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Une caractérisation des endomorphismes de Lattes par leur
mesure de Green

F. Berteloot et C. Dupont

Résumé. We show that the Lattes endomorphisms are the only holomorphic endomorphisms of
the complex ^-dimensional projective space whose measure of maximal entropy is absolutely
continuous with respect to the Lebesgue measure. As a consequence, Lattes endomorphisms are
also characterized by other extremal properties as the maximality of the Hausdorff dimension
of their measure ofmaximal entropy or the minimality of their Liapounov exponents. Our proof
uses a linearization method which is of indépendant interest and a previous characterization by
the regularity of the Green current.

Mathematics Subject Classification (2000). 32H50, 32U40, 37C45.

Keywords. Lattes endomorphisms, linearization, maximal entropy mesaure, Hausdorff dimension,

Liapounov exponents.

1. Introduction et résultats

Les propriétés dynamiques d'un endomorphisme holomorphe / de degré algébrique
d > 2 sur l'espace projectif complexe P^ se reflètent sur son courant et sa mesure
de Green. Le courant de Green, noté T, est un (1, 1)-courant positif fermé, obtenu

comme la limite des 1, 1 -formes -^ fn*co, où œ désigne la forme de Fubini-Study. La
mesure de Green, notée \.i, est une mesure de probabilité invariante, obtenue comme
£-ième puissance extérieure de T. Ces objets, introduits par Hubbard-Papadopol [15]
et Fornaess-Sibony [12], possèdent de remarquables propriétés ergodiques. Fornaess

et Sibony ont montré que la mesure de Green est mélangeante [13]. Briend et Duval
ont établi que ses exposants de Liapounov sont supérieurs à log \fd [5] et qu'elle est

l'unique mesure d'entropie maximale de / [6].
La dimension de \.i, notée dim(/x), est définie comme la borne inférieure des

dimensions de Hausdorff des boréliens de /x-mesure pleine. C'est une caractéristique
géométrique importante du système dynamique (¥k, f, /x). L'une des premières questions

concernant l'estimation de cette dimension est de déterminer les systèmes pour
lesquels elle est maximale ou, ce qui s ' avère équivalent, ceux dont la mesure de Green
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est absolument continue par rapport à la mesure de Lebesgue cok. L'objet de cet article
est de caractériser ces systèmes, ce qui répond à une question posée par Fornaess et

Sibony dans [14] :

Théorème 1. Les seuls endomorphismes holomorphes de Wk dont la mesure de Green

est absolument continue par rapport à cok sont les endomorphismes de Lattes.

Rappelons qu'un endomorphisme / est de Lattes si il fait commuter un
diagramme :

où D est une application affine de partie linéaire ~Jd~ U (où U est unitaire) et a un
revêtement ramifié sur les fibres duquel un groupe cristallographique complexe agit
transitivement. De tels endomorphismes existent en toute dimension k et tout
degré d ; leur mesure de Green est absolument continue par rapport à cok d'exposants
de Liapounov égaux à log \fd [10]. En dimension 1, ils coïncident avec les fractions
rationnelles induites par une isogénie d'un tore complexe au moyen d'une fonction
elliptique. Ils sont traditionnellement appelés «exemples de Lattes» et font l'objet d'une
étude détaillée dans l'article de revue de Milnor [22]. Signalons enfin que les

endomorphismes de Lattes interviennent naturellement dans d'autres problèmes, comme
celui de la densité des fractions rationnelles hyperboliques via la «conjecture NILF»
(voir [19], [3] Chap. 7) ou celui de la classification des paires d'endomorphismes qui
commutent [8]. Ils fournissent également des exemples surprenants de domaines de
C^+1 munis d'auto-applications holomorphes propres non injectives [10].

Voyons comment le théorème 1 se traduit en terme de dimension de la mesure.
La maximalité de la dimension entraîne la minimalité des exposants. Cela résulte de

l'inégalité dim Qu.) <2(k — \) + -^—, où X^ désigne le plus grand exposant de \i. Cette

estimation, dont la preuve est esquissée en appendice, est due à Binder et DeMarco [4]

pour les applications polynomials (voir aussi [7] pour un résultat plus précis). Il est

alors possible d'adapter aux dimensions supérieures le travail de Ledrappier [17], [18]
selon lequel, pour toute fraction rationnelle, l'égalité dans la formule de Margulis-
Ruelle entraîne l'absolue continuité de [i. Cela fait l'objet de [11] et concerne en

particulier les mesures de Green d'exposants minimaux. Le théorème 1 admet donc

pour corollaire :

Corollaire 1. Soit un système (¥k, f, yu.) où f est de degré d. Lespropriétés suivantes
sont équivalentes :

1. La dimension de [i est maximale, égale à 2k.
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2. Les exposants de [i sont minimaux, égaux à log -Jd.

3. L'endomorphisme f est de Lattes.

Ainsi, pour un système (Pk, f, yu.) générique, la mesure \x est singulière par rapport
à cok, l'un de ses exposants est strictement supérieur à log \fd et sa dimension est

strictement inférieure à 2k.

En dimension k 1, on trouve une démonstration du théorème 1 dans l'article
de Mayer [21]. Signalons aussi le résultat beaucoup plus précis de Zdunik [24] qui
stipule que la dimension de [i coïncide avec celle de son support (l'ensemble de Julia
de /) si et seulement si / est un exemple de Lattes, un polynôme de Tchebychev ou
une puissance z±d. La démonstration de Mayer repose sur un procédé de linéarisation
consistant à comparer les itérées /" avec leurs applications linéaires tangentes dxfn.
Un tel procédé permet de «régulariser» la densité mesurable de \.i : celle-ci est en
fait lisse sur un ouvert. La structure de / se lit alors sur l'équation fonctionnelle

/V d\x.

Il y a plusieurs difficultés à surmonter en dimension supérieure. Fondamentalement,

le problème tient à ce que la mesure \.i ne porte pas les informations géométriques

«directionnelles» nécessaires à l'analyse de la structure de / : celles-ci sont
recelées par le courant T dont elle dérive (/x Th) et s'y lisent particulièrement bien

lorsque celui-ci est lisse :

Théorème (Berteloot-Loeb [2]). Tout endomorphisme holomorphe de P^ dont le

courant de Green coïncide avec une (1, 1) -forme lisse strictement positive sur un
ouvert est un exemple de Lattes.

Il s'agit donc de déduire la régularité du courant T de l'absolue continuité de

la mesure \x Th. On utilise à cet effet une méthode de linéarisation locale de

l'endomorphisme par des homothéties.

