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Surfaces de Riemann parfaites en genre 4 et 6

Alexandre Casamayou-Boucau

Résumé. Cet article est consacré a larecherche de surfaces de Riemann extrémes pour la systole,
ou tout au moins parfaites. On donne trois nouvelles surfaces de Riemann remarquables en genre
4. Par extension de la méthode, on trouve également une nouvelle surface extréme en genre 6,
ainsi qu’une suite infinie de surfaces parfaites non eutactiques de genre g > 4 quelconque.

Codes AMS (2000). 51M10.

Mots clé. Géométrie hyperbolique, surface de Riemann, systole.

1. Introduction

1.1. Position du probléme. Soit X une surface de Riemann compacte de genre
g > 2,1.e.une surface hyperbolique orientable fermée. On appelle systole de X lalon-
gueur minimale d’une géodésique fermée de X (une telle géodésique n’est jamais ho-
motopiquement triviale). Comme X contient un disque plongé de rayon Systole(X)/2,
on peut aisément majorer la systole en fonction du genre : Systole(X) < 2In(4g).
D’apres [Mu], on sait qu’il existe un maximum pour la systole. La détermination de
ce maximum est un probléme naturel, analogue de la recherche de réseaux euclidiens
de densité maximale en géoméirie des nombres. Hormis le cas du genre 2, on ne
connait pas le maximum global. 11 est donc naturel de rechercher les maxima locaux :
une surface réalisant un maximum local sera appelée surface extréme.

Actuellement on ne connait que peu d’exemples de telles surfaces. En genre 2,
la surface de Bolza est la seule surface extréme ([Scl], [Ba2], [Je]). En genre 3,
il y a 3 surfaces extrémes connues ([Scl]), dont la quartique de Klein et la courbe
de Wiman exceptionnelle. Il est fort probable que ce soient les seules en genre 3,
cela reste a montrer toutefois. Ensuite P. Schmutz Schaller a exhibé deux surfaces
extrémes en genre 4, dont une surface triangulaire M (4), et trois surfaces extrémes
en genre 5 ([Scl], [Sc2]). En genre 6, U. Hamenstidt a récemment trouvé une surface
triangulaire extréme S(13, 4) ([Ha]). Ensuite viennent quelques autres exemples en
genres supérieurs : S(21, 5) en genre 10 ([Ha]), {(x|z) en genre 11 ([Scl]), S13 en
genre 12 ([Sc2]), ainsi qu’une suite infinie A(n) en genre impair supérieur a 7 ([Sc1]).
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Il existe par ailleurs un autre type de surfaces intéressantes a étudier, et plus
générales : les surfaces parfaites non extrémes (pour la définition, cf. §1.2). Les seuls
exemples connus sont donnés par P. Schmutz Schaller, qui décrit une famille de telles
surfaces pour certains genres supérieurs a 10 ([Sc4]).

Ces considérations s’adaptent au cas non-compact (i.e. les surfaces a bords ou a
pointes). Dans certains cas non-compacts, la détermination de la systole maximale a
été résolue par P. Schmutz Schaller, par le résultat suivant : les surfaces de Riemann qui
correspondent a des sous-groupes principaux de congruences du groupe modulaire
sont des surfaces réalisant le maximum global de la systole pour leur signatures
respectives (cf. [Sc3]). D’autres exemples sont donnés dans [Ha].

Dans cet article, on s’intéresse exclusivement au cas compact, ou la recherche de
surfaces extrémes parait nettement plus délicate. Le but de ce travail est de trouver
de nouveaux exemples en petit genre : on donne une nouvelle surface extréme et
deux surfaces parfaites non extrémes en genre 4 (ce sont les premiers exemples de
telles surfaces en petit genre). L’idée de la méthode est de réaliser géométriquement les
groupes d’automorphismes a 4 points de ramification, et d’en faire I’étude exhaustive.
Par extension, on trouve également une nouvelle surface extréme en genre 6, ainsi

Tableau 1. Surfaces parfaites ou extrémes connues en genre g < 6

| genre || surface | (Systole)/2 | #{syst}| propriété | références |
[ 2 | M* | 152857 | 12 | exwéme | (Bolza)[Scl] |
3 M(3) 1,99165 24 extréme (Wiman) [Scl]
3 T (x|z) 1,96797 21 extréme | (Klein) [Scl],rq.4
3 T (x|y) 1,96355 22 extréme [Scl], rq.4-5
4 M@ 231225 36 | extréme [Scl], §3.2
4 Ay 2,30660 28 parfaite §3.3
4 Cy 2,30159 21 extréme §2.3
4 Sy 2,26438 36 extréme [Sc2], §2.2
4 By 2,10519 24 parfaite §4.2
5 S5 2,45728 40 extréme [Sc2],rq.3
5 O(x|z) 2,44845 48 extréme [Scl], rq.3
5 O(x|y) 2,37091 42 extréme [Scl], rq.3
5 Bs 2,16846 30 parfaite §4.2
6 Ig 2,55450 31 extréme §5.3
6 S(13,4) 2,48284 39 extréme [Ha]
6 Bg 2,20223 36 parfaite 8§4.2
g >4 B, < 227747 | 6g | parfaite §4.2
2n—1>17 A(n) < 2,81698 14n extréme [Scl]
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qu’une suite infinie de surfaces parfaites non extrémes de genre ¢ > 4. En outre, la
méthode employée permet de retrouver, de maniere unifiée, les surfaces données par
P. Schmutz Schaller en genre ¢ < 5 (cf. remarques 3 a 5). Le tableau 1 récapitule
les surfaces remarquables (sous-entendu parfaites ou extrémes) de genre inférieur a
6 connues 2 ce jour.

1.2. Surfaces parfaites, surfaces eutactiques. La systole d’une surface de Rie-
mann compacte, marquée, de genre g est définie comme étant le minimum des fonc-
tions longueur géodésique sur I’ espace de Teichmiiller, fonctions qui sont paramétrées
par’ensemble C, des classes d’homotopie libre de courbes fermées de X, oul’on ex-
clut les courbes triviales. La fonction systole a récemment été étudiée par P. Schmutz
Schaller (cf. [Scl], [Sc2], [Sc3], [Sc4]) et par Ch. Bavard (cf. [Bal]).

Soit T, I’espace de Teichmiiller des surfaces de Riemann compactes, marquées, de
genre g ; ¢’est aussi I’espaces des métriques hyperboliques completes a isotopie pres
sur une surface orientée X, de signature (g, 0). On rappelle que dimg 7, = 6g — 6.
L’espace de Teichmiiller sera muni de la métrique de Weil-Petersson. Le groupe
modulaire de Teichmiiller Mod, agit sur T, par isométries de Weil-Petersson. Dans
la suite, on note S(X) I’ensemble des éléments de C, tels que [.(X) = Systole(X)
(“courbes de longueurs minimales, ou systoles™), ou /. désigne la longueur de la
géodésique associée a ¢ dans X.

Une premiere caractérisation des surfaces extrémes a ét¢ établie par P. Schmutz
Schaller dans [Scl]. Nous utiliserons ici plutdt la caractérisation donnée par Ch. Ba-
vard dans [Bal] qui possede I’intérét de faire apparaitre 1’analogie avec la théorie des
réseaux.

