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Diffeomorfismi birazionali del piano proiettivo reale

Felice Ronga e Thierry Vust

Abstract. We study real birational transformations of the real projective plane which are dif-
feomorphisms. It turns out that their degree must be congruent to 1 mod 4, and that they are

generated by linear automorphisms and transformations of degree 5 centred at 3 pairs of conjugated

imaginary points. Our approach is inspired by recent proofs of the classical theorem of
Noether and Castelnuovo that use the Sarkisov program.
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1. Introduzione

In questo lavoro si studiano trasformazioni cremoniane del piano proiettivo reale P|,
prive di punti base reali.

Piu precisamente, sia K R o C e K[xo, x\, X2~\d lo spazio dei polinomi omo-
genei di grado d nelle variabili xo, x\, X2, a coefficienti in K. Una trasformazione
cremoniana, o birazionale, di ordine d del piano proiettivo P| è determinata da un tri-
plo /o, /i, /2 € K[xo, xi, X2\d senza fattori in comune, tale ehe il morfismo razionale
indotto:

[xo,Xi,X2] I > Uo(xo,X\,X2), /l(xo,Xi,X2), fl{xo, X\, X2)~\

sia birazionale, il ehe significa ehe esistono aperti non vuoti, nella topologia di Zariski,

!/,y cP| tali ehe la restrizione di cp a U sia un isomorfismo su V; ne segue ehe

esiste un inverso ijr [go, g\, g2], ove gi e ~K[xQ,x\,X2~\d (vedasi [6], [4] libro
quinto, cap. II, [10] chap. VII, §4 o [1] per più ampi dettagli sulle trasformazioni
cremoniane). In realtà, se si dénota con S(#>) la giacobiana di <p, cioè la curva di

grado 3(d — 1)

\[xo,xi,x2] G det ——(xo,xx,x2) =0
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e U((p) P^ \ £(</?), allora ç è birazionale se e solo se esiste l'inverso ^ tale ehe

Un modo conveniente per descrivere trasformazioni cremoniane è in termini di
sistemi linearidi curve piane, a cui si prescrive dipassare per deipunti{Pi,..., Pu) C

P^ con molteplicità k\, ,kk rispettivamente; poniamo

{/ G C[xo, x\, x2]d I / si annulla all'ordine kh in P^, h 1, k}

e supponiamo soddisfatte le 2 condizioni

(ri -I- 9MV/ -I- 1)
—--3, (1)

Se supponiamo inoltre ehe i P\,..., Pu sono in posizione générale, allora

Gd{P^1,..., P^k) è di dimensione 3 e se per di piu la curva generica del sistema
è irridueibile, allora ogni base <p (fo, fi, H) di questo sistema lineare definisce

una trasformazione cremoniana (vedi [4] ibid., §20, p. 158). L'insieme B{<p)

{P\,..., Pk) si chiama insieme dei punti base, o fondamentali, della trasformazione;
essi determinano la trasformazione q> a meno di un isomorfismo lineare dello spazio
P^ di arrivo.

In questo modo perö non si ottengono tutte le trasformazioni cremoniane, ma solo

quelle cosiddette "generiche", cioè quelle i cui punti base sono punti multipli ordinari;

per ottenerle tutte, bisogna ammettere punti base "infinitamente vicini" (vedasi [1] o

[4] ibid.).
Se fo, f\, h g K[xo, x\, X2\d, diremo ehe <p [fo, fi, fi\ è una trasformazione

cremoniana reale, e allora <p induce una trasformazione ^r : P| > P|. Nel caso

K C, si ha sempre ehe U{<p) ^ P^, salvo se d 1. Se perö / è reale, puö accadere

ehe S (<p) n Pg 0, e in tal caso ^r è un diffeomorfismo di Pg, ehe noi chiameremo

diffeomorfismo birazionale. Notiamo ehe 1'immagine di ogni componente di S(#>)

deve essere un punto base dell'inverso di <p, per cui è équivalente supporre ehe S (<p) n
P| 0oche5(^)nP| 0.

È giunto il momento di far vedere l'esempio fondamentale di diffeomorfismo bira-

zionalediP|. SianoPi, P2, P3 g P^\P|esiano^ iconiugatidiPt,i 1, 2, 3;sce-
gliamo P\, P2, P3 in modo tale ehe questi 6 punti non giacciano su una conica; in par-
ticolare, P\, P2 e P3 non devono essere allineati. Per assicurarsi dell'esistenza di tali
punti, si puö prendere una conica non reale q, nel fascio di coniche per P\,P\,P2, Pi

poi scegliere P3 g q \ P|. II sistema lineare C5(P12, P22, P32, P\, P22, P32), cioè il
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sistema delle quintiche aventi un punto doppio in P\, P2, P3, Pi, Pi e P3 soddisfa le
condiziom (1) e (2), come si verifica facilmente, e la curva generica è irriducibile;
poichè non ha punti base reali, esso definisce un diffeomorfismo di Pj|.

Sia /o, /1, h una base di G5 G5{P2, P\, P32, P\, P%, P32) e <p [f0, fi, f2]
la trasformazione associata; vediamo ora ehe il suo inverso è dello stesso tipo. Sia

ypt, i 1, 2, 3, la conica per tutti i punti base, eccetto Pi, e in modo simile y^_,

e scriviamo y per una di queste 6 coniche. Ogni y interseca le quintiche di G5

doppiamente in 5 punti base, e quindi se una f e G5 passa per un punto generico
P g y, allora / contiene y corne componente; ne segue ehe la restrizione di G5 a y
è un sistema lineare di dimensione 1, e quindi l'immagine di y si riduce a un punto
di P2. Queste coniche appartengono evidentemente alla giacobiana di <p; questa è

di grado 12, quindi è esattamente la riunione di queste sei coniche. Chiamiamo P-

l'immagine di y,, e quindi P! sarà l'immagine di yp ; una retta generica interseca

una y in due punti, la sua immagine per <p sarà dunque una quintica, con punti doppi

nei P[, e cioè un elemento del sistema lineare C5(P1/2, P[2, P^2, P?, P^, P^2), e

quindi se f è una trasformazione associata a questo sistema, l'immagine di una retta

per la composizione A f o cp sarà una retta, e allora A è un isomorfïsmo lineare.

Dunque A~l of è l'inverso di <p, il ehe viene a dire ehe si puö scegliere una base fdi C5(P1/2, P[2, P22, P'22, Pi2, P'32) in modo ehe f ' sia l'inverso di <p.

Designeremo con $5 i sistemi lineari di questo tipo. Si noti ehe scegliendo punti
P\,Pi, P3 diversi, si ottengono trasformazioni ehe in générale non sono equivalenti
attraverso isomorfismi lineari dello spazio di partenza, visto ehe la scelta dei Pi

dipende da 12 parametri reali, mentre il gruppo lineare proiettivo ha solo 8 parametri.
Per semplificare, scriveremo £>d{P^1,..., P^k) per indicare il sistema lineare

iettore potrà verificare ehe i sistemi lineari

S)\Pl P\, Q\, Ql), £13(P6,Qi,QiQi) e £>13(Pf,PÎ, QlQi Ô3)

forniscono altri esempi di diffeomorfismi birazionali.
Lo scopo di questo lavoro è di stabilire i due risultati seguenti.

