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Une caractérisation des endomorphismes de Lattés par leur
mesure de Green

F. Berteloot et C. Dupont

Résumé. We show that the Lattés endomorphisms are the only holomorphic endomorphisms of
the complex k-dimensional projective space whose measure of maximal entropy is absolutely
continuous with respect to the Lebesgue measure. As a consequence, Lattés endomorphisms are
also characterized by other extremal properties as the maximality of the Hausdorff dimension
of their measure of maximal entropy or the minimality of their Liapounov exponents. Our proof
uses a linearization method which is of independant interest and a previous characterization by
the regularity of the Green current.

Mathematics Subject Classification (2000). 32H50, 32U40, 37C45.

Keywords. Lattes endomorphisms, linearization, maximal entropy mesaure, Hausdorff dimen-
sion, Liapounov exponents.

1. Introduction et résultats

Les propriétés dynamiques d un endomorphisme holomorphe f de degré algébrique
d > 2 sur I’espace projectif complexe IP¥ se reflétent sur son courant et sa mesure
de Green. Le courant de Green, noté 7', est un (1, 1)-courant positif fermé, obtenu
comme lalimitedes (1, 1)-formes di,, ™ w,ouwdésignelaforme de Fubini—Study. La
mesure de Green, notée 1, est une mesure de probabilité invariante, obtenue comme
k-iéme puissance extéricure de 7'. Ces objets, introduits par Hubbard—Papadopol [15]
et Fornaess—Sibony [12], possédent de remarquables propriétés ergodiques. Fornaess
et Sibony ont montré que la mesure de Green est mélangeante [13]. Briend et Duval
ont établi que ses exposants de Liapounov sont supéricurs a log +/d [3] et qu’elle est
I’unique mesure d’entropic maximale de f [6].

La dimension de p, notée dim (w), est définie comme la borne inférieure des di-
mensions de Hausdorff des boréliens de p-mesure pleine. C’est une caractéristique
géométrique importante du systéme dynamique (P¥, £, ). L’une des premiéres ques-
tions concernant I’estimation de cette dimension est de déterminer les systémes pour
lesquels elle est maximale ou, ce qui s avere équivalent, ceux dont lamesure de Green
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est absolument continue par rapport a la mesure de Lebesgue oX. L objet de cet article
est de caractériser ces systémes, ce qui répond a une question posée par Fornaess et
Sibony dans [14] :

Théoréme 1. Les seuls endomorphismes holomorphes de P* dont la mesure de Green
est absolument continue par rapport a o* sont les endomorphismes de Lattés.

Rappelons qu’un endomorphisme f est de Lattés si il fait commuter un dia-
gramme :

(Ck—D>(Ck

I[Dk —f> ]P)k

ot D est une application affine de partie linéaire ~/d U (ou U est unitaire) et o un
revétement ramifié sur les fibres duquel un groupe cristallographique complexe agit
transitivement. De tels endomorphismes existent en toute dimension & et tout de-
gré d ; leur mesure de Green est absolument continue par rapport a o* d’exposants
de Liapounov égaux a log /d [10]. En dimension 1, ils coincident avec les fractions
rationnelles induites par une isogénie d un tore complexe au moyen d une fonction el-
liptique. IIs sont traditionnellement appelés «exemples de Lattés» et font I’objet d une
étude détaillée dans I'article de revue de Milnor [22]. Signalons enfin que les endo-
morphismes de Lattes interviennent naturellement dans d’autres problémes, comme
celui de la densité des fractions rationnelles hyperboliques via la «conjecture NILF»
(voir [19], [3] Chap. 7) ou celui de la classification des paires d’endomorphismes qui
commutent [8]. Ils fournissent également des exemples surprenants de domaines de
C**+1 munis d’auto-applications holomorphes propres non injectives [10].

Voyons comment le théoréme 1 se traduit en terme de dimension de la mesure.
La maximalité de la dimension entraine la minimalité des exposants. Cela résulte de
I’inégalité dim (1) < 2(k—1)+ k’fk 4 out Ag désigne le plus grand exposant de y. Cette
estimation, dont la preuve est esquissée en appendice, est due a Binder et DeMarco [4]
pour les applications polynomiales (voir aussi [7] pour un résultat plus précis). Il est
alors possible d’adapter aux dimensions supérieures le travail de Ledrappier [17], [18]
selon lequel, pour toute fraction rationnelle, 1°égalité¢ dans la formule de Margulis—
Ruelle entraine 1’absolue continuité de w. Cela fait I’objet de [11] et concerne en
particulier les mesures de Green d’exposants minimaux. Le théoréme 1 admet donc
pour corollaire :

Corollaire 1. Soit un systeme (P, f, ) ot f est de degré d. Les propriétés suivantes
sont équivalentes -

1. La dimension de  est maximale, égale a 2k.
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2. Les exposants de pu sont minimaux, égaux & log +/d.

3. L’endomorphisme f est de Lattés.

Ainsi, pour un systéme (P, £, i) générique, la mesure p est singuliére par rapport
a ok, I'un de ses exposants est strictement supérieur a log /d et sa dimension est
strictement inféricure a 2k.

En dimension & = 1, on trouve une démonstration du théoréme 1 dans ’article
de Mayer [21]. Signalons aussi le résultat beaucoup plus précis de Zdunik [24] qui
stipule que la dimension de 1 coincide avec celle de son support (I’ensemble de Julia
de f) siet seulement si f est un exemple de Lattés, un polyndme de Tchebychev ou
une puissance z=¢. La démonstration de Mayer repose sur un procédé de linéarisation
consistant a comparer les itérées f™ avec leurs applications linéaires tangentes d /.
Un tel procédé permet de «régulariser» la densité mesurable de o : celle-ci est en
fait lisse sur un ouvert. La structure de f se lit alors sur 1’équation fonctionnelle
[rfu=dup.

Il y a plusieurs difficultés a surmonter en dimension supéricure. Fondamentale-
ment, le probléme tient a ce que la mesure p ne porte pas les informations géomé-
triques «directionnelles» nécessaires a 1’analyse de la structure de f : celles-ci sont
recelées par le courant T dont elle dérive (1 = TX) et s’y lisent particuliérement bien
lorsque celui-ci est lisse :

Théoréme (Berteloot-Loeb [2]). Tout endomorphisme holomorphe de P* dont le
courant de Green coincide avec une (1, 1)-forme lisse strictement positive sur un
ouvert est un exemple de Lattés.

11 s’agit donc de déduire la régularité du courant 7" de 1’absolue continuité de
la mesure . = T*. On utilise a cet effet une méthode de linéarisation locale de
I’endomorphisme par des homothéties.

