R — Ry (5)

where for p > 0, R, = (ZT)P*!.

The same method can be applied in the case T = D). If the standard action of
Dy on R? is used, then the resolution obtained is again of the form (5) where for
p>0,R, = (ZT)PH1,

4. Central extensions of triangle groups

We now turn our attention to the groups S = S(/, m, n) defined in (3). The el-
ement (ab=1)" of S(I,m,n) is a power of each generator, so is central. Since
S, m,n)/{((ab="") = T(I,m, n) we have that the groups S(I, m, n) are cyclic
central extensions of the triangle groups 7' (I, m, n).

The group T (I, m, n) is infinite if and only if 1/|/| + 1/|m| 4 1/|n| < 1. Since
S(l, m, n) maps homomorphically onto T (I, m, n), if 1/|l| +1/|m|+1/|n| < 1 then
S(l, m, n) is infinite. For the converse, suppose that 1/|/| + 1/|m| + 1/|n| > 1,
ie. {|I], |m], n|} = {3,3,2},{3,4,2},{3,5,2} or {2,2, g9} where g > 2. In the
first three cases, calculations in GAP [8] show that S(I, m, n) is finite. In the case
{ll, |ml, |n|} = {2,2, q}, the group S(/, m, n) is isomorphic to one of S(q, 2, 2),
S(qg, —2,2), S(2, —q, 2), S(=2, —q,2). It is easy to show that the abelianizations
of these groups are finite of orders 4, 4(¢ — 1), 4, 4(g + 1), respectively. The central
extension ((ab~H") <« S, m,n) — T(l, m, n) yields the exact sequence

Hy(S,Z) — Hy(T,Z) —> {(ab~))") — s — T2 _ (. (6)

Since T is finite so is Ho(T', Z), and (6) then shows that ((ab~1)"), and hence S, is
finite. Thus we have shown that S(/, m, n) is infinite if and only if 1/|I| 4+ 1/|m| +
1/|n| < 1. For a more detailed analysis of the finite groups S(I, m, n) see [19].

We will calculate a free ZS-resolution of the integers whenever S is infinite. A
different resolution was obtained in [19] using alternative methods. We will require
the following technical result.
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Lemma 1. If S = S(I, m, n) is infinite then the subgroup ((@b=1") is infinite.

Proof. If 1/1 —1/m = 1/n then there exists a representation S(/, m, n) — Z given
by a — mn, b +— In. Under this map the element (ab=1" of S(I, m, n) maps to
Imn € Z. This is of infinite order, so the subgroup {(ab=1y™) of S(I, m, n) is infinite,
as required. Assume then that 1/] —1/m # 1/n.

Let Ry = (ab~Y)"a~!, Ry = (ab=1)"b~". As explained in [2], [17] the presen-
tation S(/, m,n) = (a, b| Ry, Ry ) yields a resolution

> Cq —> C3 —> (ZS)? 25 (82 —> (ZS)
of the integers. The map &7 is given by

8y — —é5,

9. el = aa @1 ab 62
oR R

2 21 2 2

e Goat g

where d/da, d/db denote Fox derivatives with respect to a and b, and where e%, e%
are the free generators of Cz, and e%, e% are the free generators of Cy. Tensoring with
Z over ZS yields a chain complex

5 Q757
—=

s QT — C3 QL —> 72 75 E
7S 75

The required Fox derivatives are given by

3Ry /da = sign(n)(ab~HP=I/2(1 4 (@b~ 4+ .- 4 (@b~ HIMT
—sign(l)(ab™ )" a= 21 p a4 44l
dR1/8b = sign(n) (@b~ H" 21 4 (@b + - + (@b~ HIMy(—ab™ T,
Ry /da = sign(n)(ab™ )" V21 4 (ab™h) 4 - 4 (ab™HIMY),
IRy /3b = sign(n) (ab~HD2(1 4 (ab™Vy + - 4 (@b~ HMy (—ab ™)
_ Sign(m)(ab_l)”b_(m‘l'lm')/z(l b4t blﬂll—l)’
so the map &2 ®zs Z is given by
82 ®usL: & > (n—I)el —ne3,
& ®zs 7 E% > nE% —(n+ m)E%.
Since 1/1 — 1/m # 1/n this is an injective map, and H»(S,7Z) = 0. The five
term exact sequence (6) now implies that H>(T, Z) injects into ((ab~1)"). Using the

resolution obtained in Section 3 we have that H>(T,Z) = Z and thus ((ab—1)") is
infinite. H