Teorema I. Sia (p : P| ->¦ P| un diffeomorfismo birazionale di ordine d. Allora
d \ mod 4.

Teorema II. Ogni diffeomorfismo birazionale di P| è composizione di diffeomorfismi
di tipo $5.

La prova del teorema I è elementare e sarà presentata alla fine di questa introdu-
zione.

Il teorema II puö essere considerato corne una versione reale del noto teorema
di Noether, ehe afferma ehe ogni trasformazione birazionale di P2^ si puö scrivere
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come composizione di trasformazioni quadratiche con 3 punti base distinti. La sua

dimostrazione è più elaborata; quella ehe proponiamo è ispirata dal programma di
Sarkisov (vedere [9] § 1.8, [3]). L'idea di base è quella già sfruttata da Noether:
nel caso complesso, per una trasformazione di ordine d, si mostra ehe le 3 maggion
molteplicità X\, Xt, X3 dei punti base soddisfano l'ineguaglianza

X\ -\- Xt ~\- X3 > d.

Questi 3 punti vengono poi utilizzati, quando è possibile, come punti base di una
trasformazione quadratica per semplificare la trasformazione iniziale (cioè, abbassarne

1'ordine).
La versione reale di questo risultato afferma ehe, per un diffeomorfismo birazio-

nale di P|, esistono 3 paia di punti base, P\, Pt, P3 e i loro coniugati P\, Pt, P3, ehe

pure soddisfano l'ineguaglianza qui sopra. Questi 6 punti possono essere utilizzati
come punti base di una trasformazione di tipo $5 per semplificare la trasformazione
iniziale. La difficoltà, nel nostro caso come per il teorema di Noether, consiste nel
fatto ehe i punti base di maggiore molteplicità non sempre sono dei bravi punti
distinti di P|, ma aleuni possono essere "infmitamente prossimi". Per superare questa
difficoltà è utile, seguendo appunto l'idea di Sarkisov, di aver ricorso a modificazioni
appropriate dello spazio PJ|, e cioè le superfici Q e T (fibrati di Mori) di cui parleremo
al§3.

Non esistono esempi simili nel caso délia retta proiettiva, poiché le trasformazioni
cremoniane in questo caso sono isomorfismi lineari. Esistono pertanto diffeomorfismi

ç : Pg -^ Pjj délia forma ç [/o, /1], con /o, /1 £ K[xo, xi] di grado superiore
a 1. Adesempio:

/o(O ^rri-
Si verifica ehe /q(0 7^ 0 per tutti leR; d'altra parte, se si pone

2m3 + u

u2 + \ '

di nuovo si ha ehe //(m) 7^ 0 per tutti «el. Quindi <p è un diffeomorfismo razionale
di Pg, il cui inverso perö non puö essere razionale. Questo esempio si puö visualizzare
cosi: si consideri la curva parametrica a : t i->- (t2 + 1, t3 + t); è ovviamente una
cubica razionale, ehe possiede un punto doppio isolato sui reali in (0,0), immagine
di t ±V^T. La composizione di a con la proiezione dal punto doppio (0, 0) è

l'identità. Se proiettiamo invece da un punto vicino P a (0, 0), sui reali, si ottiene
una mappa prossima all'identità, quindi un diffeomorfismo (mentre sui complessi si

avrà una mappa di grado 3). Scegliendo P (—1,0) si ottiene appunto la mappa
fo(t) qui sopra.
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Per concludere questa introduzione, vediamo un esempio di diffeomorfismo bi-
razionale di P|. Si prendano 6 punti P\, Pi, Pj, e P\, Pi, P3 in P^ come per una
trasformazione di tipo $5. Si scelga una base a («o, • • •, «3) dello spazio vetto-
riale di dimensione 4 delle cubiche piane ehe passano per i P-, ed i Pj, i 1, 2, 3,

cosicchè a(P^) cF^è una superfice cubica reale. Si prenda una quartica liscia,

reale F4 c P^ senza punti reali, ehe passa per i P; ed i P;, i 1, 2, 3 (se avete dubbi

sull'esistenza di una tale quartica, prendete prima la quartica x^+x^ + x^ 0, e poi
Pi, Pi, P3 su questa quartica). Allora Pô «(I^) è una sestica reale, senza punti
reali. Com'è noto (vedi [10], chap. VII, § 4.2, o [7]), il sistema lineare delle superfici
cubiche ehe contengono la To fornisce una trasformazione birazionale di P^, con
Pô come curva di punti base; prendendo una base reale di questo sistema lineare si

ottiene quindi un diffeomorfismo birazionale di Pg.

Convenzione. Seguendo [8], una varietà reale è una varietà proiettiva X sul corpo
dei complessi, munita di una struttura reale, cioè di un anti-automorfismo involutivo
x \-> x; si dénota con X(R) l'insieme dei punti reali, cioè tali ehe x x. Per

esempio, lo spazio proiettivo complesso P^, munito della comugazione delle
coordinate omogenee: [zo : •• • : z«] h> [zo ¦ •• • : Zn\\ d'ora in poi denoteremo con P"

questo spazio, e quindi abbiamo P"(R) P|. Un altro esempio tipico è una varietà

proiettiva complessa definita da equazioni polinomiali a coefficienti reali, come la

quadrica gcF3 definita da Zq + z\ + z\ — z\= 0, per la quale Q(M) è la sfera.

Utilizzeremo il gruppo J/\ (X) di Néron-Severi, ehe è il quoziente dello spazio
vettoriale (su R) generato dai cich reali di dimensione 1 su X per la relazione del-

l'equivalenza numerica: un ciclo C c X di dimensione 1 è reale se C C e due

cicli C e C sono equivalenti se (C ¦ D) (C ¦ D) per ogni divisore di Cartier D
su di X. Scriveremo |D| per il sistema lineare completo costituito dai divisori
complessi linearmente equivalenti a D. Salvo menzione esplicita, le varietà e morfismi
considerati saranno reali.

Prova del teorema I. Sia dunque <p : P2 > P2 un diffeomorfismo birazionale di
ordine d. La giacobiana S (<p) è una curva di grado 3(d — l); poiché non ha punti reali,
le sue componenti devono essere di grado pari. Non puö avère componenti invarianti

per la coniugazione complessa, poiché la sua immagine sarebbe un punto base reale
dell'inverso. Quindi £(#>), essendo composta da un numéro pari di componenti,
ciascuna di grado pari, il suo grado è un multiplo di 4:

3(d - 1) 0 mod 4 =>¦ d 1 mod 4.
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2. L'ineguaglianza di Noether

Corne è spiegato in [1], specialmente nella proposizione 2.5.2 (o anche in [4] ibid.,
o [10] ibid.), una trasformazione cremoniana puö sempre essere descritta prendendo

una base del sistema lineare G^P^"1,. Pkk) delle curve di grado d ehe passano

per dei punti P\, Pt, con molteplicità k\, k^. Alcuni di questi punti perö

possono essere "infinitamente vicini". Comunque, le seguenti formule restano valide:

(d-\)(d-2) y^A.,-(A.,--l) =Q
2

,=1 -
k

J2^=d2-l. (2)

j=l

La (1) esprime ehe la curva deve essere di genero uguale a 0, la (2) ehe due curve del
sistema si intersecano, oltre ai punti basi, in un solo punto variabile. Se ne deducono
le due uguaglianze equivalenti:

(I')

(2)
î=i

Queste uguaglianze possono essere sfruttate per dimostrare ehe se P\, P2 e P3 sono
i punti base con massima molteplicità di un morfismo birazionale ehe non sia un

isomorfismo(cioè d > 1), si ha l'ineguaglianza di Noether:

corne ad esempio in [4], libro quinto, capitolo II, p. 166. Osserviamo ehe i punti
base sono almeno 3, perché se no k\ + k2 3(d — 1) e allora la retta per P\ e P2 si

staccherebbe dalle curve del sistema.

