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Optimal SL(2)-homomorphisms

George J. McNinch*

Abstract. Let G be a semisimple group over an algebraically closed field of very good
characteristic for G. In the context of geometric invariant theory, G. Kempf and — indepen-
dently — G. Rousseau have associated optimal cocharacters of G to an unstable vector in a linear
G-representation. If the nilpotent element X € Lie(G) lies in the image of the differential of
a homomorphism SL; — G, we say that homomorphism is optimal for X, or simply optimal,
provided that its restriction to a suitable torus of SL, is optimal for X in the sense of geometric
invariant theory.

‘We show here that any two SL»>-homomorphisms which are optimal for X are conjugate under
the connected centralizer of X. This implies, for example, that there is a unique conjugacy class
of principal homomorphisms for G. We show that the image of an optimal SLj-homomorphism
is a completely reducible subgroup of G; this is a notion defined recently by J.-P. Serre. Finally,
if G is defined over the (arbitrary) subfield K of k, and if X € Lie(G)(K) is a K-rational
nilpotent element with X7 = 0, we show that there is an optimal homomorphism for X which
is defined over K.
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1. Introduction

Let G be a semisimple group over the algebraically closed field &k, and assume that
the characteristic of k is very good for G. (Actually, we consider in this paper a
slightly more general class of reductive groups; see §2, where we also define very
good primes).

Premet has recently given a conceptual proof of the Bala—Carter theorem using
ideas of Kempf and of Rousseau from geometric invariant theory. An element X €
g = Lie(G) 1s nilpotent just in case the closure of its adjoint orbit contains 0; such
vectors are said to be unstable. The Hilbert—-Mumford criteria says that an unstable
vector for G is also unstable for certain one-dimensional sub-tori of G. This result
has a more precise form due to Kempf and to Rousseau: there is a class of optimal
cocharacters of G whose images exhibit such one dimensional sub-tori. One of the
nice features of these cocharacters is that they each define the same parabolic subgroup
of G; for anilpotent element X € g, this instability parabolic is sometimes called the
Jacobson—Morozov parabolic attached to X.

In his proof of the Bala—Carter Theorem in good characteristic, Pommerening
constructed cocharacters associated with the nilpotent element X € g; see [Ja04]
for more on this notion, and see §6 below. Using the results of Kempf, Rousseau,
and Premet, one finds (cf. [Mc04]) that the cocharacters associated with a nilpotent
X € g are optimal, and that any optimal cocharacter W for X such that X € g(¥; 2)
is associated with X in Pommerening’s sense.

In this paper, we show that the notion of optimal cocharacters is important in the
study of subgroups of G. We say that a homomorphism ¢: SL, — G is optimal
provided that the restriction of ¢ to the standard maximal torus of SL; 1s a cocharacter
associated to the nilpotent element

(0 )

More precisely, we say that ¢ is optimal for X.
We prove in this paper that any two optimal homomorphisms for X are con-
jugate by CZ(X); cf. Theorem 44. This has an immediate corollary. A principal
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homomorphism ¢: SL; — G 1is one for which the image of d¢ contains a regular
nilpotent element; the conjugacy result just mentioned implies that there is a unique
G-conjugacy class of principal homomorphisms.

Generalizing the notion of completely reducible representations, J.-P. Serre has
defined the notion of a G-¢cr subgroup H of G: H is G-cr if whenever H lies in
a parabolic subgroup of G, it lies in a Levi subgroup of that parabolic. We show
in Theorem 52 that the image of any optimal homomorphism is G-cr. In a previous
paper [Mc03], the author showed the existence of ahomomorphism optimal for any p-
nilpotent X € g; such ahomomorphism was essentially obtained (up to G-conjugacy)
by base change from a morphism of group schemes defined over a valuation ring in
a number field. Suppose that G is defined over the arbitrary subfield K of k. If X
is a K -rational p-nilpotent clement, we show in this paper that there is an optimal
homomorphism ¢ for X which is defined over K ; for this we use the fact, proved in
[Mc04], that some cocharacter associated with X is defined over K.

G. Seitz [Sei100] has studied homomorphisms ¢: SL, — G with the property
that all weights of a maximal torus of SL; on Lie(G) are < 2p — 2; he calls the
image of such a homomorphism a good (or restricted) A1-subgroup. We give here a
direct proof that an optimal SL,-homomorphism is good: we show that the weights
of a cocharacter associated with a p-nilpotent element X € g are all < 2p — 2; see
Proposition 30. It follows from results of Seitz that all good homomorphisms are
optimal — we do not use this fact in our proofs.

We do use here a result of Seitz (see Proposition 34) to show that (Ad o¢, g) is a
tilting module for SL, when ¢ 1s the optimal homomorphism obtained previous by
the author [Mc03]; this fact 1s used to prove a unicity result Proposition 38 for certain
homomorphisms G, — G which is crucial to the proof of Theorem 44; of course, in
the end one knows that (Ad o¢, g) is a tilting module for any optimal ¢.

Seitz loc. cit. proved a conjugacy result for good homomorphisms analogous to
the result proved here for optimal ones; he also proved that good homomorphisms
are G-cr, so in some sense our results are not new. On the other hand, our proofs
of conjugacy and of the G-¢cr property for optimal homomorphisms are free of any
case analysis; we do not appeal to the classification of quasisimple groups at all.
Moreover, we believe that our results on optimal homomorphisms over ground fields
are new and that the ease with which they are obtained is evidence of the value of our
techniques.

As further application of the methods of this paper, we include in §9 an extension
of a result of Kottwitz; we prove that any nilpotent orbit which is defined over a
ground field K contains a K -rational point.

Finally, the appendix contains a note of Jean-Pierre Serre concerning Springer
isomorphisms.