Techniquement, la difficulté réside dans la mise au point de cette méthode de

linéarisation car il faut pallier à l'absence du théorème de Koebe.

Nous présentons maintenant la structure de l'article et les différentes étapes de

la démonstration. Les résultats des sections 3 et 4 concernent la linéarisation et
présentent un intérêt pour eux-mêmes. La section 3 est consacrée à la construction d'un
procédé de linéarisation général. Il s'agit, pour des choix /j,-génériques de x, de rendre
la suite (/")„ normale en x en la précomposant par des contractions équivalentes aux
applications linéaires tangentes inverses (dxfn)~l. A cet effet, nous estimons
précisément les erreurs cumulées lorsque l'on remplace / par sa différentielle le long
d'une orbite. Outre la stricte positivité des exposants Xi < ¦ ¦ ¦ < X^, ceci requiert
l'hypothèse Xk < 2X\. Nous obtenons le théorème suivant :
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Théorème 2. Si les exposants du système (¥k, f, yu.) sont tels que X^ < 2A.i alors,

pour ^-presque tout point x, la suite (/" o (dxfn)~l)n possède au moins une limite
injective sur un voisinage de x.

En vue d'obtenir un énoncé de linéarisation par des homothéties, nous majorons
la norme des différentielles (dxfn)~l. Ceci fait l'objet de la section 4. Pour cela, nous

reprenons la méthode pluripotentialiste de Briend et Duval [5] dans le contexte des

linéarisations. Plus précisément, nous minorons la masse de l'ensemble des points

x où les normes \\(dxfn)~l\\ sont «grandes» (voir Proposition 2). L'énoncé précis
de linéarisation suivant résume les informations acquises dans cette section sous une
forme maniable.

Théorème 3. Si les exposants du système (¥k, f, yu.) sont tels que Xu < 2X\, alors

pour tout borélien B, il existe un borélien B c B de masse arbitrairement proche de

IJ.(B)2 et to > 0 vérifiant les assertions suivantes : pour tout point x G B, il existe

une suite extraite (fni )j et un réel v(x) > 0 tels que

1. fnJ (x) G B pour tout j G N.

2. fnj°(dxfnj) 1

convergeuniformémentversunbiholomorphismesurB{x, v(x)).
3- \\{dxfn>)-l\\< T0(Vd)~n} pour tout j G N.

Dans la section 5, nous montrons que si la mesure /x est absolument continue alors
les différentielles (dxfni)~l intervenant dans le théorème 3 sont équivalentes à des

homothéties de rapport (Vd)~nJ. Notons que la condition Xu < 2X\ est satisfaite car
la régularité de \.i entraîne la minimalité des exposants.

Nous achevons la preuve du théorème 1 dans la section 6. Nous montrons que
le courant T est régulier en utilisant le procédé de linéarisation par les homothéties
de rapport (Vd)~n et les relations d'invariance fn*T dnT. Le résultat de [2] cité

plus haut montre qu'alors / est un endomorphisme de Lattes.

Remerciements. Nous tenons à remercier le rapporteur tant pour sa lecture attentive
du manuscrit que pour ses conseils de rédaction.

2. Préliminaires

Nous résumons ici les principaux outils et résultats utilisés par la suite. Nous fixons
également quelques notations.

2.1. Vocabulaire et notations. • Un système (Pfe, /, /x) est la donnée d'un
endomorphisme holomorphe / de l'espace projectif de dimension k dont le degré d est

supérieur ou égal à 2 et dont l'unique mesure d'entropie maximale est notée \.i. Nous
dirons aussi que le système (¥k, f, /x) est de degré d.
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• Soit (¥k, f, fi) l'extension naturelle du système (¥k, f, /j,). On rappelle que P^

est l'ensemble des orbites {x := (xn)nez I f(xn) xn+i} muni de la topologie et

de la tribu produit. Soient tïq : ¥k —>¦ P^ la projection définie par tïq(x) xq, f le

décalage à droite et / le décalage à gauche sur ¥k, de sorte que jtq o f f o jtq.
On note fi l'unique mesure de probabilité /-invariante sur P^ vérifiant n^fi \.i.
Le caractère mélangeant de [i passe à fi.

• Soit X le sous-ensemble de P^ suivant :

X := {x G F* | xn i Crit(/) pour tout n G Z}

où Crit(/) désigne l'ensemble critique de /. Le borélien X vérifie fi(X) 1, car \.i
ne charge pas l'ensemble analytique Crit(/) ([23], Proposition A.6.3).

Par la suite, on s'autorisera à soustraire à X des ensembles fi -négligeables.

2.2. Branches inverses et exposants. • On construit une famille de cartes
holomorphes (rx)xejpk telle que :

1. rx : Ck —>¦ P^ est un biholomorphisme sur son image et rx(0) x,
2. (rxco)o \ E;=u dzJ A d~zi-

où co désigne la forme de Fubini-Study. Cette famille est obtenue en explicitant une
telle carte en un point base xq g F*, puis en la propageant à P^ par l'action transitive de

Uk+i (C). Ce faisant, on obtient plutôt une classe de cartes en x car rx est définie à un
élément du sous-groupe d'isotropie de xq près. Cette ambiguïté pourra cependant être

ignorée puisque U^+i (C) est compact ; les affirmations faisant intervenir rx devront
être comprises comme valables pour tous les éléments de la classe de cartes en x.
On peut aussi, localement, faire un choix «différentiable» de rx par rapport à x et en

particulier s'assurer que la propriété suivante est vérifiée :

(*) t^"1 o rx — r^"1 (x) converge vers l'identité en topologie G°° lorsque x tendvers xo-

• Nous noterons 5(0, R) (resp. P(0, R)) la boule euclidienne (resp. le polydisque)
de C^ centrée en 0 et de rayon R (resp. de polyrayon (/?,..., R)). On désignera par
5(x, s) l'image de 5(0, s) par rx.

• Nous utiliserons les applications suivantes, où x g P^ et n g N :

Jx •— t f(r\ ° /
7"(*)Jx rf(x) ° / ° rx JfHx) ° ¦ ¦ ¦ ° Jx-

Elles sont définies sur un voisinage de l'origine de Ck, dont la taille dépend de x et
de n. Pour tout x g X, on note /- " la branche inverse de /" «le long de l'orbite x»,
c'est-à-dire :

r— n r — 1 r — 1

Jx - Jx-n ° ' ' ' ° Tx_i-
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Le lemme suivant stipule que ces branches inverses existent sur un voisinage de

l'origine dont la taille dépend mesurablement de x. On trouvera une preuve dans

l'article de Briend-Duval [5] (voir aussi [9] pp. 19-22).