Nel caso di un diffeomorfismo birazionale, i punti basi, anche quelli infinitamente

vicini, vengono per paia di punti coniugati Pi ^ Pi, i 1, k con stessa

molteplicità k;. In questo caso sappiamo inoltre ehe il grado del sistema è délia

forma d Am + 1, ehe scriviamo 3~)d{P^1, P^k). Dimostriamo ora il lemma

seguente, ehe è la versione adeguata dell'ineguaglianza di Noether. Sottolineamo ehe

neh"enunciate», le tre paia (Pi, Pi), (P2, P2) e (P3, P3) sono distinte.

Osservazione. Se k\ > k^ > A3, l'ineguaglianza di Noether classica ci dice solo

Ài +k2 > 4m + 1.
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Lemma (ineguaglianza di Noether per un diffeomorfismo birazionale). Siano P\, P2

e P3 tre punti base con la massima molteplicità. Allora si ha Vineguaglianza

k\+k2 + k3 > 4m + 1.

Prova. Seguiamolaprovadi[6],chap. I, §10. PossiamosupporrecheXi > k2 > k3.

Segue da (10 e (2) ehe

k

i -3(4m + l -1) 6m, (a)

î=l
k

^ -((4m + l)2-l) 4m(2m + l). (b)

f=l

Notiamo ehe k\ < 2m, se no la retta per P\ e P\ si staccherebbe come componente
fissa.

Calcoliamo (b) — A3 ¦ (a):

k k

A.f 2m(4m + 2) - 6m ¦ k3,

î=l î=l

ehe si puö riscrivere

k

ki(ki -k3)+k2(ki -A3) -^A.f(A.3 -A.?) =2m(4m+2) -
i=4

o ancora

2m(4m+ 2) =Ài(Ài -À3)+X2(Xi - À3) - ^Xf(À3 - Xf) + 6mÀ3.

i=4

Ne deduciamo

2m(Ai +À2 + X3 -(4m+ 2))

k

2m{ki +À2 + X3) — Ài(Ài -A.3) ~k2{ki -À3) + ^Xf(À3 -A.?) -6mÀ3
i=4

(2m - A.1XÄ.1 - k3) + (2m - k2){k2 - k3) + J] A.,-(A.3 - Xf).
i=4

Poiché tutti i termini dell'ultima espressione sono positivi o zero, se ne deduce ehe

^1 + ^2 + ^3 - (4m + 2) > 0 e quindi k\ + k2 + k3 > 4m + 1.
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Per incoraggiarci, notiamo ehe se tp è un diffeomorfimo birazionale di grado
Am + 1 i cui tre punti di massima molteplicità P\, Pi, P3 sono dei veri punti di P2,

questi e i loro coniugati non possono essere su una stessa conica q, perché se no segue

dall'ineguaglianza di Noether ehe q interseca una curva del sistema di tp in almeno

2(A.i + A.2 + ^3) > 2 ¦ (4m + 1) punti, e quindi si staccherebbe dal sistema di f.
Possiamo dunque scegliere una trasformazione <p di tipo $5 con punti base i Pj ei
loro coniugati; una curva del sistema di <p e una del sistema di f si incontrano nei

punti base, ehe contano per 2{2{k\ +X2 + A.3)) > A(Am + 2) punti, ed inoltre in un
numéro di punti liberi uguale all'ordine di tp o q>~1, ehe quindi è uguale a

5 ¦ (Am + 1) - A{k\ + À2 + X3) 4m + 1 - A{k\ + À2 + A3 - (4m + 1))

ed è perciö strettamente inferiore all'ordine di \jr.

3. Alcuni modelli di P2

Lo scopo di questo paragraf o è di defmire le superfici ehe utilizzeremo per semplificare
un diffeomorfismo birazionale, e di stabihrne alcune proprietà.

Sia Q la quadrica reale di P3 definita dall'equazione z2, + z2 + z\ — z2, 0 e sia

T la superfice ottenuta facendo scoppiare due punti immaginari coniugati A, Ä su Q;
si verifica facilmente ehe il gruppo di Lorentz (cioè il gruppo ehe lascia invariante

l'equazione di Q) opera transitivamente su Q \ Q(M), e quindi diverse scelte dei due

punti danno luogo a varietà isomorfe. Notiamo ehe Q è isomorfo a P1 x P1, per il
morrismo

P'xFUp3, ([a, b], [u, v]) h^ [i(au + bv), au - bv, av + bu, av - bu)];

il quale è compatibile con la coniugazione su P1 x P1 definita da [(a, b), {u, v)] ->
[(u, —u), {b, —a)], e la coniugazione usuale su P3.

Lavoreremo con la categoria S (in omaggio a Sarkisov) i cui oggetti sono le superfici

reali P2, QeT, con la loro struttura reale, e i cui morfismi sono le trasformazioni
birazionali. In piu, per ogni oggetto S di S si distingue un elemento Fs particolare

Fp2 è la classe di una retta reale.

Fq è la classe di una curva di tipo (1,1). Poichè la coniugazione di Q manda
le curve complesse di tipo (m,n) su quelle di tipo (n,m), Fq è un generatore

• Fj tt*(Fq) — Ejt, dove n : T ->¦ Q dénota lo scoppiamento dei due punti

immaginari coniugati A, Ä e E^ la classe del divisore eccezionale, cioè F%
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Secondo l'usanza, designeremo con K$ il divisore canonico della superfice S.

Notiamo ehe K-$i — 3Fp2 e ehe F22 1. D'altra parte, Kq —2 ¦ Fq e quindi

possiamo scrivere Kq —2(1, 1) e Fq (1, 1) - (1, 1) 2.

Passiamo a T, ehe è un caso più elaborato; si vedrà ehe T è un fibrato in coniche su
P1. Ricordiamo ehe un fibrato in coniche è un morfismo / : S —>¦ 5 di una superfice
S1 su una curva B, taie ehe la fibra generica è isomorfa a P1, e le altre (in numéro
fini to) sono isomorfe all'unione di due rette ehe si intersecano trasversalmente in un
punto (vedi [2]).