I would like to thank Serre for allowing me to include his note on Springer iso-
morphisms as an appendix; I also thank him for some useful remarks on a preliminary
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version of this manuscript. Moreover, [ would like to extend thanks to Jens Carsten
Jantzen, and to a referee, for several useful comments on the manuscript.

2. Reductive groups

We fix once and for all an algebraically closed field k; K will be an arbitrary subfield
of k, and G will be a connected, reductive algebraic group (over k) which is defined
over the ground field K.

If G is quasisimple with root system R, the characteristic p of k is said to be a
bad prime for R in the following circumstances: p = 2 is bad whenever R # A,
p=3isbadif R = Gy, Fy, E,, and p = 51s bad if R = Eg. Otherwise, p is good.
[Here is a more intrinsic definition of good prime: p is good just in case it divides no
coefficient of the highest root in R].

If p is good, then p is said to be very good provided that either R is not of type
Ar,orthat R= A, and r # —1 (mod p).

If G is reductive, the isogeny theorem [Spr98, Theorem 9.6.5] yields a — not
necessarily separable —central isogeny [ [; Gi x T — G where the G; are quasisimple
and T 1s a torus. The G; are uniquely determined by G up to central isogeny, and
p 1s good (respectively very good) for G if it is good (respectively very good) for
each G;.

The notions of good and very good primes are geometric in the sense that they
depend only on G over k. Moreover, they depend only on the central isogeny class
of the derived group (G, G).

We record some facts:

Lemma 1. (1) Let G be a quasisimple group in very good characteristic. Then the
adjoint representation of G on Lie(G) is irreducible and self-dual.

(2) Let M < G be a reductive subgroup containing a maximal torus of G. If p is
good for G, then it is good for M.

Proof. For the first assertions of (1), see [Hu935, 0.13]. (2) may be found for instance
in [MS03, Proposition 16]. o

Consider K -groups H which are direct products
(*) H=H xS,

where S is a K-torus and H; 1s a connected, semisimple K-group for which the
characteristic is very good. We say that the reductive K -group G is strongly standard
if there exists a group H of the form () and a separable K -isogeny between G and
a K -Levi subgroup of H. Thus, G is separably isogenous to M = Cg(S) for some
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K -subtorus S < H note that we do not require M to be the Levi subgroup of a
K -rational parabolic subgroup.

We first observe that a strongly standard group G is standard in the sense of
[Mc04]; this is contained in the following:

Proposition 2. I/ G is a strongly standard K-group, then there is a separable K -
isogeny between G and G where G is a reductive K-group satisfying the “standard
hypotheses ” of [Ja04, §2.9], namely:

(1) the derived group of G is simply connected,
(2) pis good for G, and

(3) there is a G invariant nondegenerate bilinear form on Lie(G).

Proof Let H = ﬁl x S where 71 : H; — H; is the simply connected cover, and
let # = m xid: H — H be the corresponding isogeny; of course, H and 7 are
defined over H [KMRT, Theorem 26.7]. By assumption, G = Cpg (S) for some
K -subtorus S < H. Since S = n_l(S)O < His agam a K -torus, its centralizer
G = CH(S) is a K-Levi subgroup of H and TG G — G is an isogeny. Now,

Lie(G) is the 0-weight space of S on Lle(H ) and Lie(G) is the 0-weight space of
S (and S) on L1e(H ). Since dr is an S-isomorphism, it restricts to an isomorphism
d”|L1e(G) Lie(G) — Lie(G); in other words, 7 is a separable isogeny.

Since G is a Levi subgroup of I, its derived group G is simply connected, so that
(1) holds. Since p is good for H, it is also good for H and for the Levi subgroups G
and G see for instance [MS03, Proposition 16]. Thus (2) holds for G.

Finally, notice that Lie(H) is semisimple as a H-module and that Lie(H’) is a
self-dual, simple H’-module whenever H' is quasi-simple in very good characteristic.
It follows that there is a non-degencrate H-invariant bilinear form on Lie(H). This
restriction of this form to the 0-weight space for S is again nondegenerate, and so (3)
holds. [Note that the same argument gives non-degenerate invariant forms on Lie(H )
and Lie(G).] O

Remark 3. Suppose that V is a finite dimensional vector space. Then the group
G = GL (V) isstrongly standard. Indeed,ifdim V # 0 (mod p), then G is separably
isogenous to SL(V) x Gy, and p is very good for SL(V). If dim V = 0 (mod p),
then G is isomorphic to a Levi subgroup of H = SL(V & k) and p is very good
for H.

On the other hand, SL(V) is only strongly standard when dim V # 0 (mod p).

Remark 4. If G is strongly standard, there is always a symmetric invariant non-
degenerate bilinear form on Lie(G). Indeed, up to separable isogeny, G is a Levi
subgroup of 7 x H where H is semisimple in very good characteristic. If the result
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holds for H, then it holds for G; note that any nondegenerate form on Lie(7) is
mvariant. Thus we assume that G is semisimple in very good characteristic. For such
a group, the simply connected cover is a separable isogeny so we may also assume
G to be simply connected. But then G is a direct product of quasisimple groups,
hence we may as well suppose that G is quasisimple in very good characteristic. In
this case, the adjoint representation is a self-dual simple G-module. If p = 2, we
are done. Otherwise, one can argue as follows: If G, denotes the split group over
Q with the same root datum as G, then the adjoint representation of G/ is also
simple; identifying the weight lattice of a maximal torus of G and of G /¢, the adjoint
representations have the “same™ highest weight 1. Steinberg [St67, Lemma 79]
gives a condition on A for the invariant form to be symmetric; since this condition is
independent of characteristic, and since the Killing form is symmetric on Lie(G ),
our claim is verified.