Techniquement, la difficulté réside dans la mise au point de cette méthode de
linéarisation car il faut pallier a 1’absence du théoréme de Koebe.

Nous présentons maintenant la structure de 1’article et les différentes étapes de
la démonstration. Les résultats des sections 3 et 4 concernent la linéarisation et pré-
sentent un intérét pour eux-mémes. La section 3 est consacrée a la construction d’un
procéd¢ de linéarisation général. Il s agit, pour des choix p-génériques de x, de rendre
la suite ( f™), normale en x en la précomposant par des contractions équivalentes aux
applications linéaires tangentes inverses (dy f™)~1. A cet effet, nous estimons pré-
cisément les erreurs cumulées lorsque I’on remplace f par sa différenticlle le long
d’une orbite. Outre la stricte positivité des exposants Ay < --- < Ag, cecl requiert
I’hypothése Ax < 2A1. Nous obtenons le théoréme suivant :
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Théoréme 2. Si les exposants du systéeme (PX, f, ) sont tels que ry < 2i; alors,
pour p-presque tout point x, la suite ( Sfroldyf ”)_l)n possede au moins une limite
injective sur un voisinage de x.

En vue d’obtenir un énoncé de linéarisation par des homothéties, nous majorons
lanorme des différentielles (d, ™). Ceci fait’objet de la section 4. Pour cela, nous
reprenons la méthode pluripotentialiste de Briend et Duval [5] dans le contexte des
linéarisations. Plus précisément, nous minorons la masse de I’ensemble des points
x ou les normes ||(dy f™)~!|| sont «grandes» (voir Proposition 2). L’énoncé précis
de linéarisation suivant résume les informations acquises dans cette section sous une
forme maniable.

Théoréme 3. Si les exposants du systeme (P*, f, 1) sont tels que r; < 2x1, alors
pour tout borélien B, il existe un borélien B C B de masse arbitrairement proche de
w(B)? et tg > 0 vérifiant les assertions suivantes : pour tout point x € B, il existe
une suite extraite (f"7); et un réel v(x) > 0 fels que

1. f*% (x) € B pourtout j € N.
2. frio(d, )t converge uniformémentvers un biholomorphisme sur B(x, v(x)).
3. 1(dy f7) 7Y < to(v/d)™" pour tout j € N.

Dans la section 5, nous montrons que si lamesure p est absolument continue alors
les différenticlles (d, f™i)~! intervenant dans le théoréme 3 sont équivalentes a des
homothéties de rapport (+/d) " . Notons que la condition A; < 2A; est satisfaite car
la régularité de p entraine la minimalité des exposants.

Nous achevons la preuve du théoréme 1 dans la section 6. Nous montrons que
le courant T est régulier en utilisant le procédé de linéarisation par les homothéties
de rapport (v/d) ™" et les relations d’invariance f**T = d"T. Le résultat de [2] cité
plus haut montre qu’alors f est un endomorphisme de Lattes.

Remerciements. Nous tenons a remercier le rapporteur tant pour sa lecture attentive
du manuscrit que pour ses conseils de rédaction.

2. Préliminaires

Nous résumons ici les principaux outils et résultats utilisés par la suite. Nous fixons
également quelques notations.

2.1. Vocabulaire et notations. e Un systéme (P, £, 1) est la donnée d’un endo-
morphisme holomorphe f de I’espace projectif de dimension k dont le degré d est
supéricur ou égal a 2 et dont I’'unique mesure d’entropie maximale est notée 1. Nous
dirons aussi que le systeme (P¥, £, i) est de degré d.
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o Soit (Iﬁk, £, ) Pextension naturelle du systéme (P¥, £, ). On rappelle que Iﬁ’}
est I’ensemble des orbites {)? = (xn)nez | flxn) = xn+1} muni de la topologie et
de la tribu produit. Soient 7o : P* — P* la projection définie par 7o(%) = xo. fle
décalage a droite et f 1 le décalage a gauche sur ]I?k, de sorte que 7o © f = fom.
On note /& I’'unique mesure de probabilité f-invariante sur P¥ vérifiant o2 = L.
Le caractére mélangeant de 1 passe a /.

e Soit X le sous-ensemble de P* suivant :

X = {§ € P¥ | x, ¢ Crit(f) pour tout n € Z}

ou Crit( f) désigne I’ensemble critique de f. Le borélien X vérifie ;1(? )=1,carpu
ne charge pas I'ensemble analytique Crit( f) ([23], Proposition A.6.3).
Par la suite, on s’autorisera a soustraire a X des ensembles fi-négligeables.

2.2. Branches inverses et exposants. e On construit une famille de cartes holo-
morphes (7x) g« telle que :
1. 7.: Ck — P* est un biholomorphisme sur son image et 7, (0) = x,
2. (rfw)o = li Y j=1x4z; A dzj.
ou w désigne la forme de Fubini—Study. Cette famille est obtenue en explicitant une
telle carte en un point base xo € PX, puis en la propageant aIP¥ par I”action transitive de
Ui+1(C). Ce faisant, on obtient plutdt une classe de cartes en x car 7, est définie a un
¢lément du sous-groupe d’isotropie de xg pres. Cette ambiguité pourra cependant étre
ignorée puisque U4 (C) est compact ; les affirmations faisant intervenir 7, devront
étre comprises comme valables pour tous les éléments de la classe de cartes en x.
On peut aussi, localement, faire un choix «différentiable» de 7, par rapport a x et en
particulier s’assurer que la propriété suivante est vérifiée :
(*) Ty, Loy — 2 L(x) converge vers l'identité en topologie C™ lorsque x tend vers x.
e Nous noterons B(0, R) (resp. P(0, R)) laboule euclidienne (resp. le polydisque)
de C¥ centrée en 0 et de rayon R (resp. de polyrayon (R, ..., R)). On désignera par
B(x, s) I'image de B(0, s) par ty.
o Nous utiliserons les applications suivantes, ou x € P et n € N ;

Sfr = f;(ic) o f oty

f=tpl o [ ot = fpe oo i

Elles sont définies sur un voisinage de ’origine de C*, dont la taille dépend de x et
de n. Pour tout x € X, on note ff_” la branche inverse de f" «le long de I’orbite x»,
c’est-a-dire :
-n ._ p—1 -1
f&n = x,no...ofx—l'
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Le lemme suivant stipule que ces branches inverses existent sur un voisinage de
I’origine dont la taille dépend mesurablement de x. On trouvera une preuve dans
I"article de Briend—Duval [3] (voir aussi [9] pp. 19-22).

