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Surfaces de Riemann parfaites en genre 4 et 6

Alexandre Casamayou-Boucau

Résumé. Cet article est consacré à la recherche de surfaces de Riemann extrêmes pour la systole,
ou tout au moins parfaites. On donne trois nouvelles surfaces de Riemann remarquables en genre
4. Par extension de la méthode, on trouve également une nouvelle surface extrême en genre 6,

ainsi qu'une suite infinie de surfaces parfaites non eutactiques de genre g > 4 quelconque.

Codes AMS (2000). 51M10.

Mots clé. Géométrie hyperbolique, surface de Riemann, systole.

1. Introduction

1.1. Position du problème. Soit X une surface de Riemann compacte de genre

g > 2, i.e. une surface hyperbolique orientable fermée. On appelle systole de X la
longueur minimale d'une géodésique fermée de X (une telle géodésique n'est jamais ho-

motopiquement triviale). Comme X contient un disque plongéde rayon Systole(X)/2,
on peut aisément majorer la systole en fonction du genre : Systole(X) < 2 In(4g).
D'après [Mu], on sait qu'il existe un maximum pour la systole. La détermination de

ce maximum est un problème naturel, analogue de la recherche de réseaux euclidiens
de densité maximale en géométrie des nombres. Hormis le cas du genre 2, on ne
connaît pas le maximum global. Il est donc naturel de rechercher les maxima locaux :

une surface réalisant un maximum local sera appelée surface extrême.

Actuellement on ne connaît que peu d'exemples de telles surfaces. En genre 2,

la surface de Bolza est la seule surface extrême ([Sel], [Ba2], [Je]). En genre 3,

il y a 3 surfaces extrêmes connues ([Sel]), dont la quartique de Klein et la courbe
de Wiman exceptionnelle. Il est fort probable que ce soient les seules en genre 3,

cela reste à montrer toutefois. Ensuite P. Schmutz Schaller a exhibé deux surfaces

extrêmes en genre 4, dont une surface triangulaire M (4), et trois surfaces extrêmes

en genre 5 ([Sel], [Sc2]). En genre 6, U. Hamenstädt a récemment trouvé une surface

triangulaire extrême S(13, 4) ([Ha]). Ensuite viennent quelques autres exemples en

genres supérieurs : S (21, 5) en genre 10 ([Ha]), I(x\z) en genre 11 ([Sel]), Su en

genre 12 ([Sc2]), ainsi qu'une suite infinie A(n) en genre impair supérieur à 7 ([Sel]).
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II existe par ailleurs un autre type de surfaces intéressantes à étudier, et plus
générales : les surfaces parfaites non extrêmes (pour la définition, cf. §1.2). Les seuls

exemples connus sont donnés par P. Schmutz Schaller, qui décrit une famille de telles
surfaces pour certains genres supérieurs à 10 ([Sc4]).

Ces considérations s'adaptent au cas non-compact (i.e. les surfaces à bords ou à

pointes). Dans certains cas non-compacts, la détermination de la systole maximale a

été résolue par P. Schmutz Schaller, par le résultat suivant : les surfaces de Riemann qui
correspondent à des sous-groupes principaux de congruences du groupe modulaire
sont des surfaces réalisant le maximum global de la systole pour leur signatures

respectives (cf. [Sc3]). D'autres exemples sont donnés dans [Ha].
Dans cet article, on s'intéresse exclusivement au cas compact, où la recherche de

surfaces extrêmes paraît nettement plus délicate. Le but de ce travail est de trouver
de nouveaux exemples en petit genre : on donne une nouvelle surface extrême et
deux surfaces parfaites non extrêmes en genre 4 (ce sont les premiers exemples de

telles surfaces en petit genre). L'idée de la méthode est de réaliser géométriquement les

groupes d'automorphismes à 4 points de ramification, et d'en faire l'étude exhaustive.

Par extension, on trouve également une nouvelle surface extrême en genre 6, ainsi
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qu'une suite infinie de surfaces parfaites non extrêmes de genre g > 4. En outre, la
méthode employée permet de retrouver, de manière unifiée, les surfaces données par
P. Schmutz Schaller en genre g < 5 (cf. remarques 3 à 5). Le tableau 1 récapitule
les surfaces remarquables (sous-entendu parfaites ou extrêmes) de genre inférieur à

6 connues à ce jour.

1.2. Surfaces parfaites, surfaces eutactiques. La systole d'une surface de

Riemann compacte, marquée, de genre g est définie comme étant le minimum des fonctions

longueur géodésique sur 1 ' espace de Teichmüller, fonctions qui sont paramétrées

par l'ensemble Cg des classes d'homotopie libre de courbes fermées de T,g, où l'on
exclut les courbes triviales. La fonction systole a récemment été étudiée par P. Schmutz
Schaller (cf. [Sel], [Sc2], [Sc3], [Sc4]) et par Ch. Bavard (cf. [Bal]).

Soit Tg l'espace de Teichmüller des surfaces de Riemann compactes, marquées, de

genre g ; c'est aussi l'espaces des métriques hyperboliques complètes à isotopie près

sur une surface orientée Sg de signature (g, 0). On rappelle que diniR Tg 6g — 6.

L'espace de Teichmüller sera muni de la métrique de Weil-Petersson. Le groupe
modulaire de Teichmüller Modg agit sur Tg par isométries de Weil-Petersson. Dans

la suite, on note S(X) l'ensemble des éléments de Cg tels que lc{X) Systole(X)
("courbes de longueurs minimales, ou systoles"), où lc désigne la longueur de la

géodésique associée à c dans X.
Une première caractérisation des surfaces extrêmes a été établie par P. Schmutz

Schaller dans [Sel]. Nous utiliserons ici plutôt la caractérisation donnée par Ch.
Bavard dans [Bal] qui possède l'intérêt de faire apparaître l'analogie avec la théorie des

réseaux.

Nous appellerons surface de Riemann extrême un maximum local de la systole.
Nous pouvons également définir, conformément à [Bal], les notions de surface de

Riemann parfaite et de surface de Riemann eutactique de la manière suivante. Soit X e

Tg ; la surface X est diteparfaite si les gradients (pour la métrique de Weil-Petersson)
(Vc(X))ces(x) engendrent affinement l'espace tangent Tx(Tg) ; la surface X est dite

eutactique si le vecteur nul de Tx(Tg)appartient à l'intérieur affine de l'enveloppe
convexe des gradients Ç%C(X))ceS(X)¦ On remarque qu'une surface parfaite contient
au moins diniR Tg +1 6g — 5 systoles. Ch. Bavard a alors énoncé le résultat suivant,

qui est le strict analogue du théorème de Voronoï pour les réseaux :

Une surface de Riemann est extrême si et seulement si elle est parfaite et

eutactique ([Bal]).