Proposition 5. If G is strongly standard, then each conjugacy class and each adjoint
orbit is separable. In particular, if G is defined over K, and if ¢ € G(K) and
X € g(K), then Cg(g) and Cc(X) are defined over K.

Proof. Separability is [SS70,1.5.2 and [.5.6]. The fact that the centralizers are defined
over K then follows from [Spr98, Proposition 12.1.2]. a

3. Parabolic subgroups

In this section, G is an arbitrary reductive group over k. The material we recall
here is foundational; the lemmas from this section will be used mainly for our
consideration of G-completely reducible subgroups of a reductive group G; cf. 8.4
below.

If Vis an affine variety and f : G,, — V isamorphism, wewrite v = lim;_,¢ f(z),
and we say that the limit exists, if f extends to amorphism f: k — V with £(0) = v.
If y 1s any cocharacter of G, then

PG(y) = P(y) = {x € G | lim;—q y (t)xy (") exists}

is a parabolic subgroup of G whose Lie algebra is p(y) = > ;. §(y: i). Moreover,
each parabolic subgroup of G has the form P(y) for some cocharacter y; for all this
cf. [Spr98,3.2.15 and 8.4.5].

We note that y “exhibits™ a Levi decompositionof P = P(y). Indeed, P(y) is the
semi-direct product Z(y)-U(y),where U(y) = {x € P | lim;—oy ()xy(t~1) =1}
is the unipotent radical of P(y), and the reductive subgroup Z(y) = Cg(y(Gy)) 1s
a Levi factor in P(y); cf. [Spr98, 13.4.2].
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Lemma 6. Let P be a parabolic subgroup of G, and let T be a maximal torus of P.
Then there is a cocharacter vy € X.(T) with P = P(y).

Proof. Since P = P(y’) for some cocharacter y’, this follows from the conjugacy
of maximal tori in P. O

For later use, we record:

Lemma 7. Let P = P(y) be the parabolic subgroup determined by the cocharacter
vy € X (G). Write L = Z(y) for the Levi factor of P determined by the choice of y .
If ¢ H — P is any homomorphism of algebraic groups, the rule

$) = lm y()p )y (s™)

determines a homomorphism 5: H — L of algebraic groups. Moreover, the tangent
map d¢ is the composite

Lie(H) 2, Lie(P) 2 Lie(L) = Lie(P)(y: 0)
where pr is projection on the 0 weight space.
Proof. It was already observed that P = L - U is a semidirect product; the map
% > lim y($)xy(s™h

is the projection of P on L and 1s thus an algebraic group homomorphism ¢r: P — L.
The tangent map to ¢ is evidently given by projection onto the 0-weight space for
the image of v, and the lemma follows. O

Remark 8. If the cocharacter y 1s defined over the ground field K, then P = P(y)
is a K -parabolic subgroup, and the Levi factor L = Z(y) 1s defined over K. The
projection P — L given by x — lim,_,q y (s)xy (s~1) is of course defined over K
as well.

4. Springer’s isomorphisms

If the characteristic of k is zero, or is “sufficiently large™ with respect to the group G,
(some sort of) exponential map defines an equivariant isomorphism exp: N — U
between the nilpotent variety and the unipotent variety of G. Simple examples show
the exponential to be msufficient in general, however, and in 1969, T. A. Springer
[Spr69] found (the beginnings of) a good substitute. See also the outline given in
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[SS70, 111 §3]. The unipotent variety is known always to be normal; to make Springer’s
work complete, one required also the normality of the nilpotent variety. Veldkamp
obtained that normality for “most” p, and Demazure proved it for G satisfying our
hypothesis; cf. [Ja04, 8.5]. We summarize these remarks in the following:

Proposition 9 (Springer). Let G be a strongly standard K -reductive group, where K
is any subfield of k. There is a G-equivariant isomorphism of varieties A: U — N
which is defined over K.

Sketch. We just comment briefly on our assumptions on G. First, note that if G is the
direct product of a torus and a semisimple group in very good characteristic, there is
a separable isogeny G — G where G is the direct product of a K -torus and a simply
connected semisimple K -group in (very) good characteristic. Moreover, the separable
isogeny is defined over K and induces equivariant K -isomorphisms U — U and
N — N (using some hopefully obvious notation); seec [Mc03, Lemma 27]. Now,
Springer proved the proposition holds for G — see the above references— and thus the
result for G is true in this case.

Repeating the above argument, we may replace G by a separably isogenous group,
and thus we suppose that G = Cg (S), where S is a K -torus in a K -group H as in ()
of section §2; the above remarks show that there is an H-equivariant isomorphism
Ag: Uy — Ny between the unipotent and nilpotent varieties for H. Since U =
(Up)S and N = (Ng)3, itis clear that Az |+ defines the required isomorphism for
the varieties associated with G. ]

Remark 10. Suppose that A: U — N is an equivariant isomorphism defined over
K. If P < G is a K-parabolic subgroup, Lemma 6 makes clear that the restriction
A U — Lie(U) is a P-equivariant isomorphism. Similarly, if L < G is a K-Levi
subgroup, then Ay, : Uy — Mg is an L-equivariant isomorphism.

The 1somorphism A of the proposition is quite far from being unique; cf. the
appendix of J.-P. Serre below. We summarize the result of that appendix with the
following statements, which we make only in the “geometric” setting — i.e. over k
rather than K.

Proposition 11 (Serre). Let G be a strongly standard reductive k-group.

(1) Fix aregular nilpotent X € g. For each regular unipotent v € C(X), there is a
unique G-equivariant isomorphism of varieties Ay, U — N with A, (v) = X.

(2) Any two G-equivariant isomorphisms A, A': U — N induce the same map on
the finite sets of orbits.
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Let K’ be a perfect field of characteristic p > 0, and let K/ C K be an arbitrary
extension of K’. We fix an algebraically closed field k containing K.