Lemme 1. Soient 0 < € < 1 et 0 < ro < 1. Il existe des fonctions p et r continues
sur/]f’k strictement positives hors de Crit(f), ainsi que des fonctions mesurables
n: X —10,r9let C: X — [1, 400 vérifiant les propriétés suivantes :

1. Pour tout x € P\ Crit( f), fx est injective sur B(0, p(x)) et

B(0,r(x)) C fx[B(0, p(x))].

2. Pour fout % € X, lim,, %log p(xy) = 0.

3. Pour tout 3 € X et tout n € N, f{" est injective sur B(0, n(x)), et pour tout
y €10, 1],

do [ BO, yn(3)] € B(0, yr(x—ug1y)e "*179).

4. Lip f7" < C(®)e™"M179) sur B0, n(#)).

e Les exposants de Liapounov de p seront notés 1 < - - - < Ag. Nous utiliserons
de manicre cruciale la minoration optimale de ces exposants :

Théoréme (Briend-Duval [5]). Les exposants d'un systeme (PX, f, i) de degré d
sont plus grands que log v/d.

3. Un procédé de linéarisation

Notre objectif est de démontrer le théoréme 2 présenté dans I'introduction. Nous
adoptons la définition suivante :

Définition 1. Un systéme (PX, f, i) est dit linéarisable si pour j-presque tout x €
Pk, il existe v(x) > 0 et une sous-suite de [f" o 7y o (do fx”)_l]n qui converge
uniformément vers une limite injective sur B(0, v(x)).

La proposition suivante fournit deux conditions suffisantes de linéarisibilité. La
premiére réduit le probléme au contréle uniforme local de la suite f7 o (do f) ™! grace
au théoréme de Montel. La seconde transfére cette question de contréle uniforme en
«temps négatif», ¢’est a dire aux applications f' odof;". Nous utilisons pour cela
un argument classique basé sur ’invariance de la mesure /.
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Proposition 1. Soit (P*, f, ) un systéme et Ry un nombre réel strictement positif.
Pour tout p €10, 1] et n € N, on définit les ensembles :

Bu(p) :={x € P | 7o (do f) ! est injective de B(0, p) dans B(0, Ro)}
B(p) := lim sup B, (p).

Le systeme est linéarisable si | 'une des deux conditions suivantes est réalisée :
1) Il existe «: 10, 11 — R7 telle que lim,_oa(p) = 1ef u[B,(p)] = alp) pour
tout n € N.
2) Pour tout rg €10, Ry il existe des fonctions mesurables n, S X —10, ro] telles
que
@) S=n
(1) Pour tout x € 5(\, f{” est injective sur B(0, n(x)).
(iii) Pour tout x € X et tout n e N, doffc_” [B(O, S()?))] - f{”[B(O, 17()2))]‘

La seconde assertion implique la premiére.

Démonstration. La linéarisabilité en x résulte, via le théoreme de Montel, de 1’ap-
partenance de x a U0<p§1 B(p). Ainsi, comme pu[B(p)] > lim sup, u[Bn(p)], la
condition 1 entraine la linéarisabilité p-presque partout.

Voyons maintenant comment la seconde condition entraine la premicre. Posons
4 (p) ={re X | S(x) > p}. Il suffit d’établir les inclusions suivantes :

no[f_”(g\(p))] C B,(p) pourtout n € N.

En effet, compte tenu de 'invariance de /2, on a u[Ba(p)] > /l[f_”(//s\(p))] =
,&[3 (p)]. La fonction a(p) := /1[:8\ (p)] convient car S est strictement positive fi-
presque partout.

N Etablissons maintenant les inclusions annoncées. Soit 3 := f"(%) tel que y €
$(p).1lsagit de vérifier que xo € B, (p). Rappelons que xo = mp(x). L’appartenance
de y a 8(p) signifie :

do f"[B(0, p)] C do f7"[BO. SG))] € £7"[BO. n(5)].

on obtient en composant les

Comme fy_” est injective sur B(0, n(y)) d’inverse -8

inclusions précédentes par fy; :

S0 (dof2) " [B(V. p)] € B(0, 1(3)) C B0, Ro).

Le point xo appartient donc a B, (p). O
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Nous démontrerons le théoréme 2 en vérifiant que la condition 2 de la proposi-
tion 1 est satisfaite. Ceci consistera a compenser les erreurs dues a la substitution de
do fx;l a ijl le long de £ en diminuant le rayon 7(%). Pour que les compensations
cumulées fournissent un rayon S(x) strictement positif, les erreurs commises de-
vront étre négligeables devant la plus petite dimension caractéristique de ’ellipsoide
do f{] [B(O, 1)]. L’objet du lemme suivant est de montrer que tel est le cas lorsque
les exposants vérifient I'inégalité Ay < 2A1.

Lemme 2. Soient un_systeme (PF, fp) et 0 < € < 1. 1 existe des fonctions
mesurables n, E, F: X —]0, +oo[ vérifiant 0 < n < rg < Ry telles que pour tout
X = (xp)nez, élément de X et tout n € N :

1. ffc_” est injective sur B(0, n(x)).
2. Pour tout y €10, 1] et tout u € dof{" [B(O, yn(i))} -

_ i e
H (d() xinﬂ) - X—(nﬂ))(u)“ <yE(x)e n(h—e)
3. |ldof™Y || < F(R)e"®rto),

X—(n+1)

Démonstration. Nous utilisons ici le lemme 1. Pour tout £ € X, , Iassertion 1 est
satisfaite. De plus, I’application Sx_(ueyy St mnversible sur B(0, r),our := r(x_(n41)),
et son inverse g est a valeurs dans B(0, p) ou p = p(x_(n+1)). Soit szz Ople
développement de Taylor de ¢ — dpg, ou @, désigne une application homogéne de

degré p. Siu € B(0,r) alors ||Q,(u)|| = ||% 02” g(e?u)e™P0dp H < p etdonc :
[leel}® ru llull '\
(g —dog)w) < ) Ol )| =ed(—) -
e el r
p>2 p=>2

Lorsque de plus u € dof;:”[B(O, yn(i)] alors ”rL” < ye 179 (¢f lemme 1, (3))
et il s’ensuit que :

2
_ vre —2n(h—€)
(g = dog)(w)]l < - ye—m—ae .