On sait que les surfaces de Riemann parfaites (et donc en particulier extrêmes)
sont en nombre fini modulo l'action du groupe Modg, et que leur systole est le

logarithme d'un nombre algébrique ([Ba4]). De plus on peut améliorer la borne de la

systole par rapport à celle donnée plus haut par l'inégalité : cosh(Systole(X)/2) <
1
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1.3. Méthode mise en œuvre. L'idée qui prélude à la recherche de nouveaux exemples

de surfaces extrêmes en petit genre est de considérer comme étant de bons candidats
les surfaces qui ont beaucoup d'automorphismes. En effet, si le groupe d'automor-
phismes est suffisamment gros, on peut espérer obtenir, avec l'action du groupe, un
nombre conséquent de systoles, or une surface parfaite contient au moins 6g - 5

systoles.
Fort de ces considérations, on s'enquiert de la liste des groupes d'automorphismes

qui peuvent agir sur une surface de Riemann de genre 4. On trouve une telle
classification dans [Ku] et dans [Bo]. L'article de Bogopol'skiï est cependant le plus
riche puisqu'il donne, outre la signature de chaque groupe, l'action de celui-ci sur
la surface. Nous avons cherché à étudier de manière quasi-exhaustive les actions des

groupes répertoriés dans la table 2 de [Bo, p. 15] : ce sont ceux qui ne sont ni abé-

liens, ni dihédraux. Pour ce qui est des groupes dihédraux, nous avons examiné ceux
d'ordre au moins 8.

Considérons donc un groupe G mentionné dans la table [Bo, pp. 14-15] tel que
le quotient de son action soit de genre 0 avec n points de ramification. Plusieurs cas

se présentent alors :

• Si n 3, alors il existe une unique surface admettant G comme groupe
d'automorphismes : c'est une surface triangulaire. Dans [Sel], P. Schmutz Schaller indique
que parmi toutes les surfaces triangulaires de genre 4, il en existe une seule qui soit
extrême : M (4).

• Si n 4, alors il existe une famille de surfaces paramétrée par un unique
paramètre complexe, et admettant G comme groupe d'automorphismes. Une fois
acquise l'existence d'une telle famille (par des critères purement algébriques), il
reste toutefois la délicate question de savoir comment la réaliser géométriquement.
Une première idée est de partir d'un graphe connexe trivalent de "genre" 4 (ici, le

genre du graphe est entendu comme étant son nombre cyclomatique) : on place alors,
à chaque sommet de ce graphe, un pantalon dont les 3 bords ont même longueur ;

puis on les recolle suivant le tracé des arêtes du graphe, en effectuant partout le
même twist (intuitivement, on épaissit les arêtes). On obtient de la sorte une famille
de surfaces invariantes par un certain groupe G, paramétrée par le couple de réels

(l,y) (twist,longueur) ou, équivalemment, par un nombre complexe appartenant
au demi-plan de Poincaré (z / + iy). Le groupe G en question a donc une signature

comptant 4 points de ramification : il ne reste plus qu'à le retrouver dans la table
de [Bo]. En vue d'appliquer cette méthode, on fait donc l'inventaire des graphes
trivalents de genre 4.

Cette méthode appliquée au graphe biparti ^3,3 redonne une famille de surfaces

invariantes par 63 x 63 (où 63 désigne le groupe des permutations d'un ensemble à 3

éléments), famille en partie étudiée par P. Schmutz Schaller à partir d'une construction
différente : c'est l'objet du paragraphe 2. Outre la surface extrême S4 mentionnée par
P. Schmutz Schaller, on met ici en évidence une nouvelle surface extrême C4. Par
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ailleurs, on décompose le demi-plan (/, y) en "cellules", où chaque cellule est associée

à une classe de géodésiques : si pour une valeur donnée de (/, y) on se trouve dans

telle cellule, cela signifie que les géodésiques associées à cette cellule réalisent alors

la systole. Les maxima de la systole se trouvent nécessairement parmi les sommets
de cette décomposition du demi-plan.

Il reste que l'idée de partir de graphes trivalents est assez limitative, et il n'est pas
clair que l'on puisse de la sorte atteindre tous les groupes à 4 points de ramification
répertoriés dans [Bo]. On cherche alors à partir de graphes de valence au moins trois,
en mettant éventuellement du genre aux sommets.

On peut par exemple considérer le graphe formé par 5 arêtes joignant deux sommets

: la surface obtenue est alors le double twisté d'une surface de signature (0, 5)

ayant la symétrie d'un pentagone régulier. Toutefois, cette famille ne semble pas
contenir de surface parfaite ([Ca]1).

Plus intéressant est le cas du trèfle de genre 4 : on part d'une surface de signature
(0, 8) dont on identifie les côtés deux à deux. Si la surface de signature (0, 8) a la

symétrie du cube, on obtient une famille de surfaces fixées par 64, le groupe des

permutations d'un ensemble à 4 éléments. Elle contient donc forcément la surface

de Bring (dont le groupe d'automorphismes est 65) et M(4) (dont le groupe d'au-
tomorphismes est 64 x Z3). Ce fait, déduit de considérations purement algébriques,
sera redémontré par une méthode géométrique au §3. De plus on mettra en évidence

l'existence, dans cette famille, d'une surface parfaite non eutactique A4.

Toujours à partir du graphe du trèfle, si la surface de signature (0, 8) a la symétrie
de l'octogone régulier, on obtient une famille de surfaces fixées par le groupe dihedral
Z>8, d'ordre 16. On n'a pu y déceler de nouvelle surface intéressante ([Ca]).

Pour terminer l'étude exhaustive des actions mentionnées dans la table 2 de [Bo,

p. 15], il reste à examiner l'action du groupe de quaternions Q% (mais cette action est

moins intéressante puisqu'elle donne lieu à une famille de surfaces hyperelliptiques)
ainsi que l'action de (Z3 x Z3) < (5) (celle ne contenant pas 63 x 63). Pour cette
dernière action, nous n'avons pu déceler de surface intéressante ([Ca]).

• Si n 5, on obtient une famille paramétrée par deux nombres complexes. Il
faut alors fixer un des deux paramètres en fonction de l'autre pour faire une étude

géométrique du même type que celle menée précédemment. A ce stade, on ne peut
plus espérer mener une étude exhaustive. Des exemples intéressants se présentent
néanmoins, comme celui de la surface associée au graphe fixé par le groupe dihedral
D4, d'ordre 8. On opère cette fois-ci un découpage "mixte" de la surface en quatre
pantalons et une surface de signature (0,4). L'étude menée au paragraphe 4 révèle
l'existence d'une surface parfaite B\. En outre cette construction se généralise en

genre quelconque et permet de construire une suite infinie de surfaces parfaites et

non eutactiques Bg de genre g > 4 quelconque.

L'étude des familles mentionnées dans cette introduction, mais dont on n'a pu extraire de nouvelle surface

interessante, est détaillée dans ma thèse.
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En dernier paragraphe, on donne un exemple en genre 6. En effet, la construction
du §3, qui consiste à recoller les bords opposés d'une surface de signature (0, 8)

possédant la symétrie du cube, peut s'adapter au cas de l'icosaèdre : on obtient une
famille de genre 6, paramétrée par un unique paramètre complexe, et ayant pour
groupe d'automorphismes le groupe alterné de degré 5 (on peut d'ailleurs obtenir une
présentation duale de cette famille en épaississant les arêtes du graphe de Petersen).
On montre notamment que cette famille contient une surface extrême notée A
noter qu'on pourrait espérer que cette construction effectuée à partir du dodécaèdre

puisse donner une surface intéressante en genre 10, toutefois l'étude de ce cas montre

qu'il n'en n'est rien ([Ca]).