Lemme 1. Soient 0 < € <£ 1 et 0 < ro <£. l. Il existe des fonctions p et r continues

sur P^ strictement positives hors de Crit(/), ainsi que des fonctions mesurables

r] : X —>¦](), ro] et C : X —>¦ [1, +cxd[ vérifiant les propriétés suivantes :

1. Pour toutx eFk\ Crit(/), fx est injective sur 5(0, p(x)) et

5(0,r(x))c/x[5(0,p(x))].

2. Pour tout x G X, lim„ ^ log p(xn) 0.

3. Pour tout x G X et tout n G N, /- " est injective sur 5(0, r](x)), et pour tout

y e]0, i],

d0frn[B(0, yr,(x))] C 5(0,

4. Lip/"" < C(x)e-"(À1-§) sur B(0, rç(jc)).' X

• Les exposants de Liapounov de /x seront notés A.i < ¦ ¦ ¦ < X^. Nous utiliserons
de manière cruciale la minoration optimale de ces exposants :

Théorème (Briend-Duval [5]). Les exposants d'un système (¥k, f, yu.) de degré d
sont plus grands que log \fd.

3. Un procédé de linéarisation

Notre objectif est de démontrer le théorème 2 présenté dans l'introduction. Nous
adoptons la définition suivante :

Définition 1. Un système (Pk, f, /x) est dit linéarisable si pour /x-presque tout x g

¥k, il existe v(x) > 0 et une sous-suite de [/" o rx o ((io/i1)"1]« qui converge
uniformément vers une limite injective sur 5(0, v(x)).

La proposition suivante fournit deux conditions suffisantes de linéarisibilité. La
première réduit le problème au contrôle uniforme local de la suite f£ o(dof^)~l grâce

au théorème de Montel. La seconde transfère cette question de contrôle uniforme en

«temps négatif», c'est à dire aux applications f"'_n o dofr11. Nous utilisons pour cela

un argument classique basé sur l'invariance de la mesure /2.
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Proposition 1. Soit (¥k, f, yu.) un système et Rq un nombre réel strictement positif
Pour tout p g]0, 1] et n G N, on définit les ensembles :

£n(p) := jieP* /x" o (^o/x")"1 estinjective de 5(0, p) dans 5(0, Ro)}

:= limsup<S„(p).
n

Le système est linéarisable si l'une des deux conditions suivantes est réalisée :

1) II existe a : ]0, 1] —>¦ M+ telle que limp^q a(p) 1 et ß[£Bn(p)] > a(p)pour
tout n G N.

2)Pourtoutro e]0, Rq] il existe desfonctions mesurables q, S: X --*]0, ro] telles

que

(l) 5 < T,.

(ii) Pour tout x € X, /-T" est injective sur 5(0, /?(x)).

(iii) Pour tout x G X et tout n G N, do/r"[#(O, 5(jc))] C ^""[5(0, /?(x))].

Za seconde assertion implique la première.

Démonstration. La linéarisabilité en x résulte, via le théorème de Montel, de

l'appartenance de x à Uo<p<i <®(p)- Ainsi, comme /x[<S(p)] > limsup„/x[<S„(p)], la
condition 1 entraîne la linéarisabilité /x-presque partout.

Voyons maintenant comment la seconde condition entraîne la première. Posons

S(p) := {x g X | S(x) > p}. Il suffit d'établir les inclusions suivantes :

*o[f~nÇs(p))] C ^8n(p) pour tout n G N.

En effet, compte tenu de l'invariance de ß, on a /z[<S„(p)] > //,[/ "(5(p))]
/x[^(p)]. La fonction a(p) := yû.[^(p)] convient car S est strictement positive jÀ-

presque partout.
Établissons maintenant les inclusions annoncées. Soit y := /"(x) tel que y G

S (p). Il s'agit de vérifier que xq g <S8„(p). Rappelons que xq tto(x). L'appartenance
de y à ${p) signifie :

doffn[B(0, p)] C doffn[B(0, S(y))] C ffn[B(O, r,(y)].

Comme /~" est injective sur 5(0, r](y)) d'inverse f£0, on obtient en composant les

inclusions précédentes par f£0 :

/x" ° (dof?o) l[B(0,p)] c B(0,ri(y)) C B(0,R0).

Le point xq appartient donc à 33n (p).
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Nous démontrerons le théorème 2 en vérifiant que la condition 2 de la proposition

1 est satisfaite. Ceci consistera à compenser les erreurs dues à la substitution de

dof~l à fx} le long de x en diminuant le rayon r](x). Pour que les compensations
cumulées fournissent un rayon S(x) strictement positif, les erreurs commises
devront être négligeables devant la plus petite dimension caractéristique de l'ellipsoïde

dof* J [5(0, 1)]. L'objet du lemme suivant est de montrer que tel est le cas lorsque
les exposants vérifient l'inégalité kk < 2k\.

Lemme 2. Soient un système (¥k, f,/j,)etO < e <^C l. Il existe des fonctions
mesurables rj, E, F : X —>¦](), +cxd[ vérifiant 0 < rj < ro < Ro telles que pour tout
x (xn)nez élément de X et tout n G N :

1. /- " est injective sur 5(0, r](x)).

2. Pour tout y e]0, \\ettoutu g d0frn[B(0, yr](x))] :

_\n+l) - f -_\n+l))){u)\\<yE{x)e -2n{ki-e)

3-

Démonstration. Nous utilisons ici le lemme 1. Pour tout x G X, l'assertion 1 est

satisfaite. Déplus, l'application/x.+1) est inversible sur 5(0, r),oùr := r(x_(n+i)),
et son inverse g est à valeurs dans 5(0, p) où p := p(x_(n+i)). Soit J2P>2 Qp Ie

développement de Taylor de g — dog, où Qp désigne une application homogène de

degré p. Si u g 5(0, r) alors ||ßp(w)|| | ^ ß* g{eie u)e-^edd\ < pet donc:

ruw(g-dog)(u)\\<J2^i
p>2

Lorsque de plus u g dofx-n[B(O, y??(Je)] alors -^ <
et il s'ensuit que :

p>2

^ (cf lemme 1, (3))

\\(g - dog)(u)\\ <
Y2P -2n{ki-e)

\ —

L'assertion 2 du lemme s'en déduit car p(x_(n+i)) a un taux de croissance

exponentiel nul (cf lemme 1,(2)). La dernière assertion découle immédiatement de la
définition des exposants de Liapounov. Nous ôtons ici à X un sous-ensemble de jÀ

mesure nulle.