Nous appellerons surface de Riemann extréme un maximum local de la systole.
Nous pouvons également définir, conformément a [Bal], les notions de surface de
Riemann parfaite etde surface de Riemann eutactique de la maniere suivante. Soit X €
T, ;lasurface X estdite parfaite siles gradients (pour la métrique de Weil-Petersson)
(Ve (X)) cescx) engendrent affinement I’espace tangent Tx (T, ) ; la surface X est dite
eutactique si le vecteur nul de Tx (T )appartient a I'interieur affine de I’enveloppe
convexe des gradients (V. (X)) es(x). On remarque qu’une surface parfaite contient
aumoins dimp T, +1 = 6g — 5 systoles. Ch. Bavard a alors énoncé le résultat suivant,
qui est le strict analogue du théoréme de Voronot pour les réseaux :

Une surface de Riemann est extréme si et seulement si elle est parfaite et
eutactique ([Bal]).

On sait que les surfaces de Riemann parfaites (et donc en particulier extrémes)
sont en nombre fini modulo I'action du groupe Modg, et que leur systole est le
logarithme d’un nombre algébrique ([Ba4]). De plus on peut améliorer la borne de la
systole par rapport a celle donnée plus haut par I'inégalité : cosh(Systole(X)/2) <

(2sin ;2) " (IBa2l).
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1.3. Méthode mise eneuvre. 1.idée quiprélude alarecherche de nouveaux exemp-
les de surfaces extrémes en petit genre est de considérer comme étant de bons candidats
les surfaces qui ont beaucoup d’automorphismes. En effet, si le groupe d’automor-
phismes est suffisamment gros, on peut espérer obtenir, avec 1’action du groupe, un
nombre conséquent de systoles, or une surface parfaite contient au moins 6g — 5
systoles.

Fort de ces considérations, on s’ enquiert de 1a liste des groupes d’automorphismes
qui peuvent agir sur une surface de Riemann de genre 4. On trouve une telle clas-
sification dans [Ku] et dans [Bo]. L article de Bogopol’skii est cependant le plus
riche puisqu’il donne, outre la signature de chaque groupe, 1’action de celui-ci sur
la surface. Nous avons cherché a étudier de maniere quasi-exhaustive les actions des
groupes répertoriés dans la table 2 de [Bo, p. 15] : ce sont ceux qui ne sont ni abé-
liens, ni dihédraux. Pour ce qui est des groupes dihédraux, nous avons examiné ceux
d’ordre au moins 8.

Considérons donc un groupe G mentionné dans la table [Bo, pp. 14-15] tel que
le quotient de son action soit de genre () avec n points de ramification. Plusieurs cas
se présentent alors :

e Sin = 3, alors il existe une unique surface admettant G comme groupe d’auto-
morphismes : ¢’est une surface triangulaire. Dans [Sc1], P. Schmutz Schaller indique
que parmi toutes les surfaces triangulaires de genre 4, il en existe une seule qui soit
extréme : M (4).

e Si n = 4, alors il existe une famille de surfaces paramétrée par un unique
parametre complexe, et admettant G comme groupe d’automorphismes. Une fois
acquise I’existence d’une telle famille (par des criteres purement algébriques), il
reste toutefois la délicate question de savoir comment la réaliser géométriquement.
Une premicre idée est de partir d’un graphe connexe trivalent de “genre” 4 (ici, le
genre du graphe est entendu comme étant son nombre cyclomatique) : on place alors,
a chaque sommet de ce graphe, un pantalon dont les 3 bords ont méme longueur ;
puis on les recolle suivant le tracé des arétes du graphe, en effectuant partout le
méme twist (intuitivement, on épaissit les arétes). On obtient de la sorte une famille
de surfaces invariantes par un certain groupe G, paramétrée par le couple de réels
(I, y) = (twist,longueur) ou, équivalemment, par un nombre complexe appartenant
au demi-plan de Poincaré (z = [ +1iy). Le groupe G en question a donc une signature
comptant 4 points de ramification : il ne reste plus qu’a le retrouver dans la table
de [Bo]. En vue d’appliquer cette méthode, on fait donc I'inventaire des graphes
trivalents de genre 4.

Cette méthode appliquée au graphe biparti K3 3 redonne une famille de surfaces
invariantes par &3 x &3 (ou &3 désigne le groupe des permutations d’un ensemble a 3
éléments), famille en partie étudiée par P. Schmutz Schaller a partir dune construction
différente : c’est I’objet du paragraphe 2. Outre la surface extréme S4 mentionnée par
P. Schmutz Schaller, on met ici en évidence une nouvelle surface extréme Cy. Par
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ailleurs, on décompose le demi-plan (/, y) en “cellules”, ot chaque cellule est associée
a une classe de géodésiques : si pour une valeur donnée de (I, ¥) on se trouve dans
telle cellule, cela signifie que les géodésiques associées a cette cellule réalisent alors
la systole. Les maxima de la systole se trouvent nécessairement parmi les sommets
de cette décomposition du demi-plan.

11 reste que ’idée de partir de graphes trivalents est assez limitative, et il n’est pas
clair que I’on puisse de la sorte atteindre tous les groupes a 4 points de ramification
répertoriés dans [Bo]. On cherche alors a partir de graphes de valence au moins trois,
en mettant éventuellement du genre aux sommets.

On peut par exemple considérer le graphe formé par 5 arétes joignant deux som-
mets : la surface obtenue est alors le double twisté d’une surface de signature (0, 5)
ayant la symétrie d’un pentagone régulier. Toutefois, cette famille ne semble pas
contenir de surface parfaite ([Ca] by,

Plus intéressant est le cas du trefle de genre 4 : on part d’une surface de signature
(0, 8) dont on identifie les cotés deux a deux. Si la surface de signature (0, 8) a la
symétrie du cube, on obtient une famille de surfaces fixées par G4, le groupe des
permutations d’un ensemble a 4 éléments. Elle contient donc forcément la surface
de Bring (dont le groupe d’automorphismes est Ss) et M (4) (dont le groupe d’au-
tomorphismes est G4 x Z3). Ce fait, déduit de considérations purement algébriques,
sera redémontré par une méthode géométrique au §3. De plus on mettra en évidence
I’existence, dans cette famille, d’une surface parfaite non eutactique Ag4.

Toujours a partir du graphe du trefle, si 1a surface de signature (0, 8) a la symétrie
de I’octogone régulier, on obtient une famille de surfaces fixées par le groupe dihédral
Dg, d’ordre 16. On n’a pu y déceler de nouvelle surface intéressante ([Ca]).

Pour terminer 1’étude exhaustive des actions mentionnées dans la table 2 de [Bo,
p. 15], il reste a examiner I’action du groupe de quaternions Qg (mais cette action est
moins intéressante puisqu’elle donne lieu a une famille de surfaces hyperelliptiques)
ainsi que I’action de (Z3 x Z3) <1 {B) (celle ne contenant pas &3 x G3). Pour cette
dernicre action, nous n’avons pu déceler de surface intéressante ([Ca]).

e Sin = 5, on obtient une famille paramétrée par deux nombres complexes. 11
faut alors fixer un des deux parametres en fonction de I’autre pour faire une étude
géométrique du méme type que celle menée précédemment. A ce stade, on ne peut
plus espérer mener une étude exhaustive. Des exemples intéressants se présentent
néanmoins, comme celui de la surface associée au graphe fixé par le groupe dihédral
Dy, d’ordre 8. On opere cette fois-ci un découpage “mixte” de la surface en quatre
pantalons et une surface de signature (0, 4). L’étude menée au paragraphe 4 révele
I’existence d’une surface parfaite B4. En outre cette construction se généralise en
genre quelconque et permet de construire une suite infinie de surfaces parfaites et
non eutactiques B, de genre g > 4 quelconque.