In this section, algebras are always assumed to be commutative. Consider a
K’-algebra A. Forr € 7, we may consider the K’-algebra A" which coincides with
A as aring, but where each b € K’ acts on A”) as b does on A. For an extension
field K of K’, we write A? sk and A,k for the K -algebras obtained by base-change;
thus e.g. Ak =A®g K.

Letr > 0 and let ¢ = p”. There is a K’-algebra homomorphism F”: A”) — A
given by x — x?. We write A? = {f? | f € A}; A? is a K’-subalgebra of A, and
the image of F" coincides with A?.

Let A be a K’-algebra and an integral domain. We clearly have:

Lemma 12. If r > 0, and g = p’, then F": A" — A% is an isomorphism of
K’-algebras.

Write B = A;k. Let us notice that K[B?] = K[A?]. For r > 0, consider the
algebra homomorphism F /’ X! A /k — K[A?] C A,k given on pure tensors by

f®ar f1.afor f e A" and @ € K. We have more generally

Lemma 13. Forr > 0, F/’K: A(’)/K — K[B?] is an isomorphism, where again
q=1rp".

Proof. We have observed already that C = K[B?] = K[A?]1s the K -algebra gener-
ated by A?. According to the previous lemma, the image of the restriction of F /’ x to

A" @1 is the set of K -algebra generators A? of C; this implies that F /x 1s surjective.

Since A is a domain, the homomorphism F”: A”) — A isinjective. This implies
the injectivity of I /’  since K is flat over K. O

Lemma 14. Assume that A is geometrically irreducible, i.e. that A is a domain.
Also assume A to be geometrically normal, i.e. that Ay, is integrally closed in its field
of fractions E. Letq = p" forr > 0, andlet f € A/x. Then f € K[A?] if and only
if f € E1.

Proof. We have clearly the implication —. Now suppose that f € E?, say
f = g? for g € E. The normality of A/; shows then that g € A/r. We may find
a1, ...,d, € k and elements fi, ..., f, € A such that g = Y !_, o fi; we may
assume as well that {f; | 1 < i < n}is a K'-linearly independent set. Since K’
is perfect, { fiq | 1 < i < n}is again K’-linearly independent. Since f = g¢ =
Yol £ € Ak, it follows that &f € K for 1 < i < n and the proof of <= is
complete. O
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Remark 15. It can happen that A,k is a normal domain, but that A is not normal;
cf. [Bo98, exerc. V.§1.23(b)].

Lemma 16. Let X and Y be irreducible affine k-varieties, and let f: X — Y be a
dominant morphism. Then the following are equivalent:

(a) there is a non-empty open subset W C X such that df # 0 for all x € W (k).
(b) f*(k(Y)) is not contained in k(X)?.

Proof. For an affine k-variety Z, let Q7 = Q[z)/« be the module of differentials.
The map f: X — Y determines amap ¢: Qy — Qx of k[Y] modules and — since
f is dominant —amap ¢ : Q) /k = Qix)/k of k(Y)-vector spaces.

It follows from [Spr98, Theorem 4.3.3] that there are non-empty affine open
subsets U of X and V of Y such that f restricts to a morphism U — V, Qp is
a free k[U]-module of rank dim X, and Qy is a free k[V]-module of rank dim Y.
Now, ¢ restricts to a map ¢, : Qv — Qu of k[V]-modules, and it is clear that
oy = 01f and only if ¢ = 0 [use that Qi (x) /1 = k(X) Q] Qv together with the
corresponding statement for Y.

Choosing bases of the free modules Qpy and Qv, ¢\, is given on 2y by amatrix
M with entries in k[U]. Forx € U(k), the map dfy: TxU — Ty V identifies with
the map

Homk[U](QU, kx) — Homk[v](Qv, kf(x))

deduced from ¢|q,. The open subset of U defined by the condition M, # 0 is
non-empty if and only ¢ o, # 0; thus (a) is equivalent to the statement ¢ # 0.
Applying [Spr98, Theorem 4.2.2], one knows that the restriction mapping

Dery (k(X), k(X)) — Derp(f*k(Y), k(X))

is dual to the mapping ¢ : Qxy)/k — SQi(x)/k; in particular, this restriction is 0 if
and only if ¢ = 0.

Now, it is proved for instance in [La93, VIII, Proposition 5.4] that z € k(X) 1s
contained in k(X)? if and only if D(z) = 0 for each D € Der;(k(X), k(X)). The
assertion (a) <= (b) follows at once. O

If X is an affine K’-variety and A = K’[X], then for r € Z we write X" for the
K’-variety Spec(A"). For an arbitrary K’-variety X, one defines the K’-variety X )
by gluing together the K’-varieties Ui(r) from an affine open covering {U; | 1 <i < n}
of X; this construction is independent of the choice of the covering.

Let r > 0. When X is affine, the r-th Frobenius morphism Fy: X — X is
defined to have comorphism F”: A”) — A. For an arbitrary K’ variety X, there is
a unique morphism Fy: X — X (") whose restriction to each affine open subset U
of X is given by F7,.

We write X ) sk for the base change of the K’-variety X "o K.
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Theorem 17. Let X and Y be geometrically irreducible K-varieties. Assume that
X is defined over K’ and is geometrically normal — i.e. X i is normal. Suppose
that . X — Y is a K-morphism whose image contains a positive dimensional sub-
variety of Y. There is a unique r > 0 and a unique K-morphism g: X(’)/K — Y
such that

(1) f=goF%, and

(2) there is a non-empty open subset U of X") such that dg, # 0 for x € U(k).