Démonstration du théorème 2. Il s'agit de montrer que la condition 2 de la proposition

1 est satisfaite lorsque kk < 2k\. Reprenons les notations du lemme 2 et

introduisons sur X les fonctions mesurables suivantes :

£„(*) := sup [t < r](x) | doffn[B(0, t)] C ffn[B(0, r](x))]}
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f EF î
no(x) := min \p > 1 | pour tout n > p : (x) < ene \

l X] J

s'(jc) := min {§n(x) | 0 < n < «o (¦*)}•

Posons kj := 1 — e
J{- l k ' avec e suffisamment petit pour que le produit

YVjLi Kj converge et soit strictement positif. Définissons les fonctions sn par :

sn(x) :=s(x) sin < no(x)

n-\
sn(x):=s(x) Y[ Ki si«>«o(^) + l-

j=no(x)

Pour montrer que la fonction S(x) := s(x) TlJLi Kj convient, il suffit d'établir les

inclusions :

(4)»>o : dofrn[B(O, sn(x))] C ffn[B(0, r](x))\
Par définition de sn{x), ces inclusions sont satisfaites lorsque n < no(x). Supposons

que (/„) soit vraie pour n > no(x) et posons vn := (-^L)(x)e~2n(Xl~2e\ On a alors :

(1) sn+i <sn- Hdo/i |v„.

En effet :

EF
Sn+l SnKn Sn[l - / _

la première majoration résultant de la définition de «o (x et la seconde du lemme 2, (2).

Désignons par A la frontière de dofx [5(0, jn)]. On vérifie aisément que
l'inégalité (1) se traduit par :

(2) d0fx-{n+1)[B(0, sn+1)] Cd0fx-{n+r>[5(0, sn)]\ U 5(p,vn).
peA

Par ailleurs, la première assertion du lemme 2 (où l'on prend y — stipule que sur

/^ "[5(0, s«)], /x~jn diffère d'au plus v„ de sa différentielle. Il s'ensuit que

(3) d0fxr{n+l)[B(0, Sn)]\ (J 5(P) vn) c /X"_;n+1) od0frn[B(0, Sn)].

peA

Observons finalement que l'inclusion (/„), composée par fx} s'écrit

(4) f-_)n+V)od0frn[B(0,Sn)]cfxr{n+r>[B(0,v(x)].

Les inclusions (2), (3) et (4) enchaînées donnent (/„+i).
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Remarque 1. L'inégalité kk < 2ki peut être interprêtée comme une condition de

non résonance entraînant la linéarisabilité. Jonsson et Varolin (cf [16], Theorem 3)

ont, indépendamment de nous, mis en évidence la même condition dans un problème
voisin.

4. Une version précisée du procédé de linéarisation

L'objet de cette section est de contrôler le diamètre des ellipsoïdes (üfo/^)"1 [5(0, 1)]
associés au procédé de linéarisation fourni par le théorème 2. Nous en déduisons le

théorème 3 énoncé dans l'introduction.
Le théorème de Briend-Duval, déjà utilisé implicitement pour établir le

lemme 1, majore le taux de décroissance exponentielle de la taille de ces ellipsoïdes

par — log \fd. Cela signifie que pour tout e > 0, on a IK^o/^1)"1!! < en€ (-/d)~n
pour n assez grand. En reprenant la méthode de Briend-Duval dans le contexte de la
proposition 1, nous obtenons une majoration plus précise : IK^o/^1)"1 II ^5 (Vd)~n-
Rappelons que <S8n(p) est défini par :

Sn{p) := jieP* /x" o (Jo/x")"1 est injective de 5(0, p) dans 5(0, Ro)}

et qu'en vertu de la proposition 1 et de la preuve du théorème 2, il existe une fonction
a : ]0, 1] -> R+ telle que limp^0 a(p) 1 et

Nous montrons la proposition suivante :

Proposition 2. Soit (Pk, f, yu.) un système de degré d > 2 tel que kk < 2k\. On pose
pour x > 0, p g]0, 1] et n G N :

£>n(p,r) :=£n(p)n{x eP* | IK^o/x")"1!! <r(Vd)-n}.

Alors on a l'inégalité :

C
liminf jj.[3~)n(p, r)] > a(p) r-—-,

où C > 0 et a : ]0, 1] —>¦ M+ est une fonction telle que limp^o a(p) 1-

Le principe de la preuve est le suivant. Puisque /x[<S„(p)] > a{p) d'après la

proposition 1, il s'agit de majorer la mesure du complémentaire de <©„(p, r) dans

Sn{p), noté <©^(p, r). Or, partoutpoint de <©^(p, r) passe un disque dont le diamètre
est au moins égal à xp{-/d) n et dont l'image par /" reste contenue dans une boule
de rayon Rq fixé. Comme fn*T dnT, il passe donc par tout point de <©^(p, r)
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un «grand» disque «peu» chargé par T. Des techniques pluripotentialistes permettent
alors de majorer précisément la masse de l'ensemble de ces points pour la mesure

ß Tk.

Démonstration de la proposition 2. On dira qu'un disque holomorphe a : A —* Ck

est de taille / > 0 et passe par z & Ck si il est de la forme o(u) z + lu.v + ß(u)
où v est un vecteur unitaire de Ck, ß(0) 0 et \\ß\\ < j^.

L'ingrédient principal est le théorème suivant dont la preuve est résumée dans

l'appendice :

Théorème (Briend-Duval [5]). Soit S := ddcvu un (1, \)-courant positiffermé de

potentiel vu continu sur le polydisque P(0, R) et E c P(0, *). O« suppose que par
tout point z G E passe un disque holomorphe az: A —* Ck de taille l et qu 'il existe

une fonction hz harmonique sur A telle que \vu o az — hz\ < e sur A. Alors il existe

une constante C(vu) ne dépendant que de vu telle que Sk(E) < C(w)^-e.

En vue d'utiliser ce résultat, nous fixons des systèmes de coordonnées locales

sur ¥k. Considérons un recouvrement de P^ par des ouverts U\,..., Un centrés en
des points nij et tel que sur chaque Uj nous puissions fixer des déterminations des

cartes rx dépendant différentiablement de x (cf la condition (*), section 2). Posons

t} '¦= T^nij puis, pour R > 0 fixé, Vj := t/(P(0, R)). Si le recouvrement est assez
fin alors les propriétés suivantes sont satisfaites :

(i) Uj c tj(P(0, f et tx(P(0, f c Vj pour toutx G U),

(ii) ft"1 o rx - {tjl{x) + IdCk)|ej p R < yö^ pour toutx G Uj.