2. Une famille modelée sur #3,3

2.1. Groupe d'automorphismes. On s'intéresse au graphe ^3,3 (cf. Figure 2.1a)

.•si

Figure 2.1a Figure 2.1b

Son groupe d'automorphismes G est engendré par deux retournements si et ^2

(dont les axes respectifs passent tous deux par le centre du graphe et forment entre eux
un angle de n/6 ; le retournement si passe en outre par un sommet) ; et une rotation r2
(de centre l'un des sommets situé sur l'axe de si d'angle 2n/3). On note par ailleurs

r\ S2 o si la rotation de centre le centre du graphe, d'angle n/3 (cf. Figure 2.1b,
où le graphe ^3,3 est dessiné sur le tore). Le groupe G est d'ordre 36. On remarque
qu'il est isomorphe au groupe S3 x S3. En effet,

G (si, S2, r2> (si, S2, n, r2> (r\, x (r\r\, r\) ~ S3 x S3.

Une fois ce graphe donné, on épaissit les arêtes : on obtient alors une surface de

Riemann. Cela revient à placer en chaque sommet du graphe un pantalon dont les

trois bords ont même longueur et à les recoller les uns les autres selon un twist
identique. Ce procédé nous fournit une famille de surfaces de Riemann paramétrée

par deux réels : la longueur du bord et le twist.
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D'après [B-L], on peut décrire cette famille comme intersection d'une quadrique
et d'une cubique dans P3 :

+ X2X3 0,

où le paramètre {a, ß) décrit P1. On se convainc facilement que Aut(C(„jyß)) ~
63 x 63, tant que (a,ß) ^ (1,±1). Ce groupe noté G (9 x 4) dans [Ku], et

(Z3 x Z3) < (A, 5) dans [Bo], a pour signature [2, 2, 2, 3]. Dans le cas particulier

{a, ß) (1, ±1), il faut ajouter un automorphisme qui porte l'ordre du groupe
d'automorphismes à 72 : c'est un groupe triangulaire (2,4, 6), appelé G(9 x 8) dans

[Ku].

2.2. Une esquisse du graphe de la famille. Cette famille a déjà été étudiée en

partie par P. Schmutz Schaller dans [Sc2] à partir d'une présentation différente : il
considère en effet le double twisté d'une surface M(, de signature (1, 3) ; si bien qu'au
heu de faire les twists selon les bords des pantalons (i.e. les géodésiques x) comme le

suggérait la méthode proposée au premier paragraphe, il exécute les twists selon trois
géodésiques y correspondant à des cycles de longueur 6 du graphe. Cela simplifie
les calculs puisqu'il y a moins de géodésiques y que de géodésiques x : les effets du
twist sont alors plus faciles à calculer. On adoptera donc ce point de vue dans cette
étude. La demi-longueur du twist sera notée /.

N.B. Dans toute la suite, on notera aussi y la demi-longueur d'une géodésique y,
et Y la famille des géodésiques y. On procédera de même pour toutes les familles de

géodésiques fermées définies ci-dessous.

On cherche à déterminer en chaque point du demi-plan {l/y, y) la systole de la
surface associée : ceci revient à dessiner un graphe dont les arêtes correspondent à

des surfaces dont la systole est réalisée simultanément par deux familles de

géodésiques, et dont les sommets correspondent à des surfaces dont la systole est réalisée
simultanément par trois familles de géodésiques au moins. On remarque tout d'abord

que l'on peut se restreindre au domaine d'étude l/y e [0, 1/2] en utilisant certaines

symétries du graphe. Il est clair que deux surfaces obtenues à partir d'un twist opposé
seront isométriques, ce qui permet de se restreindre au cas / > 0. Par ailleurs, l'action
d'un twist entier selon Y envoie la géodésique x sur une géodésique x\ de longueur
2 arg cosh[cosh(f /2) cosh(y - /)] tout en laissant y invariante. De manière plus
générale, un twist de k e Z tours selon Y envoie la géodésique x sur la géodésique

xk, avec xk{l) x{l -ky). De même pour les géodésiques u, v, etc. Le twist entier
selon Y translate donc {l/y, y) en {l/y -\,y), et on peut à présent se restreindre au

domaine 0 < l/y < 1/2.
On donne maintenant les valeurs explicites des différentes géodésiques qui sont

repésentées sur les figures suivantes et qui nous servirons à construire une partie du
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graphe. Dans ces figures, les deux parties de la surface séparées par Y sont
superposées ; pour chacune d'elles, les identifications s'effectent par des translations qui
échangent les côtés opposés. Les géodésiques fermées sont représentées en trait plein
dans la "partie supérieure" et en trait pointillé dans la "partie inférieure". A l'aide
des formules de trigonométrie hyperbolique (cf. par exemple [Bu, ch. 2]), on trouve
successivement :

coshf
cosh y/3

cosh y/3 — 1

Figure 2.2a Figure 2.2b

/ y \ y x t
cosh 7 12cosh —h 1 ¦ cosh —, cosh — cosh - ¦ cosh /,

3

u t /ycosh - cosh - ¦ cosh t
u-

V t Z1
cosh - cosh - ¦ cosh -

6 2 V(

Figure 2.3a Figure 2.3b

cosh — cosh - ¦ cosh J- —
6 2
w /y \ /y \cosh — cosh t ¦ cosh / ¦ cosh / — sinh / ¦ sinh /,
6 \6 / V6 /
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Figure 2.4a Figure 2.4b

cosh — cosh - cosh (- — 21) cosh t cosh /

— cosh - sinh 2/ J sinh / + sinh t sinh - cosh /.

On pourrait également exprimer cosh l (avec une formule plus longue).

Pour chaque famille de géodésiques, on donne ci-dessous le nombre de géodé-

siques contenues dans cette famille.

famille
tt

Y, V, W, P
3

/, /
18

X,U,F
9

Une fois ces calculs acquis, on construit le graphe de la manière suivante : on part
de la surface extrême S4. On trace alors les trois arêtes issues de ce point, définies

par l'égalité de deux familles de systoles choisies parmi les trois familles définissant
le point en question (par exemple, si on part de S4, on trace x u, x j, u j).
On prolonge ces arêtes jusqu' au moment où une autre géodésique vient réaliser la

systole : on arrive alors sur un autre sommet du graphe, d'où partent deux autres
arêtes auxquelles on applique de nouveau ce procédé, et ainsi de suite.

La difficulté qui se présente est celle de vérifier qu'à chaque nouveau sommet, la
nouvelle géodésique a réalise effectivement la systole. Pour des valeurs de y petites
(c'est-à-dire y < 6, 5), le rapport 2a/1 reste raisonnable (de l'ordre de 6 au plus),
donc il est possible d'examiner les longueurs des géodésiques intersectant Y au plus
6 fois, et donc de décider si a est oui ou non la systole. Au delà, t décroît trop vite

pour rendre ce type de vérification effective. On donne à présent l'allure qualitative
du graphe, pour des valeurs de y n'excédant pas 6 :
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h-

— ö-

i/y
0

Figure 2.5

Des symétries supplémentaires apparaissent dans le graphe qui s'expliquent ainsi :

tout d'abord, on constate en examinant les équations donnant les valeurs de x, u, v,...,
qu'on a (toujours dans le plan (l/y, y)) une symétrie d'axe l/y 1/6.