580 G. Ellis and G. Williams CMH

Theorem 2. Let S = S(I, m, n) where 1/|l| + 1/|m| + 1/|n| < 1. Then there is a
[free 3-dimensional Z.S-resolution of the integers

0 —> (ZS) — (ZS)* —> (ZS)’ — (Z.S)*
obtained as the total complex of the system of free ZS-modules in Figure 4.

Proof. An action of S on the euclidean or hyperbolic plane Y can be defined in the
same way as the action of 7" on Y was defined in Section 3. As before, this yields
a CW-structure so we set X = Y. The cellular action of S on X is the same as the
action of 7 on X (summarized in Table 1), except that the stabilizer group of 2-cell
¢* is the group (a'), and the stabilizer groups of the 1-cells e%, e% are the groups
@y, (p™, respectively. (Note that since the 2 and 3-dimensional cells have non-
trivial stabilizers the action of S is not faithful.) The cellular chain complex C,(X)
is 2-dimensional of the form

0— (zs 2 z) — (zs S z)@(zs -5 z) — (zs 2 z) e (zs 2 z) @ (zs 2 z).

By Lemma 1 each of the stabilizer groups S, is isomorphic to the infinite cyclic group,
so for each cell ¢ € C,.(X) we can use resolutions Rf"’ of the form

Ri: 0 —> ZS, —> ZSe..
We then have the free resolutions

Fou: 0— (Z5)® 5 (28)3,
Fie: 0— Z8? 2 @92,
Frv: 00— (ZS) L5 (ZS),

of Co(X), C1(X), C2(X) respectively, where «, B, y are given in Table 3. We thus
obtain the system of free ZS-modules in Figure 4, where the vertical maps «, B, v,
the induced horizontal maps 81, 31, 82, and the pertubation map & are given in Table 3.
(Note that the maps are defined in such a way that the squares in this system anti-

-3y 81

Figure 4. System of free ZS-modules.
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Table 3. Boundary maps for system of free ZS-modules.

Summand Boundary map

Py 52 = (@ =D+ B =1 fy
(@=0.1)

2% y(f = (@ - 1) f°

Fap ST =a P =1 a1 )t
Fi; BUY =@ -0

By =" =1 fy°
B = —(ZiToa) A + (XS @) £
S = (05 B) A = (S @) s

1,0 0,0 0,0

Fio A =0—f
0 0,0 0,0

==+ 1

Foi alf?h =@-1°

a(fyh) = (b= f"
a(fy") = @b~ = f3"°

commute.) The total complex of this system is then the following free ZS-resolution
of the integers:

0 —> (ZS) 55 25)® -2 2.5 U5 z8)

where di, dp, d3 are given by

Ay =a+8,
=81 +B+8+E,
dz = =86+ . O

This resolution can be used to make calculations such as the following. If A is
any ZS-module then Hy (S, A) = 0whenk > 4. Also H3(S,Z) = Z; H»(S,Z) = Z
if 1/l —1/m = 1/n and Hy(S, Z) = 0 otherwise.
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5. Generalized triangle groups

We now consider the groups G = G(I, m, n). If {|I, |m|} = {2,2} then G = Dyyp;
if {71, Im[}, |nl) = ({2,3},2) then G = Ay x Zp; if ({|I], |m]}, [n]) = ({3,3},2)
then G is finite of order 288; if ({|I|, [m|}, [n]) = ({2,4},2) or ({2, 3},3) then G
is infinite and soluble [14]. In all other cases there exists a faithful action of G on
hyperbolic 3-space H> [9], [10]. The Euler characteristics of generalized triangle
groups admitting such an action were calculated in [23] and we have

min{0, 2/|1] + 1/|n| — 1} + min{0, 2/|m| 4+ 1/|n| — 1}
5 .