Puis, si Rq (introduit au lemme 1) est pris assez petit :

(iii) pour tout x G P^ il existe / G {1, N} tel que rx [5(0, Ro)] C V/,

(iv) ß{x G Ujn£n(p) | (û?o/x)~1[5(O,p)] c P(0, f )} ß(Ujn£n(p))-enj-
avec lim„ enj 0.

Enfin, si Vj désigne un potentiel continu de T sur Vj, il existe une constante M > 0

telle que :

(v) T ddcVj et\vj\ < M sur Vj pour tout j G {1, ./V}.

D'après le théorème 2, il existe une fonction a qui vérifie la propriété énoncée à la

proposition 1 (1) ; autrement dit, a{p) tend vers 1 quand p tend vers 0 et yu.[<Sn(p)] >
a(p).

Comme il s'agit de minorer lim inf„ /j.[£)n(p, r)], la propriété (iv) montre que
l'on peut considérer que :

(5) (û?0/x")"1[5(0, p)] c P U,
y J pour toutx G Uj n £n(p).
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Pour tout 7 e {1, JV} nous allons établir que :

Mk2
(6) ß[£cn(p, r) n Uj] < C(Vj o tj)—
Soit donc x G <£^(p, r) n Uj et Vn(x) un vecteur unitaire tel que \\(dof^)~l\\

; x
On définit ainsi un disque affine <£>„jX : À —>¦ Cfe de diamètre au moins égal à

xp(\[d) n en posant :

$>n,x(t) ¦= (dof?rl[tp.Vn(x)] tp.Vn{x).

Comme x g Uj, (5) et (i) permettent de définir un nouveau disque $],n,x '¦ A —>¦

P(0, R) par ®j,n,x '¦= tjl ° ?x ° ®n,x- Compte tenu de la propriété (ii), ®j,n,x est

un disque holomorphe de taille / := p \\ vn (x) \\ > xp (\fd) n passant par r ~l (x).
Choisissons / G {l, N} tel que r/«(x)[5(0, /?o)J C V; (propriété (iii)) alors,

comme x G Bn{p), on a /" o rx o $nx(A) c r/«(x)[5(0, Rq)] C V/ et donc

Par ailleurs, puisque rx o $„ X(À) c V) (cf. (5) et (i)), on a

(rx o $„jX)*r ddc(vj o rx o <pn>x) ddc(vj o r; o $/nx).

Ainsi, <i(ic [u; o /" o rx o $njX —dnVj o r; o 4>/jnjX] 0. Autrement dit, lafonction entre
crochets est harmonique sur A et, puisque | u; | < M, le potentiel vj o r; de r îT diffère

d'auplus J^ d'une fonction harmonique A sur le disque <&j,n,x détaille/ > xp(-/d) n.

Dans ces conditions, (6) découle immédiatement du théorème de Briend-Duval. On

en déduit l'estimation annoncée avec C Mk2 J]/=i C(vj o xj).

Terminons cette section par la preuve du théorème 3. Il s'agit d'établir une version
du procédé de linéarisation où les orbites issues d'un borélien prescrit sont assujetties
à récurrence. Cette précision découle des estimations fournies par la proposition 2 et
du caractère mélangeant de \.i.

Démonstration du théorème 3. Posons £>n(p, x, B) := £>n(p, r) n B n f~n(B) et

£>(p, r, B) := lim sup„ <©„(p, r, B). Il est clair que si x g <©(po, to, B) alors il
existe une suite extraite (fnj)j vérifiant les trois assertions du théorème 3. Il suffit
donc d'observer que /x(<©„(p, r, 5)) approche m(5)2 par défaut pourvu que po, j-
soient assez petits et n assez grand. Or ceci résulte immédiatement de la proposition 2

et du caractère mélangeant de \.i. Il suffit en effet de fixer po assez petit puis to assez

grand pour que <©„(p, r) soit presque de [i-mesure pleine pour n assez grand et
d'utiliser ensuite le fait que \i\B n / "(5)] approche \i{B)2 lorsque n tend vers
l'infini.
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5. Linéarisation par des homothéties

Dans cette partie, nous montrons que la suite des itérées (/")„ est linéarisable par
des homothéties de rapport (</d) " si et seulement si \.i est absolument continue par
rapport à la mesure de Lebesgue. Nous adoptons la définition suivante :

Définition 2. Un système (Pk, f, yu.) de degré d est dit V<ï-linéarisable si pour
[i -presque tout x g ¥k, il existe v(x) > 0 et une sous-suite de [fnorxo(*/d)~nldCk]n
qui converge uniformément vers une limite injective sur 5(0, v(x)).

Autrement dit, un système est V<ï-linéarisable si pour tout x générique, les

ellipsoïdes (<io/x")~1[5(O, 1)] sont assimilables à des boules euclidiennes de rayon
{-/d) ". Comme la taille de ces ellipsoïdes est au plus to(V^) " (cf théorème 3), il
suffit d'en contrôler le volume. L'absolue continuité de [i le permet. Nous introduisons
à cet effet les ensembles suivants :

yn(v) := jx g P* | v2dkn < |Jac/x"|2 < \dkn^ pour tout v e]0, 1],

où Jac /x" désigne le Jacobien complexe de /x" en 0. Nous obtenons le résultat suivant :

Proposition 3. Soit (¥k, f, yu.) un système de degré d. Les propriétés suivantes sont
équivalentes :

1. [i est absolument continue par rapport à la mesure de Lebesgue cok.

2. Les exposants du système sont tous égaux à log \fd et il existe ß : ]0, 1] —>¦ M.+

vérifiant limv^o ß(v) 1 e?liminfn/i.[V„(v)] > ß(v).