Par ailleurs, si on regarde l'effet d'un twist entier selon X sur l'ensemble des

géodésiques, on constate qu'on a l'action décrite dans la table suivante (ici, u désigne

avant twist

après twist

X

X

W

Y

Y

W

U

F

F

Ü

V

V

I
J

J

ï

la géodésique dont la longueur vaut, pour un twist donné /, u(l) u(—l)). Ainsi donc,
si on combine un twist entier selon X avec une inversion du sens du twist effectué
selon Y (i.e. une symétrie d'axe / 0 sur le graphe), on complète le graphe pour des

valeurs de y > 6.

On remarque une surface intéressante C4, caractérisée à isométrie près par x
u v, et dont on montrera l'extrémalité au paragraphe §2.3.

D'après les considérations de symétries énumérées plus haut, on retombe sur des

surfaces isométriques aux surfaces extrêmes déjà trouvées : une surface C'4,

correspondant au sommet x f u, qui est isométrique à C4 ; et une surface S'4,

correspondant au sommet x f i, qui est isométrique à S4. Ceci est corroboré par
le calcul. Il est donc tout à fait vraisemblable que le graphe ne contienne pas d'autres
surfaces extrêmes non isométriques à celles déjà mentionnées ; mais ce fait reste à

prouver.
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2.3. La surface C4 est extrême. Dans ce paragraphe, on se limite à l'étude de la
sous-famille x u, ce qui revient à prendre un twist 2/ égal à y/3. Montrons le
résultat suivant :

Théorème 1. Il existe un unique double twisté C4 de M<s (à isométrie près) vérifiant
x u v. La surface C4 réalise un maximum local de la systole dans l'espace
de Teichmüller de genre 4. Son ensemble de systoles est exactement X U U U V, et
contient donc 21 systoles.

Preuve. Montrons que F X U U U V est l'ensemble des systoles de C4. Après
calculs, on obtient :cosh y/3 2+V5,coshf (3+V5)/4,coshx (9+5V5)/4,
2x s + t, soit en valeurs approchées :

x u v ~ 2,30159, y ~ 6,36765,

j ~ 4,38498, t ~ 0,76720, s ~ 3,83599.

Soit a une systole de C4. Alors le nombre N(a) d'intersections de a avec Y vaut
au plus 2v/t 6. En comparant les valeurs de y et j (systole de Mo, cf. [Sc2]),
on voit que N(a) ^ 0. Donc 2 < N(a) < 6. De plus, a n'intersecte pas deux

perpendiculaires de longueur t issues d'une même géodésique y (l'angle entre a et
Y n'est pas trop petit). Si N{a) 2, les deux segments de a sont homotopes aux

perpendiculaires de longueur t puisque s > 3 ; donc a g X U U. Si iV(a) 4, les

calculs montrent que a > 3. Enfin si AT (a) 6, forcément a g y puisque 2u/f 6

exactement, et qu'aucune autre géodésique coupant Y six fois n'égale v. Donc .F est

bien l'ensemble des systoles de C4.

Montrons à présent que C4 est eutactique et parfaite. Pour calculer le rang de

l'espace engendré par les gradients des systoles, on utilise la matrice formée par le
cosinus des angles d'intersections des systoles entre elles. En effet, d'après Wolpert
([Wo]), sia etr sont deux systoles on a œ {la, lx) T,pear]r cos 6P, où œ est la forme
symplectique de Weil-Petersson et 9P l'angle entre a et r au point p. En écrivant la
matrice intersection des systoles, on obtient une "matrice de Gram symplectique",
dont le rang minore celui de l'espace engendré par les gradients des systoles.

Soit a cos a, où a est l'angle aigu formé par les géodésiques x et v (qui est

le même que celui formé par les géodésiques v et u), soit c cos 2a 2a2 — 1,

2a étant l'angle formé par les géodésiques x et m quand elles se coupent sur v et soit
d cos 9, où 9 est l'angle formé par les géodésiques x et m quand elles se coupent
sur y.

Après calculs, on trouve : a tanhf/2(tanhw/2)~1 1/V5 c -3/5 et
d cos[n — 2arcsin(sinhf/2(sinhw/2)~1)] — (2 + V5)/5. On détermine ensuite
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la matrice fi intersection des systoles, rangées ici dans l'ordre u, x, v :

fi

CMH

ou

fil

/dOcOOOOdc\cdOOOOcOd
OcdOOOdcO
OdcdOcOOO
cOdcdOOOO
OOOOdcdOc
OOOcOdcdO

\000d c 00 cdj

et fi?

a a

0 a

a 0

0 a

a 0

a a 0

a 0 a

a a 0

0 a a J

0 \
a

a

a

a

Le calcul du rang donne rang(fi) 18 6g — 6. En ajoutant alors aux 18

premières colonnes de fi les trois dernières pondérées du coefficient —(c + d)/a > 0,

on obtient un vecteur colonne nul. Comme le rang de fi est maximal, ceci entraîne

précisément que la surface C4 est eutactique. Par suite, rang affine et rang vectoriel des

gradients coïncident, et C\ est parfaite. D'après le théorème démontré par Ch. Bavard
dans [Bal], et rappelé en introduction, (parfaite et eutactique implique extrême), il
s'ensuit immédiatement que C\ est une surface extrême.

Remarque 1. Dans la sous-famille x u, on remarque que la systole admet un
minimum local entre S4 et C\ : la surface correspondante possède 18 systoles de demi-

longueur 2 arg cosh | — 1, 92484 ; cette surface n'est autre que la surface triangulaire
(2, 4, 6) notée C(U) dans [B-L].

Remarque 2. Cette méthode appliquée au graphe cubique redonne la famille de

genre 5 étudiée par P. Schmutz Schaller dans le même article ([Sc2]). On n'a pu
y déceler de nouvelle surface intéressante ; on y retrouve toutefois la famille O{y)
décrite différemment par rapport à [Sel] : en effet, l'analogue de la géodésique v

décrite plus haut permet d'identifier la famille O{y) avec l'arête x h, et de mettre

en évidence une surface extrême caractérisée à isométrie près par x h v, et qui
n'est autre que O{x\y) (cf. [Ca]).
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3.1. Présentation de la famille. On considère une surface de signature (0, 8) ayant
la symétrie du cube ; autrement dit, on "écorne" les sommets d'un cube. On nomme

y les géodésiques de bord. On identifie alors les bords opposés deux à deux

(Figure 3.1a), et on obtient une surface de genre 4, ayant pour groupe d'automorphismes
64. D'après [Bo], la signature de ce groupe est [2, 2, 2,4] ; la famille construite est

donc paramétrée par un couple de paramètres réels (/, y), où / désigne le demi-twist
selon lequel on recolle les géodésiques y.