Proposizione (proprietà e caratterizzatione di T).

i) «Vi (T) è di dimensione 2, ed è generato da KT e FT; per l'intersezione, si ha

F2 0, KT ¦ FT -2, K\ 6.

ii) II sistema lineare \FT\è di dimensione 1, senza punti base; il morfismo cp: T ->
P1 ehe se ne deduce è un fibrato in coniche con esattamente due fibre singolari,
ehe sono situate su due punti reali di P1, e sono costituite ciascuna da due rette

immaginarie coniugate.

iii) Reciprocamente, sia y : X —* F1 un fibrato in coniche con esattamente due

fibre singolari, situate su due punti reali di P1; supponiamo ehe J^i(X) sia di
dimensione 2. Allora esiste un morfismo nx: X —* Q ehe présenta X corne lo

scoppiamento di due punti immaginari coniugati di Q.

Prova. i) Sia n : T --* Q lo scoppiamento di due punti A, Ä g Q e sia E^

n 1({A, A}). Allora è chiaro ehe M\{T) è generato da jt*(Fq) e E„. Poichè Kj
jt*(Kq) + E„, ne seguono le formule e asserzioni di i).

ii) Consideriamo la proiezione P3 > P1 centrata sulla retta ehe passa per A e Ä,
e la sua restrizione <p' : Q >¦ P1. Le fibre di <p' sono le intersezioni dei piani per A,
A con Q, e quindi sono di tipo (1,1); inoltre, esattamente due di queste degenerano
in un paio di rette immaginarie, e cioè quelle ehe corrispondono ai piani tangenti a

Q ehe passano per A e A. L'asserzione ii) segue poi dal fatto ehe <p <p' o n.
iii) Qui è meglio dividere la prova in più tappe.
a) «Vi (X) è generato da Kx e dalla fibra Fx di y; si ha

Fx =0, FxKx -2, K\ 6.

È chiaro ehe Fx 0 e segue dalla formula dell'aggiunta ehe Fx ¦ Kx —2; quindi
Fx e Kx sono una base di <M\ {X).

Se ci fosse una fibra singolare F\ C'U C", con componenti C e C" reali, allora
si avrebbe:

0 {C + C")2 (C)2 + 2 C ¦ C" +{C")2 =» (C)2 + {C")2 -2
=i
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quindi o (C)2 £ 0, o {C")2 ^ 0; mettiamo ehe (C)2 ^ 0. Si puö scrivere

C a ¦ Fx + b ¦ Kx, a, b e R. Allora

0 FxC' a0-2b =» b=0.

Ma allora (C)2 {a ¦ Fx)2 0, una contraddizione.

Quindi, le 2 fibre singolari F\ e F2 sono eiaseuna riunione di due curve immagi-
narie coniugate: Fi Q U Q ehe si intersecano trasversalmente in un punto.

Lavorando per un momento con eieli complessi su X(C) e le loro classi di equi-
valenza numerica, vediamo ora ehe Cf C2 —\,i 1,2. Per prima cosa,

osserviamo ehe se C, D c X sono due eieli complessi, allora C D C D, perché
la coniugazione préserva l'orientazione délia superfice e rovescia quella dei cicli.
Scrivendo C per C\ o C2:

0 Fx {C + C)2 C2 + 2C-C+C2 =» C2 C2 -1.
=1

Possiamo quindi considerare il morfismo a : X —>¦ F ehe contrae C\ e C^. la

superfice F non è reale, e ct è un morfismo di superfici complesse. La F è una
superfice rigata, e si ha un diagramma commutativo:

È risaputo ehe K^ 8 (vedi [5], chap. V, corollary 2.11), e ne segue ehe Kx 6.

b) Non esistono sezioni definite sui reali di y : X —* F1. Se una taie sezione

esistesse, notiamo con C la classe délia sua immagine in «A/i (X); poichè

C Fx 1 e C2 + C ¦ Kx -2 (formula dell'aggiunta)

e ponendo C aKx + ßFx, a, ß g R, si avrebbe

-2a 1, 6a(a + 1) - 2£(1 + 2a) -2 =>• 6(-l/2)(l/2) -2

il ché è assurdo.

c) X è lo scoppiamento di due punti su Q. La rigata complessa F è délia forma

P(o(0) © 6{-k)), con k > 0. Ora vediamo quali valori puö avère k. Osserviamo
ehe a : X --* F induce una biiezione fra le sezioni di y e quelle di S: alla sezione

D c X di y si associa ct(D), e alla D' c F di S si associa il trasformato stretto

a 1(D/). Siano infine P; a {Ci), i 1, 2, i due punti ehe ct fa scoppiare.
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// caso k 0. Allora F P1 x P1, e si puö supporre ehe S è la proiezione sul primo
fattore; le sezioni complesse di S sono le curve irriducibili Di>n di tipo (1, n), con
n > 0. Ne segue

2n seP; i Dhn, i 1,2,
2n -2 sep e Di)U, i 1,2,
2n — 1 negli altri casi.

Quindi si ha una délie seguenti possibilità; fra tutte le sezioni di y :

(i) Esiste esattamente una Do con Dq < 0,ecioèDo ct~1(Dijo), Di,o 3 Pi, P2.

(ii) Esistono esattamente due sezioni Di e D2 con D\,D\ < 0, trasformate strette

di D^l b P\ e d|2q b Pi rispettivamente. Per di più, D2 -1 e Di n D2 0.

Il caso (i) non puö presentarsi, poiché Do sarebbe una sezione reale, in contrad-
dizione con b).

Nel caso (ii), si ha D2 D\, cosicché la contrazione jtx: X -> X' di Di +
Di è reale. Infine, X(W) è omeomorfa alla sfera, quindi anche X'(R), e poiché
dim(jVi(X0) =dim(jVi(X))-l 1, segue dal lemma 1.16 di [8] ehe X'èisomorfo
aß.
// caso k > 0. In questo caso esiste un'unica sezione Do di S di self-intersezione

negativa: Dq —k; tutte le altre sezioni sono délia forma Do + n ¦ F con n > k,
dove i7 è la fibra di S, e quindi

(Do + n ¦ F)2 -k + 2n > n > k > 0

(vedi [5], chap, V, theorem 2.17).
Il caso k > 2 è escluso, perché allora ct-1(Do) sarebbe l'unica sezione di y con

self-intersezione negativa, quindi reale, in contraddizione con b).
Se k 1, le uniche sezioni complesse di y con self-intersezione negativa sono:

(i) CT~1(Do + i7) quando Dç, + F contiene Pi e P2, e allora ct"1 (Do + F)2 —1.

(ii) ct-1(Do), e allora ct-1(Do)2 — 1 — |Do n {Pi, P2W. Se Do contiene Pi o
P2, allora ct"1 (Do) è l'unica sezione di y con self-intersezione < — 1, e quindi
sarebbe reale, in contraddizione con b). Quindi Pi, P2 £ Dq ecr"1 (Do) ha self-
intersezione —1. Sia q> : F —>¦ P2 la contrazione di Do. Allora F ç*H — Do,
ove H è una retta di P2; le sezioni complesse di S del tipo Do + F corrispondono

per cp alle rette di P2 ehe non passano per <p(Do). Esiste quindi esattamente una
sezione Dpup2 del tipo Do + F ehe passa per Pi e P2 e ne segue ehe le uniche
sezioni di y con self-intersezione negativa, in realtà uguale a —1, sono ct"1 (Do)
e CT"1(Dpljp2). Proseguiamo ora come nel (ii) del caso k 0: abbiamo ehe

ct-1(Do) CT~1(Dpljp2), l'intersezione di ct-1(Do) eCT~1(Dpljp2) è vuota, e

la contrazione di queste due sezioni présenta X corne scoppiamento di un paio
di punti immaginari coniugati di ß.
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Una prova succinta di iii) si trova in [8], lemma 3.2.4. Osserviamo ehe i due

casi délia parte c) della prova di iii) qui sopra si presentano effettivamente. Difatti,
partendo da n : T -> Q, chiamiamo E'% e E'^ le componenti della fibra eccezionale

di it, C U C e C" U C" le due fibre singolari, dove C n E'n £ 0 e C" n 0. Se

definiamo F contraendo C" e C", allora F ~ P(0 (0) 0 0 (-1)) ; se prendiamo invece

C e C", allora F ~ P1 x P1.