11 étude des familles mentionnées dans cette introduction, mais dont on n’a pu extraire de nouvelle surface
intéressante, est détaillée dans ma these.
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En dernier paragraphe, on donne un exemple en genre 6. En effet, la construction
du §3, qui consiste a recoller les bords opposés d’une surface de signature (0, 8)
possédant la symétrie du cube, peut s’adapter au cas de I’icosacdre : on obtient une
famille de genre 6, paraméirée par un unique parametre complexe, et ayant pour
groupe d’automorphismes le groupe alterné de degré 5 (on peut d’ailleurs obtenir une
présentation duale de cette famille en épaississant les arétes du graphe de Petersen).
On montre notamment que cette famille contient une surface extréme notée . A
noter qu’on pourrait espérer que cette construction effectuée a partir du dodécaedre
puisse donner une surface intéressante en genre 10, toutefois I’étude de ce cas montre
qu’il n’en n’est rien ([Ca]).

2. Une famille modelée sur K3 3

2.1. Groupe d’automorphismes. On s’intéresse au graphe K3 3 (cf. Figure 2.1a) :
N
S—

Figure 2.1a Figure 2.1b

Son groupe d’automorphismes G est engendré par deux retournements sy et sp
(dont les axes respectifs passent tous deux par le centre du graphe et forment entre eux
un angle de 77/6; le retournement s1 passe en outre par un sommet) ; et une rotation r
(de centre I’'un des sommets situé sur I’axe de s1 , d’angle 277 /3). On note par ailleurs
r1 = s2 o s1 la rotation de centre le centre du graphe, d’angle 7 /3 (cf. Figure 2.1b,
ou le graphe K33 est dessiné sur le tore). Le groupe G est d’ordre 36. On remarque
qu’il est isomorphe au groupe &3 x S3. En effet,

2 -1 2.9 &
G = (s1,82,r2) = {s1, 82, r1,r2) = (r{, risary ) x {riry, ri) = 63 x Gs.

Une fois ce graphe donné, on épaissit les arétes : on obtient alors une surface de
Riemann. Cela revient a placer en chaque sommet du graphe un pantalon dont les
trois bords ont méme longueur et a les recoller les uns les autres selon un twist
identique. Ce procédé nous fournit une famille de surfaces de Riemann paramétrée
par deux réels : la longueur du bord et le twist.
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D’apres [B-L], on peut décrire cette famille comme intersection d’une quadrique
et d’une cubique dans P® :

c xox1 + x2x3 = 0,
PP ad —xd) + B3 —xd) =0,

ou le parametre (v, B) décrit P'. On se convainc facilement que Aut(Cy,p)) =
G3 x B3, tant que (¢, B) # (1,=£1). Ce groupe noté G(9 x 4) dans [Ku], et
(Z3 x Z3) <1 (A, B) dans [Bo], a pour signature [2, 2, 2, 3]. Dans le cas particu-
lier (¢, B) = (1, £1), il faut ajouter un automorphisme qui porte 1’ordre du groupe
d’automorphismes a 72 : ¢’est un groupe triangulaire (2, 4, 6), appelé G(9 x 8) dans
[Ku].

2.2. Une esquisse du graphe de la famille. Cette famille a déja été étudide en
partie par P. Schmutz Schaller dans [Sc2] a partir d’une présentation différente : il
considere en effet le double twisté d’une surface Mg de signature (1, 3) ; si bien qu’au
lieu de faire les twists selon les bords des pantalons (i.e. les géodésiques x) comme le
suggdérait la méthode proposée au premier paragraphe, il exécute les twists selon trois
géodésiques y correspondant a des cycles de longueur 6 du graphe. Cela simplifie
les calculs puisqu’il y a moins de géodésiques y que de géodésiques x : les effets du
twist sont alors plus faciles a calculer. On adoptera donc ce point de vue dans cette
étude. La demi-longueur du twist sera notée /.

N.B. Dans toute la suite, on notera aussi y la demi-longueur d’une géodésique y,
et Y la famille des géodésiques y. On procédera de méme pour toutes les familles de
géodésiques fermées définies ci-dessous.

On cherche a déterminer en chaque point du demi-plan (I/y, y) la systole de la
surface associée : ceci revient a dessiner un graphe dont les arétes correspondent a
des surfaces dont la systole est réalisée simultanément par deux familles de géodé-
siques, et dont les sommets correspondent a des surfaces dont la systole est réalisée
simultanément par trois familles de géodésiques au moins. On remarque tout d’abord
que I’on peut se restreindre au domaine d’étude [/y € [0, 1/2] en utilisant certaines
symétries du graphe. 11 est clair que deux surfaces obtenues a partir d’un twist opposé
seront isométriques, ce qui permet de se restreindre au cas ! > 0. Par ailleurs, I’action
d’un twist entier selon Y envoie la géodésique x sur une géodésique x; de longueur
2 arg cosh[cosh(z/2) cosh(y — I)] tout en laissant y invariante. De maniere plus gé-
nérale, un twist de k € Z tours selon Y envoie la géodésique x sur la géodésique
xi, avec xx(l) = x(I — ky). De méme pour les géodésiques u, v, etc. Le twist entier
selon Y translate donc (//y, y) en (I/y — 1, y), et on peut a présent se restreindre au
domaine 0 <[/y < 1/2.

On donne maintenant les valeurs explicites des différentes géodésiques qui sont
repésentées sur les figures suivantes et qui nous servirons a construire une partie du
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graphe. Dans ces figures, les deux parties de la surface séparées par Y sont super-
posées ; pour chacune d’elles, les identifications s’effectent par des translations qui
échangent les cotés opposés. Les géodésiques fermées sont représentées en trait plein
dans la “partie supérieure” et en trait pointillé dans la “partie inférieure”. A I’aide
des formules de trigonoméirie hyperbolique (cf. par exemple [Bu, ch. 2]), on trouve
successivement :

cosh y/3
coshy/3—-1"

cosht =

Figure 2.2a Figure 2.2b

t
cosh j = <2c0sh§ + 1) - cosh %, cosh% = cosh 3 -cosh/,

A L Y L L Y _
coshz—cosh2 cosh(3 l), cosh6—cosh2 cosh(6 l),

Figure 2.3a Figure 2.3b

t
cosh% = cosh 5 - cosh (% - l) ,

cosh% = cosht - cosh (% —l) -cosh! — sinh (% —l) -sinh/,
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Figure 2.4a Figure 2.4b

t
cosh g = cosh 3 cosh (% — 21) cosht cosh/

t t
— cosh - sinh (% - 21) sinh / + sinh 1 sinh — cosh .

On pourrait également exprimer cosh i (avec une formule plus longue).

Pour chaque famille de géodésiques, on donne ci-dessous le nombre de géodé-
siques contenues dans cette famille.

famille | Y, V,W, P | J,1 | X, U, F
7 3 18 9

Une fois ces calculs acquis, on construit le graphe de la manire suivante : on part
de la surface extréme S4. On trace alors les trois arétes issues de ce point, définies
par I’égalité de deux familles de systoles choisies parmi les trois familles définissant
le point en question (par exemple, si on part de S4, ontrace x = u, x = j,u = j).
On prolonge ces arétes jusqu’ au moment ol une autre géodésique vient réaliser la
systole : on arrive alors sur un autre sommet du graphe, d’ol partent deux autres
arétes auxquelles on applique de nouveau ce procédé, et ainsi de suite.

