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Diffeomorfismi birazionali del piano proiettivo reale

Felice Ronga e Thierry Vust

Abstract. We study real birational transformations of the real projective plane which are dif-
feomorphisms. It turns out that their degree must be congruent to 1 mod 4, and that they are
generated by linear automorphisms and transformations of degree 5 centred at 3 pairs of conju-
gated imaginary points. Our approach is inspired by recent proofs of the classical theorem of
Noether and Castelnuovo that use the Sarkisov program.
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1. Introduzione

In questo lavoro si studiano trasformazioni cremoniane del piano proiettivo reale IP’%R,
prive di punti base reali.

Piu precisamente, sia K = R o C e K[xo, x1, x2]4 lo spazio dei polinomi omo-
genei di grado d nelle variabili xg, x1, x3, a coefficienti in K. Una trasformazione
cremoniana, o birazionale, di ordine d del piano proiettivo ]P’]IZ< ¢ determinata da un tri-
plo fo, f1, /2 € Klxo, x1, x2]4 senza fattori in comune, tale che il morfismo razionale
indotto:

¢ =fo. fi. f2]: P > PE,
[x0, x1, x2] +——> [fo(xo, x1, x2), f1(x0, X1, x2), f2(x0, X1, x2)]

sia birazionale, il che significa che esistono aperti non vuoti, nella topologia di Zariski,
U,V C IP’]IZ< tali che la restrizione di ¢ a U sia un isomorfismo su V; ne segue che
esiste un inverso ¥ = [go, g1, 21, ove gi € K[xo, x1, x2]4 (vedasi [6], [4] libro
quinto, cap. II, [10] chap. VII, §4 o [1] per piu ampi dettagli sulle trasformazioni
cremoniane). In realtd, se si denota con X (@) la giacobiana di ¢, cioe la curva di
grado 3(d — 1)

a 3
Z(p) = {[XOJCl,Xz] ePX ‘ det (%(xowuxz)) = 0}
Xj
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eU(p) = IPHZ{ \ Z(¢), allora ¢ ¢ birazionale se e solo se esiste 1’inverso i tale che

p:Ulp) — U(Y).

Un modo conveniente per descrivere trasformazioni cremoniane ¢ in termini di
sistemi lineari di curve piane, a cui si prescrive di passare perdeipunti {Py, ..., P} C
]P% con molteplicita A1, ..., A rispettivamente; poniamo

B, ... o B
={f € Clxg, x1, x2]4 | f siannulla all’ordine A, in Py, h =1,...,k}

e supponiamo soddisfatte le 2 condizioni

An(hp — 1) _ d+2)d+1) 3

M~

. 1
- > > ey
k
A2 =d?—1. )
h=1
Se supponiamo inoltre che i P, ..., Py sono in posizione generale, allora
Gd(PM, T Pkk ¥y & di dimensione 3 e se per di pil la curva generica del sistema

¢ irriducibile, allora ogni base ¢ = (fo, f1, f2) di questo sistema lineare definisce
una trasformazione cremoniana (vedi [4] ibid., §20, p.158). L’insieme B(¢) =
{P1, ..., Py} sichiama insieme dei punti base, o fondamentali, della trasformazione;
essi determinano la trasformazione ¢ a meno di un isomorfismo lineare dello spazio
IPZ di arrivo.

In questo modo perd non si ottengono tutte le trasformazioni cremoniane, ma solo
quelle cosiddette “generiche”, cioe quelle i cui punti base sono punti multipli ordinari;
per ottenerle tutte, bisogna ammettere punti base “infinitamente vicini” (vedasi [1] o
[4] ibid.).

Se fo, fi, f» € Rlxg, x1, x2]4, diremo che ¢ = [ fo, f1, f2] & una trasformazione
cremoniana reale, e allora ¢ induce una trasformazione ¢p : ]P’H% ------ > ]P’Hz{. Nel caso
K = C, siha sempre che U(¢) # P2, salvosed = 1. Se pero f ereale, pud accadere
che Z(p) NP2 = 4, e in tal caso ¢ & un diffeomorfismo di P2, che noi chiameremo
diffeomorfismo birazionale. Notiamo che I'immagine di ogni componente di % (¢)
deve essere un punto base dell’inverso di ¢, per cui ¢ equivalente supporre che 2 (¢)N
P2 = o che B(p) NPE = 0.

E giunto il momento di far vedere I’esempio fondamentale di diffeomorfismo bira-
zionale diP%. Siano Py, P, P; € P%\P% esiano P; iconiugatidi P;,i = 1,2, 3; sce-
gliamo P;, P;, P3 in modo tale che questi 6 punti non giacciano su una conica; in pat-
ticolare, P1, P> e P3 non devono essere allineati. Per assicurarsi dell’esistenza di tali
punti, si pud prendere una conica non reale ¢, nel fascio di coniche per Py, Pi, P2, P
poi scegliere P3 € ¢ \ P2. 1l sistema lineare C3(PZ, P7, P, P2, P}, P?), ciot il
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sistema delle quintiche aventi un punto doppio in Py, P, P3, Pi, P> e P3 soddisfa le
condizioni (1) e (2), come si verifica facilmente, e la curva generica ¢ irriducibile;
poiche non ha punti base reali, esso definisce un diffeomorfismo di ]P’%R.

Sia fy, f1, f> una base di @ = C3(PE, P3, P}, P, P} P?) e ¢ = [fo. fi. f2]
la trasformazione associata; vediamo ora che il suo inverso & dello stesso tipo. Sia
vp, 1 = 1,2,3, la conica per tutti i punti base, eccetto P;, e in modo simile Y

e scriviamo y per una di queste 6 coniche. Ogni y interseca le quintiche di ¢°
doppiamente in 5 punti base, e quindi se una f € €3 passa per un punto generico
P €y, allora f contiene y come componente; ne segue che la restrizione di €% a y
¢ un sistema lineare di dimensione 1, e quindi I’immagine di y si riduce a un punto
di P?. Queste coniche appartengono evidentemente alla giacobiana di ¢; questa &
di grado 12, quindi ¢ esattamente la riunione di queste sei coniche. Chiamiamo P/
I’immagine di y;, e quindi Isl.’ sara I'immagine di y ; una retta generica interseca
una y in due punti, la sua immagine per ¢ sara dunqué una quintica, con punti doppi
nei P/, e ciod un elemento del sistema lineare eS(p?, P2 PR PR, P2 Pt g
quindi se ¥ € una trasformazione associata a questo sistema, I’immagine di una retta
per la composizione A = y o ¢ sard una retta, ¢ allora A € un isomorfismo lineare.
Dunque A~! o ¢ & I’inverso di ¢, il che viene a dire che si pud scegliere una base v/’
di ¢3(Pj%, P42, P2, P42, P2, P4?) in modo che ¢ sia I'inverso di .
Designeremo con &5 1 sistemi lineari di questo tipo. Si noti che scegliendo punti
P1, P>, P3 diversi, si ottengono trasformazioni che in generale non sono equivalenti
attraverso isomorfismi lineari dello spazio di partenza, visto che la scelta dei P;
dipende da 12 parametri reali, mentre il gruppo lineare proiettivo ha solo 8 parametri.
Per semplificare, scriveremo :Dd(P’X LI P,f") per indicare il sistema lineare

eI(PM, PN, ..., PN, F,? “y. 1l lettore potra verificare che i sistemi lineari
2P}, Py, 01, 0. DB(PC 01 03,09 e DB PP, 01 03 0%

forniscono altri esempi di diffeomorfismi birazionali.
Lo scopo di questo lavoro ¢ di stabilire i due risultati seguenti.