Figure 3.1a Figure 3.1b

Toujours d'après la classification de [Bo], on peut conjecturer que cette famille
contiendra la surface de Bring (dont le groupe d'automorphismes est 65, [R-R]), et
la surface M(4) (dont le groupe d'automorphismes est 64 x (x|x3 1), [Sel]), ce

qui est effectivement vérifié dans ce qui suit.

Remarque 3. La même construction effectuée à partir de l'octaèdre (et non plus du

cube) redonne la famille T{y) de genre 3, étudiée dans [Sel] (cf. [Ca]).

3.2. Une esquisse du graphe. On commence par donner les géodésiques qui
interviennent dans la construction du graphe pour y et / pas trop grands.

On note y la géodésique de bord. Soit t, s et i les perpendiculaires représentées

sur la figure 3.1b (noter que les points a et a' sont identifiés quand / 0). On donne
successivement la longueur de ces perpendiculaires, puis pour chaque géodésique
représentée ci-après la longueur correspondante :

t
sinh-

1

sinh-
1

tanhy/3'

sinhû?

V2 sinh y/3'
sinh y. sinh s

cosh 1 sinh s ¦ sinh t ¦ cosh y — cosh s ¦ cosh t ;

sinhf
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lj

l /I
Figure 3.2

cosh vu cosh f ¦ cosh / J ¦ cosh —\-l\ — sinh / J ¦ sinh —\-n,
x t /y \ i / y \cosh - cosh - ¦ cosh I - - /1 cosh j cosh - ¦ cosh I / + - - d I ;
2 2V2/ 2V6/

Figure 3.3

cosh - cosh - ¦ cosh (-—/),
3 2 \6 /
u /y \ /y \ /y \ /y \cosh - cosht ¦ cosh I /1 ¦ cosh I —\-l) — sinh I /1 ¦ sinh I —\-l)

On donne dans le tableau ci-dessous le cardinal de chaque famille de géodésiques
citées précédemment (ici, j désigne la géodésique dont la longueur vaut, pour un
twist donné /, j (/) j (—/)).

famille

tt

Y,V, V

4

W,J,J
12

U,X,x
6

On peut maintenant donner une esquisse du graphe de la famille dans la zone (y,l/y) g

[0,4] x [-1/2,1/2]. Voici l'allure qualitative du graphe :
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l/y

Figure 3.4

Dans cette esquisse, on a "tordu" l'axe des abscisses pour faire apparaître ce

qui semble être une symétrie du graphe, car en fait, sur un schéma quantitatif, le
cône de x devrait être à peu près axé autour de la droite l/y 1/2. Néanmoins,
on a pris le parti de déformer le graphe puisque, outre la symétrie d'axe / 0,

il semble apparaître une invariance du graphe par rotation de centre M (A), d'angle
2n/3. En effet, le calcul montre que l'on retrouve trois fois, à isométrie près, les

surfaces Brg := Cy=j=v, A4 := Cy=J-=j, et Cu=v=ïj. L'examen du graphe révèle
ainsi plusieurs surfaces intéressantes :

• La surface Cy=j=v (ou une des deux autres surfaces qui lui sont isométriques

: plus précisément Cw=v=ïj ou C -=-) : on remarque que cette surface admet

exactement 20 systoles, de demi-longueur

y j y 3 arg cosh(3/4 + V5/4) ~ 2,301592.

En outre, ses systoles pavent la surface en carrés et pentagones, et se coupent toutes
selon le même angle a arccos(2V5/l 1 - 3/11) ~ 1,436563. C'est donc la surface
de Bring (cf. [R-R]), qui est eutactique et non parfaite. Elle est notée Brg sur le graphe.

• La surface Cw=J-=j, qui admet exactement 36 systoles, de demi-longueur

3V3
w j j arg cosh ~ 2,312250.
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On retrouve donc la surface extrême notée M (A) dans [Sel].
• La surface Cw=j=v (ou une des deux autres surfaces qui lui sont isométriques :

plus précisément Cw=j=- ou Cy=-.=J.) : cette surface admet exactement 28 systoles,
de demi-longueur

w j v ~ 2,30659999071.

Cette surface que l'on notera A4 sera étudiée dans le paragraphe §3.3 ; on montrera
notamment que c'est une surface parfaite non eutactique.

• La surface Cy=x=v (ou une des deux autres surfaces qui lui sont isométriques :

plus précisément Cy=i=s ou Cu=v=ïj) : cette surface admet exactement 14 systoles,
de demi-longueur

y x v ~ 2,29347051505.

Comme 14<6g-5 19, cette surface ne peut être parfaite.
Remarquons par ailleurs que, tout comme dans les sections précédents, on a une

invariance du graphe par translation de longueur 1 le long de 1 ' axe des abscisses ; ainsi,
cette allure de graphe se transporte au niveau de l'axe l/y 1, puis l/y 2, etc. De
manière plus globale, on obtient donc le graphe suivant (comme précédemment, les

géodésiques affectées d'un indice se déduisent des autres par l'effet d'un twist entier
selon Y ; on a par exemple : pour toutes k e Z ju(l) j(l — ky)) :

1

-1 -1
2

0

Figure 3.5

-I - l/y

3.3. La surface A4 est parfaite. Dans ce paragraphe, on s'intéresse à la surface A4,
définie à isométrie près, par y j j ; on montre le résultat suivant :

Théorème 2. A4 est une surface parfaite non eutactique. Son ensemble de systoles

est exactement FU/U/.
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Preuve. Montrons Y U / U 7 est l'ensemble des systoles de A4. Après calculs, on
obtient :

y ~ 2,30659999071, w ~ 2,33858918081,

m ~ 3,22774965596, x ~ 2,92041491748,

u ~ 2,60164724868, / 0,

~ 1,51944655787, s ~ 2,44147924868.

Soit a une systole de A4. Alors le nombre AT (a) d'intersections de a avec F vaut au

plus E(2y/t) 3. Donc 0 < N(a) < 3. La géodésique a doit appartenir à l'une
des familles suivantes : V U V (N(a) 3), W U X U X (N(a) 2) ou Y U / U 7
(iV(a) < 1). Mais v v > y, w w > y etx > y. D'où, a G 7 U / U 7.

Montrons à présent que A4 est parfaite. Par un calcul de géométrie hyperbolique,
on prouve le lemme suivant :

Lemme 1. Dans un quadrilatère hyperbolique comprenant un angle droit, l'angle

f, opposé à l'angle droit est donné par la formule :

F (a, a; b, ß) := cos

tanh a \ tanh b \
— I ¦ nos I H — arrtan I- cos [a — arctan ¦ cos iß — arctan

\ sinho/ \ sinha/
tanh a tanh b \

i ß
tanh a tanh b \

+ sin(a - arctan ¦ sin \ ß - arctan ¦ cosh a ¦ cosh b
sinh b \ sinh a J

où a et b désignent les longueurs des deux côtés adjacents à l'angle droit, et a, ß
leurs angles respectivement opposés.