Remark 18. (a) Of course, the image of f contains a non-empty open subset U of
its closure f(X) [Spr98, Theorem 1.9.5], so the dimension assumption made in the
theorem is equivalent to: U has positive dimension.

(b) The theorem has been known for a long time, but it seems to be difficult to
give a reference. It was used for instance by J.-P. Serre in his classification of the
mseparable isogenies of height 1 of a group variety (and especially of an abelian
variety), cf. Amer. J. Math. 80 (1958), pp. 715-739, Section 2.

Proof of Theorem 17. Notice that if the theorem is proved when X and Y are affine,
the unicity of » and g shows that it holds as stated; we assume now that X and Y are
affine. The affine variety X is defined over K’, and the domain K'[ X ] is geometrically
normal in the sense discussed previously.

Write Y’ for the closure of the image of f. Then Y’ is defined over K. Moreover,
ifi: Y’ — Y denotes the inclusion, di, is injective for all y € Y’(k); see e.g. [Spr98,
Exercise 4.1.9(4)]. Since Y’ is again geometrically irreducible, we may and shall
replace Y by Y’; thus we assume that f is a dominant morphism. Since the tangent
maps of Iy are all 0, it is clear that if a suitable » > 0 exists, it is unique.

Assume that df, = 0 for all smooth k-points of X; Lemma 16 then shows that
f*k(Y) C k(X)P. The assumption on the image of f means that the transcendence
degree over K of K(Y) is > 1; since k(X) 1s a finitely generated ficld extension of
k, it follows that we may choose r > 1 such that f*k(Y) C k(X)? for g = p" but
not for g = p"t+1.

Putg = p". Wenow apply Lemma 14 toseethat f*(K[Y]) C K[A?]. Lemma13
gives then a K-algebra isomorphism ¢: K[A?] — K[X ()] inverse to F’, and we
define g: X — Y to have comorphism ¢ o f*. Itis clear that f = g o F% and that
g 1s the unique morphism with this property.

The Frobenius map gives an isomorphism F”: k(X")) — k(X)?. If h € K[Y],
and if g*h is a p-th power in k(X)) then f*h is a ¢’-th power in k(X), where
g’ = p’tl. Since f*k(Y) is not contained in k(X)?, g*(k(Y)) is not contained
in k(X"))?. Tt then follows from Lemma 16 that dg, is non-0 for all x in some
non-empty open subset of X, and the result is proved. O
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Remark 19. Let X ¢ A? denote the irreducible variety with k-points {(s, 1) | s? =
tP(t —1)},andlet Y = A!. Consider the morphism f: X — Y given on k-points by
f(s,t) =t—1. Sincet —1 = (s/1)P on the open subset U of X defined by ¢t # 0, we
have df, = 0 for each x € U(k). Since X is over [F, in an obvious way, we identify
X and XV; the Frobenius map F: X — X is then just F (s, 1) = (s?, t7). There is
aunique g: U — Al with fiy = g o F; it is given on k-points by ((s,1) +— s/1).
Moreover, dg, # 0 for cach x € U(k). However, there is no regular function g on
X such that gjy = g; thus X is not normal, and the conclusion of the theorem does
not hold for f.

Corollary 20. Let G and H be linear algebraic K -groups. Assume that G is con-
nected, and that G is defined over the perfect subfield K'. Let ¢: G — H be a
homomorphism of K -groups such that the image of ¢ is a positive dimensional sub-
group of H. There is aunique integerr > 1 and a unique homomorphism of K -groups
(/25 G(r)/K — H such that

(1) ¢ = o Fg, and
(2) the differential dy» = dvr1 is non-zero.

Proof. The K'-variety G is geometrically irreducible; since G4 is smooth, G is
geometrically normal. Hence we may apply Theorem 17; we find aunique » > 0 and
a morphism of K -varieties ¢ : G sk — Hjg such that ¢y o I/, coincides with the
restriction of ¢ and such that d+r, is non-zero for x in some non-empty open subset
of G,

Since the Frobenius homomorphism F: G — G is bijective on k-points, it
is clear that ¢ is a homomorphism of algebraic groups. Since di, # 0 for some
x € G (k), the map induced by ¢ on left-invariant differentials in Qg g 1s non-0;
this implies that dv; # 0 and the proof is complete. O

6. Nilpotent and unipotent elements

We return to consideration of a strongly standard reductive K -group G. Let X € gbe
nilpotent. A cocharacter W: G,;, — G is said to be associated with X if the following
conditions hold:

(A1) X € g(\¥; 2), where for any i € Z the subspace g(i) = g(\W; i) is the i weight
space of the torus W(G,;,) under its adjoint action on g.

(A2) There is a maximal torus S C Cg(X) such that V(G,;,) C (L, L) where
L = Cg(S).
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With the preceding notation, X is a distinguished nilpotent element in the Lie
algebra of the Levi subgroup L (see the discussion just before Proposition 22 for the
definition).

If W is associated to X, the parabolic subgroup P = P (V) is known variously as
the canonical parabolic, the Jacobson—Morozov parabolic, or the instability parabolic
(“instability flag™) associated with X. Among other things, the following result shows
this parabolic subgroup to be independent of the choice of cocharacter associated to X.

Proposition/Definition 21. Let X € g(K) be nilpotent.
(1) There is a cocharacter V associated with X which is defined over K.

(2) If' WV is associated to X and P = P (W) is the parabolic determined by \V, then
Cg(X) C P. In particular, cg(X) C Lie(P).

(3) Let U be the unipotent radical of C = C{,(X). Then U is defined over K, and
is a K-split unipotent group. If the cocharacter WV is associated with X, then
L = CNCg(VW(Gy)) is a Levi factor of C; i.e. L is connected and reductive,
and C is the semidirect product U - L.