Teorema 1. Sia ¢: ]P’%Q — ]P’ﬂz% un diffeomorfismo birazionale di ordine d. Allora
d =1 mod 4.

Teorema I1. Ogni diffeomorfismo birazionale di IP’?“R e composizione di diffeomorfismi
di tipo Ps.

La prova del teorema I ¢ elementare e sara presentata alla fine di questa introdu-
zione.

11 teorema IT pud essere considerato come una versione reale del noto teorema
di Noether, che afferma che ogni trasformazione birazionale di IP’% si pud scrivere
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come composizione di trasformazioni quadratiche con 3 punti base distinti. La sua
dimostrazione ¢ piu elaborata; quella che proponiamo ¢ ispirata dal programma di
Sarkisov (vedere [9] § 1.8, [3]). L’idea di base ¢ quella gia sfruttata da Nocther:
nel caso complesso, per una trasformazione di ordine d, si mostra che le 3 maggiori
molteplicitd A1, A2, A3 dei punti base soddisfano I’ineguaglianza

A+ A+ A3 >d.

Questi 3 punti vengono poi utilizzati, quando ¢ possibile, come punti base di una tra-
sformazione quadratica per semplificare la trasformazione iniziale (cioe¢, abbassarne
I’ordine).

La versione reale di questo risultato afferma che, per un diffeomorfismo birazio-
nale di P2 , esistono 3 paia di punti base, P1, P», P5 eiloro coniugati P1, P2, P3, che
pure soddisfano I’ineguaglianza qui sopra. Questi 6 punti possono essere utilizzati
come punti base di una trasformazione di tipo ®5 per semplificare la trasformazione
iniziale. La difficolta, nel nostro caso come per il teorema di Noether, consiste nel
fatto che 1 punti base di maggiore molteplicitd non sempre sono dei bravi punti di-
stinti di P, ma alcuni possono essere “infinitamente prossimi”. Per superare questa
difficolta ¢ utile, seguendo appunto I’idea di Sarkisov, di aver ricorso a modificazioni
appropriate dello spazio ]P’Hz%, ecio¢ le superfici Q e T (fibrati di Mori) di cui parleremo
al §3.

Non esistono esempi simili nel caso della retta proiettiva, poiché le trasformazioni
cremoniane in questo caso sono isomorfismi lineari. Esistono pertanto diffeomorfismi
7 ]P’]k — ]P’%R della forma ¢ = [fy, f1], con fo, fi € R[xg, x1] di grado superiore
a 1. Ad esempio:

3
folt) = 51
+2

Si verifica che f{j(r) # O per tutti r € R; d’altra parte, se si pone

2u® +u
Ji(u) = 1/fo(1/u) = ZI1
dinuovo si ha che f{(u) # O per tuttiz € R. Quindi ¢ ¢ un diffeomorfismo razionale
di IP’]}{, il cui inverso perd non puo essere razionale. Questo esempio si puo visualizzare
cosi: si consideri la curva parametrica «: ¢ (12 +1, 23+ t); ¢ ovviamente una
cubica razionale, che possiede un punto doppio isolato sui reali in (0, 0), immagine
di t = ++4/—1. La composizione di « con la proiezione dal punto doppio (0, 0) &
I’identita. Se proiettiamo invece da un punto vicino P a (0, 0), sui reali, si ottiene
una mappa prossima all’identita, quindi un diffeomorfismo (mentre sui complessi si
avra una mappa di grado 3). Scegliendo P = (—1, 0) si ottiecne appunto la mappa
Jo(t) qui sopra.
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Per concludere questa introduzione, vediamo un esempio di diffeomorfismo bi-
razionale di Pﬁ%. Si prendano 6 punti Py, P2, Py e Py, P, P3 in ]P’(zc come per una
trasformazione di tipo ®5. Si scelga una base ¢ = («o, . . ., «3) dello spazio vetto-
riale di dimensione 4 delle cubiche piane che passano peri P; ed i F, i =1,2,3,
cosicche a(IP’(Z:) - IP’?C ¢ una superfice cubica reale. Si prenda una quartica liscia,
reale 'y C IP% senza punti reali, che passaperi P; ed i 13,~, i =1, 2, 3 (se avete dubbi
sull’esistenza di una tale quartica, prendete prima la quartica xé + xi‘ + xé‘ =0, e poi
Py, P>, P53 su questa quartica). Allora I's = «(I"4) ¢ una sestica reale, senza punti
reali. Com’¢e noto (vedi [10], chap. VII, §4.2, o [7]), il sistema lineare delle superfici
cubiche che contengono la I'¢ fornisce una trasformazione birazionale di P3 , con
I'¢ come curva di punti base; prendendo una base reale di questo sistema lineare si
ottiene quindi un diffeomorfismo birazionale di P,.

Convenzione. Seguendo [8], una varieta reale & una varieta proiettiva X sul corpo
dei complessi, munita di una struttura reale, cio¢ di un anti-automorfismo involutivo
x > Xx; si denota con X (R) I’insieme dei punti reali, cio¢ tali che x = x. Per
esempio, lo spazio proiettivo complesso P, munito della coniugazione delle coor-
dinate omogenee: [zg : -+~ : 2] > [Z0 : -+ : Z,]; d’ora in poi denoteremo con P*
questo spazio, e quindi abbiamo P*(R) = IP;. Un altro esempio tipico & una varieta
proiettiva complessa definita da equazioni polinomiali a coefficienti reali, come la
quadrica Q C P3 definita da z3 + z7 + z3 — 22 = 0, per la quale Q(R) & la sfera.

Utilizzeremo il gruppo A (X) di Néron—Severi, che ¢ il quoziente dello spazio
vettoriale (su R) generato dai cicli reali di dimensione 1 su X per la relazione del-
I’equivalenza numerica: un ciclo C C X di dimensione 1 & reale se C = C e due
cicli C e C’ sono equivalenti se (C - D) = (C’ - D) per ogni divisore di Cartier D
sudi X. Scriveremo | D| per il sistema lineare completo costituito dai divisori com-
plessi linearmente equivalenti a D. Salvo menzione esplicita, le varieta e morfismi
considerati saranno reali.