La difficulté qui se présente est celle de vérifier qu’a chaque nouveau sommet, la
nouvelle géodésique a réalise effectivement la systole. Pour des valeurs de y petites
(C’est-a-dire y < 6, 5), le rapport 2a/t reste raisonnable (de I’ordre de 6 au plus),
donc il est possible d’examiner les longueurs des géodésiques intersectant ¥ au plus
6 fois, et donc de décider si a est oui ou non la systole. Au dela, ¢ décroit trop vite
pour rendre ce type de vérification effective. On donne a présent 1’allure qualitative
du graphe, pour des valeurs de y n’excédant pas 6 :
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|
o

S
o +
X &

Figure 2.5

Des symétries supplémentaires apparaissent dans le graphe qui s’expliquent ainsi :
tout d’abord, on constate en examinant les équations donnantles valeursde x, u, v, . . .,
qu’on a (toujours dans le plan (//y, y)) une symétrie d’axe [/y = 1/6.

Par ailleurs, si on regarde I’effet d’un twist entier selon X sur ’ensemble des
géodésiques, on constate qu’on a I’action décrite dans la table suivante (ici, u# désigne

avanttwist | X | W | Y (U | F |V | 1]
apréstwist | X | Y |W | F|U |V | J

~i| ~

la géodésique dont la longueur vaut, pour un twist donné !/, u(l) = u(—I)). Ainsi donc,
si on combine un twist entier selon X avec une inversion du sens du twist effectué
selon Y (i.e. une symétrie d’axe I = 0 sur le graphe), on complete le graphe pour des
valeurs de y > 6.

On remarque une surface intéressante Cy, caractérisée a isométrie pres par x =
u = v, et dont on montrera I’extrémalité au paragraphe §2.3.

D’apres les considérations de symétries énumérées plus haut, on retombe sur des
surfaces isométriques aux surfaces extrémes déja trouvées : une surface C}, cor-
respondant au sommet x = f = v, qui est isométrique 2 Cy ; et une surface S},
correspondant au sommet x = f = i, qui est isométrique a S4. Ceci est corroboré par
le calcul. 11 est donc tout a fait vraisemblable que le graphe ne contienne pas d’autres
surfaces extrémes non isométriques a celles déja mentionnées ; mais ce fait reste a
prouver.
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2.3. La surface Cy est extréme. Dans ce paragraphe, on se limite a 1’étude de la
sous-famille x = u, ce qui revient a prendre un twist 2/ égal a y/3. Montrons le
résultat suivant :

Théoreéme 1. 1] existe un unique double twisté Cy4 de Me (a isométrie prés) vérifiant
x = u = v. La surface Cy4 réalise un maximum local de la systole dans I’espace
de Teichmiiller de genre 4. Son ensemble de systoles est exactement X UU UV, et
contient donc 21 systoles.

Preuve. Montrons que ' = X U U U V est I’ensemble des systoles de C4. Apres
calculs, on obtient : cosh y/3 = 24+/5, cosht = (3-++/5)/4,coshx = (9+5+/5)/4,
2x = s + ¢, soit en valeurs approchées :

x=u=v2>~2,30159, y=~6,36765,
Jj >~ 4,38498, ~0,76720, s~ 3,83599.

Soit a une systole de Cy4. Alors le nombre N (a) d’intersections de a avec Y vaut
au plus 2v/t = 6. En comparant les valeurs de y et j (systole de Mg, cf. [Sc2]),
on voit que N(a) # 0. Donc 2 < N(a) < 6. De plus, a n’intersecte pas deux
perpendiculaires de longueur ¢ issues d’une méme géodésique y (I’angle entre a et
Y n’est pas trop petit). Si N(a) = 2, les deux segments de a sont homotopes aux
perpendiculaires de longueur ¢ puisque s > 3;donca € X UU. Si N(a) = 4, les
calculs montrent que @ > 3. Enfin si N(a) = 6, forcément a € V puisque 2v/t = 6
exactement, et qu’aucune autre géodésique coupant Y six fois n’égale v. Donc F est
bien I’ensemble des systoles de Cjy.

Montrons a présent que Cy4 est eutactique et parfaite. Pour calculer le rang de
I’espace engendré par les gradients des systoles, on utilise la matrice formée par le
cosinus des angles d’intersections des systoles entre elles. En effet, d’aprés Wolpert
([Wol), si o et T sont deux systoles ona w (I, I;) = Xpeonr 08y, Ol w est la forme
symplectique de Weil-Petersson et 8, I’angle entre o et r au point p. En écrivant la
matrice intersection des systoles, on obtient une “matrice de Gram symplectique”,
dont le rang minore celui de 1’espace engendré par les gradients des systoles.

Soit @ = cosw, ou « est I’angle aigu formé par les géodésiques x et v (qui est
le méme que celui formé par les géodésiques v et u), soit ¢ = cos 2o = 2a* — 1,
2« étant I’angle formé par les géodésiques x et # quand elles se coupent sur v et soit
d = cos 8, ou 6 est I’angle formé par les géodésiques x et u quand elles se coupent
sur y.

Apres calculs, on trouve : ¢ = tanhz/2(tanhu/2)~! = 1//5,¢ = —3/5 et
d = cos[ — 2arcsin(sinh ¢ /2(sinh # /2)~1)] = —(2 4 +/3)/5. On détermine ensuite
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la matrice €2 intersection des systoles, rangées ici dans ’ordre u, x, v :

0 —-Q -
Qb —Q, 0
ol
d 0 ¢ 0 0 0 0 d ¢ a a 0
c d 0 0 0 0 ¢ 0 4 0 a a
0O ¢c d 00 0 d ¢ O a 0 a
0 d ¢ d 0 ¢ 0 0 0 0 a a
Q=) ¢ 0d ¢ d 0 0 0 0 et Q=] a 0 a
d ¢ 0 0 ¢ d 0 0 0 a a 0
0 0 0 0 d c¢c d 0 ¢ a 0 a
0 0 0 ¢ 0 d ¢ d 0 a a 0
0 0 0d ¢ 0 0 ¢ d 0 a a

Le calcul du rang donne rang(2) = 18 = 6g — 6. En ajoutant alors aux 18
premieres colonnes de €2 les trois dernieres pondérees du coefficient —(c+d)/a > 0,
on obtient un vecteur colonne nul. Comme le rang de €2 est maximal, ceci entraine
précisément que la surface Cy est eutactique. Par suite, rang affine et rang vectoriel des
gradients coincident, et C4 est parfaite. D’ apres le théoréme démontré par Ch. Bavard
dans [Bal], et rappelé en introduction, (parfaite et eutactique implique extréme), il
s’ensuit immédiatement que C4 est une surface extréme. a

Remarque 1. Dans la sous-famille x = u, on remarque que la systole admet un
minimum local entre Sy et Cy : 1a surface correspondante possede 18 systoles de demi-
longueur 2 arg cosh 3 ~ 1, 92484 ; cette surface n’est autre que la surface triangulaire
(2,4, 6) notée C(1,1y dans [B-L].

Remarque 2. Cette méthode appliquée au graphe cubique redonne la famille de
genre 5 étudiée par P. Schmutz Schaller dans le méme article ([Sc2]). On n’a pu
y déceler de nouvelle surface intéressante ; on y retrouve toutefois la famille O(y)
décrite différemment par rapport a [Scl] : en effet, I’analogue de la géodésique v
décrite plus haut permet d’identifier la famille O (y) avec 'aréte x = £, et de mettre
en évidence une surface extréme caractérisée a isométrie pres par x = 7 = v, et qui
n’est autre que O (x|y) (cf. [Ca]).
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3. Le cube

3.1. Présentation de la famille. On considere une surface de signature (0, 8) ayant
la symétrie du cube ; autrement dit, on “écorne” les sommets d’un cube. On nomme
v les géodésiques de bord. On identifie alors les bords opposés deux a deux (Fi-
gure 3.1a), et on obtient une surface de genre 4, ayant pour groupe d’automorphismes
&4. D’apres [Bol, la signature de ce groupe est [2, 2, 2, 4] ; 1a famille construite est
donc paramétrée par un couple de parametres réels (I, ), ot/ désigne le demi-twist
selon lequel on recolle les géodésiques y.