L’ assertion 2 du lemme s’en déduit car p(x_(,41)) a un taux de croissance ex-
ponentiel nul (cf lemme 1,(2)). La demiére assertion découle immédiatement de la
définition des exposants de Liapounov. Nous 6tons ici a X un sous-ensemble de /i
mesure nulle. m]

Démonstration du théoreme 2. 11 s’agit de montrer que la condition 2 de la propo-
sition 1 est satisfaite lorsque A < 2A;. Reprenons les notations du lemme 2 et
introduisons sur X les fonctions mesurables suivantes :

E,(%) = sup {1 < n(®) | do £ [B(0, )] € £ [BCO, n(&))])
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e~ : EFR . ne
no(x) ::mm{pzl|pourtoutn2p T — () <e }
n

s(£) = min {£,(%) | 0 < n < no(D)}.

Posons «; =1 — e/ 2M—h=66) ayec e suffisamment petit pour que le produit
1—[?021 K ; converge et soit strictement positif. Définissons les fonctions s, par :

sp(X) == 5(x) sin < ng(x)
n—1
sp(®) 1= (%) ]_[ Kkj sin>ng(®) + 1.
J=no(X)

Pour montrer que la fonction S(x) := s(x) ]_[?il «j convient, il suffit d’établir les
inclusions :

(I)nzo = dof7"[B(O, su(R)] C fr"[B(O, n(2))].

Par définition de s, (X), ces inclusions sont satisfaites lorsque n < ng(x). Supposons
que (I,) soit vraie pour n > ng(x) et posons vy, := (%)()?)e*zn(““zf). On a alors :

(1) Sn1 < sn — | (dof)e_(wl))_l” Vn.
En effet :

EF
Sual = Spkny = sn(l — e_"(nl_’x"_&)) < 5 (1 — —(i)e_”(u]_}“"_se)>
n

—(n+1)\—1
< su = ldo f14] lvn = 5 — | (do £z ") " o
la premiére majoration résultant de la définition de ¢ (£) etlaseconde dulemme 2, (2).

Désignons par A la frontiere de dy ff_("H) [B(O, sn)]. On vérifie aisément que
I'inégalité (1) se traduit par :

©) do f7 "V B, s041)] € dofy "FV[BO. s)]\ | Bp.va).

PEA
Par ailleurs, la premiére assertion du lemme 2 (ou 1’on prend y = %”) stipule que sur
do fT"[B(O, s)], fi2! . différe d”au plus v, de sa différenticlle. 11 s’ensuit que

X_(n+1)

@) dofi "TV[BO.so)\ | Bp.va) € £} 0 do ST [BO. s0)].

(n+1)
PEA
Observons finalement que I’inclusion (1), composée par ijnﬂ), s’écrit
s - - 1 A~
©) Fh oy o do £ [BO, s)] € £ VB, n()].

Les inclusions (2), (3) et (4) enchainées donnent (/,,11). O
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Remarque 1. L’inégalité A; < 2A; peut étre interprétée comme une condition de
non résonance entrainant la linéarisabilité. Jonsson et Varolin (cf [16], Theorem 3)
ont, indépendamment de nous, mis en évidence la méme condition dans un probléme
voisin,

4. Une version précisée du procédé de linéarisation

L objet de cette section est de contréler le diameétre des ellipsoides (do /)~ [B(0, 1)]
associés au procédé de linéarisation fourni par le théoréme 2. Nous en déduisons le
théoréme 3 énoncé dans I'introduction.

Le théoréme de Briend-Duval, déja utilisé mmplicitement pour détablir le
lemme 1, majore le taux de décroissance exponentielle de la taille de ces ellipsoides
par —log +/d. Cela signifie que pour tout ¢ > 0, on a I(dofM~ < e d)™
pour n assez grand. En reprenant la méthode de Briend-Duval dans le contexte de la
proposition 1, nous obtenons une majoration plus précise : ||(do f*) 71| < (Vd)™".
Rappelons que B, (p) est défini par :

Bu(p) :={x € P I o (do fM)~ 1 est injective de B(0, p) dans B(0, Ro)}

et qu’en vertu de la proposition 1 et de la preuve du théoréme 2, il existe une fonction
a: 10, 1] - R* telle que lim g (p) = 1 et

w[Bn(p)] = a(p).

Nous montrons la proposition suivante :

Proposition 2. Soit (PX, £, i) un systéme de degré d > 2 tel que rx < 2A1. On pose
pourt >0, p €l0,1]etn e N:

Du(p. 1) i=Bu(p) N {x e PX | [(dof) ™ < v (W)™}

Alors on a l'inégalité
.. C
lim inf p[Dy(p, 1)1 = 2(p) — .
n TP

oit C > 0eta:]0,1] — RT est une fonction ftelle que lim,_,g a(p) = 1.

Le principe de la preuve est le suivant. Puisque p[B,(p)] > «(p) d’apres la
proposition 1, il s’agit de majorer la mesure du complémentaire de D, (p, ) dans
Bau(p),noté DS (p, 7). Or, partout point de D, (p, ) passe un disque dont le diametre
est au moins égal a Tp (v/d) ™" et dont ’'image par f" reste contenue dans une boule
de rayon Ry fixé. Comme f™*T = 4"T, il passe donc par tout point de DS (p, 7)
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un «grand» disque «peu» chargé par T'. Des techniques pluripotentialistes permettent
alors de majorer précisément la masse de 1’ensemble de ces points pour la mesure
w=T*k

Démonstration de la proposition 2. On dira qu’un disque holomorphe o : A — CF
est de taille I > 0 et passe par z € CF si il est de la forme o (1) = 7 + lu.v + B(u)

ol v est un vecteur unitaire de C¥, B(0) = 0 et || ]| < ﬁ.

L’ingrédient principal est le théoréme suivant dont la preuve est résumée dans
I"appendice :

Théoréme (Briend-Duval [5]). Soit S := ddw un (1, 1)-courant positif fermé de
potentiel w continu sur le polydisque P(0, R) et E C P(O, %) On suppose que par
tout point 7 € E passe un disque holomorphe o,: A — C* de taille | et qu il existe
une fonction h; harmonique sur A telle que |w o o, — h;| < € sur A. Alors il existe
une constante C(w) ne dépendant que de w telle que S*(E) < C(w)]lc—je.

En vue d’utiliser ce résultat, nous fixons des systémes de coordonnées locales
sur P¥. Considérons un recouvrement de PX par des ouverts Uj, ..., Uy centrés en
des points m ; et tel que sur chaque U; nous puissions fixer des déterminations des
cartes 7, dépendant différentiablement de x (cf la condition (%), section 2). Posons
Tj 1= Tp; puis, pour R > 0 fix¢, V; := 7;(P(0, R)). Si le recouvrement est assez
fin alors les propriétés suivantes sont satisfaites :

(i) U; ct;(P(0, 8)) et 7 (P(0, £)) C V; pour tout x € U;,
i) [[r;" 0w — (7 (x) + Idew)

1
|61,W,2£) < {ogg Pour tout x € Uj.