(4) Any two cocharacters W and © which are associated with X are conjugate by a
unique element x € U. If \V and ® are each defined over K, then x € U(K).

(5) The parabolic subgroups P (V) for cocharacters V associated with X all coin-
cide; the subgroup P(X) = P(W) is called the instability parabolic of X.

See e.g. [Spr98, Chapter 14] for the notion of a K -split unipotent group. We will
not need to explicitly refer to this notion here.

Proof. The assertion (1) in the “geometric case” (when K = k) is a consequence of
Pommerening’s proof of the Bala—Carter theorem in good characteristic; a proof of
that theorem which avoids case-checking has been given recently by Premet [Pr02]
using results in geometric invariant [Ke78]. One can deduce the assertion from
Premet’s work — see [Mc04, Proposition 18]. Working over the ground field K,
(1) was proved in [Mc04, Theorem 26].

(2) 1s [Ja04, Proposition 5.9].

The first assertion of (3) is [Mc04, Theorem 28]; notice that assumption (4.1)
of loc. cit. holds for strongly standard G, by Proposition 5. The semidirect product
decomposition of C may be found in [Ja04, Proposition 5.10 and 5.11]; see also
[Mc04, Corollary 29].

We now prove (4). By (3), C = C{(X) is the semidirect product C = U - L of
its unipotent radical U and the Levi factor L = C N Cg (¥ (Gy)). One knows by
[Ja04, Lemma 5.3] that & = Int(g) o W for an element g € C. Write g = x - y with
x € Uand y € L. Since y centralizes W, one sees that & = Int(x) o ¥ as well.
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Since U N L = {1}, we see that ® and W are indeed conjugate by the unigue element
xel.

Assume that W and ® are defined over K, and write S = W (G,,) and S’ = & (G,,);
thus S, §” < C are tori defined over K. We have just seen that the transporter

Nc(S,8)={geC|egSe™' =5}

is non-empty (it has geometric points); it follows from [Spr98, 13.3.1] that N (S, )
is defined over K.

Choose a separable closure K¢, C k of the ground field K; [Spr98, Theo-
rem 11.2.7] shows that N¢ (S, §')(Kep) is dense in N (S, S); we may thus find
g € Nc(S, 8)(Kgep). Since S and " are one dimensional, and since Int(g) induces
an isomorphism between the respective groups of cocharacters of these tori, we must
have Int(g) o W = £®. Since g € C, the cocharacter Int(g) o WV is associated with
X it follows that Int(g) o W = d e.g. since X € g(Int(g) o W, 2).

Writing ¢ = y - x withx € U and y € L, we have y = lim;_.o W(t)gW(r™ ).
By Remark 8, y € C(Kgep), 50 that x = y~!g € U(Kep). Thus x € U(Ksep) is the
unique element of U for which Int(x) o W = ®. LetI" = Gal(Ksep/K ) be the Galois
group. Since W and ® are I'-stable, if y € ', we see that

Int(y(x)) o W = &;

the unicity of x shows that x = y (x) and we deduce that x € U(K) as required.

To see (5), let ¥ and @ be cocharacters associated with X. Since we have U <
C < P(¥) by (2), it follows from (4) that the parabolic subgroups P (V) and P ()
are equal. O

Recall that a nilpotent element X € g is said to be distinguished if the connected
center of G 1s a maximal torus of C(X). A parabolic subgroup P < G is said to be
distinguished if

dim P/U =dim U/(U, U) + dim Z

where U is the unipotent radical of P, and Z is the center of G.
Proposition 22. Assume that X € g is a distinguished nilpotent element. Then the

instability parabolic P = P(X) is a distinguished parabolic subgroup, and X lies in
the dense (Richardson) orbit of P on Lie(R, P).

Proof. [Mc04, Proposition 16]. O
Remark 23. Fixing an equivariant isomorphism A: U — N defined over K, we

may say that a cocharacter W is associated with the unipotent clement u € G if it
is associated with A (u). The analogous assertions of the proposition then hold for
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unipotent elements of G. Note that, with this definition, the notion of cocharacter
associated with a unipotent element depends on the choice of A. If U is a cocharacter
associated with X = A (u) and if A’ is a second Springer isomorphism, easy examples
show that A’(u«) need not be a weight vector for W. On the other hand, if ¥’ is
associated with X’ = A’(u), then P(W) = P(¥’). To see this, note that X and
X’ have the same centralizer. Fix a maximal torus S of this centralizer and write
L = Cg(S); since both A and A’ restrict to isomorphisms U; — A, (see Remark
10), we may as well suppose that X and X’ are distinguished. Since e.g. A’ restricts
to an isomorphism U — Lie(U) where U = R, (P (W), it follows that X and X’ are
both Richardson elements for P (V). Thus ¥ and ¥’ are conjugate by an element of
P(W) and it is then clear that P(¥) = P(¥’). In fact, it is even clear that ¥ and
U’ are conjugate by an element of the unipotent radical of P(W); this shows that W
is an optimal cocharacter for X’ (in the sense of [Ke78]) even though it need not be
associated to X’.

7. The order formula and a generalization

Throughout this section, G is a strongly standard reductive k-group defined over K.
Let P be a parabolic subgroup of G; we may fix representatives u € U = R, (P) and
X € Lie(U) for the dense (Richardson) P-orbits on U and Lie(U).

Recall that if the nilpotence class of U is < p, then Lie(U) may be regarded as
an algebraic K -group using the Hausdorff formula; cf. [Sei00, §5].

Proposition 24. Assume that P is a distinguished parabolic subgroup. The following
conditions are equivalent:

(1) u has order p,
2) X7 =y,

(3) g(\W; i) = 0 foralli > 2p and some (any) cocharacter ¥V associated to u or
to X,

(4) the nilpotence class of U is < p.