Figure 3.1a Figure 3.1b

Toujours d’apres la classification de [Bo], on peut conjecturer que cette famille
contiendra la surface de Bring (dont le groupe d’automorphismes est S5, [R-R]), et
la surface M (4) (dont le groupe d’automorphismes est Sy x (x]x® = 1), [Scl]), ce
qui est effectivement vérifi€ dans ce qui suit.

Remarque 3. La méme construction effectuée a partir de 1’octagdre (et non plus du
cube) redonne la famille 7' (y) de genre 3, étudiée dans [Sc1] (cf. [Ca]).

3.2. Une esquisse du graphe. On commence par donner les géodésiques qui inter-
viennent dans la construction du graphe pour y et/ pas trop grands.

On note y la géodésique de bord. Soit ¢, s et i les perpendiculaires représentées
sur la figure 3.1b (noter que les points « et o’ sont identifiés quand ! = 0). On donne
successivement la longueur de ces perpendiculaires, puis pour chaque géodésique
représentée ci-apres la longueur correspondante :

t 1 K 1
simlh—=———, sinh- = ——,
2 /2sinhy/3 2 tanhy/3
sinh y. sinh s

sinhd = , coshi =sinhs - sinh ¢ - coshy — coshs - coshz;

sinh
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i;

Figure 3.2

coshw:cosht~cosh<z—l)~cosh<X+l)—sinh(Z—l> ~sinh<X+l),
2 2 2. 2

h2 ht h(y z) b § nt h<l+y d)
cosh — =cosh—-cosh{= —1}), cos = cosh — - cos - — ;
2 2 2 J 2 6
3 i 3 )
A 1 4 i 3 4
v u 1- ...................... 4 u

I 2

I 2l

Figure 3.3

h 2 = cosh - - cosh (2-1)
cos 5= cosh = - cos 6 ,
- . Y ). Y _sinhilZ —1) esinh {2
coshz—cosht cosh(6 l) cosh<6+l> smh(6 l) s1nh<6+l),
On donne dans le tableau ci-dessous le cardinal de chaque famille de géodésiques

citées précédemment (ici, j désigne la géodésique dont la longueur vaut, pour un
twist donné [, j(I) = j(=1)).

famille | Y.V, V | W, J,J | U, X, *

On peut maintenant donner une esquisse du graphe de la famille danslazone (y, I /y) €
[0, 4] x [—1/2, 1/2]. Voici I’allure qualitative du graphe :
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Iy

Figure 3.4

Dans cette esquisse, on a “tordu” I’axe des abscisses pour faire apparaitre ce
qui semble étre une symétrie du graphe, car en fait, sur un schéma quantitatif, le
cone de x devrait étre a peu pres axé autour de la droite [/y = 1/2. Néanmoins,
on a pris le parti de déformer le graphe puisque, outre la syméirie d’axe [ = 0,
il semble apparaitre une invariance du graphe par rotation de centre M (4), d’angle
2m /3. En effet, le calcul montre que 1’on retrouve trois fois, a isométrie pres, les
surfaces Brg := Cy—j—y, A4 1= C,_;_7, et C,_,_5. L'examen du graphe révele
ainsi plusieurs surfaces intéressantes :

e La surface Cy—;—, (ou une des deux autres surfaces qui lui sont isométri-
ques : plus précisément C,,_,_5 ou C,_;_;) : on remarque que cette surface admet
exactement 20 systoles, de demi-longueur

y = j = v =3argcosh(3/4 + +/5/4) ~ 2,301592.

En outre, ses systoles pavent la surface en carrés et pentagones, et se coupent toutes

selon le méme angle & = arccos (24/5/11—=3/11) ~ 1,436563. C’est donc la surface

de Bring (cf. [R-R]), qui est eutactique et non parfaite. Elle est notée Brg sur le graphe.
e La surface C,,_ ;_ -, qui admet exactement 36 systoles, de demi-longueur

5433

w = j = j = argcosh ~ 2,312250.
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On retrouve donc la surface extréme notée M (4) dans [Scl].

e La surface Cyy— j=, (ou une des deux autres surfaces qui lui sont isométriques :
plus précisément C,,_;_5 ou C,_5_ ) : cette surface admet exactement 28 systoles,
de demi-longueur

w = j =v =2,30659999071.
Cette surface que I’on notera A4 sera étudiée dans le paragraphe §3.3 ; on montrera
notamment que ¢’est une surface parfaite non eutactique.

o La surface Cy_yx—, (ou une des deux autres surfaces qui lui sont isométriques :
plus précisément Cy_;_; ou C, ) : cette surface admet exactement 14 systoles,
de demi-longueur

u=v="o

y =x =v 2 2,29347051505.

Comme 14 < 6g — 5 = 19, cette surface ne peut tre parfaite.

Remarquons par ailleurs que, tout comme dans les sections précédents, on a une
invariance du graphe par translation de longueur 1 le long de I’axe des abscisses ; ainsi,
cette allure de graphe se transporte au niveau de 'axe [ /y = 1, puis [/y = 2, etc. De
manicre plus globale, on obtient donc le graphe suivant (comme précédemment, les
géodésiques affectées d’un indice se déduisent des autres par ’effet d’un twist entier
selon Y ; on a par exemple : pour toutes k € Z , ji (1) = j{I — ky)):

y

U1 9/ Ui

W_1 V4 17 w vV Vi Wi
J 4 X J| J X I
Y
1 -1 0 1 ) Iy
= 7 2
Figure 3.5

3.3. Lasurface A4 est parfaite. Dans ce paragraphe, on s’intéresse a la surface A4,
définie a isométrie pres, par y = j = j ; on monire le résultat suivant :

Théoreéme 2. A4 est une surface parfaite non eutactique. Son ensemble de systoles
est exactement Y U J U J.
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Preuve. Montrons Y U J U J est I’ensemble des systoles de A4. Aprés calculs, on
obtient :

y =~ 2,30659999071, w ~2,33858918081,
u 2~ 3,22774965596, x =~ 2,92041491748,
v =~ 2,60164724868, [ =0,

t >~ 1,51944655787, s =~ 2,44147924868.

Soit a une systole de A4. Alors le nombre N (a) d’intersections de a avec Y vaut au
plus EQ2y/t) = 3. Donc 0 < N(a) < 3. La géodésique a doit appartenir a I’'une
des familles suivantes : VUV (N(a) =3), WUXUX (N(@) =2)ouYUJUJ
(N(@) <1).Maisv=0>y,w=1w>yetx >y.Dol,aec YUJUJ.

Montrons a présent que A4 est parfaite. Par un calcul de géométrie hyperbolique,
on prouve le lemme suivant :

Lemme 1. Dans un quadrilatere hyperbolique comprenant un angle droit, [’angle
Y, opposé a U'angle droit est donné par la formule :

F(a,a;b, B):=cosy

anh a

cos arctan ¢ cos | B — arctan Gl &
e o — _— . —
sinh b sinh a

b
) -cosha-coshb

~+ sin( arctan tanh a) sin [ B — arctan ¢
O{ — _ —
sinh b a

ot a et b désignent les longueurs des deux cotés adjacents a I’angle droit, et «,
leurs angles respectivement opposés.