Puis, si Ry (introduit au lemme 1) est pris assez petit :

(111) pour tout x € Pk il existe | € {1,..., N} tel que 7y [B(O, Ro)] c v,

@) nfx € Ui Bu(p) | (do f2)7[BO. p)] € P(0. B)} = u(U; N Bo(0)) — €05
avec lim, €, ; = 0.

Enfin, si v; désigne un potentiel continu de 7" sur V;, il existe une constante M > 0
telle que :

(v) T =ddvjet|v;| < Msur V;pourtoutj € {l,..., N}
D’aprés le théoréme 2, il existe une fonction ¢ qui vérifie la propriété énoncée a la
proposition 1 (1) ; autrement dit, «(p) tend vers 1 quand p tend vers 0 et [ B, (p)] >

a(p).
Comme 1l s’agit de minorer lim inf, u[D;,(p, )], la propriété (iv) montre que
I’on peut considérer que :

(5) (dofx”)_l[B(O, ,0)] cP (0, §> pour tout x € U; N B, (p).
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Pour tout j € {1, ..., N} nous allons établir que :

. MK

Soit donc x € D5(p, v) NU; et Vy(x) un vecteur unitaire tel que I(dofH™ =
(o f2) ™ [Va(x)]]l. Sionnote v, (x) = (do f7) ™ [V (x) ], onal|v, (x) | = tp(v/d) ™"
On définit ainsi un disque affine @, ,: A — C* de diamétre au moins égal a
tp(x/d)™" en posant :

Dy (1) 1= (do f1) " tp Vi (x)] = tp.vp(x).

Comme x € Uj, (5) et (i) permettent de définir un nouveau disque ®;, : A —
P(0,R) par & x = rj_l o 7x o @y ». Compte tenu de la propriété (it), ®; , x est
un disque holomorphe de taille I := p||v, (x)|| > tp(~/d)™" passant par t]-_l (x).
Choisissons [ € {1,..., N} tel que 7pn(x)[B(0, RO)H C Vi (propriété (iii)) alors,
comme x € By(p),ona f" oty o Py (A) C ey B(O, Ro)] C V; etdonc

ddc(vlof”otxod)n’x) = (fnofxocbn,x)*T = (fxqun,x)*fn*T = dn(fxocbn,x)*T-
Par ailleurs, puisque 7, © ®; x(A) C V; (cf. (5) et (1)), on a
(ty © CD,L’X)*T = ddc(vj oty 0Dy ) = ddc(vj oTjo®jpn x).

Ainsi, dd®[vjo fh o0 @y —d"vjoTjo P, x| = 0. Autrement dit, la fonction entre
crochets estharmonique sur A et, puisque |v;| < M, le potentiel v;o1; de 7:]’.*T différe
d’auplus dMn d’une fonction harmonique 4 surle disque & ,  detaille! > 7p(v/d)™".
Dans ces conditions, (6) découle immédiatement du théoréme de Briend—Duval. On
en déduit I’estimation annoncée avec C = Mk? Z?’:l C(vjortj). o

Terminons cette section par la preuve du théoréme 3. Il sagit d’établir une version
du procédé de linéarisation ou les orbites issues d un borélien prescrit sont assujetties
arécurrence. Cette précision découle des estimations fournies par la proposition 2 et
du caractére mélangeant de 1.

Démonstration du théoréme 3. Posons D, (p, 1, B) := D,(p, 7)) N BN f7"(B) et
D(p, v, B) := limsup, Dy (p, 7, B). 1l est clair que s1 x € D(po, 10, B) alors il
existe une suite extraite (f"/); vérifiant les trois assertions du théoréme 3. 1l suffit
donc d’observer que (D, (p. T, B)) approche 14(B)? par défaut pourvu que po, %
soient assez petits et n assez grand. Or ceci résulte immédiatement de la proposition 2
et du caractére mélangeant de . 11 suffit en effet de fixer pg assez petit puis 7o assez
grand pour que Dy (p, 7) soit presque de w-mesure pleine pour n assez grand et
d’utiliser ensuite le fait que M[B nf _”(B)] approche 14 (B)? lorsque n tend vers
Iinfini. O
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5. Linéarisation par des homothéties

Dans cette partie, nous montrons que la suite des itérées (™), est linéarisable par
des homothéties de rapport (+/d) " si et sculement si ;4 est absolument continue par
rapport a la mesure de Lebesgue. Nous adoptons la définition suivante :

Définition 2. Un systeme (P¥, £, 1) de degré d est dit +/d-linéarisable si pour
p-presque tout x € P¥_ il existe v(x) > 0 etune sous-suitede [ f" oty o (ﬁ)_"ld(ck]n
qui converge uniformément vers une limite injective sur B(0, v(x)).

Autrement dit, un systéme est +/d-linéarisable si pour tout x générique, les el-
lipsoides (do f)~! [B(O, 1)] sont assimilables a des boules cuclidiennes de rayon

(v/d)™". Comme la taille de ces ellipsoides est au plus 7o(v/d) ™" (cf théoréme 3), il
suffitd’en contrdler le volume. L’ absolue continuité de i« le permet. Nous introduisons
a cet effet les ensembles suivants :

1
Vo (v) 1= {x € P | 1245 < |Jac f1? < —de"} pour tout v €]0, 1],
v
ouJac f} désigne le Jacobien complexe de f}' en 0. Nous obtenons le résultat suivant :

Proposition 3. Soit (PX, f, 1) un systéme de degré d. Les propriétés suivantes sont
équivalentes -

1. w est absolument continue par rapport a la mesure de Lebesgue .

2. Les exposants du systéme sont tous égaux a log~/d et il existe B: 10, 1] — R+
vérifiant lim,_, o B(v) = 1 et him inf,, u[V, (v)] > B(v).
3. Le systeme est Jd-linéarisable.

Nous noterons ¥ I'ensemble (J, Crit /7. En tant qu’union dénombrable de
sous-variétés algébriques de PX, ¢’est un ensemble de z-mesure nulle (voir [23]) :
u(Y)=0.