The orbifold corresponding to the faithful representation of G is non-compact in
every case, and it has finite volume precisely in the cases ({3, 3}, 3), ({3,4},2),
({4, 4}, 2). In these cases G has a faithful representation as an arithmetic Kleinian
group; the ({4,4},2) and ({3,4},2) groups are commensurable with the Picard
group PSL(2, @1) and the ({3, 3}, 3) group is commensurable with the Bianchi group
PSL(2, ©3) (where @, denotes the ring of integers in Q(v/—d)) [10].

We apply our method to obtain free ZG-resolutions of the integers in all cases
where there is a faithful action on H>.

x(G) =

Theorem 3. Let G = G (I, m, n) where 2/|l| + 1/|n| < 1 and 2/|m| + 1/|n| < 1.
Then there is a free ZG-resolution of the integers

e —5 (BEY —s (BEY —s CBEP
— ZGHY — ZHB — ZHP — (ZG6)°

obtained as the total complex of the system of free ZG-modules in Figure 5.

Proof. Let Y denote hyperbolic 3-space H 3. Ttwas shown in [9], [10] that there exists
a faithful action of G on Y, which we now describe. There exist skew axes L1, L in
Y such that x acts as rotation through an angle 25 /I about L1 and y acts as rotation
through an angle 27 /m about L. The triangle subgroups (x, yxy~ 1), (x, yxy~1)Y
of G (isomorphic to T'(/,/, n)) act on Y with ‘fixed points’ vy, y‘lvl, respectively.
Using the language of [20], v1, y‘1 v1 are ordinary points in [/ 3 infinite points on the
boundary d H3, or ideal points outside H> depending on whether the value of 2/|/| +
1/|n| — 1 is positive, zero, or negative, respectively. Similarly the triangle subgroups
(v, xyx~1), (v, xyx~1)* of G (isomorphic to T (m, m, n))act on ¥ with fixed points
v2, x~ vy respectively. These points are ordinary, infinite, or ideal depending on the
value of 2/|m| 4 1/|n| — 1. The four points vy, y~'v1, vz, x~1v, form a ‘tetrahedron’
in Y; this tetrahedron is a fundamental domain for G.

Under the hypotheses of the theorem vy, vy are actually either infinite or ideal
points. We form the contractible space X by adjoining O-cells to Y in one to one
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correspondence with points in the orbits of vy, vp. The tessellation of ¥ under the
action of G induces a CW-structure on X. The cellular action of G on X is summarized
in Table 4. In this table the O-cells e(l), 6(2) correspond to the points vy, vp; the boundary

Table 4. Cellular action of G(I, m, n).

Cell Boundary Stabilizer group
e 9e3 93 = (1 — x_l)e% + (11— y_l)e% 1

e% Be% Be% = e% 4y b l)e% 1

x_le% x_ISe% 1

e% ae% ae% = e% + (1 — x_l)e% 1

y_le% y_laeg 1

el del deb = (1 —y~Hef (x)

e% aeé ae% =(1- x_l)eg {y)

e% Be% 86% = e(l) — e(z) {[x, y])
yled y1oel ([x, y1)?
xlyTley | xlyT1ae) ([x, y1)*
gLl x_IBe% {[x, yI)*

&) — (x, yxy™h)
yle — (x, yxy~ 1)
& — (v, xyx~t)
x_leg — {rpmpe 1P

of a j-dimensional cell eij is an element of the (not necessarily free) ZG-module
C;_1(X). The (3-dimensional) cellular chain complex C(X) is of the form

00— G3(X) — C2(X) — C1(X) — Co(X)

where

C3(X) = (ZG),
C2(X) = (ZG)?,

ZQ&)Z)@(ZG ® Z)@(ZG ® Z),

Ci1(X) = (ZG

Co(X) = (ZG

Z{y) Z{[x.y])