On donne a présent les coefficients qui interviennent dans 1’écriture de la matrice
intersection des systoles :

tanh(d — y/6)
b=cosf = "X () 167373,
P tanh j
2
—cose =2F (L. 82 Z) —1~0,828711
e 27 7272 8 LS
t y m+€
:F ~? = T =€,
¥ (2” Fe ™2 ) ¢
t y m—€
—r(s, 2, ~0,411716,
‘ (zﬂ 2 2 )

FL z—p2 225 ~0,208497
— _’77:_ ;_7 ~ ’ .
" 2 6 2
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En rangeant les sytoles dans I’ordre (y1, ..., Y4, j1. j1. - -, j12, j12), la matrice in-
tersection s’écrit :

0 A As A3 Ay
—'A 0 2 Q '
Q=] —"Ay - 0 Q2 Qo
A3 QT 0 Q1
Ay Q- 0

ol
-m —c 0 0 0 g
e —m O 0 0 -m
| -m g 0 0 0 —c
Hy = 0 0 —-g m ¢ 0
0 0 m —e m 0
0 0 c m —g O
et
0 g —-m —c O 0
—g 0 0 0 ¢ m
m 0 0 0 m —e
w=1Cc 0 0 0 —g¢ m
0 —¢c —-m ¢ 0 0
0O -m e —-—m O 0

et (Ag)i; = (—1)j8{‘b (1 <i,k <4 1 < j < 06). Le calcul du rang donne
rang(2) = 18 = 6g — 6. Par ailleurs, on a une relation entre les colonnes de €2 :
(2c—g) - Y1Cy +b - Y17 (Cj + C;) = 0avec 4(2c — g) +24b ~ 3,99 # 0;
la surface A4 est donc parfaite. On a obtenu également 1’unique relation (a scalaire
pres) entre les projections des gradients sur le lieu invariant. D’apres [Ba3, Prop. 1.5]
(I’eutaxie se lit sur le lieu invariant) on voit que A4 n’est pas eutactique puisque
b>~0,17 > 0et2c — g >~ —0,0053 < 0. o

4. Une suite infinie de surfaces parfaites

4.1. Présentation de la famille. Dans ce paragraphe, on montre 1I’existence d’une
surface parfaite non eutactique de genre g > 4 quelconque.

Soitun entier naturel ¢ > 4. Ons’intéresse a la famille associée au graphe suivant :
on considere g sommets formant un polygone régulier a g cOtés ; les arétes sont les
cOtés du polygone ; on place ensuite un (g + 1)-iéme sommet au centre du polygone
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que I’on joint aux autres sommets par des arétes radiales. Dans le cas du genre 4, ce
graphe se représente de la maniere suivante (Figure 4.1a) :

Figure 4.1a Figure 4.1b

Son groupe d’automorphismes G est engendré par un rotation o d’ordre g, et un
retournement 7 : ¢’est le groupe dihédral D, d’ordre 2g. En genre g = 4, sa signature
est[2,2,2,2,4] d’apres [Bo].

La famille obtenue par cette construction est paramétrée par deux parametres
complexes. Pour se ramener a une famille a un parametre, on va fixer une condition
supplémentaire : on découpe la surface suivant les courbes indiquées en pointillés
sur la figure 4.1b, en une surface “centrale” de signature (0, g) et g pantalons. On
convient de noter y les g géodésiques indiquées sur la figure 4.1b, et y’ la géodésique
“extérieure”. On note y1 la longueur du segment de y, contenu dans la sous-surface
centrale de signature (0, g), et y2 la longueur du segment de y, contenu dans un des
pantalons. On peut alors paramétrer la famille par les deux couples de réels (twist,
longueur) correspondant a la déformation de la surface selon les g géodésiques y et
selon la géodésique y'.

Dans la suite de ce chapitre, on choisit d’imposer ¢t = ¢/, ce qui donne alors une
famille paramétrée par le seul couple de parametres réels (/, y), ou [ est la longueur
du demi-twist effectué selon Y U Y. En effet, y détermine entierement les longueurs
y1, y2,t = t', y'. Pour obtenir y; et y, il suffit de résoudre le systéme :

yi+2y2 =2y,
cosh y; —4cos?(r/g) - cosh yo = 1 — 4cos?(/g).
Ensuite, 7 et y’ sont donnés par les formules :

cosh y;

=——" et 2y = .
coshy, — 1 $ =

cosh ¢

On aurait aussi bien pu se donner ¢ et calculer y;, y; et y" en fonction de z.
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4.2. Une surface B, parfaite. Onnote X 1’ensemble des 2¢ géodésiques qui coin-
cident avec la réunion de deux segments ¢ lorsque le twist est nul (cf. Fig. 4.2). Une
telle géodésique a pour demi-longueur : cosh 5 = cosh ‘7 cosh/.

Soit x € X, etsoit y € Y intersectée par x, il existe une unique plus petite
géodésique simple z telle que x, y, z soient contenues dans une sous-surface de
signature (1, 1), et telle qu’en outre z intersecte x (resp. y) une seule fois (cf. Fi-
gure 4.2). On note X’ I'ensemble de ces géodésiques, et x” leur demi-longueur, qui
vaut : cosh x’ = coshz cosh(y — [) cosh/ — sinh(y — [) sinh /.

Soit x € X intersectant y’, il existe une unique plus petite géodésique simple
z telle que x, y’, z soient contenues dans une sous-surface de signature (1, 1), et
telle qu’en outre z intersecte x (resp. y’) une seule fois. On note X” I’ensemble de
ces géodésiques, et x” leur demi-longueur : cosh x” = cosh ¢ cosh(y’ — [) coshl —
sinh(y’ — /) sinh /.

Pour chaque famille de géodésiques, on donne dans le tableau ci-dessous le nombre
de géodésiques contenues dans cette famille.

famille
Y, X
Y’ 1
X 2g
X’ 3g

Figure 4.2

Dans la suite, on montre que la surface caractérisée, a isométrie pres, par y =
x = x’ est parfaite quelque soit le genre g > 3.

Remarque 4. En fait 1a construction menée ici peut se faire dés le genre 3. Cependant
ce cas est tout a fait particulier, et ¢’est pourquoi nous 1’avons exclu d’emblée de la
discussion. En effet, si g = 3, on retrouve une surface déja connue, notée 7 (x|y) par
P. Schmutz Schaller (cf. [Scl]) : le calcul permet daffirmer que cette surface contient
22 systoles de demi-longueur :

y=y =x =x" =x" ~1,963546301.

Ce qui distingue cette surface de celles de genre g > 3, caractérisées par y = x = x/,
¢’est qu’ici ’ensemble des systoles contient en outre ¥’ et x”. Elle est non seulement
parfaite, mais encore eutactique (grice aux systoles additionnelles) donc extréme.

Montrons a présent le résultat suivant :
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Théoréme 3. Soir un entier naturel g > 3. Il existe une unique surface, notée By,
caractérisée, a isométrie pres, par 'y = x = x'. Cette surface est parfaite mais n’est
pas eutactique. Son ensemble de systoles est exactement Y UX U X', et contient donc
6g systoles.

Preuve. La condition y = x = x’ est équivalente au systéme :

_ (3cosh y+1) cosh y

cosh = = vtz M
_ (=1+4coshy)

tanh/ = tcoshy) coth y.