Proof. The equivalence of (1) and (2) follows e.g. from [Mc03, Theorem 35]. The
equivalence of (2), (3) and (4) 1s [Mc02, Theorem 5.4] — note that there is a mis-
statement (“off by 1 glitch™) concerning the nilpotence class in [Mc02] which is
explained and corrected in the footnote to [Mc03, Lemma 11]. O

Remark 25. Let X be a distinguished nilpotent element with X!71 = 0, and let U be
the unipotent radical of the instability parabolic of X. The proposition shows that the
nilpotence class of U < p. This is not true in general for nilpotent elements which are
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not distinguished. For example, let G = GLs, and let X € g be a nilpotent clement
with partition (3, 2). Then X is distinguished in Lie(L), where L is a Levi subgroup
whose derived group is SL3 x SLy. If W € X, (L) is associated to X, then Pg (V) 1s
a Borel subgroup of G. In particular, if p = 3, X1 = 0 but a Richardson element
Y for Pg(W) has Y71 £ 0.

Proposition 26. Let P be a distinguished parabolic subgroup. If the equivalent
conditions of Proposition 24 hold, and if P is defined over K, then:

(1) there is a unique P-equivariant isomorphism of algebraic groups
e: Lie(U) - U

such that degy: Lie(U) — Lie(U) is the identity.
(2) e is defined over K.
(3) Any homomorphism G, — U over K has the form

s > e(sXo) - £(sPXy) - e(sP° Xp) - - - e(sP" X,)

Jor some elements X, X1, ..., X, € Lie(U)(K) with [X;, X;] = 0 for all
0<i,j<n

Proof. Since the conditions of Proposition 24 hold, the unipotent radical U = R, P
has nilpotence class < p. In §5 of [Se1i00] — a section contributed by J.-P. Serre — one
now finds the necessary results. (1) and (2) follow from Proposition 5.3 of Joc. cit.,
while (3) is Proposition 5.4 of loc. cit. O

Remark 27. Recall from Remark 10 that the restriction of any Springer isomorphism
N — U gives a P-equivariant isomorphism Lie(U) — U. If p > h, there is always
a Springer isomorphism whose restriction is €. It does not seem to be clear (to the
author, at least) whether a suitable analogue of this statement is true if one weakens
the assumption on p.

Recall that we may regard G as arising by base change from a split reductive
group scheme G,z over Z. Write 1)z, for a split maximal torus of G /7.

Lemma28. Let X € g, let L be a Levi subgroup of G with X € Lie(L) distinguished,
and let ¥ € X, (L) be associated with X. We may find a number field F D Q, a
valuation ring A C F whose residue field embeds in k, a standard Levi subgroup
M,z of Gz, a cocharacter V' € X.(Tyz), and an element Y5 € Lie(M,/)(V'; 2)
suchthat (Y, M, V') = g.(X, L, V) forsome g € G, where Y = Y5 ® 1. Moreover,
we may arrange that Yr = YA ® 1 is also a Richardson element for the parabolic
subgroup Py, (W) < M;p.
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Proof L is evidently conjugate to some standard Levi subgroup M, which we may
regard as arising from the Levi subgroup scheme M,z. Replacing X, L, and ¥ by
a G-conjugate we may thus supposed that L is standard. Replacing (X, L, V) by
an L-conjugate, we may then assume that X is a Richardson element for a standard
distinguished parabolic of L. The remainder of the lemma is now essentially the
content of [Mc02, Lemma 5.2]. O

Proposition 29 (Spaltenstein). Let A C F be a valuation ring in a number field, as
in the previous lemma. Let W € X.(Typ), let X € g/a (V5 2), and assume that \V
is associated to Xy and to Xg. Then

dim ¢y(Xy) = dim g, (X ).

Proof. This is essentially [Mc02, Proposition 5.2] when G is semisimple in very
good characteristic. As observed in /oc. cit., it was proved by Spaltenstein for such
G. A look at the proof of Spaltenstein in [Spa84] shows that the result remains valid
for strongly standard reductive groups [the only conditions on G used in the proof in
[Spa84] are: the validity of the Bala—Carter theorem and the separability of nilpotent
orbits]. O

Proposition 30. Let X € g satisfy X'P1 = 0. If W is a cocharacter associated with
Xandif g(W;n) £0, then —2p+2<n<2p-—2

Remark 31. The analogue of the proposition for unipotent elements of order p was
essentially observed by G. Seitz [Sei00] and is crucial to the proof of the existence
of good Aj-subgroups in loc. cit. It is proved for the classical groups in [Sei00,
Proposition 4.1], and for the exceptional groups it is observed in the proof of [Sei00,
Proposition 4.2] that it follows either from an explicit calculation with the associ-
ated cocharacter (“labeled diagram™) of each nilpotent orbit, or from some computer
calculations of R. Lawther.

Proof of Proposition 30. It is enough to verify the proposition for a G-conjugate of
W and X. Lemma 28 shows that, after replacing the data X, L, W by a G-conjugate,
we may assume, as in that lemma, that X, L, and W are “defined over A” for a suitable
valuation ring A. We write X o for the element of g, giving rise to X = X by base
change, and we write Xy = X, ® 1r € g/r; note that W is a cocharacter both of
G,r and of G i, and W is associated to both X and Xr.

We now contend that if g(\'; n) # 0 for some n > 2p — 1, then ad(Xp)? # 0,
this implies the proposition. The proof is essentially like that of [Mc02, Theorem 5.4]
except that we must also deal with the fact that the (in general, not distinguished)
orbit of X may not be “even”.