Prova del teorema I. Sia dunque ¢: P> > P? un diffeomorfismo birazionale di
ordine 4. La giacobiana % (¢) ¢ una curva di grado 3(d —1); poiché non ha punti reali,
le sue componenti devono essere di grado pari. Non pud avere componenti invarianti
per la coniugazione complessa, poiché la sua immagine sarebbe un punto base reale
dell’inverso. Quindi X (¢), essendo composta da un numero pari di componenti,
ciascuna di grado pari, il suo grado € un multiplo di 4:

3(d—1)=0mod4 = d=1mod4.
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2. L’ineguaglianza di Noether

Come ¢ spiegato in [1], specialmente nella proposizione 2.5.2 (o anche in [4] ibid.,
0 [10] ibid.), una trasformazione cremoniana pud sempre essere descritta prendendo
una base del sistema lineare G(PIM, —_ P,?k ) delle curve di grado d che passano
per dei punti P, ..., P, con molteplicitd A1, ..., Ax. Alcuni di questi punti perd
possono essere “infinitamente vicini”. Comunque, le seguenti formule restano valide:

(d—-1)(d-2) _ZM(M —1]
2

> =0, (1)

i=1
k
Zx% =d*—1. )
i=1

La (1) esprime che la curva deve essere di genero uguale a 0, 1a (2) che due curve del
sistema si intersecano, oltre ai punti basi, in un solo punto variabile. Se ne deducono
le due uguaglianze equivalenti:

k
D a=3d-1, (1)
i=l
k
dai=d> -1 )
i=1

Queste uguaglianze possono essere sfruttate per dimostrare che se Py, P ¢ P3 sono
i punti base con massima molteplicitd di un morfismo birazionale che non sia un
isomorfismo(cioe d > 1), si ha I’'ineguaglianza di Noether:

Mtrr+ i3 >d

come ad esempio in [4], libro quinto, capitolo II, p. 166. Osserviamo che i punti
base sono almeno 3, perché se no A1 + o = 3(d — 1) e allora la retta per P ¢ P, si
staccherebbe dalle curve del sistema.

Nel caso di un diffeomorfismo birazionale, i punti basi, anche quelli infinitamen-
te vicini, vengono per paia di punti coniugati P; # Pi,i = 1,...,k con stessa
molteplicitd A;. In questo caso sappiamo inoltre che il grado del sistema ¢ della
forma d = 4m + 1, che scriviamo :Dd(P“, - PkA ). Dimostriamo ora il lemma
seguente, che ¢ la versione adeguata dell’ineguaglianza di Noether. Sottolineamo che
nell’enunciato, le tre paia (P, 151), (P, 152) e (P3, 133) sono distinte.

Osservazione. Se A1 > Ay > A3, I'ineguaglianza di Noether classica ci dice solo
che 2x1 + Xy > 4m + 1.
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Lemma (ineguaglianza di Noether per un diffeomorfismo birazionale). Siano Pi, P>
e P3 tre punti base con la massima molteplicita. Allora si ha I’ineguaglianza

AMAAr+Ar3>4dm+ 1.

Prova. Seguiamola provadi [6], chap. I, § 10. Possiamo supporreche k1 > iz > A3.
Segue da (1) e (2) che

k

D :%3(4m+1—1):6m, (a)
i=1

k 1

Zx3:§<<4m+1)2—1> = dm@2m +1). (b)
i=1

Notiamo che A1 < 2m, se no la retta per P e P si staccherebbe come componente
fissa.
Calcoliamo (b) — A3 - (a):

k k
D OrF—h3 D ki =2m(4m +2) — 6m - hs,
i=1 i=1

che si puo riscrivere

k
M1 = A3) 220k —23) = D Ai(h3 — i) = 2m(dm +2) — 6mirs
i=4
O ancora
k
2m(dm +2) = A (M — A3) + A2(M — A3) — ¥ Ai(h3 — i) + 6mAs.
i=4
Ne deduciamo
2m(A + Ay + Az — (4m + 2))
k
=2m(M 4 A2 +23) — A(h — A3) — Aa(M — A3) + Y Ai(A3 — &) — 6mis
i=4
k
= (2m — A)(A1 — A3) + @m — A)(Ay — A3) + D Ai(A3 — Ay).

i=4

Poiché tutti i termini dell’ultima espressione sono positivi o zero, se ne deduce che
MAArAx+iz—@m+2)>0cequindi A; + Ay + 23 > 4m + 1. a
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Per incoraggiarci, notiamo che se ¢ ¢ un diffeomorfimo birazionale di grado
4m + 1 i cui tre punti di massima molteplicita P1, P>, P3 sono dei veri punti di P2,
questi e 1 loro coniugati non possono essere suuna stessa conica g, perché se no segue
dall’ineguaglianza di Noether che g interseca una curva del sistema di ¢ in almeno
2(h 4+ A2 + A3) > 2 - (4m 4+ 1) punti, e quindi si staccherebbe dal sistema di .
Possiamo dunque scegliere una trasformazione ¢ di tipo &5 con punti base i P; e i
loro coniugati; una curva del sistema di ¢ e una del sistema di ¥ si incontrano nei
punti base, che contano per 2(2(A1 + X2 + 13)) > 4(4m + 2) punti, ed inoltre in un
numero di punti liberi uguale all’ordine di v o ¢!, che quindi & uguale a

5-Um+1) =40 +r2+23) =dm +1— 40 + A2+ A3 — (dm + 1))

ed & percio strettamente inferiore all’ordine di .

3. Alcuni modelli di P2

Loscopo di questo paragrafo ¢ di definire le superfici che utilizzeremo per semplificare
un diffeomorfismo birazionale, e di stabilirne alcune proprieta.

Sia Q la quadrica reale di P? definita dall’equazione z3 + z2 + z3 — z3 = O e sia
T la superfice ottenuta facendo scoppiare due punti immaginari coniugati A, A su Q;
si verifica facilmente che il gruppo di Lorentz (cio¢ il gruppo che lascia invariante
I’equazione di Q) opera transitivamente su Q \ Q(R), e quindi diverse scelte dei due
punti danno luogo a varieta isomorfe. Notiamo che Q & isomorfo a P! x P!, per il
morfismo

P! x P! - P, ([a, b, [u, v]) — [i(au + bv), au — bv, av + bu, av — bu)];

il quale & compatibile con la coniugazione su P! x P! definita da [(a, b), (4, v)] —
[(#, —it), (b, —a)], e la coniugazione usuale su P3.

Lavoreremo con la categoria 4 (in omaggio a Sarkisov) i cui oggetti sono le super-
fici reali P2, Q e T, con la loro struttura reale, e i cui morfismi sono le trasformazioni
birazionali. In piu, per ogni oggetto S di 4 si distingue un elemento Fs particolare
di N1(S):

+ I ¢ la classe di una retta reale.

+ Fgp & la classe di una curva di tipo (1, 1). Poiche la coniugazione di Q manda
le curve complesse di tipo (m, n) su quelle di tipo (n, m), Fg € un generatore
di M1(Q).

o Fr =n*(Fg) — Ex,dove: T — (Q denota lo scoppiamento dei due punti
immaginari coniugati A, A e E la classe del divisore eccezionale, ciod¢ E, =
7~ 1({A, A)).
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Secondo I'usanza, designeremo con K il divisore canonico della superfice S.
Notiamo che Kp» = =3I e che FH%Z = 1. D’altra parte, K9 = —2 - Fg e quindi
possiamo scrivere Ko = —2(1,1) e Fé =(1,1)-(1,1)=2.

Passiamo a T, che ¢ un caso pit elaborato; si vedra che T ¢ un fibrato in coniche su
P!. Ricordiamo che un fibrato in coniche & un morfismo f: S — B di una superfice
S su una curva B, tale che la fibra generica & isomorfa a P!, e le altre (in numero
finito) sono isomorfe all’unione di due rette che si intersecano trasversalmente in un
punto (vedi [2]).