4. Prova del teorema II

In générale, per una trasformazione birazionale <p [fo, f\, fi\ : S > P2, de-

signeremo con Kip il sistema lineare generate dalle /, e con Hv la classe di un
rappresentante di H^ in ,M\ (S).

II sistema lineare Kip détermina la trasformazione <p a meno di un isomorfismo
lineare sulP2 di arrivo; quindi, nel caso di <p : P2 > P2, l'ordine d di <p è determinate»

da H(p g ,A/"i(P2), perché H(p d ¦ i>2.

4.1. Semplificazione alia Sarkisov. Sia tp : P2 > P2 un diffeomorfismo
birazionale ehe non è un isomorfismo. Descriveremo una sequenza di modifiche:

u
V2

Q 7 > T
m

Chiameremo ^ la composizione di
scriveremo /ft per //^A e % per Jfy

fo con (<ph ° • • • ° <Pi) l, h 1, 5, e

VI

Q
A

Vi

p2

r

ts

<P4

Q

Vedremo ehe H5 d' • Fp2, con </ < <i — 4 e ehe ^5 o ¦ ¦ ¦ o ci è un diffeomorfismo

birazionale di ordine 5, non necessariamente di tipo $5, ma eventualmente una
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degenerazione di queste, in cui due o tre paia di punti base vengono a coincidere;

per dimostrare il teorema II, occorrerà esprimere quest'ultime trasformazioni come
composizione di trasformazioni di tipo $5, il ché faremo al § 4.2.

In générale, se n : X --* Y è lo scoppiamento di uno o più punti di Y, denoteremo

con Ex il divisore eccezionale di n.

Primamossa. SiaA e P2unpuntobasedi J^dimassima molteplicità Xi. Definiamo

<p\ con il triangolo birazionale

U

Q,

dove a aa è lo scoppiamento dei due punti A e Ä, e a' la contrazione délia retta

reale per A e Ä. Si ha

HX crfr*(H0) -Xl-Ea)= cr^d ¦ (Ea + Ea.) - \x - Ea) (d - X1)FQ. (1)

Notiamo ehe contraendo la retta per A e A in un punto G G Q, abbiamo creato un
nuovo punto base, ehe è reale, e di molteplicità d — 2X\.

Seconda mossa. Sia B un punto base di K\ di maggiore molteplicità A.2- Esso puö
essere sia infinitamente vicino a A, sia un punto ordinario di P2; in ogni caso, è un

punto ordinario di Q. Sia n nB : T ->¦ Q lo scoppiamento di B e B. Si ha

H2 n*(H1)-X2-E7I (rf-A.i).7r*(Fß) -k2-E]t (d-X1)-FT+(d-X1-X2)-E7r.

=ft+e7T

Ora

KT jr*(KQ) + Ejr -2tx*{Fq) + Ejr -2(FT + E») + E» -2FT - E»

e quindi

e viene

H2 (-d + Xi+2X2) FT - (d - ki - X2) KT. (2)

=r =s

Notiamo ehe le fibre del fibrato in coniche y : T --* P1 associate al sistema lineare

\Ft\, si trasformano, tramite a o (ct')"1 ° it, in coniche di P2 ehe passano per A, Ä,

B,B.
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Terza mo ssa. Sia C un punto base di K2 di maggiore molteplicità A3; è un punto
ordinario di T, e C non puö giacere sulla stessa fibra di T per la fibrazione in coniche

y : I^P^se no, la conica gcP2, trasformata per a o (ct')"1 ° n di una taie fibra,

si staccherebbe dalle curve di Mf. Difatti, q passerebbe per A, Ä, B, B, C, C, e

quindi, secondo l'ineguaglianza di Noether, incontrerebbe una curva generica di Mf
in 2 ¦ (Xi + X2 + X3) > 2 ¦ (Am + 1) punti.

Definiamo ^3 col triangolo birazionale

dove S Se è lo scoppiamento di C e C, e <5' la contrazione délie trasformate su

T délie due fibre di y ehe passano per C e C: difatti queste sono disgiunte e di
self-intersezione — 1. Qui viene

Kz S*(KT) + Es, Kr S'jKz) 8*(8*(KT) + Eg) S'^S*(KT)) + 2Fr

K(^(FT)) Fr

e quindi

- sKT) -
ji — 2Fj>) —

(r + 2s-2X3)Fr-sKr (3)

(-d + Xi+ 2à2 + 2d - 2X\ - 2à2 - 2X3)Fr - (d - Xx - X2)Kr

{d-Xi- 2X3) FTi -{d-Xi- X2) KTi.

=t =s

Quarta mossa. Osserviamo ehe T' è, corne T, un fibrato in coniche con due
fibre singolari costituite da due fibre immaginarie coniugate, e ehe dim(«A/"i(r/))
dim(«A/i(T)) 2. Quindi segue dal iii) délia proposizione del §3 ehe esiste un
morfismo n' : T' -> Q ehe présenta T' corne scoppiamento di due punti immaginari
coniugati di Q e

K(Ft) Fq, tt'JKt) ~2Fq

cosicché

H4 K{H3) tFQ + 2sFQ {t + 2s)FQ (3d - 3A.i - 2X3 - 2X2) FQ. (4)
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Quinta ed ultima mossa. Qui si fa il movimento contrario a quello délia prima mossa:

dove a' è lo scoppiamento del punto &', immagine di G per Ç4 o </93 o ç2, e o contrae
il trasformato stretto delle due rette di Q ehe passano per &'.

Notiamo ehe o'*{Fq) Ea + 2Ea- e ehe o*{Ea-) F^2. Viene

H5 o*(o'*(HA) - mo\i{0')Ea

a*(u(Ea + 2Eai) - mo\t(O')Ea) (2m - molt((9/))i>2

dove molt(ö/) molt(ö/, K4) dénota la molteplicità di una curva generica di K4
in O'; poiché intorno a O il sistema H\ non viene modificato, si ha molt(ö/, H4)
molt(ö, M\) d - 2k\, e quindi

H5 (6d-6Xi-4X2-4X3-(d-2X1))F]!,2 (d-4(X1+X2 + ^3 -d))Fwi. (5)

Secondo il lemma del § 2 si ha X\ + k2 + A3 > d, e quindi l'ordine di ^5 è inferiore
o uguale a <i — 4.

In fin dei conti, l'espressione del grado di 1^5» ponendo d Am + 1, è la stessa

ehe quella ottenuta col calcolo ehe abbiamo fatto per incoraggiarci dopo il lemma
del § 2, ehe era valida solo nel caso in cui i punti di massima molteplicità erano veri

punti di P2.