On remarque que, a g fixé, la fonction (3 cosh y + 1) cosh y/(cosh y + 1)? est stric-
tement croissante par rapport a y ; par ailleurs y; et yp sont des fonctions strictement
décroissantes de ¢, donc y est une fonction de ¢ strictement décroissante, donc ¢ est
une fonction de y strictement décroissante. Il s’ ensuit qu’il existe une unique solution
en y a la premiere équation du systeme (1).

En outre, 1a fonction coth(y)(—1 4 cosh y) /(1 + cosh y) est strictement crois-
sante par rapport a y, donc/ est déterminé de manicre unique par la deuxi¢me équation
du systeme (1).

On en déduit qu’il existe un unique couple (/, y) correspondant (pour un genre
donné g) aux conditions y = x = x’. D’ot "unicité de B,.

Montrons que F' = Y U X U X’ est I’ensemble des systoles de B,. On note
s la longueur de la perpendiculaire commune (entre deux géodésiques y), qui soit
la plus courte parmi celles qui ne valent pas 7; on a : coshs = cosh? 1 - cosh y; —
cosh? ¢. Le tableau suivant donne une estimation des diverses longueurs en fonction du
genre. En étudiant les suites (yg) g4 €t (f5) >4, On remarque qu’elles sont strictement

g | 3 | 4 | s 6 +00
x=x' =y || 1963546 | 2,105192 | 2,168463 | 2,202235 | 2,277469
X" 1,963546 | 2,463039 | 3,018964 | 3,601196 | +oo
¥/ 1,963546 | 2,518569 | 3,099004 | 3,689017 | +oo

t 1,324921 | 1,376618 | 1,397931 | 1,408875 | 1432212

1,324921 | 2,335152 | 2,667805 | 2,830168 | 3,379919
0,679361 | 0,743508 | 0,772511 | 0,788072 | 0,822923
2y/t 2,96 3,06 3,10 3,13 3,18

~ | &

croissantes et qu’elles tendent vers les valeurs limites portées sur le tableau ci-dessus.
En outre, on se convainc assez facilement que E(2y/t) < 3. Soit a une systole de
B,. Alors le nombre N (a) d’intersections de a avec Y vaut au plus E(2y/t) = 3.
Donc N (a) < 2. Les valeurs données ci-dessus permettent de conclure.
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On détermine ensuite la matrice €2 d’intersection des systoles prises dans I’ordre
Y, Xa, Xp, X!, X}, X}, (cf. Figure 4.2). On pose

a = cos« = cosh y(coshy + 1)_1,

¢ =cos2a =2a% —1,

2

e = sin”“ « - cosh(y — y;) — cos® @,

2o -cosh(y — y») — cos® «,

f =sin
h =sinw.sin 2« - cosh(y — y1) — cos « - cos 2a,

k =sin« - sin2« - cosh(y — yp) — cos« - cos 2a.

Soit C(w1, ..., wg) la matrice circulante définie par C; ; = w;_;41 (indice modulo
g). Onaalors 2 = (€2; j)1<i,j,<6 oules 2; ; sont des blocs carrés d’ordre g vérifiant
Qi ; +'Q;i = 0 et donnés par :

Q=0 (1<i<4), Qss=—Q66=C0,—-h10,...,0h),

Q12 =0C(a,0,...,0,a), Qi3=Q34=-Q14=0C(a,0,...,0),
Q15 =C(,0,...,0,—a), Qe=C(—a,0,...,0,¢c),

Q3 =Qs56=0, Q4=C(/, £,0,...,0),
Q25 =C(a,0,...,0,¢), Qg=Cla,e0,...,0),
Q35=C(0,...,0, 1), Q36=C(f,0,...,0),

Q45 =C(—k,0,...,0), Q46 =C(0,0,...,—k).

On montre maintenant que rang(£2) = 6g — 6 en distinguant deux cas suivant la parité

de g.

Si g est impair, on pose My = (i j)1<i,j <4, €L Q@ = ( %44 Aﬁf ) On voit
facilement que M4 est inversible (par exemple det M4 = 2a8(a — ’ )2 #0);lenoyau
de © a donc la méme dimension que celui de U = My +'Ma M n 1M4,2. Le calcul

montre que U = ( § 9 )avec P = C(0, A, B, ~B...., B, —B, —A), 0

A= %(a2—|—ac—ha—ka—ea—|—cf),
B = fla(ac—ce+a2—ea—af—ka+ef+ek).
I1 est élémentaire de vérifier que la matrice antisymétrique P est de rang au moins
g—3saufsiA = B = 0, ce quin’est pas le cas ici. On conclut que rang(2) = 6g —6.
Remarquer que P doit étre de rang exactement g — 3, ce qui traduit des relations entre
les réels a, c, e ... (par exemple A2 — AB — B*=0sig=79).

Quand g est pair, on décompose R suivant certains sous-espaces invariants par
I’action de Q. Soit u, v € R& donnés par u/ =1,v/ = (=1)/1 (j =1,...,2). On
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identifie R% avec (R#) et, pour x € R? on note x; le vecteur (0, ..., x,...,0) (x
en place ). On considere la décomposition orthogonale Q2-invariante :

R¢ =E@F
ou E est engendré par les u; etlesv; (i =1, ..., 6). Le sous-espace E est somme de
4 sous-espaces invariants et on vérifie immédiatement que rang(€2jz) = 10. Ensuite
onnote w’ € R& le j-eme vecteur colonne de la matrice ‘C(1, —1,1, —1,0,...,0)
etonprend (w/); i =1,...,6,j = 1,...,g — 2 comme base de F. La matrice

M de I’action de €2 dans cette base est formée de blocs carrés M; ; d’ordre g — 2
(1<i,j<6).Soit] =1[2,3,56]etJ =[1,4]; onnote N4, Na2, N2 4 et N les
matrices extraites respectivement de M suivant I x I, I x J,J x I et J x J (indices
des blocs), puis on proceéde comme dans le cas ou g est impair : N4 étant inversible,
le rang de M se déduit de celuide V = Ny — Ny 4N, 1N4’2. Le calcul montre que
V= ( _OQ % ) ,O0U @ = (gi, j)1<i,jzg—2avec qii = C (1 <i <g—2),qi41,i =
gi-1,i =Dpour2 <i <g—3,q921 =¢q2r-342=—-Dpour2 <r <g/2-1
(les autres g; ; étant nuls) et enfin :

C:7ﬁ;ﬂf+n%c—f—e—k—2m

+a[fe—ke+2fh+ce+2fk] —2cf?),
D= ﬁ(afh +afk —a*h + —kae — cf? + eac).

Comme D # 0, lerang de Q vaut au moins g —4, donc rang(€2) = 6g — 6. En faiton
a nécessairement rang( Q) = g — 4, d’ou des relations entre a, ¢, e ... (par exemple
C=0sig=40uC+D=0sig=06).

Sachant que le rang des gradients est maximal, on peut conclure par un argument
d’eutaxie relative (comme au §3) que B, est parfaite et non eutactique. En effet, en
affectant d’un méme coefficient X; toutes les colonnes correspondantes aux géodé-
siques d’'une méme orbite (i = 1, ..., 5), on trouve une combinaison linéaire nulle
(avec Y3, A; # 0) en prenant

M=a4+ae—2f%>0,

rMm=alk—f+a—c)>0,

M =a?+ae+2fc—2fa—2ak <0,
rM=alat+e—2f) >0,

i =ala— f)>0. O

5. L’icosaédre

5.1. Présentationde lafamille. On considére une surface de signature (0, 12) ayant
la symétrie de I’icosacdre. On nomme y les géodésiques de bords. En identifiant alors
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les bords opposés deux a deux, on obtient une surface de genre 6, ayant pour groupe
d’automorphismes s, le groupe alterné de degré 5 (d’ordre 60). En faisant varier la
longueur du bord y et le twist 2/ selon lequel on recolle les bords opposés, on obtient
une famille de surfaces de Riemann, paramétrée par un couple de parametres réels
(I, y). Dans un premier temps, on donne une allure du graphe, puis dans le dernier
paragraphe, on montre que cette famille contient une surface extréme.