Proposizione (proprieta e caratterizzatione di 7).
1) N (T) e didimensione 2, ed e generato da K e Fr, per intersezione, si ha

F:=0, Ky -Fr=-2, Ki=6.

i) Il sistema lineare | Fr| ¢ di dimensione 1, senza punti base; il morfismo ¢ T —
P! che se ne deduce é un fibrato in coniche con esattamente due fibre singolari,
che sono situate su due punti reali di IP’l, e sono costituite ciascuna da due rette
immaginarie coniugate.

iii) Reciprocamente, sia y: X — P un fibrato in coniche con esattamente due
fibre singolari, situate su due punti reali di P'; supponiamo che N1(X) sia di
dimensione 2. Allora esiste un morfismo wy: X — Q che presenta X come lo
scoppiamento di due punti immaginari coniugati di Q.

Prova. i) Siaw: T — Q lo scoppiamento di due punti A, A € Q esia E; =
7~ 1({A, A}). Allora & chiaro che N1 (T) & generato da w*(Fp) e E,. Poiche K1 =
7*(Kg) + Ex, ne seguono le formule e asserzioni di 1).

ii) Consideriamo la proiezione P> > P! centrata sullaretta che passaper Ae A,
e la sua restrizione ¢’: Q > P!, Le fibre di ¢’ sono le intersezioni dei piani per A,
A con 0, e quindi sono di tipo (1, 1); inoltre, esattamente due di queste degenerano
in un paio di rette immaginarie, ¢ cio¢ quelle che corrispondono ai piani tangenti a
O che passano per A e A. L’asserzione ii) segue poi dal fatto che ¢ = ¢’ o 7.

iii) Qui ¢ meglio dividere la prova in pil tappe.

a) N1(X) e generato da Kx e dalla fibra Fx di y; si ha

Fi=0, Fx-Kx=-2, K%=6.

E chiaro che F )2( = 0 e segue dalla formula dell’aggiunta che Fy - Kx = —2; quindi
Fx e Kx sono una base di N (X).

Se ci fosse una fibra singolare F; = C"UC”, con componenti C' e C” reali, allora
si avrebbe:

O — (C/ + C//>2 — (C/)2 + 2c/ . C// +(c//)2 = (C/)Z + (C//)Z — _2
=1
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quindi o (C")?* # 0, o (C”)* # 0; mettiamo che (C')> # 0. Si pud scrivere
C'=a- -Fx+b Kx,a,beR. Allora

0=Fx-C'=a-0-2-b = b=0.

Ma allora (C")? = (a - Fx)? = 0, una contraddizione.

Quindi, le 2 fibre singolari F] e F, sono ciascuna riunione di due curve immagi-
narie coniugate: F; = C; U C; che si intersecano trasversalmente in un punto.

Lavorando per un momento con cicli complessi su X (C) e le loro classi di equi-
valenza numerica, vediamo ora che Cl.2 = Eiz = —1,i = 1,2. Per prima cosa,
osserviamo che se C, D C X sono due cicli complessi, allora C - D = C - D, perché
la coniugazione preserva 1’orientazione della superfice e rovescia quella dei cicli.
Scrivendo C per C1 0 Cy:

0=F2=(C+CP*=C*4+2C.C+C*> = C*=C*=-1.
——
=1
Possiamo quindi considerare il morfismo o : X — F che contrae C; e Cy: la

superfice F non ¢é reale, e o ¢ un morfismo di superfici complesse. La F ¢ una
superfice rigata, e si ha un diagramma commutativo:

X%F
A
P! .

B risaputo che K[% = 8 (vedi [5], chap. V, corollary 2.11), e ne segue che K }2( = 6.

b) Non esistono sezioni definite sui reali di y: X — PL. Se una tale sezione
esistesse, notiamo con C la classe della sua immagine in A (X); poiche

C-Fx=1 e C*4+C-Kx=-2 (formuladell’aggiunta)
e ponendo C = «Kyx + BFx, «, B € R, si avrebbe
—2a =1, 6a(x+1) =281 +20) = -2 = 6(-1/2)(1/2) = -2

il ché ¢ assurdo.

¢) X ¢ lo scoppiamento di due punti su Q. Larigata complessa [F ¢ della forma
P(O0) & @(—k)), con k > 0. Ora vediamo quali valori pud avere k. Osserviamo
che o0 : X — F induce una biiezione fra le sezioni di y e quelle di §: alla sezione
D C X di y si associa o (D), e alla D' C FF di § si associa il trasformato stretto
o~1(D’). Siano infine P; = o(C;), i = 1, 2, i due punti che o fa scoppiare.
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Il caso k = 0. AlloraF = P! x P!, e si pud supporre che § & la proiezione sul primo
fattore; le sezioni complesse di 8 sono le curve irriducibili Dy , di tipo (1, n), con
n > 0. Ne segue

2}’1 Ser¢D]’n,i:1,2,
(e MDY =12n—2 sePi €Dy, i=1,2,
2n —1 negli altri casi.

Quindi si ha una delle seguenti possibilita; fra tutte le sezioni di y:
(i) Esiste esattamente una Dy con D(Z) < 0,ecioe Dy = o"l(Dl’o), Dyg> Py, Ps.
(i) Esistono esattamente due sezioni D e Dy con D?, D% < 0, trasformate strette
di D{) > Pye Dy} > Py rispettivamente. Per dipit, D? = —1e D1 N\ D; = f.
11 caso (1) non pud presentarsi, poiché Dy sarebbe una sezione reale, in contrad-
dizione con b). _
_Nel caso (i), si ha D, = Dy, cosicché la contrazione wx: X — X' di D1+
D; & reale. Infine, X (R) & omeomorfa alla sfera, quindi anche X'(R), e poiché
dim(N1 (X)) = dim(N1(X))—1 = 1, segue dal lemma 1.16 di [8] che X’ & isomorfo
agQ.
Il caso k > 0. In questo caso esiste un’unica sezione Dy di § di self-intersezione
negativa: D? = —k; tutte le altre sezioni sono della forma Dy+n-Fconn >k,
dove F ¢ la fibra di §, e quindi

(Do+n-F'=—k+2n>n>k>0

(vedi [5], chap, V, theorem 2.17).
Il caso k > 2 & escluso, perché allora a‘l(Do) sarebbe 1’unica sezione di ¥ con
self-intersezione negativa, quindi reale, in contraddizione con b).
Se k = 1, le uniche sezioni complesse di ¥ con self-intersezione negativa sono:
(i) o~ (Dg+ F) quando Dg + F contiene P; e Py, eallorac ~1(Dg + F)? = —1.
(ii) o~ Y(Dy), e allora 6~ 1(Dg)? = —1 — | Do N {P1, P»}|. Se Do contiene P; o
Py, allora o~} (Dy) ¢ I'unica sezione di y con self-intersezione < —1, e quindi
sarebbe reale, in contraddizione con b). Quindi Py, Py ¢ Doy e o~ 1(Dy) ha self-
intersezione —1. Sia ¢: F — P? la contrazione di Dg. Allora F = ¢*H — Dy,
ove H & unaretta di P?; le sezioni complesse di & del tipo Do+ F corrispondono
per ¢ alle rette di P2 che non passano per ¢(Dg). Esiste quindi esattamente una
sezione Dp, p, del tipo Do + F che passa per P e P> e ne segue che le uniche
sezioni di y con self-intersezione negativa, in realta uguale a —1, sono o~ (Dg)
eo! (Dp,,p,). Proseguiamo ora come nel (ii) del caso k = 0: abbiamo che
o~1(Dg) = oY (Dp,,p,), I'intersezione di o~ (Do) e o 1 (Dp, p,) & vuota, e
la contrazione di queste due sezioni presenta X come scoppiamento di un paio
di punti immaginari coniugati di Q. o
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Una prova succinta di iii) si trova in [8], lemma 3.2.4. Osserviamo che i due
casi della parte ¢) della prova di iii) qui sopra si presentano effettivamente. Difatti,
partendoda 7w : T — Q, chiamiamo E/ e E7 le componenti della fibra eccezionale
dim,C'UC’ e C”"UC" le due fibre singolari, dove C' N E. # #e C"NEY #¢. Se
definiamo IF contraendo C’ e C”, alloralF >~ P(© (0) & O (—1)); se prendiamo invece
C'eC”, alloraF ~ P! x P!,

4. Prova del teorema I1

In generale, per una trasformazione birazionale ¢ = [fo, f1, f2]: S > P2, de-
signeremo con #, il sistema lineare generato dalle f; e con H, la classe di un
rappresentante di #£, in N1 (S).