® Z)EB(ZG ® Z).
Zx,yxy~1) Z{y,xyx~1)
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The stabilizer groups of the O-cells are triangle groups, so we can use free resolu-
tions of the form given in Section 3 to obtain the free resolution

Fox: =5 (ZG)® % (ZG)®
2 2zZ6)¢ S 26 L zZ6)° L z6)s

of Cy(X), where «, @, o, v, u are given in Table 5 (see p. 586). The stabilizer groups
of the 1-cells are the cyclic groups (x), (¥), ([x, y¥]), so we can use the free resolutions

1-1 i B -1 i o
R T gy 22 iy =2 gy 2L g
m—1 _j mfl i _
O 22 gy 2 gy 22 g 2 g,
. pyaeR)] [v,y1-1
RIFD, T 2, y]) 225 Z([x, y])

A ERI [x
—_—

Z(lx, 1) B2 2, ),

to obtain the free resolution

Fle: 2 @ep 2> @ 2 @ep 2> ey

of C1(X), where B, B are given in Table 5. The stabilizers of the cells ¢Z, ¢3, &>

all trivial so we immediately have the free resolutions

are

By 00— (ZG)?,
F34: 0— (ZG),

of C2(X) and C3(X) respectively.

We thus obtain the system of free ZG-modules depicted in Figure 5, where the
vertical maps u, v, o, o, @, B, B, the induced horizontal maps 81, 81, 81,82, 83, and
the perturbation maps ¢, 6, p are given in Table 5. (Note that the maps are defined in
such a way that the squares in this system anti-commute.) The total complex of this
system is then the following free ZG-resolution of the integers:

<ZG>9 <ZG>9 4 <ZG>9 <ZG>9
L @O B @6y B @6y L z6)
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B o
5
(2G) —————= (ZG)®
B /f/’ v

Figure 5. System of free ZG-modules.

where d1, dz, d3, d4, ds are given by
dy = p+ 6y,
d=v—38i+B+d+d,
da=0+8+B+p+0+35,
dy=a -6 +8,
ds =+ 8 + 8. O

Corollary 4. Let G = G(I, m, n) where 2/|l| + 1/|n| < 1 and 2/\m| + 1/|n| < 1.
Then

z k=0
71 & Ty k=1
H(G,Z) = | Z k=2

21 DLy ®Zy k>3, kodd
0 k >4, keven.
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Table 5. Boundary maps for system of free ZG-modules.

CMH

Summand | Boundary map
Fso 85329 = 1 =D+ 7 =P
0(f30) = —x 1 =yt 4y Tl g
p(f30) =y L P2 4 a1 2
Fa0 ST =+ -yt
57 ==£C+a =10
ST = = =y 1+ A=y D =y
o(fy") =1 —x P = a1t — O !
Figgrn | BUT T =@ -
@=0) |BHLH=p-1p"
AU = eyl - D™
Fiag | BUTH) = Sinpat 7T
(gz1) | B =X Y i
B =Ygyl
Fiq A ==y
(@ #1,2) | 81D =—f " +x714"
1) = —f +
Fiz SR = =Ry s
S =1
17 = A A
Fia D ==y Y

WD =S gy
By = — O 4 %
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Foogr1 | a(f7 ) = e =%
@22 | a(fy? ) = ay =1
a(fy2 ) = (e, y] = D
a(fP) = (-1
(92 = (eyx=t = 1)
a(f M) = (e, y1 = D £
Foq ()M = i !
(@22 | @M =Yisoxy iy
@yt = Yoyl !
5(]2?’2[]) _ ;n:—ol yi f,Zq—l
@(fH) = Y eyl £
Al %) =Tyl g
Fos o(f7) = =1 fy?
o () = (xy~t = 1) £y
o(fy) = (xy1 = D
o(f?) == 1f*?
o(fs?) = Gy =1 f7?
o(f$%) = (lx. y1 = D f?
Foa V(0N = G = DA+ Gy = D x )