4.2. Diffeomorfismi birazionali di ordine 5. Analizziamo ora il diffeomorfismo
birazionale q> q>s o --- o q>i. Nelle mosse del §4.1, abbiamo utilizzato ehe ijr non

era un isomorfismo lineare solo per assicurarci, nella terza mossa, ehe i punti C e C

non fossero su una stessa fibra di y : T --* P1 ; quindi possiamo applicare la formula
(5) qui sopra nel caso d 1, k\ X2 A3 0, per dedurne ehe cp~l è di ordine 5,

e dunque pure <p è di ordine 5. La stessa formula, con d 5, mostra ehe ogni
trasformazione di ordine cinque è ottenuta in questo modo.

Ragionando con le uguaglianze (1)' e (2) del § 2 e l'ineguaglianza di Noether,
vediamo ora ehe le curve di M(p possiedono 3 paia di punti base di molteplicità 2.

Infatti, se i punti base sono P\,..., Pu, con molteplicità k\ > --- > kk, ed i loro
coniugati, si ha

Ne segue ehe k 3 e k\ + k2 + A3 =6. Segue allora da k\ + k\ + ^3 12

ehe Xi A.2 ^3 2 (per esempio: almeno una delle k\, diciamo A3 è pari e

k\ < 12 =>• k3 2; quindi À2 + k\ 8 =>• k\ k2 2).
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Possiamo anche vedere ehe k\ X2 A3 2 seguendo direttamente le mosse

della dimostrazione del §4.1. Chiamiamo C, C i due punti di T immagini delle
due fibre di y : T -> P1 ehe passano per C e C rispettivamente; B', B' i due punti
di Q immagini del divisore eccezionale E„i di n' e A', A' i punti di P2 immagini
del divisore E' di bigrado (1,1) di Q costituito dalle due rette ehe passano per Q'\

queste 3 coppie costituiscono i punti base di <p l. Deduciamo ora dai calcoli del

paragrafo précédente ehe la molteplicità di H(p-\ in questi punti è uguale a 2. Difatti,
per tf/ identità, utilizzando (2) con d 1, k\ X2 0 abbiamo

molt(C/, J^3) S*(H2) ¦ (&*(FT) - Eg) H2 ¦ FT (-FT - KT) ¦ FT 2.

Ora utilizziamo (3) con d 1, k\ X2 X3 0:

2molt(5/, Htt) H3 ¦ E„, {Fr - Kr) ¦ (-Kr - 2Fr) 4.

Infine, con (4) e d 1, k\ k% A3 0:

2molt(A/, Mt5) (a'*(HA) - Ea>) ¦ (cr'*(FQ) - 2Eai)

H4FQ + 2Ea, ¦ Ea, 3F2Q + 2E2a, 4.

Osserviamo ehe Tunica condizione sui punti A, B e C è ehe essi ed i loro coniugati
non giacciano su una stessa conica, il ehe viene a dire ehe C e C non giacciano su una
stessa fibra di y (vedere la terza mossa del paragrafo précédente). Possono presentarsi
tre casi.

1) La cp ha 3 punti base distinti su P2 e i loro coniugati, con molteplicità due.

Questo è il caso in cui B non giace su a'{Ea), e scriviamo, per semplificare,
B per a (a' 1(B)). Corne pure, C non giace su En, né n(C) su a'(Ea), e

scriviamo C per o{o'~l{n{C))). Conformemente alla notazione introdotta nel
§ 1, il sistema lineare Kip associate a <p è

e5(A2,Â2,52,52,C2,C2)

ehe, come nel § 1, scriveremo più semplicemente £>5(A2, B2, C2). La curva
generica del sistema è una quintica con punti doppi ordinari in A, B, C (ed i
loro coniugati). L'insieme di queste <p è stato designate con $5.

2) La <p ha due punti base distinti A e C su P2 e un punto base B infinitamen-
te prossimo. Allora B appartiene a a'{Ea), ma C <£ En\ notiamo ehe in tal
caso n(C) £ a'(Ea), se no, corne abbiamo visto innanzi nella terza mossa,

si staccherebbe una conica dalle curve di H^. Scriviamo ancora C per
a (a' l(n(C))) g P2. Indichiamo il sistema lineare Kip con

5)5(A2 <- B2, C2)
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dove la freccia A ¦<— B sta a indicare ehe B è infinitamente prossimo ad A. La
curva generica del sistema è una quintica con punto doppio ordinario in C, ed

una tacnode ordinaria con tangente fissa (rappresentata da B) nel punto A.

Figura 1. Decomposizione di Sarkisov di <© (A B C

3) La <p ha un solo punto base A su P2; allora B e a'{Ea) e C e En. In questo
caso indicheremo il sistema lineare Kip conip

5)5(A2

La curva generica è una quintica con tacnode ordinaria in A, con tangente fissa

(rappresentata da B) e cerchio osculatore fisso (rappresentato da C).
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II caso di B, n(C) g <y'(Ea) non si puö presentare, come abbiamo già visto.

Descriviamo le giacobiane di queste trasformazioni:

1) £>5(A2, B2, C2). Chiamiamo ya, o ypA se occorre precisare, la conica per tutti
i punti base salvo A, ed in modo simile y.-, yb, Yö> Yc, Yr- Ognuna di queste sei

coniche incontra la quintica generica 6 e £>5(A2, B2, C2) in cinque punti doppi,
ehe sono i punti base sulla conica; quindi, se 9 incontra la conica fuori dai punti
base, allora contiene la conica. Come abbiamo già visto al § 1, ne segue ehe, se

</9 : P2 > P2 è la trasformazione ottenuta scegliendo una base di £>5(A2, B2, C2),

essa schiaccia le sei coniche su sei punti A' <p{ya), Ä' <p{yt), e via di seguito;

questi saranno i punti base di ç~1. Le sei coniche costituiscono la giacobiana di <p.

Seguiamo ora corne la giacobiana di <p si trasforma secondo le mosse del §4.1.
Ci aiuteremo con la figura 1, nella quale Ex indica in générale la fibra eccezionale

dello scoppiamento di X, e L - indica la retta per A e Ä; si usera la stessa lettera

per una curva (o un punto) e il suo trasformato stretto sui vari spazi.

SiaP^ B il fascio délie coniche per A, Ä, B, B. Sidefinisceunmorfismorazionale

Y : P2 > P\ B associando a X e P2 la conica per X, A, Ä, B, B; corne abbiamo

giàosservato in4.1, secondamossa, questodiventaun veromorfismo y : T ->W\ B,
ehe è un fibrato in coniche, con due fibre singolari su L ;Ui- cLabUL-s.

Per passare da T a T', si fanno scoppiare C e C e si contraggono yc e y^. Si ha

ancora un fibrato y' : T' -+ W\ B, solo ehe le due fibre yc e y^ sono state modificate.
Su T'la conica yb taglia ogni fibra di y' in esattamente un punto, quindi yb è una
sezione di y', corne pure la coniugata yB. Quindi, seguendo il iii) délia proposizione
del § 3, comprimendo yb e yB si passa da T' a un Q' isomorfo a Q.