On donne à présent les coefficients qui interviennent dans l'écriture de la matrice
intersection des systoles :

tanh(û? - y/6) n _„.„.b cosß ~ 0,167373,
tanh;

e =cose 2F[-,ß; -, - - 1 ~ 0,828711,
\2 2 2/
ß

-0,411716,

m F (l, n - ß; |,^ ] ~ 0,208497.
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En rangeant les sytôles dans l'ordre (y\,
tersection s'écrit :

y4, h, h, ¦ ¦ ¦, m, Jn), la matrice in-

fi

/ o

-'Ai
-'A2
-'A3
-'A4

Ai
0

fil

A2

fil
0

-'fil
fi2

A3
fi2
fil
0

-'fil

A4

-'fil
fi2
fil
0

ou

fil

et

fi2

—m

e

—m

0

0

0

/ 0

-g
m

c

0

0\

—c

—m

8
0

0

0

8
0

0

0

—c

—m

0

0

0

~8
m

c

—m

0

0

0

—m

e

0

0

0

m

—e

m

—c

0

0

0

8
—m

0

0

0

c

m

0

c

m

~8
0

0

8
—m

—c

0

0

0 \
m

—e

m

0

0

et (Ak)jj (—ly'sfb (1 < i, k < 4, 1 < j < 6). Le calcul du rang donne

rang(fi) 18 6g - 6. Par ailleurs, on a une relation entre les colonnes de fi :

(2c - g) - Ya Cyî + b ¦ T}2(CJt +C]i)=0 avec 4(2c - g) + 24b ~ 3,99 ^ 0 ;

la surface A4 est donc parfaite. On a obtenu également l'unique relation (à scalaire

près) entre les projections des gradients sur le lieu invariant. D'après [Ba3, Prop. 1.5]

(l'eutaxie se lit sur le lieu invariant) on voit que A4 n'est pas eutactique puisque
è~0,17 >0et2c-g~ -0,0053 < 0.

4. Une suite infinie de surfaces parfaites

4.1. Présentation de la famille. Dans ce paragraphe, on montre l'existence d'une
surface parfaite non eutactique de genre g > 4 quelconque.

Soit un entier naturel g > 4. On s ' intéresse à la famille associée au graphe suivant :

on considère g sommets formant un polygone régulier à g côtés ; les arêtes sont les

côtés du polygone ; on place ensuite un (g + l)-ième sommet au centre du polygone
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que l'on joint aux autres sommets par des arêtes radiales. Dans le cas du genre 4, ce

graphe se représente de la manière suivante (Figure 4.1a) :

Figure 4.1a Figure 4.1b

Son groupe d'automorphismes G est engendré par un rotation a d'ordre g, et un
retournement t : c'est le groupe dihedral Dg, d'ordre 2g. En genre g 4, sa signature
est [2, 2, 2, 2,4] d'après [Bo].

La famille obtenue par cette construction est paramétrée par deux paramètres

complexes. Pour se ramener à une famille à un paramètre, on va fixer une condition

supplémentaire : on découpe la surface suivant les courbes indiquées en pointillés
sur la figure 4.1b, en une surface "centrale" de signature (0, g) et g pantalons. On
convient de noter y les g géodésiques indiquées sur la figure 4.1b, et y' la géodésique
"extérieure". On note y\ la longueur du segment de y, contenu dans la sous-surface

centrale de signature (0, g), et j2 la longueur du segment de y, contenu dans un des

pantalons. On peut alors paramétrer la famille par les deux couples de réels (twist,
longueur) correspondant à la déformation de la surface selon les g géodésiques y et
selon la géodésique y'.

Dans la suite de ce chapitre, on choisit d'imposer t t', ce qui donne alors une
famille paramétrée par le seul couple de paramètres réels (/, y), où / est la longueur
du demi-twist effectué selon Y U Y'. En effet, y détermine entièrement les longueurs

y\,y2,t t', y'. Pour obtenir y\ et j2, il suffit de résoudre le système :

y\ 2^2 2y,

yi — 4cos2(7r/g) -cosh;y2 1 — 4cos2(7r/g).

Ensuite, t et y' sont donnés par les formules :

cosh yo
coshf et 2/ gy2-

COSh J2 — 1

On aurait aussi bien pu se donner t et calculer y\, y2 et y' en fonction de t.
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4.2. Une surface Bg parfaite. On note X l'ensemble des 2g géodésiques qui
coincident avec la réunion de deux segments t lorsque le twist est nul (cf. Fig. 4.2). Une
telle géodésique a pour demi-longueur : cosh | cosh | cosh /.

Soit x g X, et soit y G Y intersectée par x, il existe une unique plus petite
géodésique simple z telle que x,y,z soient contenues dans une sous-surface de

signature (1, 1), et telle qu'en outre z intersecte x (resp. y) une seule fois (cf.
Figure 4.2). On note X' l'ensemble de ces géodésiques, et x' leur demi-longueur, qui
vaut : coshx' coshf cosh(;y — /) cosh/ — sinh(;y — /) sinh/.

Soit x g X intersectant y', il existe une unique plus petite géodésique simple
z telle que x, y', z soient contenues dans une sous-surface de signature (1,1), et
telle qu'en outre z intersecte x (resp. /) une seule fois. On note X" l'ensemble de

ces géodésiques, et x" leur demi-longueur : coshx" cosh t cosh(/ - /) cosh / -
sinh (y — /) sinh/.

Pour chaque famille de géodésiques, on donne dans le tableau ci-dessous le nombre
de géodésiques contenues dans cette famille.

famille

Y,X"
Y'

X

X'

tt

8

1

2g

3g

Figure 4.2

Dans la suite, on montre que la surface caractérisée, à isométrie près, par y
x x' est parfaite quelque soit le genre g > 3.

Remarque 4. En fait la construction menée ici peut se faire dès le genre 3. Cependant
ce cas est tout à fait particulier, et c'est pourquoi nous l'avons exclu d'emblée de la
discussion. En effet, si g 3, on retrouve une surface déjà connue, notée T(x\y) par
P. Schmutz Schaller (cf. [Sel]) : le calcul permet d'affirmer que cette surface contient
22 systoles de demi-longueur :

y y/=x=x/ x"~ 1,963546301.

Ce qui distingue cette surface de celles de genre g > 3, caractérisées par y x x',
c'est qu'ici l'ensemble des systoles contient en outre y' et x". Elle est non seulement

parfaite, mais encore eutactique (grâce aux systoles additionnelles) donc extrême.

Montrons à présent le résultat suivant :
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Théorème 3. Soit un entier naturel g > 3. Il existe une unique surface, notée Bg,

caractérisée, à isométrie près, par y x x'. Cette surface est parfaite mais n'est

pas eutactique. Son ensemble de systoles est exactement Y U X U X', et contient donc
6g systoles.

Preuve. La condition y x x' est équivalente au système :

t — (3 cosh y+1) cosh y
(coshy+1)2

(1)

On remarque que, à g fixé, la fonction (3 cosh y + 1) cosh y/(cosh y + l)2 est
strictement croissante par rapport à y ; par ailleurs y\ et j2 sont des fonctions strictement
décroissantes de t, donc y est une fonction de t strictement décroissante, donc t est

une fonction de y strictement décroissante. Il s'ensuit qu'il existe une unique solution

en y à la première équation du système (1).
En outre, la fonction co\h(y)(—1 + cosh y)/(\ + cosh y) est strictement croissante

par rapport à y, donc / est déterminé de manière unique par la deuxième équation
du système (1).