—yxly Tt -
v(fyh =i !
v(f3) = Tispay !
V() = i e vl A

VD = 07 = DA e = Dy g

—-1,.-1£0,1 —1,—-1 00,1
—Xy X f9 +xyx flO

587



588 G. Ellis and G. Williams CMH

v(feh) = X5 v s
(02 = Y eya i f0
v(fy) = Tiobe v fig!
Foa u(fh =10 =50
nfy = =10+ 1
w5 = @ =D
w3 = oy ™ = DR (S = (e 1= DA
p(fhy = 0 — 0
w7 =150+ 16°
n(fgh) = = DAY
p(fh) = @yxt = 1) 20

n(figh = (e, y1 =1 £°

If, under the hypotheses of Theorem 3, we additionally have |n| > 4 then the
homology groups Hi(G,Z) (k > 3) can be obtained immediately from results of
Howie (see Corollary D of [11], [12]). These results were obtained using algebraic
techniques and they apply in the more general setting of one-relator products of
groups.

For the remaining cases we provide only the form of a free ZG-resolution over
the integers. The method can of course be used to obtain the maps as well, if required.

Theorem 5. Let G = G(I, m, n) where 2/|l) + 1/|n| > 1 or 2/|m| +1/|n| > 1 and

where ({|1], |m|}, In]) # ({2, 2}, |n]), ({2,3},2), ({3,3},2), ({2,4},2), ({2,3},3).
Then there is a free ZG-resolution of the integers

cii—> Rg—> Rs — Ry — ZG)! — Z6)? — Z6)1° — Z6)*
where for p > 4, R, = (ZG)P*7,

Proof. Withoutloss of generality, suppose 2/|l|+1/|n| > 1. Then (|I|, |n|) = (2, |n|)
or (3,2) and 2/|m| 4+ 1/|n| < 1. As described in the proof of Theorem 3 there
is a faithful action of G on H?. In these cases vy, y~'v; are ordinary points in
H3 and the groups (x, yxy™ b, (x, yxy~1)Y are isomorphic to the finite triangle
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group T = T(l,I,n). Note that T is either the dihedral group Dy, or the al-
ternating group A4. The points vz, x~!v; are again infinite or ideal points and
the groups (y, xyx~1), (y, xyx~1)* are isomorphic to the infinite triangle group
T =T(m,m,n).

As explained in Section 3, there is a free ZT -resolution of the integers of the form

St - —> 85— 854 — 5 —5H— 55—

where for p > 0, S, = (ZT)I’“. Also, there is a free ZT’-resolution of the integers
of the form

Si: i — 8L — Sy — 8§ — (ZT)* — (ZT')’ — (ZT")?

where for p > 3, S; = (ZT")*. Combining these resolutions we get the following
free resolution of Co(X)

Fou: -+ —> Fo5s — Foq — Fo3 — (ZG) — (26G)T — (ZG)*

where for p >3, Fy , = (ZG)P+4. The free resolutions F14, Fo 4, I3 4 of C1(X),
C2(X), C3(X) are as given in the proof of Theorem 3. Combining these four free
resolutions we obtain a system of free ZG-modules whose total complex is of the
required form. O

In addition to the groups G (I, m, n), there are other classes of generalized triangle
groups which are known to admit faithful representations as groups of isometries of
hyperbolic 3-space. The second author has shown [22] that (except in the cases
(], Iml}, Inl) = ({2, 3}, 2), ({2, 2}, n)) the groups

G={(x,y|x' =y" = ((x»)x"y™HH" =1)

admit such a representation. The method of proof follows [9] in explicitly construct-
ing a fundamental domain. The stabilizer groups of the edges of this domain are
cyclic groups and the stabilizer groups of the vertices are triangle groups. A free
Z.G -resolution of the integers can therefore be constructed exactly as in Section 5.
More generally, Jones and Reid [13] consider a class of generalized triangle groups
which arise as the fundamental groups of 3-dimensional orbifolds whose singular sets
are obtained by adding an unknotting tunnel to a 2-bridge knot or link. They show
that in most cases such a group has a faithful representation as a group of isometries
of hyperbolic 3-space. It seems likely that our method can also be applied in this
setting.

Acknowledgement. We would like to thank the referee for the careful reading of
this paper.
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