Démonstration. 1) = 2). Commengons par établir ’existence de la fonction 8. On
note m = w* la mesure de Lebesgue sur PX. Puisque u est absolument continue par
rapport a m, il existe ¢ € L'(m) telle que . = ¢ dm. D aprés le théoréme de Lusin,
il existe pour tout n € N des fonctions continues g, et %, amnsi que des boréliens
C,(p) et Cy(p o f) vérifiant :

1
9 =gn surCy(p) et u[Culp)] =1- ~

1
9o f"=hy surCylpof") et p[CulpofMH]=1-—.



446 F. Berteloot et C. Dupont CMH
Soit A, 1= {x € P¥ | v < p(x) < 1} ou v €]0, 1]. On pose :
Zny = [fT(ADNA]N[Calp) N Culp o fMH]NTYE.

Rappelons que I’ensemble Z,%ﬁf’ des points de Lebesgue de Z,, ,, est défini par :

Leb ) m[B(x,s) N Zn’v] B }
Z;y = {x €Zny | SIE}}) m[B(x, S)] =1z.

L’absolue continuité de u entraine M(Z,%e]}’) = 11(Zy,»). Compte tenu du caractére

mélangeant de p et du fait que p(Y) = 0, on obtient pour n assez grand :

w(ZE2) 2 wa? (1= 2) = 2 2 w(an?a - ).

La fonction B(v) := u(A,)%(1 — v) convient si Iinclusion Z,];ff C V,(v) est satis-
faite. Fixons donc x € Z,%""]P . Puisque x n’appartient pas a Crit ", il existe so > 0
tel que f™ soit injective sur B(x, so). En outre, x étant un point de Lebesgue de
Zy,, on peut diminuer so pour que m[B(x,s) N Z,,] = 2m[B(x,s)] > 0 pour
tout 0 < s < s9. En utilisant des changements de variables, d’abord par rapport a
i = @dm qui est de Jacobien constant égal a 4%, puis par rapport 4 m = X, on
obtient :

dkn/ (pa)k:/ (pwk:/ (pofn(fn*wk).
B(x,5)NZy,y SHB(x,$)NZp v] B(x,5)NZp, v

Or, puisque C,(¢) N Cp(@ o f™*) contient Z, ,, on peut remplacer ¢ par g et g o f*
par &, dans ces intégrales. Aprés normalisation par m(s, n, v) := m[B(x, s) N Zy 1],
il vient :
k
art k 1

En @ =

m(s, n,v) B(x,5)NZy v m(s,n,v) B(x,s)NZy v

Comme les fonctions g, et /2, sont continues en x et ( f™*w’), = |Jac f|?(w*)x, on
obtient lorsque s tend vers 0 :

A" p(x) = d"gu(x) = hu(x)Jac f1* = ¢ o " (x)|Jac £}

|Jac f;l2 o) I n . |
= oty Ainsi x € V,(v) car x et f"(x) appartiennent a A,,.
Vérifions maintenant que les exposants de x sont minimaux. On dispose de I’éga-

lité classique lim, % log |Jac f*> = 2 Zle Ai, valable pour p-presque tout x (cf

par exemple [1], Section 3.3). Notons V(v) := lim sup,, V,(v) et choisissons v assez

petit pour que u[V(v)] > B(v) > % Comme lim, %log |Jac f|> = klogd pour

c’est a dire
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x € V(v), on obtient ZLI A = klog+/d. La minimalité des exposants découle
alors de la minoration ; > log Jd.

2) = 3). La proposition 2 s applique car les exposants sont tous égaux a log v/d.
Nous en reprenons les notations et posons

DVu(p,t,v) = Dp(p, )NV, (v) et DV(p,7,v):=limsup DV,(p,,v).
n

D’apres 2) et la proposition 2, u[DV (p, 7, v)] est arbitrairement proche de 1 pourvu
que p et v soient assez petits et v suffisamment grand. Il suffit donc de montrer que
(fi)n est linéarisable par A, := (\/E)_nldck lorsque x € DV (p, 7, v). Soit donc
(nj); une suite strictement croissante d’entiers telle que x € DVy;(p, 7, v) pour
tout j. Puisque DV, (p, 7, v) C Dy;(p,7) C By;(p)ona

£ o (do )TN (B(O, p)) € B(O, Ro).
11 s’agit donc de vérifier que (dy f; 7y~ est équivalente a A, ;- A cet effet, notons
Sj1<---<djk

les valeurs singuliéres de P := (dy )71 cest adire les valeurs propres de laracine
carrée de P P*, ou P* désigne 1’adjoint de P. Il existe en particulier deux matrices
unitaires U et V telles que UPV = Diag(8;1,---,8; ). Ces valeurs singulicres
vérifient 8;x < t(x/d)™" car x € Dn; (0, 7) 66 (851...8;0)% = [Jac fi']72 >
v2d =k car x € V., (v). D’olt I'on déduit les inégalités :

vel R Jdy™ <8, < <8 < t(Wd) ™.

L’application (dy fx” 7y=1 est donc ¢équivalente a I’homothétie Ay, .

3) = 1). Soit x € P¥ un point x générique. D aprés 3), il existe p > 0 et une
suite croissante d’entiers (n;); tels que f™7 o 7y o Ay;: B(0, p) — B(0, Ro) soit
une suite d’injections. Soient B, := t[B(0,r)] et By, := tx[B(0, p(Vd)™"H]. 11
s’ensuit que :
w(By) . H(By;)

B,, |
liminf - 2L < lim inf Z E Bni; S lim inf == = lim inf (/" (B,,)) < 1

ou la derniére égalité provient du fait que 1 est de jacobien constant 4. Ceci étant
vérifié pour p-presque tout x, la mesure p est bien absolument continue par rapport
am (cf [20], Theorem 2.12). O

Remarque 2. Comme nous 1’avons fait pour établir le théoréme 3, une 1égére mo-
dification dans la preuve de 2) = 3) permet de choisir la sous-suite (n;); de fagon
ace que f™ (x) ne s’échappe pas d’un borélien B de pn-mesure strictement positive
prescrit.
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6. Régularisation du courant de Green

Nous achevons ici la preuve du théoreme 1. D’aprés la proposition 3, il s’agit de
caractériser les systémes (PX, f, i) qui sont «/d-linarisables. La démonstration re-
pose sur le lemme 3 ci-dessous. Commengons par introduire quelques définitions.
On notera S := S, + Ss la décomposition de Lebesgue d’un (1, 1)-courant positif S.
Celle-ci peut étre définie a partir de la décomposition de Lebesgue des mesures car un
tel courant peut étre considéré comme une (1, 1)-forme a coefficients mesures. Il est
tres facile de voir que cette décomposition est unique et que les courants S,, Sy restent
positifs. Par contre la fermeture éventuelle de S n’implique pas celle de S, ou de S;.
Nous noterons Supp(S) le support de S et o5 := S A @*~! sa mesure trace. On voit
facilement que la décomposition de Lebesgue de og est donnée par o5 = o5, + o5, .