On en déduit qu'il existe un unique couple (/, y) correspondant (pour un genre
donné g) aux conditions y x x'. D'où l'unicité de Bg.

Montrons que F Y U X U X' est l'ensemble des systoles de Bg. On note
s la longueur de la perpendiculaire commune (entre deux géodésiques y), qui soit
la plus courte parmi celles qui ne valent pas t ; on a : cosh s cosh2 t ¦ cosh y\ —

cosh21. Le tableau suivant donne une estimation des diverses longueurs en fonction du

genre. En étudiant les suites (yg)g>4 et (tg)g>4, on remarque qu'elles sont strictement

g

x x' y

x"
y'

t

s

l

2y/t

3

1,963546

1,963546

1,963546

1,324921

1,324921

0,679361

2,96

4

2,105192

2,463039

2,518569

1,376618

2,335152

0,743508

3,06

5

2,168463

3,018964

3,099004

1,397931

2,667805

0,772511

3,10

6

2,202235

3,601196

3,689017

1,408875

2,830168

0,788072

3,13

+0O

2,277469

+CX)

+0O

1,432212

3,379919

0,822923

3,18

croissantes et qu'elles tendent vers les valeurs limites portées sur le tableau ci-dessus.

En outre, on se convainc assez facilement que E(2y/t) < 3. Soit a une systole de

Bg. Alors le nombre N{a) d'intersections de a avec Y vaut au plus E{2y/t) 3.

Donc N(a) < 2. Les valeurs données ci-dessus permettent de conclure.
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On détermine ensuite la matrice Q d'intersection des systoles prises dans l'ordre
Y, Xa,Xb,X'c,X'a, X'b (cf. Figure 4.2). On pose

a cos a cosh y(cosh y + l)"1,

c cos 2a 2a — 1,

e sin a ¦ cosh(;y — yi) — cos a,

f sin2 a ¦ cosh(;y — y2) — cos2 a,
h sin a. sin2a ¦ cosh(;y — y\) — cos a ¦ cos 2a,

k sin a ¦ sin2cf ¦ cosh(;y — y2) — cos a ¦ cos 2a.

Soit C{cù\, œg) la matrice circulante définie par Qj <w/-?+i (indice modulo
g). On a alors Q (^f,/)i<f,/,<6 où les Qij sont des blocs carrés d'ordre g vérifiant

Q;j + lQjj 0 et donnés par :

Œ?,?=0 (l<f<4), ^5j5 -^6,6 C(0, -ä,0, ...,0, Ä),

^i,2 C(a, 0, 0, a), Qh3 Q3A -Qh4 C(a, 0, 0),

Qh5 C(c, 0, 0, -a), Qh6 C(-a, 0, 0, c),

^2,3 ^5,6 0, ^2,4 C(f, f, 0, 0),

^2,5 C{a, 0, 0, e), ^2,6 C{a, e, 0, 0),

^3,5 C(0, • • •, 0, /), ^3,6 C(/, 0,..., 0),

ß4j5 C(-)t, 0, 0), ^4,6 C(0, 0, -k).

On montre maintenant que rang(^) 6g - 6 en distinguant deux cas suivant la parité
de g.

Si g est impair, on pose Ma, (Œi,/)i<i,/,<4, et ß ^4 ^J2 On voit

facilement que Mi, est inversible (par exemple det Mi, 2ag (a — f)g ^ 0) ; le noyau
deßa donc la même dimension que celui de U M% + tM4^M^1M4^. Le calcul

montre que U £ _°p avec P C(0, A, B,-B,..., B, -B, -A), où

c — ha — ka — ea + c/),
— ce + a — ea — af — ka + ef + e£).

Il est élémentaire de vérifier que la matrice antisymétrique P est de rang au moins

g — 3 sauf si A 5 0, ce qui n'est pas le cas ici. On conclut que rang(Œ) 6g - 6.

Remarquer que P doit être de rang exactement g — 3, ce qui traduit des relations entre
les réels a, c, e (par exemple A2 — AB — B2 0 si g 5).

Quand g est pair, on décompose R6g suivant certains sous-espaces invariants par
l'action de Q. Soit u,v eW donnés par uj 1, vj (-1)/+1 (/ 1,..., g). On
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et, pour i é Is on note x\ le vecteur (0, x, 0) (x
en place i). On considère la décomposition orthogonale ^-invariante :

où E est engendré par les u\ et les v; (i 1,..., 6). Le sous-espace E est somme de

4 sous-espaces invariants et on vérifie immédiatement que rang(Œ|Ë) 10. Ensuite

on note w^ e W le y'-ème vecteur colonne de la matrice 'C(l, — 1,1, — 1, 0,..., 0)
et on prend (wJ')i i 1,..., 6, j 1,..., g - 2 comme base de F. La matrice
M de l'action de Q dans cette base est formée de blocs carrés M;j d'ordre g — 2

(1 < i, j < 6). Soit / [2, 3, 5, 6] et / [1, 4] ; on note N4, N4,2, N2A et N2 les

matrices extraites respectivement de M suivant /x/,/x/,/x/et/x/ (indices
des blocs), puis on procède comme dans le cas où g est impair : N4 étant inversible,
le rang de M se déduit de celui de V N2 — N2)4N41N4)2. Le calcul montre que

y _°ß 0 ' ou ô fe>i)i<'>i<g-2 avec qtj C (1 < i < g - 2), qi+ij
qi-lj D pour 2 < i < g — 3, q2r%\ q2r-3,g-2 —D pour 2 < r < g/2 — 1

(les autres q-h\ étant nuls) et enfin :

C J(h)(a3 + a\c -f-e-k-2h]
+ a[/g _ fcg + 2/A + ce + 2/fc] - 2c/2),

+ a//: — ah H ^ae — cf + eac).

Comme D ^ 0, le rang de g vaut au moins g — 4, donc rang(Œ) 6g - 6. En fait on
a nécessairement rang(g) g - 4, d'où des relations entre a,c,e (par exemple
C 0 si g 4 ou C + D 0 si g 6).

Sachant que le rang des gradients est maximal, on peut conclure par un argument
d'eutaxie relative (comme au §3) que Bg est parfaite et non eutactique. En effet, en
affectant d'un même coefficient À, toutes les colonnes correspondantes aux géodé-

siques d'une même orbite (i 1, 5), on trouve une combinaison linéaire nulle
(avec J2l=i h 7^ 0) en prenant

Xi =a2 + ae-2f2 > 0,

X2 a{k - f + a - c) > 0,

A3 a + ae + Ifc — 2fa — 2ak

X4 a (a + e - 2/) > 0,

A.5 a (a — /) > 0.

0,

D

5. L'icosaèdre

5.1. Présentation de la famille. On considère une surface de signature (0,12) ayant
la symétrie de l'icosaèdre. On nomme y les géodésiques de bords. En identifiant alors
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les bords opposés deux à deux, on obtient une surface de genre 6, ayant pour groupe
d'automorphismes 2I5, le groupe alterné de degré 5 (d'ordre 60). En faisant varier la

longueur du bord y et le twist 2/ selon lequel on recolle les bords opposés, on obtient
une famille de surfaces de Riemann, paramétrée par un couple de paramètres réels

(/, y). Dans un premier temps, on donne une allure du graphe, puis dans le dernier
paragraphe, on montre que cette famille contient une surface extrême.