3. Le système est \fd-linéarisable.

Nous noterons Y l'ensemble [JpCntfp. En tant qu'union dénombrable de

sous-variétés algébriques de ¥k, c'est un ensemble de /x-mesure nulle (voir [23]) :

Démonstration. 1) =>¦ 2). Commençons par établir l'existence de la fonction ß. On

note m cok la mesure de Lebesgue sur ¥k. Puisque \x est absolument continue par
rapport à m, il existe <p G Ll(m) telle que yu. <p dm. D'après le théorème de Lusin,
il existe pour tout n G N des fonctions continues gn et hn ainsi que des boréliens
Cn{cp) et Cn(<pofn) vérifiant:

<p gn sur Cn{<p) et (x[Cn((p)] > 1

n

çofn=hn surC„(^o/") et ß[Cn(<pofn)]>l--.L J n
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Soit A„:={i€P*|v< (p(x) < i} où v e]0, 1]. On pose :

zn,v ¦= [rn(Av) n Av] n [cn(<p) n cn(<p ° /»)] n yc.

Rappelons que l'ensemble Z^eb des points de Lebesgue de Z„v est défini par :

ZLeb - (x € Z HmZ„jV ._ (x € Z„,v | hm
» J>nZ".v]

L'absolue continuité de /x entraîne /x(Z^evb) /x(Z„jV). Compte tenu du caractère

mélangeant de /x et du fait que ß{Y) 0, on obtient pour n assez grand :

M(ZnLevb) > M(AV)2 (l - 0 - 2-
> m(Av)2(1 - v).

La fonction ß(v) := /z(Av)2(l — v) convient si l'inclusion Z^eb c Vn(v) est satisfaite.

Fixons donc x G Z^eb. Puisque x n'appartient pas à Crit /", il existe ^o > 0

tel que /" soit injective sur B(x, so). En outre, x étant un point de Lebesgue de

Znv, on peut diminuer so pour que m[B(x, s) n Znv] > ^m[B(x, s)] > 0 pour
tout 0 < s < sq. En utilisant des changements de variables, d'abord par rapport à

jx ç dm qui est de Jacobien constant égal à dk, puis par rapport à m cok, on
obtient :

dkn f cpcok f cpœk f
JB(x,s)nzn,v Jf[B(x,s)nzn v] JB(x,s)nzv

Or, puisque Cn(cp) flCB(f)o /") contient Z„jV, on peut remplacer cp par gn et cp o /"
par hn dans ces intégrales. Après normalisation par m (s, n, v) := m[B(x, s) n Z„jV],
il vient :

jkn c i /•-^- \ §ncok —L- f AB (/«V).
m(j, n, v) JB(x,s)nzn,v m (s, n, v) JB(x,s)nzn,v

Comme les fonctions gn et /?„ sont continues en x et (fn*cok)x | Jac /^ |2(ft)^)x, on
obtient lorsque s tend vers 0 :

dk\p{x) dkngn(x) Mx)|Jac/x"|2 <P ° /"(x)|Jac/xn|2

c'est à dire a^„x ^.„L Ainsi x g V„(v) car x et /"(x) appartiennent à Av.

Vérifions maintenant que les exposants de \.i sont minimaux. On dispose de l'égalité

classique limn ^ log IJac/^l2 2 J]f=i ^i% valable pour /x-presque tout x (cf
par exemple [1], Section 3.3). Notons V(v) := lim sup„ Vn(v) et choisissons v assez

petit pour que /x[V(v)] > ß(v) > \. Comme lim„ -log IJac/^l2 klogd pour
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x g V(v), on obtient 5Z;=i ^i £log V<ï. La minimalité des exposants découle

alors de la minoration À; > log \fd.
2) =>• 3). La proposition 2 s'applique car les exposants sont tous égaux à log \fd.

Nous en reprenons les notations et posons

£)Vn(p, t, v) := £>n{p, r) n Vn(v) et £)V(p, t, v) := lim sup £)Vn(p, t, v).
n

D'après 2) et la proposition 2, /j.[£)V(p, t, v)] est arbitrairement proche de 1 pourvu
que p et v soient assez petits et r suffisamment grand. Il suffit donc de montrer que

(fx)n est linéarisable par An := (</d) "IdCk lorsque x g <£> V(p, r, v). Soit donc

(«y); une suite strictement croissante d'entiers telle que x g £)Vnj(p, t, v) pour
tout 7. Puisque 55 V„; (p, r, v) c <0nj (p, r) c £nj (p) on a

fV ° (dofPr^BiO, p)) C 5(0,

Il s'agit donc de vérifier que (dofx J l est équivalente à An.. A cet effet, notons

<5y,i < ¦ ¦ ¦ < Sjtk

les valeurs singulières de P := (do A; \ c'est à dire les valeurs propres de la racine
carrée de PP*, où P* désigne l'adjoint de P. Il existe en particulier deux matrices
unitaires U et V telles que UPV Diag(<5iji, ¦ ¦ ¦ &j,k)- Ces valeurs singulières

vérifient Sj>k < r(Vd)""i car x G £>n;(p,r) et (^-,i .Sj>k)2 \JacfxJ\~2 >
v2d hni car x g V„; (v). D'où l'on déduit les inégalités :

nl < Sjti <•••< Sjtk <

L'application (dofx}) 1 est donc équivalente à l'homothétie AUj.

3) =>• 1). Soit x G P^ un point [i générique. D'après 3), il existe p > 0 et une
suite croissante d'entiers (n/)j tels que fnJ o rx o An. : 5(0, p) -^ 5(0, /?o) soit

une suite d'injections. Soient 5r := rx[5(0, r)] et Bn. := rx[5(0, p(Vd)-"/)]. Il
s'ensuit que :

liminf ^|4 ^ limmf ^\ $ limmf
(B) (B)

où la dernière égalité provient du fait que [i est de jacobien constant dk. Ceci étant

vérifié pour /x-presque tout x, la mesure \.i est bien absolument continue par rapport
à m (cf [20], Theorem 2.12). D

Remarque 2. Comme nous l'avons fait pour établir le théorème 3, une légère
modification dans la preuve de 2) =>• 3) permet de choisir la sous-suite (rij)j de façon
à ce que fnj (x) ne s'échappe pas d'un borélien 5 de /x-mesure strictement positive
prescrit.
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6. Régularisation du courant de Green

Nous achevons ici la preuve du théorème 1. D'après la proposition 3, il s'agit de

caractériser les systèmes (¥k, f, yu.) qui sont V<ï-linéarisables. La démonstration

repose sur le lemme 3 ci-dessous. Commençons par introduire quelques définitions.
On notera S := Sa + Ss la décomposition de Lebesgue d'un (1, l)-courant positif S.

Celle-ci peut être définie à partir de la décomposition de Lebesgue des mesures car un
tel courant peut être considéré comme une (1, 1)-forme à coefficients mesures. Il est

très facile de voir que cette décomposition est unique et que les courants Sa, Ss restent
positifs. Par contre la fermeture éventuelle de S n'implique pas celle de Sa ou de Ss.