Lemme 3. Soient (]P’k, f, 1) un systéeme Jd-linéarisable, S un courant positif de
bidegré (1, 1) sur PX tel que f*S = dS (S n’est pas nécessairement fermé) et Q un
ouvert de P* chargé par .

1) SiS estabsolument continusur 2 (S = S,) alorsil existe une boule B(0, r) c CK,
un ouvert Q' C Q chargé par . et un biholomorphisme ®: B(0,r) — Q' C Q
tels que ®*S soit une forme différentielle a coefficients constants sur B(0, r).

2) Supposons que S dérive d'un potentiel psh continu v sur Q (S = ddv). Si S,
est nul sur Q alors (2 N Supp S) = 0.

Démonstration du théoréme 1. Soit € un ouvert de P¥ chargé par . La premiére
assertion du lemme 3 appliquée a 7, permet de supposer que dans de bonnes coor-
données, la restriction de 7, a 2 est donnée par une forme H a coefficients constants.
En particulier 7}, posséde un potentiel continu sur 2 et il en va donc de méme pour
T; =T —T, car T est apotentiels locaux continus. Ceci permet, sur 2, d’exprimer p
sous la forme d une somme de mesures positives obtenues comme produits extéricurs
de T, etTy:

k
(7) p=TF= (T, +T,)" =TF + Sl AT
j=1

Puisque (7}), est identiquement nul par définition, la seconde assertion du lemme 3
montre que p ne charge pas 2 N Supp 7 et donc, au vu de (7), la mesure Tak n’est
pas identiquement nulle sur Q2. Autrement dit la forme H n’est pas dégénérée. Par
ailleurs, puisque p est absolument continue, chaque terme du second membre de (7)
doit, en tant que mesure positive, étre absolument continue. En particulier, la mesure
singuliere Ty A Tak_1 est nulle sur . Or, H étant strictement positive, celle-ci est
équivalente a la mesure trace o1, de Ts. Le courant (positif) 75 est donc nul sur 2 et
T coincide sur cet ouvert avec une forme lisse définie positive. L’endomorphisme f
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est donc un exemple de Lattés comme cela est démontré dans [2] (voir le résultat cité
dans I'introduction). ]

Démonstration du lemme 3. Pour simplifier les notations, nous ne ferons pas figu-
rer les cartes locales 7, dans cette démonstration. Nous notons A, 1’homothétie
(v/d)™"Id .

1) Puisque S est absolument continu sur €2, il est de la forme

i S
S=3 > hpg(2)dzp ndzy oihyg € LNQ).
1<p.g=<k

Soit M I’ensemble des points de €2 ou toutes les fonctions %, , sont continues en
moyenne, c’est a dire :

1

rhino m . hpq(t)dm(t) = hp,(z) pourtoutz € M.
Puisque le systéme est v/d-linéarisable, 1 est absolument continue par rapport a m et
I’ensemble M est de mesure totale pour m et p. Notons R 1’ensemble des points de
QN Supp 1 ou la suite ( /™), est lindarisable par des homothéties de rapport (v/d) ™.
Comme 1 est absolument continue, la proposition 3 nous assure que (M NR) > 0.
Soit alors z € M N R et posons &, := f" o A, (on identifie 7 avec I’origine
de C¥). Quitte a prendre une sous-suite, P, (0) = f”(z) reste dans V N Supp
ou V est un voisinage de z (cf Remarque 2) et la suite (), converge vers un
biholomorphisme ®: B(0,v) — Q' C Q. Le support de w étant fermé et invariant,
ona ®(0) € 2N Supp p et done () > 0. L’invariance de S entraine :

PFS = AT f1*S = d"ALS = % 3 hpg o Andzy AdZg.

l<p.g<k

Puisque z € M, on obtient $*S = £ > 1<pg<k Mp.g(0) dzp A dZg par passage a la
limite.

2) Supposons (€2 N Supp S) > 0 et montrons que S, est non nul. Quitte a
diminuer Q on peut supposer que S = dd v sur un voisinage Q de . Quitte a
choisir une carte locale, 2 est un ouvert de CX. D’aprés la proposition 3, il existe
R C N Supp S de p-mesure positive tel que pour tout point z € R, il existe une
sous-suite p; 1= f"/ o (z+ An;) convergeant uniformément sur B(0, v(z)) vers un
biholomorphisme ®. On peut aussi supposer que f™/(z) € R (cf remarque 2).

Observons tout d’abord qu’il suffit de montrer que os posséde une dérivée de
Radon—Nykodym strictement positive en tout point z de R :

1

lim ——

n d_k” /B (Z,U(v\/g) —n)

SAwg_l > 0 pourtoutz € R,
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ou @y désigne la forme standard %ddcllzllz. En effet, comme w(R) > 0, cette pro-
priété montre que la mesure o, (qui est égale a (05),) n’est pas triviale sur 2 et il
s’ensuit que le courant positif S, n’est pas nul.

Vérifions a présent la stricte positivité des dérivées. Notons que quitte a supprimer
a R un ensemble de mesure de Lebesgue nulle (donc de p-mesure nulle), ces dérivées
existent en tout point de RR. Fixons donc z € R, et reprenons les applications &, ; et

& précédentes. Comme $(0) € Q on peut diminuer v de fagon a ce que les ouverts
@, (B(0, v)) et P(B(0, v)) soient contenus dans Q. Puisque f*S = 45, il vient :

1 / k—1 1 / i k—1
L SAof = —— Fr*S A
d=kni Jp (z,v(«/ﬁ)’”/ ) 0 d~k=Dn; z+A,, [BO)] 0

1 * * k—1
= G /B(v) i S A (Agj0)

:/ dF S AW
By

:/ dd®(vo &n) Aaf ™,
B(v)

ou B(r) désigne la boule centrée en I’origine et de rayon r. Le théoréme de conver-
gence dominée entraine alors :

1imT/ SAwg ! z/ dd(vo ) Awh™! :/ D*S A wp
i d™ Jpedy ) B B(v)

Cette derniére intégrale est bien strictement positive, car $(0) € R C SuppS. O

7. Appendice

Nous résumons ici la preuve du théoréme du pluripotentiel utilisé dans la section 4,
ainsi que celle de I’estimation de la mesure présentée dans 1 introduction.