Il sistema lineare €, determina la trasformazione ¢ a meno di un isomorfismo li-
neare sul P2 di arrivo; quindi, nel casodi¢: P? ... PZ Pordine d di ¢ € determinato
da H, € N1 (P?), perché H, = d - Fpa.

4.1. Semplificazione alla Sarkisov. Sia ¢ : P> > P? un diffeomorfismo bira-
zionale che non ¢ un isomorfismo. Descriveremo una sequenza di modifiche:

Chiameremo v, la composizione di ¥ = o con (g 0---0p)) L h=1,...,5¢
scriveremo Hj, per Hy, e F#, per Hy,:

< a— > T

P2 4 S

N O AR

Vedremo che Hs = d’ - Fp2, cond’ < d — 4 e che 50 -+ o g1 & un diffeomorfi-
smo birazionale di ordine 5, non necessariamente di tipo $5, ma eventualmente una
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degenerazione di queste, in cui due o tre paia di punti base vengono a coincidere;
per dimostrare il teorema II, occorrera esprimere quest’ultime trasformazioni come
composizione di trasformazioni di tipo s, il ché faremo al §4.2.

In generale, se w: X — Y ¢ lo scoppiamento di uno o piti punti di ¥, denoteremo
con E; il divisore eccezionale di 7.

Primamossa. Sia A € P?unpunto base di # di massima molteplicita 1. Definiamo

@1 con il triangolo birazionale
PN

I —— L S -0,

dove 0 = o4 & lo scoppiamento dei due punti A e A, e o’ la contrazione della retta
reale per A e A. Siha

Hy =o0,(6"(Hy) — &1 - Eg) =0,(d - (Es + Eg)) —A1 - Eg) = (d — A1) Fg. (1)

Notiamo che contraendo la retta per A e A in un punto @ € (Q, abbiamo creato un
nuovo punto base, che ¢ reale, e di molteplicitd d — 2.

Seconda mossa. Sia B un punto base di #; di maggiore molteplicitd A2. Esso puo
essere sia infinitamente vicino a A, sia un punto ordinario di P?; in ogni caso, & un
punto ordinario di Q. Siaw = 7p: T — Q lo scoppiamento di B ¢ B. Siha

Hy = 7 (Hy)—Ay-Ex = (d—1) 7" (F) —A2-Ex = (d—1)-Fr+(d—k1—h2)-Ex.
——

:FT+E7[

Ora
Kr = n*(KQ) +E; = —27r*(FQ) +E;, =-2Fr+E;))+E;, =-2Fr—E;
e quindi

E,=—-Kr—2Fr
e viene

Hy =(—=d+x+2x) Fr —(d — A1 — 42) K. (2)
e e e,
=r =S

Notiamo che le fibre del fibrato in coniche y : T — P! associato al sistema lineare
| Fr|, si trasformano, tramite o o (¢”)~! o 7, in coniche di IP? che passano per A, A,
B, B.
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Terza mossa. Sia C un punto base di #¢; di maggiore molteplicita Az; ¢ un punto
ordinario di 7', e C non pud giacere sulla stessa fibra di 7" per la fibrazione in coniche
v: T — P!;seno, la conica g C P?, trasformata per o o (¢/)~! o7 di una tale fibra,
si staccherebbe dalle curve di #,. Difatti, ¢ passerebbe per A, A, B, B, C, C, e
quindi, secondo I’ineguaglianza di Noether, incontrerebbe una curva generica di €y,
in2- (A +Ai2+4A3) >2- (4m+ 1) punti.

Definiamo ¢3 col triangolo birazionale

VA
I
TG

dove 8 = 8¢ & lo scoppiamento di C e C, e & la contrazione delle trasformate su
T delle due fibre di y che passano per C e C: difatti queste sono disgiunte e di
self-intersezione —1. Qui viene

Kz =8"(Kr)+ Es, Ky =08,(Kz)=38,(8"(Kr)+ Es) = 8,(8%(Kr)) +2Fp
8. (8*(Fr)) = Fr/

e quindi

Hy = 5,(8"(H) — A E5)
=8, (8"(rFr — sKr) — 2xFp
=rFp —s(Ky —2Fp) — 203 Fpr
=(r+2s —2x3)Fpr —sKp: 3)
=(—d+ i +2r2+2d —2Ar1 — 242 — 2M3)Fpr — (d — M1 — A) K
=(d—A1—203) Fpr — (d — 2 — A2) K.

=4 =5

Quarta mossa. Osserviamo che T’ &, come T, un fibrato in coniche con due fi-
bre singolari costituite da due fibre immaginarie coniugate, e che dim(.N(T")) =
dim(N (T)) = 2. Quindi segue dal iii) della proposizione del § 3 che esiste un
morfismo 7’: T — Q che presenta T’ come scoppiamento di due punti immaginari
coniugati di Q e

ﬂ;(FT) = FQy ﬂ;(KT) = —2FQ

cosicché

Hy=7l(H3) = tFg+25Fg = (t +25)Fg = (3d — 3A1 — 243 — 2A2) Fp. (4)

=u
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Quinta ed ultima mossa. Qui si fa il movimento contrario a quello della prima mossa:

Q P - ]P’2 ,

dove ¢’ & lo scoppiamento del punto ¢/, immagine di O per ¢4 o @3 o @2, € o contrae
il trasformato stretto delle due rette di Q che passano per ©’.
Notiamo che 0 *(Fg) = E; + 2E, e che 0, (E,/) = Fpa. Viene

Hs = 0,(6"*(Hy) — molt(0")E,/)
= 0, (u(Ey + 2E4) — molt(0") Eyr) = (2u — molt(®")) Fp2

dove molt(®’) = molt(®’, #4) denota la molteplicita di una curva generica di #4
in O’; poiché intorno a @ il sistema J¢; non viene modificato, si ha molt(Q’, #1) =
molt(O©, #1) = d — 2X1, e quindi

Hs = (6d —6A1 —4hy —4hs — (d —211)) Fp2 = (d —4(M+ A2+ 23 —d)) Fp2. (5)

Secondo il lemma del § 2 si ha A1 + Ay + A3 > d, e quindi ’ordine di v5 ¢ inferiore
ougualead —4.