Nous noterons Supp(S') le support de S et as := S A cok~l sa mesure trace. On voit
facilement que la décomposition de Lebesgue de as est donnée par as asa + ass.

Lemme 3. Soient (¥k, f, yu.) un système \fd-linéarisable, S un courant positif de

bidegré (1, 1) sur Wk tel que f*S dS (S n 'est pas nécessairement fermé) et Ç2 un

ouvert de ¥k chargé par \.i.

1) Si S est absolument continu sur ÇL (S Sa) alors ilexiste une boule 5(0, r) c Ck,

un ouvert Çl' c £2 chargé par \i et un bïholomorphisme <î> : 5(0, r) —>¦ Çl' c £2

tels que <£>*S soit une forme différentielle à coefficients constants sur 5(0, r).

2) Supposons que S dérive d'un potentiel psh continu v sur Q (S ddcv). Si Sa

est nul sur Q alors /j,(Qn Supp S) 0.

Démonstration du théorème 1. Soit Ci un ouvert de P^ chargé par \.i. La première
assertion du lemme 3 appliquée à Ta permet de supposer que dans de bonnes

coordonnées, la restriction de Ta à £2 est donnée par une forme H à coefficients constants.
En particulier Ta possède un potentiel continu sur Q et il en va donc de même pour
Ts T — Ta car T est à potentiels locaux continus. Ceci permet, sur Ç2, d'exprimer \.i
sous la forme d'une somme de mesures positives obtenues comme produits extérieurs
de Ta et Ts :

(7)

Puisque (Ts)a est identiquement nul par définition, la seconde assertion du lemme 3

montre que \x ne charge pas Q n Supp Ts et donc, au vu de (7), la mesure Tk n'est

pas identiquement nulle sur Q. Autrement dit la forme H n'est pas dégénérée. Par

ailleurs, puisque \.i est absolument continue, chaque terme du second membre de (7)
doit, en tant que mesure positive, être absolument continue. En particulier, la mesure
singulière Ts A Tk~l est nulle sur Q. Or, H étant strictement positive, celle-ci est

équivalente à la mesure trace ajs de Ts. Le courant (positif) Ts est donc nul sur Ç2 et

T coïncide sur cet ouvert avec une forme lisse définie positive. L'endomorphisme /
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est donc un exemple de Lattes comme cela est démontré dans [2] (voir le résultat cité
dans l'introduction).

Démonstration du lemme 3. Pour simplifier les notations, nous ne ferons pas figurer

les cartes locales xx dans cette démonstration. Nous notons An l'homothétie
(V5)-"Idck.

1) Puisque S est absolument continu sur Q, il est de la forme

S - ^2 hp<q(z) dzp AdZq OÙ hPiq G L1 (Q).
l<p,q<k

Soit M l'ensemble des points de £2 où toutes les fonctions hPA sont continues en

moyenne, c'est à dire :

1 r
—— — /
m(%r))J8fc

1 r
lim—— — / hpq(t)dm(t) hPq(z) pour tout z e M.
r^m(%r))J8fcr)

Puisque le système est V<ï-linéarisable, \x est absolument continue par rapport à m et

l'ensemble M est de mesure totale pour m et [i. Notons Si l'ensemble des points de
Ç2 n Supp \.i où la suite (/")„ est linéarisable par des homothéties de rapport (</d) n.

Comme [i est absolument continue, la proposition 3 nous assure que [i{M n Si) > 0.

Soit alors z G M n Si et posons <£>„ := /" o An (on identifie z avec l'origine
de Ck). Quitte à prendre une sous-suite, $„(0) fn(z) reste dans V n Supp/x
où V est un voisinage de z (cf Remarque 2) et la suite (<£>„)„ converge vers un
biholomorphisme 4> : 5(0, v) —>¦ Ç2' c ß. Le support de \.i étant fermé et invariant,
on a $(0) e fl n Supp [i et donc ß(C2') > 0. L'invariance de S entraîne :

" "¦' " 2
\<p,q<k

Puisque z G M, on obtient $>*S | Xa<p q<k hP,q{Q) dzp A rf^? par passage à la
limite.

2) Supposons /j,(Q n Supp S) > 0 et montrons que Sa est non nul. Quitte à

diminuer Ç2 on peut supposer que S ddcv sur un voisinage Ù, de £2. Quitte à

choisir une carte locale, Û est un ouvert de Ck. D'après la proposition 3, il existe
Si c Œ n Supp S de fj.-mesure positive tel que pour tout point z G Si, il existe une
sous-suite $>n. := /"¦> o (z + A„; convergeant uniformément sur 5(0, v(z)) vers un
biholomorphisme <£>. On peut aussi supposer que fnj (z) G Si (cf remarque 2).

Observons tout d'abord qu'il suffit de montrer que as possède une dérivée de

Radon-Nykodym strictement positive en tout point z de Si :

1 çlim _, / S A co0 > 0 pour tout z & Si,
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où coq désigne la forme standard ^ddc\\z\\2. En effet, comme iJ.(3i) > 0, cette
propriété montre que la mesure asa (qui est égale à (as)a) n'est pas triviale sur Q et il
s'ensuit que le courant positif Sa n'est pas nul.

Vérifions à présent la stricte positivité des dérivées. Notons que quitte à supprimer
à Si un ensemble de mesure de Lebesgue nulle (donc de /z-mesure nulle), ces dérivées

existent en tout point de Si. Fixons donc z £ Si, et reprenons les applications $>n. et
<£> précédentes. Comme $(0) e lî on peut diminuer v de façon à ce que les ouverts

<&nj (5(0, v)) et $(5(0, v)) soient contenus dans £2. Puisque f*S dS, il vient :

f SAû>*~1=07 kn, ,„, ,,„-„,, - w >- *,», /z+A^.[B(v)]

"I.
B(v)

f ddc(vo<J>n.) AfflJ"1,
iß(v)

où 5(r) désigne la boule centrée en l'origine et de rayon r. Le théorème de convergence

dominée entraîne alors :

lim—;k <>0

1 > / ddc(v o $) AcOq I
Jb(v) Jb(v)'B(y)

Cette dernière intégrale est bien strictement positive, car 4>(0) e Si c Supp S1.

7. Appendice

Nous résumons ici la preuve du théorème du pluripotentiel utilisé dans la section 4,
ainsi que celle de l'estimation de la mesure présentée dans l'introduction.