7.1. Un théoréme de la théorie du pluripotentiel. Il s’agit d’¢établir la version
suivante d un résultat di a Briend—Duval [5] :

Théoréme. Soit S := ddw un (1, 1) courant positif fermé de potentiel w continu
sur le polydisque P(0, R) et E C P(O, g) On suppose que par tout 7 € E passe un
disque holomorphe o,: A — CX de taillel et qu il existe une fonction h, harmonique
sur A telle que \woo,—h;| < € sur A. Alors il existe une constante C (w) ne dépendant

que de w telle que S¥(E) < C(w)]l‘—zze.
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Rappelons qu’un disque holomorphe o : A — C¥ passant par z € C* est dit de
taille / > 0 siil est de la forme o (1) = z + lu.v + B(u) ou v est un vecteur unitaire
de Ck, B(0) = O et IBIl < 1o55-

Démonstration. Soit p; la projection sur le I-iéme axe de CX et E; := {z € E |
(v )|l > ﬁ}, de sorte que E = Ul=1’k E;. Pour fixer les idées nous allons

estimer S¥(E1). A cet effet, on recouvre le polydisque P(O, %R) par environ N :=
l% ellipsoides contenus dans P(0, R) de la forme &[B(0, R)| ou &(z1,7) =
4]
(=21, 7)
ogiih2) . | | o
Soit & I'un de ces ellipsoides. Puisque & est strictement pseudoconvexe, il existe
une fonction W p.s.h maximale sur &, continue sur & et coincidant avec w sur b§.
Siz € & N Ey, on voit facilement que le disque o, (A) traverse &, au sens ou la com-
posante connexe C de oz_l (6" N oZ(A)) contenant I’origine est relativement compacte
dans A. Un argument de principe du maximum montre que C est simplement connexe.
En I’exhaustant par des domaines a bord suffisamment régulier, on peut paramétrer
des disques holomorphes contenus dans & et dont le bord est arbitrairement proche
de b&. Plus précisément, € > 0 étant fixé, on trouve une transformation conforme et
continue jusqu’au bord ¥ : A — ¥ (A) C € telle que ¥ (0) = O et | — w| < ¢ sur
oz oy (bA). Posons &, := o, o et notons /1 la fonction harmonique sur A continue
sur A et coincidant avec w o &, sur bA. On a alors :

®) w(z) < W(z) < h(0)+¢

la premiére inégalité provient de la maximalité de w sur & et la seconde du principe

du maximum appliqué a wod; —h (cette fonction coincide avec wod; —wod; surbA).
Par hypothéseonahz oy —¢ <wooz o =wod; < hyoy+esur A.Ona

donc aussi iy oy —e < h < h; ot + € etil s’ensuit que :

©) w(z) — h(0)] < 2e.

Les inégalités (8) et (9) montrent que :

ENEICE&(w,e):={z€8&|0=<w(z)—w(z) <3}

La majoration annoncée résulte alors immédiatement de I’estimation suivante qui est
au coeur de la démonstration de Briend—Duval et pour laquelle nous renvoyons a [3]
ou [23] page 180, Théoréme A.10.2 :

Il existe une constante C(w) > 0 telle que (dd°w)*[&(w, )] < C(w)e. O

7.2. Estimation de la dimension. Nous esquissons la preuve de I’estimation de la
dimension en reprenant mutatis mutandis les arguments développés par Binder et
DeMarco [4] dans le cas des endomorphismes polynomiaux de C¥.
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Théoréme. Soit un systeme (PX, f, 1) de degré d et d’exposants A < --- < A La
dimension de p vérifie : dim(p) <2(k —1) + kj\gkd .

Rappelons que la dimension est définie comme la borne inférieure des dimensions
de Hausdorff des boréliens de mesure totale. Ce résultat montre que si la dimension
de 11 est gale a 2k, alors tous les exposants de x sont minimaux, égaux a log /d.

Démonstration. 11 s’agit d’exhiber pour tout ¢ > 0 un borélien ¥ de mesure totale
vérifiant :
logd 2k

(10) dimg(Y) <2k —1)+ + —e.
Ak Ak

Soit A 1’ensemble des points X = (x,)>0 de PX vérifiant pour tout n > 0 :

B, e M) € £ B, o)
et
m (f)?_n [B(X(), rO)]) < KOe—Zﬂ(}L]+"'+}Lk)+fLE'

On rappelle que m désigne la mesure volume standard sur IP*. On vérifie que si kg est
assez grand et rq assez petit, alors 1(A) > 0 (cf [4], lemme 2).

Soit A, = Fr 'A. Lamesure (1 étant ergodique, le théoréme de Birkhoff entraine
que Y := lim sup, A, est de mesure totale.

On pose alors Y := mo(Y) et A, := mo(Ay), de sorte que Y est aussi de mesure
totale et est contenu dans lim sup,, A,. Estimer ladimension de Hausdorff de ¥ revient
a estimer celle des ensembles A,,, pour n assez grand. Par définition de A, tout point
vy de A, vérifie :

(1) f™ admet une branche inverse g, sur B(f"(y), rg), telle que g, (f*(y)) =y
(2) Laboule B(y, %e_”(”k“)) contient P := g,[B(f"(¥), ro)]
(3) m(P) < ke~ 2Ot Hh e

Il découle de ces propriétés que A, est recouvert par une famille (P;); <7 d’ouverts
du type # dont le cardinal est de ’ordre de 4. Pour le voir, il suffit de recouvrir Ag
par un nombre fini de boules B(xio, %ro) puis d’observer que tout y € A, est dans
gu[ B (xi. 370)] dés lors que f™(y) € B(xi,, $70). D aprés le point 3, le volume de
la réunion des #; n’excéde pas dX"e =211t Hhi)tne

Considérons a présent un recouvrement (M ;) jey de A, par des sous-ensembles
de diametre lorgkoe_”@k*'e) provenant d’un maillage de P¥. D’aprés le point 2, un
sous-ensemble M ; intersectant A, est nécessairement contenu dans | J;.; . On a
donc :

m(UiGI j)i) - dkne—Zn(}\1+~~+kk)+ne
m(M;) "~ (e—n<xk+e>)2k

Card(J) <
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En minorant les exposants Ap, . .., Ax_1 par log +/d, on obtient :

Card(J) < A" M R2G=Dal+Q2k+1e)

I1s’ensuit que lamesure de Hausdorffde A,,, de dimension /. = 2(k—1)+log d/ ¢+
2ke /1y, est minorée par e~ ¢ pour n assez grand. La [.-mesure de Hausdorff de
Y C limsup, A, est donc finie pour tout € > 0. Cela termine la démonstration, car
Y est un borélien de mesure totale. O
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