In fin dei conti, ’espressione del grado di v5, ponendo d = 4m + 1, ¢ la stessa
che quella ottenuta col calcolo che abbiamo fatto per incoraggiarci dopo il lemma
del § 2, che era valida solo nel caso in cui i punti di massima molteplicitd erano veri
punti di P2,

4.2. Diffeomorfismi birazionali di ordine 5. Analizziamo ora il diffeomorfismo
birazionale ¢ = @5 o --- o ¢1. Nelle mosse del §4.1, abbiamo utilizzato che ¢ non
era un isomorfismo lineare solo per assicurarci, nella terza mossa, che i punti C ¢ C
non fossero su una stessa fibra di y : T — P!; quindi possiamo applicare la formula
(5) qui sopra nel caso d = 1, A1 = Ay = A3z = 0, per dedurne che <p‘1 ¢ di ordine 5,
e dunque pure ¢ ¢ di ordine 5. La stessa formula, con d = 5, mostra che ogni
trasformazione di ordine cinque ¢ ottenuta in questo modo.

Ragionando con le uguaglianze (1) e (2) del § 2 e I'ineguaglianza di Noether,
vediamo ora che le curve di #, possiedono 3 paia di punti base di molteplicita 2.
Infatti, se i punti base sono Py, ..., P, con molteplicita A1 > --- > X, ed 1 loro
coniugati, si ha

Z’\i =6, Z,\%:lz, A+ A2+ A3 > 6.

Ne segue che k = 3 € A1 + A2 + A3 = 6. Segue allora da A? + A3 + A3 = 12
che A1 = A2 = A3 = 2 (per esempio: almeno una delle %;, diciamo A3 ¢ pari e
M<2=i3=2quindir} +23=8= 1 =21, =2).
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Possiamo anche vedere che A1 = Ay = A3 = 2 seguendo direttamente le mosse
della dimostrazione del §4.1. Chiamiamo C’, C’ i due punti di 7/ immagini delle
due fibre di y: T — P! che passano per C e C rispettivamente; B/, B i due punti
di Q immagini del divisore eccezionale E,/ di =’ ¢ A’, A’ i punti di P? immagini
del divisore E’ di bigrado (1, 1) di Q costituito dalle due rette che passano per O’
queste 3 coppie costituiscono i punti base di ¢~!. Deduciamo ora dai calcoli del
paragrafo precedente che la molteplicita di J€,-1 in questi punti ¢ uguale a 2. Difatt,
per ¢ = identita, utilizzando (2) con d = 1, A1 = A2 = 0 abbiamo

molt(C’, #yy) = 8" (Ha) - (8"(Fr) — Es) = Hy - Fr = (—Fr — K1) - Fr = 2.
Ora utilizziamo (3)cond = 1, A1 = A2 = A3 =0
2molt(B’, #y,) = Hy - Exr = (Fpr — Kp) - (=Ko — 2Fp) = 4.
Infine,con(d)ed =1,A; = Ay = A3 =0

2molt(A’, Hys) = (0"*(Hy) — Eo1) - (0™ (Fg) — 2E,/)
=Hy - Fg+2E, - Eqy =3F} +2E., =4.

Osserviamo che I’unica condizione sui punti A, B e C ¢ che essi ed i loro coniugati
non giacciano su una stessa conica, il che viene a dire che C e C non giacciano su una
stessa fibra di y (vedere la terza mossa del paragrafo precedente). Possono presentarsi
tre casi.

1) La ¢ ha 3 punti base distinti su P? e i loro coniugati, con molteplicita due.
Questo & il caso in cui B non giace su o’(E, ), e scriviamo, per semplificare,
B per o (6’~1(B)). Come pure, C non giace su E;, né 7(C) su o’ (E,), e
scriviamo C per o (¢’ “1(z(C))). Conformemente alla notazione introdotta nel
§ 1, il sistema lineare #€,, associato a ¢ &

C3(A%, A%, B2, B2, %, 0

che, come nel § 1, scriveremo pill semplicemente D’ (A2, B%, C?). La curva
generica del sistema ¢ una quintica con punti doppi ordinari in A, B, C (ed i
loro coniugati). L’insieme di queste ¢ ¢ stato designato con s,

2) La ¢ ha due punti base distinti A e C su P? e un punto base B infinitamen-
te prossimo. Allora B appartiene a o'(E,), ma C ¢ Ex; notiamo che in tal
caso 7(C) ¢ o/(E,), se no, come abbiamo visto innanzi nella terza mos-
sa, si staccherebbe una conica dalle curve di #€,. Scriviamo ancora C per
o (0’1 (7 (C))) € P2. Indichiamo il sistema lineare #,, con

D3(A? « B%, C?
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dove la freccia A < B sta a indicare che B ¢ infinitamente prossimo ad A. La
curva generica del sistema ¢ una quintica con punto doppio ordinario in C, ed
una tacnode ordinaria con tangente fissa (rappresentata da B) nel punto A.

e
en

3>|. & >

® ®
B @

EC‘ Ec

Yp

-

)

E/

Figura 1. Decomposizione di Sarkisov di D3 (A2, B2, C?).

3) La ¢ ha un solo punto base A su ]P’Z; allora B € ¢’(E;) e C € E;. In questo
caso indicheremo il sistema lineare #, con

DAY « B « C?.

La curva generica ¢ una quintica con tacnode ordinaria in A, con tangente fissa
(rappresentata da B) e cerchio osculatore fisso (rappresentato da C).
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Il caso di B, 7 (C) € o'(E,) non si pud presentare, come abbiamo gia visto.
Descriviamo le giacobiane di queste trasformazioni:

1) D3(A?%, B2, C?). Chiamiamo ya, 0 y§ se occorre precisare, la conica per tutti
1 punti base salvo A, ed in modo simile Y1» VB> Y ¥YC» Vg Ognuna di queste sei
coniche incontra la quintica generica ¢ € D3(A?, B?, C?) in cinque punti doppi,
che sono i punti base sulla conica; quindi, se & incontra la conica fuori dai punti
base, allora contiene la conica. Come abbiamo gia visto al § 1, ne segue che, se
7 P? ...> P2 latrasformazione ottenuta scegliendo una base di D3 (Az, Bz, Cz),
essa schiaccia le sei coniche su sei punti A = ¢(y4), A = oy X)’ e via di seguito;
questi saranno i punti base di ¢~!. Le sei coniche costituiscono la giacobiana di ¢.

Seguiamo ora come la giacobiana di ¢ si trasforma secondo le mosse del §4.1.
Ci aiuteremo con la figura 1, nella quale Ex indica in generale la fibra eccezionale
dello scoppiamento di X, e L AL indica la retta per A e A; si usera la stessa lettera
per una curva (0 un punto) e il suo trasformato stretto sui vari spazi.

Sia P}L\, p il fascio delle coniche per A, A, B, B. Sidefinisce un morfismo razionale
y:P? s P}LB associando a X € P? la conica per X, A, A, B, B; come abbiamo
gia osservato in 4.1, seconda mossa, questo diventa un vero morfismo y : 7T — ]P’}L" B
che ¢ un fibrato in coniche, con due fibre singolari su LA,E U LA,B eLspU LA,E'

Per passare da T a T”, si fanno scoppiare C e C e si contraggono yc e Yz Siha
ancoraun fibratoy’: 7/ — ]P’}A’ 5 solo che le due fibre yc e ¥z Sono state modificate.
Su 77 1a conica yp taglia ogni fibra di y’ in esattamente un punto, quindi yp & una
sezione di y’, come pure la coniugata - Quindi, seguendo il iii) della proposizione
del § 3, comprimendo yp ¢ Y3 sipassada 7" aun Q' isomorfo a Q.