7.1. Un théorème de la théorie du pluripotentiel. Il s'agit d'établir la version
suivante d'un résultat dû à Briend-Duval [5] :

Théorème. SbzY S := ddcvu un (1, 1) courant positiffermé de potentiel vu continu

sur le polydisque P(0, R) et E d P(0, *). On suppose que par tout z € Epasseun
disque holomorphe az: A --* Ck de taille l et qu 'il existe unefonction hz harmonique
sur A telle que \vuoaz—hz\ < e sur A. Alors il existe une constante C (vu) ne dépendant

que de vu telle que Sk(E) <
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Rappelons qu'un disque holomorphe a : A —* Ck passant par z G C^ est dit de

taille / > 0 si il est de la forme a(u) z + lu.v + ß(u) où v est un vecteur unitaire

4
Démonstration. Soit pi la projection sur le /-ième axe de C^ et E\ := {z G E \

\\pi(vz)\\ > 4=}, de sorte que E U/=i k^i- Pour fixer les idées nous allons

estimer Sk(E\). A cet effet, on recouvre le polydisque P(0, ^R) par environ JV :=
ellipsoïdes contenus dans P(0, R) de la forme 8[B(0, R)] où 8(zi,z')

Soit 8 l'un de ces ellipsoïdes. Puisque 8 est strictement pseudoconvexe, il existe

une fonction w p.s.h maximale sur 8, continue sur 8 et coïncidant avec vu sur b8.
Si z G S n £i, on voit facilement que le disque az{A) traverse 8, au sens où la

composante connexe G deCTz~1(gnaz(À)) contenant l'origine est relativement compacte
dans À. Un argument de principe du maximum montre que G est simplement connexe.
En l'exhaustant par des domaines à bord suffisamment régulier, on peut paramétrer
des disques holomorphes contenus dans 8 et dont le bord est arbitrairement proche
de b8. Plus précisément, e > 0 étant fixé, on trouve une transformation conforme et

continue jusqu'au bord ijr : A —> \/r(A) C 8 telle que ijr (0) 0 et \w — w\ < e sur

az o f(èA). Posons âz := az o tf/ et notons h la fonction harmonique sur À continue

sur À et coïncidant avec w o âz sur bA. On a alors :

(8) w(z)<w(z)<h(0) + €

la première inégalité provient de la maximalité de w sur 8 et la seconde du principe
du maximum appliqué àwoâz — h (cette fonction coïncide avec w oâz — w oâz sur bÀ).

Par hypothèse onahzo \f/ — e < w o az o ^ w o âz < hz o ^ + e sur À. On a

donc aussi hz o ip- — e < h < hz o fi + e et il s'ensuit que :

(9) \w(z)-h(0)\ <2e.

Les inégalités (8) et (9) montrent que :

ÊflÊiC 8{w, e) := {z G 8 \ 0 < w(z) - w(z) < 3e}.

La majoration annoncée résulte alors immédiatement de l'estimation suivante qui est

au coeur de la démonstration de Briend-Duval et pour laquelle nous renvoyons à [5]
ou [23] page 180, Théorème A. 10.2 :

II existe une constante C{w) > 0 telle que {ddcw)k^8{w, e)] < C(w)e.

7.2. Estimation de la dimension. Nous esquissons la preuve de l'estimation de la
dimension en reprenant mutatis mutandis les arguments développés par Binder et

DeMarco [4] dans le cas des endomorphismes polynomiaux de Ck.
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Théorème. Soit un système (¥k, f, yu.) de degré d et d'exposants X\ < ¦ ¦ ¦ < X^. La
dimension de \i vérifie : dim(/z) < 2(k — 1) + -^—

Rappelons que la dimension est définie comme la borne inférieure des dimensions
de Hausdorff des boréliens de mesure totale. Ce résultat montre que si la dimension
de ß est égale à 2k, alors tous les exposants de \x sont minimaux, égaux à log \fd.

Démonstration. Il s'agit d'exhiber pour tout e > 0 un borélien Y de mesure totale
vérifiant :

(10) dimH(Y) < 2(jfc-l) + i^ + —e.
*-k *-k

Soit A l'ensemble des points x (x„)„>o de P^ vérifiant pour tout n > 0 :

(eA C frn[B(xo,ro)]
V KO / x

et

m (frn[B(xo,ro)]) <

On rappelle que m désigne la mesure volume standard sur ¥k. On vérifie que si kq est

assez grand et tq assez petit, alors fi(A) > 0 (cf [4], lemme 2).
Soit An := f~n A. Lamesure fi. étant ergodique, le théorème de Birkhoff entraîne

que Y := lim sup„ An est de mesure totale.
On pose alors Y := no(Y) et An := no(An), de sorte que Y est aussi de mesure

totale et est contenu dans lim sup„ An. Estimer la dimension de Hausdorffde Y revient
à estimer celle des ensembles An, pour n assez grand. Par définition de A, tout point
y de An vérifie :

(1) /" admet une branche inverse gn sur B(fn(y), tq), telle que gn(fn(y)) y

(2) La boule B(y, rJLe-n(xk+Ê)\ contient <p := gn[B(fn(y), r0)]

(3) m(P) < k0e-2n^+-+Xk)+n".

Il découle de ces propriétés que An est recouvert par une famille (P; e/ d'ouverts

du type P dont le cardinal est de l'ordre de dkn. Pour le voir, il suffit de recouvrir Ao

par un nombre fini de boules 5(x,0, ^ro) puis d'observer que tout y G An est dans

gn[B{xj0, ^ro)] dès lors que fn(y) G B{x-l0, \ro). D'après le point 3, le volume de

la réunion des 3>\ n'excède pas dkne-2n(Xl+-+Xk)+ne.

Considérons à présent un recouvrement (Mj)jej de An par des sous-ensembles
de diamètre ^K e~n(Xk+^ provenant d'un maillage de ¥k. D'après le point 2, un
sous-ensemble Mj intersectant An est nécessairement contenu dans [JieI Pi- On a

donc :

Card(/) <
m(Mj) ~ (e-n(Xk+e)\ 2k
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En minorant les exposants ki, A.jt-1 par log -Jd, on obtient :

Card(/) < dn

II s'ensuit que la mesure de Hausdorff de An, de dimension le 2 (k — 1 )+log d/kk +
Ike/kk, est minorée par e~ne pour « assez grand. La /e-mesure de Hausdorff de

Y c lim sup„ An est donc finie pour tout e > 0. Cela termine la démonstration, car
Y est un borélien de mesure totale.
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