5.2. Une esquisse du graphe. Dans ce paragraphe, on recense en premier lieu des

géodésiques qui coupent 1 ' ensemble des bords au plus trois fois (cette liste sera utilisée

pour la construction du graphe comme pour la démonstration du théorème 5), puis
on donne les longueurs de deux classes de géodésiques intersectant l'ensemble des

bords respectivement 5 et 10 fois : celles-ci nous permettront de compléter le graphe.
On commence par donner les longueurs des perpendiculaires représentées sur la

figure Figure 5.1a (les hexagones figurés correspondent aux faces triangulaires de

l'icosaèdre) :

Figure 5.1a Figure 5.1b

sinh -2 2. sinh(y/5)
cosh - sinh t

2
sinh

2y

sinhû?
sinh y ¦ sinh s

sinh i
cosh i sinh t ¦ sinh s ¦ cosh y — cosh t ¦ cosh s.

Ensuite, on calcule les longueurs de certaines géodésiques qui interviennent dans

l'étude de la famille. Pour une géodésique a, on note N(a) le nombre d'intersections
entre a et l'ensemble des bords Y. En outre les bords sont numérotés de la manière
suivante : on choisit un sommet que l'on numérote 1 ; ce sommet est entouré de 5

faces triangulaires formant un pentagone ; on numérote alors les cinq sommets de ce

pentagone de 2 à 6 dans le sens trigonométrique.
Soit / l'esnsemble des géodésiques homotopes au segment i. Si j e /, on a

N(j) 1 et :

i / y \
cosh j cosh -. cosh id l\

Soit Xt, Xs, Wt et Ws les familles de géodésiques définies par la figure 5.1b (avec

N(a) 2), l'indice s ou t étant relatif à la perpendiculaire commune entre les deux
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bords. En réalité, la géodésique affectée d'un indice s sera toujours plus grande que
la géodésique correspondante, affectée de l'indice t. On se bornera donc à donner
seulement les valeurs de xt,wt, omettant dès lors les indices t :

x t /ycosh - cosh - ¦ cosh
2 2 V2

cosh vu cosh t ¦ cosh / j ¦ cosh —h / — sinh / j ¦ sinh —h / ¦

On considère également des familles Vk (k 0. .3) de géodésiques avec N(vk) 3 et
3 segments homotopes aux perpendiculaires communes entre les bords (cf. le cas du
cube §3). L'indice que porte v désigne le nombre de segments homotopes à s ; donc

Vk possède (3 - k) segments homotopes à t. Par exemple, la géodésique joignant les

bords 1-4-6-1 est dans Vq. De fait, le calcul montre que vq est toujours la plus petite
parmi les quatre types de géodésiques Vk. Pour exemple, on donnera l'expression de

v\ (outre celle de vq). Dans la suite v désigne uo-

v t /ycosh - cosh - ¦ cosh
3 2 VIO

s (2y \ (3y
cosh v\ cosh - cosh I —— 2/1 cosh t cosh I — - /

s (2y \ /3y
+ cosh - sinh I 2/ I sinh I /

/ I sinh - sinhf.

Les géodésiques suivantes sont définies comme dans le cas du cube (§3) : la

géodésique z possédant 5 segments homotopes à t (par exemple, la géodésique joignant
les bords 5-3-6-4-2-5 est de ce type-ci), la géodésique u possédant 10 segments
homotopes à t (par exemple, la géodésique joignant les bords 1-6-4-5-3-1-6-4-5-3-1 est

de ce type-là). On a N(z) 5, N(u) 10 et en outre :

cosh - cosh - ¦ cosh
10

cosh — cosh t ¦ cosh \-l) ¦ cosh / — sinh \-l) ¦ sinh /
5 VIO / VIO / V10 / V10 /

Pour chaque famille de géodésiques, on donne ci-dessous le nombre de géodésiques

contenues dans cette famille.

famille

tt

Y,U,Z
6

V

10

X
15

W

30

/
60
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Fort de ces calculs, on peut à présent esquisser le graphe de la famille pour l/y e

[0,1/2], puis, par les arguments de symétrie habituels, l'étendre horizontalement :

I

-1 -1 0

Figure 5.2

-•!--?¦ l/y

Parmi les sommets de ce graphe, on remarque deux surfaces non isométriques :

• La surface Sô définie par y v v (qui est en outre isométrique à la surface

g définie par u v v) : cette surface admet exactement 26 systoles, de demi-

longueur

y v v ~ 2,608979056.

Cette surface ne peut pas être parfaite, puisqu'elle possède seulement 26 systoles et

que 26 < 6g -5 31.

• La surface U définie par y v x (qui est en outre isométrique à la surface I'6

définie par z v x) : cette surface admet exactement 31 systoles, de demi-longueur

y v x -2,554500933.

5.3. La surface h est extrême. Dans ce paragraphe, on s'attache à montrer le
résultat suivant :

Théorème 4. La surface h caractérisée, à isométrie près, par y x v, réalise un
maximum local de la systole dans l'espace de Teichmüller de genre 6. Son ensemble
de systoles est exactement Y U X U V, et contient donc 31 systoles.
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Preuve. Montrons que F Y U X U V est l'ensemble des systoles de I(,. Après
calculs, on obtient :

y x v ~ 2,554500933, vu ~ 2,793330751, i ~ 3,135994174,

~ 1,672747025, s ~ 3,599590847, / ~ 0,3399602340.

Soit a une systole de /ô. On voit facilement que a doit couper 7. Alors le nombre

N{a) d'intersections de a avec Y vaut au plus E{2y/î) 3 (puisque en outre
t < {t + j)/2 < j). De plus a doit être comprise dans une des familles inventoriées
dans le paragraphe précédent. En comparant les valeurs approchées des longueurs de

ces différentes géodésiques, on conclut que a e Y U X U V.
Montrons à présent que h est eutactique et parfaite. Soit a l'angle aigu formé par

les géodésiques x et y, soit ß l'angle aigu formé par les géodésiques v et y et soit y
(resp. <5) l'angle formé par les géodésiques u et x quand elles se coupent sur t (resp.

sur y). Posons à présent :

tanh(y/2 - /)
a cos a ~ 0,823907,

tanhx/2
tanh(Z - y/10) „„„...b cosjß ~ 0,207432,

tanh v/3
cosh x/2 ¦ cosh v/3- cosh 2y/5

c cos y ~ 0,698984,
sinhx/2 ¦ sinhu/3

J cos <5 cos(tt -a- ß)~ 0,383493.

On détermine ensuite (en fonction de a,b,c,d)la. matrice Q d'intersection des systoles

entre elles, rangées dans l'ordre (y, x, v). Le calcul du rang donne rang(Œ) 30

6g - 6. De plus, on a une relation à coefficients tous > 0 entre les colonnes Cj de Q, :

(c + d) J26j=i ^j + ^ 5Z/=7 Cj ~*~a ^-i=22 Cj 0. Il s'ensuit que le est une surface

extrême.
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