Passando da P? a Q, si contrae la retta L 5 in un punto @; le coniche y4 e y b
sono le uniche componenti della giacobiana le cui trasformate passano per O, il cui
trasformato su Q’ & chiamato @’. Passando da Q' a P?, si fa prima scoppiare ¢/, e

poi si contraggono ya e y ;.

2) D°(A? « B2, C?). Procedendo come prima, qui si pud vedere che la gia-
cobiana ¢ composta dalle 4 coniche yg, Yg» ¥YCs Vg le coniche yp e Y3 appaiono
doppie nella giacobiana, perché sono limite dell’unione di y4 e yp (rispettivamente
Y e VE) del caso 1), quando si fa tendere il punto B verso A.

La decomposizione di Sarkisov & simile al caso 1), solo che ora @ ¢ il punto
singolare di una delle due fibre singolaridiy : T — ]P’}q’ 5 (quella sulla conica unione
delle rette rappresentate da B e B). Seguendo le varie trasformazioni sulla figura 2, si
vede che in fin dei conti B e B vengono trasformati su due punti B’ e B’ infinitamente
prossimi a A’ e A’ rispettivamente.
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Figura 2. Decomposizione di Sarkisov di D7 (A% < B?, C?).

3) Nel caso di D3(A? < B? < (?), ci limitiamo a indicare che Ia giacobiana &
I’unione delle due coniche yc e Y&» 0gnuna con molteplicita 3.

Torniamo ora alla prova del teorema II. Occorre dunque dimostrare che le tra-
sformazioni dei casi 2) e 3) si possono scrivere come composizioni di trasformazioni
del caso 1), cioe di tipo ®s. Procederemo cosi: data una v di tipo 2) o 3), costruia-
mo ¢ € ®s tale che ¢ o ¢! sia una trasformazione di grado 9, che a sua volta
scriveremo come prodotto di due trasformazioni di $s5; questo passaggio per una
trasformazione di grado piu alto per scomporre la ¢ ¢ inevitabile: la composizione
di due trasformazioni di ®5, se non ¢ lineare, ¢ sempre di grado almeno 9.
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Per capire com’¢ la trasformazione v o ¢!, si prende una curva generica 6 di Hy
e si cerca di capire com’e fatta ¢ (), che sara la curva generica del sistema €, 1.
Qui sara utile la decomposizione di Sarkisov: ¢ = @5 o --- o @1, perché ogni ¢; ¢
notevolmente semplice.

a)y e deltipo D> (A* < B2, C?). Chiameremoq (X1, X2, X3, X4, X5) laconica
peripunti X1, Xo, X3, X4, X5, e scriveremo ¢ (X1, ..., Xy) per indicare che esiste
una conica che passa per i punti X1, ..., Xk, e per indicare la conica stessa.

Prendiamo una ¢ associata al sistema lineare D3 (A%, C2, D?), dove il punto D
¢ scelto in modo tale che una conica della giacobiana di ¢ e una della giacobiana di
 non abbiano punti in comune all’infuori di A, A, C e C, ciog:

+ le coniche della giacobiana di ¢ che passano per A non devono essere tangenti
alla tangente B della tacnode di 6 in A, e quindi le coniche della giacobiana di
¢ che passano per A non saranno tangenti a B;

oDDgzq(AABcE)—y‘_”DD¢Q(AABEC>—yl”equindi

D,D¢q(A, A, B C,C)=yy,D,D¢q(A A B B C) =yl

Chiamiamo A’, C’, D’ e i loro coniugati i punti base di ¢ -1

immagini per ¢ di v§ , ¥Z , v}, e delle loro coniugate.
La quintica generica ¢ del sistema #¢y taglia yﬁf e y(cp in2-5-73-2=4punt
liberi, yg in2-5—4-2 =2 punti liberi. Ne segue che ¢(0) avra punti quadrupli in

, che poi sono le

A/, C', A, C' e punti doppi in D', D’. Ci resta da capire cosa avviene dei punti di 6
che cadono nei punti base di v:

« per C (e analogamente per C), dato che la tangente ai rami di 6 per questo punto
sono variabili, dopo lo scoppiamento di C (seconda mossa), la trasformata di 6
su T tagliera la sezione di y : T — P!, cio& ognuna delle due componenti del
divisore eccezionale di 7 : T — (, in due punti qua151a51 che verranno infine
trasformati in due punti variabili delle coniche ;vc, e ;v_ rispettivamente (per
seguire le mosse sulla figura 1, occorre sostituire i puntl B ¢ C della figura
rispettivamente con i punti C e D di questo paragrafo);

+ per A invece, 6 ha due rami tangenti alla stessa retta B. La trasformata di
6 su Q passera quindi doppiamente per i punti B, B e o' (E4 ), che grazie

all’ipotesi di genericita su D e D non giacciono né su y¥ ') » NE su ;v . Andranno

-1
a finire su dei veri punti G/, G’ di P? (che giacciono sulle coniche y % v =

- — —t —1 - —
qg(A',C',C',D',D")e y;f/ =q(A’,C’,C’, D', D’) rispettivamente).
Poiché ¢ taglia una curva generica di D°(A2, C?, D*)in A, A, C, C con molte-

plicita 4, ¢(0) sara una curva di grado 5 - 5 — 4 - 4 = 9 (questo segue anche dalla
formula (5) del §4.1,cond =5, A1 = xp =2, A3 =0).
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Dunque ¢(6) appartiene al sistema lineare D?(A’*, C**, D’?, G'%), dove A’, C’,

D’ sono generici, mentre G’ deve stare sulla conica y;f/ 1.

Osserviamo che A’, C’, G’ ed i loro coniugati non sono su una stessa conica, se
no questa si staccherebbe dalle curve di DA™, C*, D2, G?). Sia dunque = una
trasformazione di ordine 5 associata al sistema lineare D% (A’Z, C/Z, G’z), e siano
A", C”, G" ipunti base dell’inverso di .

Vediamo ora che D’ e D’ non giacciono sulla giacobiana di 7:

« D'\D'¢y5UyliSeD eyl =qA A C.C.G)ose D' €y, allora
questa conica si staccherebbe dal D°(A™*, €4, D2, G'*). Quindi né D’ né D’
appartengono a y 5, o yé/.

« D',D ¢ Yo U y}/: Se D’ appartenesse a ¢(G', G/, C', C', A") = 'yg/, poiché
la conica ¢(A’, C’,C’, D', D) = y%p:l contiene anche G, queste due coniche
avrebbero in comune i cinque punti A’, C’, C’, D’, G’ e quindi coinciderebbero.

Ma allora y/; dovrebbe contenere C’, D', G’ ediloro coniugati, e sarebbe quindi
una conica reale, componente fissa di J€,-1.

Se D’ appartenesse a ¢(G’, G, C’, C’, A’), ragionando come prima, si vede che
¥4, sarebbe una componente fissa di #,,-1.
« D'\D' ¢yl U yé/: Se D' ¢ yé/,poniamoy = yCE/ =q(A,A,C, GG =
g(A’,A',C',G',G’, D). Vogliamo far vedereche p = () = ¢ (A, A, B, B,C, D)
in questo caso, in contraddizione con 1’ipotesi di genericita posta su D.

Notiamo che ¥ non contiene né C’, né D', se no y sarebbe reale, quindi y =
g(A’, A, C',C’,G’',G', D', D') sarebbe componente fissadel D (A", C"*, D'?, G7?).