Passando da P2 a Q, si contrae la retta L - in un punto 6>; le coniche ya e y-r
sono le uniche componenti délia giacobiana le cui trasformate passano per 6, il cm
trasformato su Q' è chiamato O'. Passando da Q' a P2, si fa prima scoppiare O', e

poi si contraggono ya e y t.

2) £>5(A2 ¦<— B2, C2). Procedendo corne prima, qui si puö vedere ehe la gia-
cobiana è composta dalle 4 coniche y#, yB, yc, y^\ le coniche ys e yB appaiono
doppie nella giacobiana, perché sono limite dell'unione di ya e yb (rispettivamente

y-, e y5) del caso 1), quando si fa tendere il punto B verso A.

La decomposizione di Sarkisov è simile al caso 1), solo ehe ora & è il punto
singolare di una délie due fibre singolari di y : T --* FA B (quella sulla conica unione

délie rette rappresentate da B e B). Seguendo le varie trasformazioni sulla figura 2, si

vede ehe in fin dei conti B e B vengono trasformati su due punti B' e B' infinitamente

prossimi a A' e A' rispettivamente.
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Figura 2. Decomposizione di Sarkisov di <£) (A2 <r- B2, C2).

3) Nel caso di £)5(A2 ¦<- B2 ¦<- C2), ci limitiamo a indicare che la giacobiana è

l'unione delle due coniche yc ey^, ognuna con molteplicità 3.

Torniamo ora alia prova del teorema II. Occorre dunque dimostrare ehe le tra-
sformazioni dei casi 2) e 3) si possono scrivere come composizioni di trasformazioni
del caso 1), cioè di tipo $5. Procederemo cosi: data una f di tipo 2) o 3), costruia-

mo f) € $5 tale ehe f o cp~l sia una trasformazione di grado 9, ehe a sua volta
scriveremo come prodotto di due trasformazioni di $5; questo passaggio per una
trasformazione di grado piu alto per scomporre la f è inevitabile: la composizione
di due trasformazioni di $5, se non è lineare, è sempre di grado almeno 9.
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Per capire com'è la trasformazione tp o q>~1, si prende una curva generica 9 di Mf
e si cerca di capire com'è fatta <p(6), ehe sarà la curva generica del sistema M^0(p-\.
Qui sarà utile la decomposizione di Sarkisov: <p <p$ o --- o cpi, perché ogni <p\ è

notevolmente semplice.

a)fèdeltipoD5(A2 «- B2,C2). Chiameremo g (Xi, X2, X$, X4, X5)laconica
per i punti X\, X2, X3, X4, X5, e scriveremo q{X\, Xk) per indicare ehe esiste

una conica ehe passa per i punti X\,..., Xk, e per indicare la conica stessa.

Prendiamo una <p associata al sistema lineare £>5(A2, C2, D2), dove il punto D
è scelto in modo taie ehe una conica délia giacobiana di <p e una délia giacobiana di

tp non abbiano punti in comune all'infuori di A, Ä, C e C, cioè:

• le coniche délia giacobiana di <p ehe passano per A non devono essere tangenti
alla tangente B délia taenode di 9 in A, e quindi le coniche délia giacobiana di

<p ehe passano per Ä non saranno tangenti a B;

• D,D i q{A, A, B, C, C) yî, D,D i q{A, A, B, B, C) yï e quindi
B C

D,D i q(A, A, B, C, C) yf{, D,D £ q(A, A, B, B, C) y*.
Chiamiamo A', C, D' e i loro coniugati i punti base di <p 1, ehe poi sono le

immagini per <p di yvA y^ y£ e délie loro coniugate.
La quintica generica 9 del sistema Hf taglia yA e y£ in 2 ¦ 5 - 3 ¦ 2 4 punti

hberi, y^ in 2-5—4-2 2 punti liberi. Ne segue ehe <p(6) avrà punti quadrupli in

A', C, A', C e punti doppi in D', D'. Ci resta da capire cosa avviene dei punti di 9

ehe cadono nei punti base di tp :

• per C e analogamente per C), dato ehe la tangente ai rami di 9 per questo punto
sono variabili, dopo lo scoppiamento di C (seconda mossa), la trasformata di 9

su T taglierà la sezione di y : T ->¦ P1, cioè ognuna délie due componenti del
divisore eccezionale di n : T --* Q, in due punti qualsiasi, ehe verranno infine

trasformati in due punti variabili délie coniche y^ e y_ rispettivamente (per

seguire le mosse sulla figura 1, occorre sostituire i punti B e C délia figura
rispettivamente con i punti C e D di questo paragrafo);

• per A invece, 9 ha due rami tangenti alla stessa retta B. La trasformata di
9 su Q passera quindi doppiamente per i punti B, B e a'{Ea), ehe grazie

all'ipotesi di genericità su D e D non giacciono né su y^, né su y_. Andranno

a finire su dei veri punti G', G' di P2 (ehe giacciono sulle coniche yj
q(A', C, C, D', D') e yfl q(A', C, C, D', D') rispettivamente).

A

Poiché 9 taglia una curva generica di £>5(A2, C2, D2) in A, A, C, C con molte-

plicità 4, <p{6) sarà una curva di grado 5-5-4-4 9 (questo segue anche dalla
formula (5) del §4.1, con d 5, X\ X2 2, X3 0).
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Dunque cp(6) appartiene al sistema lineare £)9(A'4, C'4, D'2, G'2), dove A', C,
D' sono generici, mentre G' deve stare sulla conica yA,

Osserviamo ehe A', C, G' ed i loro coniugati non sono su una stessa conica, se

no questa si staccherebbe dalle curve di £>9(A/4, C'4, D'2, G'2). Sia dunque r una
trasformazione di ordine 5 associata al sistema lineare £>5(A/2, C'2, G'2), e siano

A", C", G" i punti base dell'inverso di r.
Vediamo ora ehe D' e D'non giacciono sulla giacobiana di r :

• D', D' i yxG, U yl-. Se D' g yxG, q{A', A', C, C, G') oseD'e yx&, allora

questa conica si staccherebbe dal £)9(A'4, C'4, D'2, G'2). Quindi né D' né D'
appartengono a yG, o ylf.

• D', D' i yxA, U yl: Se D' appartenesse aq(G', G', C, C, A') yl poiché

la conica q{A', C, C, D', D') y_ contiene anche G', queste due coniche
A'

avrebbero in comune i cinque punti A', C, C, D', G' e quindi coinciderebbero.
Ma allora yl dovrebbe contenere C', D'', G' ed i loro coniugati, e sarebbe quindi

una conica reale, componente fissa di JÇ-i.
Se D' appartenesse a q(G', G', C, C, A'), ragionando come prima, si vede ehe

yxA, sarebbe una componente fissa di H(p-\.

> D', D' i yxc, U yl-. Se D' G yl, poniamo y =yx-t q(A\ A', C, G', G')

q(A',Ä',C,G',G',D'). Vogliamofarvedereche^-1(y) g(A,Ä, B,B, C,D)
in questo caso, in contraddizione con l'ipotesi di genericità posta su D.