5.2. Une esquisse du graphe. Dans ce paragraphe, on recense en premier lieu des
géodésiques qui coupent I’ensemble des bords au plus trois fois (cette liste sera utilisée
pour la construction du graphe comme pour la démonstration du théoréme 5), puis
on donne les longueurs de deux classes de géodésiques intersectant 1’ensemble des
bords respectivement 5 et 10 fois : celles-ci nous permettront de compléter le graphe.

On commence par donner les longueurs des perpendiculaires représentées sur la
figure Figure 5.1a (les hexagones figurés correspondent aux faces triangulaires de
I’icosaedre) :

Figure 5.1a Figure 5.1b
t 1 2
silh— = ————, coshizsinhrsinh—y,
2 2.sinh(y/5) 2 5
sinh y - sinh
sinhd:#, coshi =sinh¢ - sinhs - cosh y — cosht - coshs.
sinh

Ensuite, on calcule les longueurs de certaines géodésiques qui interviennent dans
I’étude de la famille. Pour une géodésique a, on note N (a) le nombre d’intersections
entre a et ’ensemble des bords Y. En outre les bords sont numérotés de la maniere
suivante : on choisit un sommet que I’on numérote 1; ce sommet est entouré de 5
faces triangulaires formant un pentagone ; on numérote alors les cinq sommets de ce
pentagone de 2 a 6 dans le sens trigonométrique.

Soit J I’esnsemble des géodésiques homotopes au segment i. Si j € J, on a
N(j)=1let: .

h j = cosh l—.cosh (d e —l) ;
i 2 10

Soit X;, X, W; et W, les familles de géodésiques définies par la figure 5.1b (avec
N(a) = 2), ’indice s ou ¢ étant relatif a la perpendiculaire commune entre les deux
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bords. En réalité, 1a géodésique affectée d’un indice s sera toujours plus grande que
la géodésique correspondante, affectée de 1’indice 7. On se bornera donc a donner
seulement les valeurs de x;, w;, omettant deés lors les indices ¢ :

X t y
cosh — = cosh — - cosh (— — l) ;
2 2 2
coshw = cosht - cosh (% — l) - cosh (% —H) — sinh (% — l) - sinh (% +l) .

On considere également des familles Vi (k = 0..3) de géodésiques avec N(v) = 3 et
3 segments homotopes aux perpendiculaires communes entre les bords (cf. le cas du
cube §3). L’indice que porte v désigne le nombre de segments homotopes a s ; donc
v possede (3 — k) segments homotopes a ¢. Par exemple, la géodésique joignant les
bords 1-4-6-1 est dans Vj. De fait, le calcul montre que vg est toujours la plus petite
parmi les quatre types de géodésiques Vi. Pour exemple, on donnera I’expression de
v (outre celle de vg). Dans la suite v désigne vy.
Y

v t
h2 = cosh % - cosh (- _ z) ,
COS 3 COS ) COS 10

coshv —coshscosh 2y 2! ) cosh t cosh 3y {
1= 2 5 10

2
+cosh S sin (22 — 21 sion (22 —
2 5 10
3
+ cosh <1% - l) sinh % sinh 7.

Les géodésiques suivantes sont définies comme dans le cas du cube (§3) : la géo-
désique z possédant 5 segments homotopes a ¢ (par exemple, la géodésique joignant
les bords 5-3-6-4-2-5 est de ce type-ci), la géodésique u possédant 10 segments ho-
motopes a ¢ (par exemple, la géodésique joignant les bords 1-6-4-5-3-1-6-4-5-3-1 est
de ce type-1a). Ona N(z) = 5, N(u) = 10 eten outre :

z t 3y
g b i A
cosh 5 cosh > cosh ( 10 ) ,

cosh%:coshz.cosh<% —|—l)~cosh<%—l)—sinh<1y—0+l)~sinh(%—l>.

Pour chaque famille de géodésiques, on donne ci-dessous le nombre de géodé-
siques contenues dans cette famille.

famille | YU, Z |V | X | W | J
i 6 10 | 15 | 30 | 60
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Fort de ces calculs, on peut a présent esquisser le graphe de la famille pour //y €
[0, 1/2], puis, par les arguments de symétrie habituels, 1’étendre horizontalement :

0

Nl =

Figure 5.2

Parmi les sommets de ce graphe, on remarque deux surfaces non isométriques :

o La surface X¢ définie par y = v = v (qui est en outre isométrique a la surface
X définie par u = v = ) : cette surface admet exactement 26 systoles, de demi-
longueur

y = v = b~ 2,608979056.

Cette surface ne peut pas &tre parfaite, puisqu’elle posseéde seulement 26 systoles et
que 26 < 6g — 5 = 31.

e La surface /¢ définie par y = v = x (qui est en outre isométrique a la surface /¢
définie par 7 = v = x) : cette surface admet exactement 31 systoles, de demi-longueur

y = v =x =~ 2,554500933.

5.3. La surface Is est extréme. Dans ce paragraphe, on s’attache a montrer le
résultat suivant :

Théoreéme 4. La surface Is caractérisée, a isométrie prés, par'y = x = v, réalise un
maximum local de la systole dans ’espace de Teichmiiller de genre 6. Son ensemble
de systoles est exactement Y U X UV, et contient donc 31 systoles.
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Preuve. Montrons que F = Y U X U V est ’ensemble des systoles de Ig. Apres
calculs, on obtient :

y =x =v 2 2,554500933, w =~ 2,793330751, j ~3,135994174,
t >~ 1,672747025, s 2 3,599590847, [ == 0,3399602340.

Soit a une systole de . On voit facilement que a doit couper Y. Alors le nombre
N(a) d’intersections de a avec Y vaut au plus E(2y/t) = 3 (puisque en outre
t < (t+s)/2 < s). De plus a doit étre comprise dans une des familles inventoriées
dans le paragraphe précédent. En comparant les valeurs approchées des longueurs de
ces différentes géodésiques, on conclutquea e Y UX UV,

Montrons a présent que I¢ est eutactique et parfaite. Soit « 1’angle aigu formé par
les géodésiques x et y, soit B 1’angle aigu formé par les géodésiques v et y et soit y
(resp. 8) I’angle formé par les géodésiques v et x quand elles se coupent sur ¢ (resp.
sur y). Posons a présent :

tanh(y/2 — 1
a=Ccosa = t(yi/x/z) =~ 0,823907,
tanh(/ — y/10)
b= =———— - ~(),207432,
M tanh v/3
hx/2 - cosh —cosh?2
I coshx/2 -coshv/3 —cosh2y/5 ~ 0.698984,

sinh x /2 - sinh v/3
d =cosd =cos(m —a — B) >~ 0,383493.

Ondétermine ensuite (en fonctionde a, b, ¢, d) la matrice €2 d’intersection des systoles
entre elles, rangées dans 1’ordre (v, x, v). Le calcul du rang donne rang(€2) = 30 =
6g — 6. De plus, on a une relation a coefficients tous > 0 entre les colonnes C; de €2 :
(c+4d) Z?:l C;+b Z?lﬂ Ci+a 231:22 C; = 0. 11 s’ensuit que /¢ est une surface
extréme. O
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