L’intersezione di y e y/f,_l = q(A’,C’,C', D', D) contiene i tre punti base
A’, C’, D', ma non contiene né C’, né D’. Quindi y N yff,ﬁl contiene esattamente un
punto libero, e allora e l(v) > A.

Con ragionamenti simili, si vede che ¢~!(y) > A, C, D e quindi aviemmo
appunto ¢(A, A, B, B, C, D).

SeD ey = yél si procede in modo simile; qui y = g(A’, A’, C/, G',G', D'), e
D', C’ ¢ y. Se ne dedurrebbe che ¢~ 1(y) = g(A, A, B, B, C, D), contrariamente
all’ipotesi posta su D.

Ne deduciamo che 7(D’) & un vero punto di P2, distinto da A” e B”. Procedendo
come per I'esame di (D3 (A% < B2, C?)), si vede che

r(i)9(A/4, C/4y D/Z, G/Z)) — @5(A//2’ C//Z’ T(D/)Z).
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In fin dei conti, abbiamo mostrato che ¥ o 91 o 771 € Ps.
E da notare che il sistema lineare D° (A, C*, D2, G'?) associatoaé = yrogp™1,

benché abbia punti base con singolarita ordinarie, non & generico, perché G’ e G’
—1 -1

» »

stanno suy,, eyy
per ¢ di una curva del sistema di ¢, chiamando A*, B*, C* i punti base di vl
si pud vedere che le curve del sistema lineare di £~! appartengono a D°(A™ «
B*2, C**, 41 (D)?), ciog possiedono in A* un punto quadruplo, nel quale due rami

hanno una tangente fissa, rappresentata da B*.

rispettivamente, come abbiamo visto. Studiando I’immagine

b) r e deltipo D3(A? « B? « C?). Qui possiamo servirci del caso precedente,
ciod utilizzare, per semplificare ¢, trasformazioni ¢ di tipo D’ (A% < B?, D?), con
D generico, cioe

() C.Céypuys, (@ CCéyjuys, 3 D.Deyluyl.

Una curva generica di #¢, ¢ una quintica con punti doppiin D, D, etacnodiin A, A,
con tangente fissa uguale a B, B, ciog la stessa tangente che per la curva generica
del sistema lineare 3. Sia #,1 = D3 (A < B2 D?).

Osservazione. Sia ¢ una qualsiasi curva che taglia v in un punto X, fuori dai punti
base di ¢, e consideriamo solo i punti di 6 in un intorno di X. Il trasformato di 6 su
Q' passera per B’, e quindi ¢(6) sard tangente in A’ alla retta fissa di P? rappresentata
da B’

Se ora 6 & la curva generica di D°(A? < B? <« C?), essa taglierd v in 4 punti
liberi e yg in due punti liberi (utilizziamo le proprieta di genericita (1) e (2) poste su
D). Ne segue che ¢(9) avra in A’ un punto quadruplo con quattro rami tutti tangenti
alla retta per A’ rappresentata da B’ (e lo stesso tipo di singolarita in A’), e avra un
punto doppio ordinario in D’ = <p(;vg) (e simile in D).

Per seguire le mosse sulla figura 2, occorre sostituire il punto C della figura con
il punto D di questo paragrafo. Resta da vedere cosa avviene nel punto base A (e
analogamente A); su U, il punto doppio con due rami tangenti di uguale curvatura
di 6 si trasforma in una tacnode ordinaria per B, e su T diventa un punto doppio

ordinario in C, con tangenti ai rami libere, ed infine nel P? di arrivo, sara un punto
-1
doppio ordinario G’, con tangenti ai rami libere (utilizziamo (1)), che giace su yf,f), =

q(A’, A’, B', D', D). Ne segue che
¢(£5(A2 <« B2 <« CZ)) — d(D9(14/4 P B/4, D/27 G/Z)

eipunti (A’ < B’, D’) non giacciono su una stessa conica, € neppure i punti (A’ <

—

B’, G'), se no si staccherebbero dal D?(A™* « B, D’?, G?), mentre G’ € yy, |

_ -1

G ey? .
€y,
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Consideriamo ora la trasformazione y d’ordine 5 associata al sistema lineare
D3(A? «— B?,G?);siab € DO(A” < B™, D?, G'*). Poiché 0 taglia una curva
generica del D>(A? « B?,G%) in A’, A’ con molteplicita 16, e in G’, G’ con
molteplicita 4, x (0) saradigrado5-9—-2-16—-2-4 =15,

Nella decomposizione di Sarkisov di x, la trasformata di & su Q ha due punti
quadrupli ordinari in B’, B, che corrispondono a A’ e A’, in piu delle due paia di
punti doppi in D', D’ e G’, G'. Passando a T, i due punti quadrupli diventano 4
punti ordinari di Ep' e E, rispettivamente, e finiscono come punti ordinari del P2 di
arrivo. 11 destino del paio di punti doppi G, G’ & simile.

I punti doppi D’ e D’ non sono punti base di x, e procedendo come nel caso b),
utilizzando la proprieta di genericita (3) posta su D e g(A’, A’, B/, D', D', G), si
vede che D e D’ non giacciono sulla giacobiana di x. Le loro immagini sono due
punti doppi D” = x(D') e D" = x(D’).

Lintersezione di & con 'yé, contiene A’, A’, B’ ¢ B’ con molteplicita 4, pit G’ con
molteplicita 2; in tutto contano per 4 - 4 + 2 = 18 punti, quindi non ce ne sono altri.

D’altra parte, ’intersezione di 6 con yg/ contiene A’, A’, e B’ con molteplicita 4,
G’ e G’ con molteplicita 2; tutti questi contano per 3 - 4 + 2 - 2 = 16 punti, restano
quindi 2 punti d’intersezione liberi, e ne segue che x (#) possiede punti doppi in
M’ =x(yi)eM' =y (yg/). Segue dall’osservazione fatta innanzi che i 2 rami di
x (0) per M avranno una tangente in comune; chiamiamola N”.

In findei conti, ¢ o~ ! oy ~! appartiene al sistema lineare D3 (M"?> « N2, D"?)
e quindi abbiamo dimostrato il teorema II.

Nota. Sia 6 una curva piana reale di grado d, con punti singolari di molteplicita A;
inAeA, iyinBe B, As3in C e C, e ancora A; neipunti Pj e Pj, j = 4,...,k,
dove i punti A, B ¢ C sono come quelli considerati per 1 diffeomorfismi birazionali
di ordine 5 e i punti P; sono sia in P2, sia infinitamente prossimi, ma tutti distinti da
A, B e C. I calcoli che abbiamo fatto per la prova precedente, si generalizzano per
mostrare che, se ¢ ¢ un diffeomorfismo di ordine 5 corrispondente 4 A, B, C, allora

@(9) & @5d—4(}»1+k2+k3) ((A/)Zd—kl—ZAz—Z)@, (B/)Zd_qkl—k2—2k3 ,

(Cl>2d—2)u1—2)\2—k3’ (PA{)}%, e (Plé)}nk)

dove A’, B’, C’ sono come precedentemente, e P]’. = ¢(P;). Questa ¢ analoga alla
formula delle trasformazioni di curve per trasformazioni cremoniane quadratiche nota
nel caso complesso, che si trova ad esempio in [10], Ch. IIL§ 2, Theorem V.
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