Notiamo ehe y non contiene né C, né D', se no y sarebbe reale, quindi y
q(A', A', C, C, G', G', D', D') sarebbe componente fissa del £>9(A/4, C'4, D'2, G'2).

L'intersezione di y e yPA, q(A', C, C, D', D') contiene i tre punti base

A', C, D', ma non contiene né C, né D'. Quindi y n yA, contiene esattamente un

punto libero, e allora q)~l{y) B A.

Con ragionamenti simili, si vede ehe ç~1(y) b A,C, D e quindi avremmo

appwto q(A, Ä, B, B, C, D).
Se D' g y yl/ si procède in modo simile; qui y q{A', A', C, G', G', D'), e

D', C £ y. Se ne dedurrebbe ehe q)~l{y) q{A, A, B, B, C, D), contrariamente

all'ipotesi posta su D.

Ne deduciamo ehe r {D') è un vero punto di P2, distinto da A" e B". Procedendo

come per l'esame di cp{JD5{A2 ¦<- B2, C2)), si vede ehe

r(D9(A/4, C'4, D'2, G'2)) D5(A//2, C"2, x(D')2).
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In fin dei conti, abbiamo mostrato ehe fo^ot"1 e$5.
È da notareche il sistema lineare £>9(A/4, C'4, D'2, Ga) associatoa^ ^jroq)~l,

benché abbia punti base con singolantà ordinarie, non è generico, perché G' e G'

stanno su y f, e y_ rispettivamente, corne abbiamo visto. Studiando l'imniagine

per i/r di una curva del sistema di <p, chiamando A*, B*, C* i punti base di tp 1,

si puö vedere ehe le curve del sistema lineare di §~1 appartengono a £>9(A*4 ¦<-
B*2, C*4, ^jr(D)2), cioè possiedono in A* un punto quadruplo, nel quale due rami
hanno una tangente fissa, rappresentata da B*.

b) f è del tipo £>5(A2 ¦<- B2 ¦<- C2). Qui possiamo servirci del caso précédente,
cioè utilizzare, per semplificare tf/, trasformazioni <p di tipo £>5(A2 ¦<— 52, D2), con
D generico, cioè

(1) C,Ciy'^y'p (2) C, C £ y£ U y|, (3) D.fl^^Uy!.
Una curva generica di M(p è una quintica con punti doppi in D, D, e taenodi in A, Ä,

con tangente fissa uguale a B, B, cioè la stessa tangente ehe per la curva generica
del sistema lineare Mf. Sia JÇ-i £>5(A/2 <- 5/2, D/2).

Osservazione. Sia Ö una qualsiasi curva ehe taglia y^ in un punto X, fuori dai punti
base di(p,e considenamo solo i punti di 9 in un intorno di X. Il trasformato di 9 su

Q! passera per B', e quindi <p(6) sarà tangente in A' alla retta fissa di P2 rappresentata
da B'.

Se ora 9 è la curva generica di £>5(A2 ¦<- 52 ¦<- C2), essa tagherà y| in 4 punti
liberi e y^ in due punti liberi (utilizziamo le proprietà di genericità (1) e (2) poste su

D). Ne segue ehe <p{6) avrà in A' un punto quadruplo con quattro rami tutti tangenti
alla retta per A' rappresentata da B' (e lo stesso tipo di singolarità in A'), e avrà un

punto doppio ordinario in D' epiy^) (e simile in D')-
Per seguire le mosse sulla figura 2, occorre sostituire il punto C délia figura con

il punto D di questo paragrafo. Resta da vedere cosa avviene nel punto base A (e

analogamente Ä); su U, il punto doppio con due rami tangenti di uguale curvatura
di 9 si trasforma in una taenode ordinaria per B, e su T diventa un punto doppio
ordinario in C, con tangenti ai rami libère, ed infine nel P2 di arrivo, sarà un punto

doppio ordinario G', con tangenti ai rami libère (utilizziamo (1)), ehe giace su yg,
q(A', A', B', D', D'). Ne segue ehe

(p(£>5(A2 <- B2 <- C2)) 5)9(A/4 <- B'4, D'2, G'2)

e i punti (A' ¦<— B', D') non giacciono su una stessa conica, e neppure i punti (A' ¦<—

B', G'), se no si staccherebbero dal £>9(A/4 ^- B'4, D'2, G'2), mentre G' g y'f\
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Consideriamo ora la trasformazione / d'ordine 5 associata al sistema lineare
D5(A'2 <- B'2, G'2); sia 9 e D9(A'4 *- B'4, D'2, G'2). Poiché 9 taglia una curva

generica del £)5(A'2 «- B'2, G'2) in A', A' con molteplicità 16, e in G', G' con
molteplicità 4, / (Ö) sarà di grado 5-9-2-16-2-4 5.

Nella decomposizione di Sarkisov di x, la trasformata di 9 su Q ha due punti
quadmpli ordinari in B', B', ehe corrispondono a A' e A', in piu delle due paia di

punti doppi in D', D' e G', G'. Passando a T, i due punti quadrupli diventano 4

punti ordinari di EB e E- nspettivamente, e finiscono come punti ordinari del P2 di

arrivo. II destino del paio di punti doppi G', G' è simile.

I punti doppi D' e D' non sono punti base di /, e procedendo come nel caso b),

utilizzando la proprietà di genericità (3) posta su D e q{A', A', B', D', D', G'), si

vede ehe D e D' non giacciono sulla giacobiana di x. Le loro immagini sono due

punti doppi D" x(D') e D" / (£>')•

L'intersezione di 9 con y£ contiene A', A', B' e B' con molteplicità 4, più G' con
molteplicità 2; in tutto contano per 4-4 + 2 18 punti, quindi non ce ne sono altri.

D'altra parte, l'intersezione di 9 con y£ contiene A', A', e B' con molteplicità 4,

G' e G' con molteplicità 2; tutti questi contano per 3-4 + 2-2 16 punti, restano

quindi 2 punti d'intersezione liberi, e ne segue ehe /(ö) possiede punti doppi in
M" x (yj)t) e M" x(/-,)• Segue dall'osservazione fatta innanzi ehe i 2 rami di

X (9) per M" avranno una tangente in comune; chiamiamola N".
Infindeiconti, focp-lox~l appartieneal sistema lineare £>5(M//2 ¦<- N"2, D"2)

e quindi abbiamo dimostrato il teorema II.

Nota. Sia 9 una curva piana reale di grado d, con punti singolari di molteplicità k\
in A e Ä, À2 in 5 e B, A3 in C e C, e ancora kj nei punti Pj e Pj, j 4, k,
dove i punti A, B e C sono come quelli considerati per i diffeomorfismi birazionali
di ordine 5 e i punti Pj sono sia in P2, sia infinitamente prossimi, ma tutti distinti da

A, B e C. I calcoli ehe abbiamo fatto per la prova précédente, si generalizzano per
mostrare ehe, se <p è un diffeomorfismo di ordine 5 corrispondente à A, B, C, allora

ç(9) G £>5

(P')Xk)

dove A', B', C sono corne precedentemente, e P'. <p(Pj). Questa è analoga alla
formula delle trasformazioni di curve per trasformazioni cremoniane quadratiche nota
nel caso complesso, ehe si trova ad esempio in [10], Ch. III,§ 2, Theorem V.
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