Let £ = P,o_; 9/a(V: i), and LT = P, g/a(¥; ). Since we may embed
Xr in an sl (F)-triple normalized by the image of W, the representation theory of
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slp(F) implies that ad(X ) : LF — OC"F’ 1s surjective, where the subscript indicates
“base change” —e.g. LF = £ @ F. In view of Proposition 29 and Proposition 21,
one knows that the kernels of the maps ad(X): L — OC,‘C'F and ad(Xr): LF — OC};
have the same dimension. We may therefore argue as in [Mc02, Proposition 5.1] and
seethat ad(Xy): L — GC,J; is also surjective, hence that ad(X;)"/? # 0 if n is even,
and that ad(X;)"T1/2 £ 0 if n is odd, whence our claim and the proposition. O

8. Optimal SL;-homomorphisms

Throughout this section, G will denote a strongly standard reductive K -group. We
first ask the reader’s patience while we fix some convenient notation for SL,. We
choose the standard basis for sl;:

0 1 1 0 0 0
X1 = (0 0) 3 H1 = (0 _1> 5 and Y1 = (1 0) »
x1(t) = (é i) and yi(r) = (1 ?) fort € k,

and write ¢ = {x1(¢) | t € k}and X~ = {y1(¢) | ¢ € k}. Finally, write

e &)

for the standard maximal torus of SL;.

We fix once and for all one of the two isomorphisms G,, >~ 7, so that if
¢: SLy — G is a homomorphism, it determines a cocharacter ¥ = ¢ € X(G)
by restriction to 7 ; explicitly, W is given by the rule

W(r) = gb(((t) 191>) fort € k.

Definition 32. The homomorphism ¢p: SLy — G is an optimal SLy-homomorphism
if the cocharacter ¥ = ¢7 is associated to the nilpotent element X = d¢p(X1) € g.
Briefly, we say that ¢ is optimal for X.

Now put

We first recall that the main result of [Mc03] shows that optimal homomorphisms
always exist. More precisely, let X € g with X!71 = 0, and let W be a cocharacter
associated with X. If S is a maximal torus of C\y, then X is distinguished in Lie(L)
where L = Cg(S). We may apply Proposition 26 to Pr(V); let e: Lie(U) — U
be the isomorphism of that proposition, where we have written U for the unipotent
radical of Pz (¥). Now the main result of [Mc03] says the following;:
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Proposition 33. There is an optimal SLy-homomorphism ¢ for X with the following
properties:

1) ¢ =V, and
(2) ¢(x(t)) =e(tX) foreacht € k.

We wish to see that £( X) i1s independent of the choice of the maximal torus S of
Cy. For this, we will use the following result due to Seitz; the result is essentially
[Se100, Proposition 4.2].

Proposition 34 (Seitz). Let A C F be a valuation ring in a number field whose
residue field is embedded in k, let L be a A lattice, and let p;p: SLa/a — GL(L)
be a representation over A. Assume that

(1) all weights of the standard maximal A-torus Ty on L are < 2p — 2,
(2) the representation psi of SLa . is self-dual,

(3) the dimension of the fixed point space of ur = p/r <((1) i)) on L is the same

as the dimension of the fixed point space of uy = pi <<(1) })) on Ly.

Then the representation (p;i, L) is a tilting module for SLy /.

Proof. One decomposes the SLy, x-module £ according to the blocks of SLy/x. In
view of the assumption on the weights of 7 on L, the blocks that can conceivably
occur are those of the simple modules L(d) with 0 < d < p. The summand
corresponding to the block for d = p — 1 is isomorphic to L(d)"@ for some integer
v(d) > 0. Otherwise, the summand corresponding to a block with d < p — 1 1s
1somorphic to a module of the form

T(ca) P ® W(ca)* P ® (W(ea)V)' D @ Lc)"? & L(d)"?

where ¢; = 2 p —2 —d and where the exponents r(d), s(d), t (d), u(d), v(d) are non-
negative integers. [We are using Seitz’s notation for SLo, ;-representations: W (d) is
the Weyl module with high weight d, and T (d) is the indecomposable tilting module
with high weight d; cf. [Sei00, §2].]

The assumption (2) implies that s(d) = t(d) forall 0 <d < p — 1. Asin [Sei00,
Proposition 4.2], one now expresses the dimensions of the fixed point spaces of uy
and u in terms of the exponents and finds that u(d) = s(d) = t(d) = 0 for all 4.
Thus £y 1s the direct sum of various simple tilting modules L(d) for 0 < d < p, and
various indecomposable tilting modules 7 (c;) = T(2p—2—d) for0 <d < p—1,
so indeed Ly 1s a tilting module. O
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Proposition 35. With notation as above, we have
(1) C&L(X) = CL(e(X)); in particular, V(G ;) normalizes CZ,(e(X)).
(2) CL(e(X)) = CL(e(tX)) foreacht € k™.

Proof. If X is distinguished, (1) holds since ¢ is P = P (V) equivariant, since
&(X) € R,(P) is again a Richardson element, and since Cg(X), Cg(e(X)) < P by
Proposition 21. [In fact, Cg(X) = Cg(e(X)) always holds in this case.] It remains
to prove (1) when X is no longer distinguished; we essentially follow the proof in
[Sei00, Lemma 6.3].

By the unicity of &, it is enough to prove the result with L, W, and X replaced
by a G-conjugate. We will regard G = G as arising by base change from the split
reductive group scheme G 7 over Z; let 7,7, be a Z-split maximal torus of G 7.

According to Lemma 28, we may find a suitable valuation ring in a number field
A C F and assume that the Levi subgroup L contains 74 and arises by base change
from a standard split reductive Levi subgroup scheme L,7 < G,z containing 7,7,
that W € X, (7T,z), and that the nilpotent element X, € Lie(L,2)(V; 2) gives X on
base change.

After possibly enlarging A and F', [Mc03, Theorem 13] gives a homomorphism

fZ SL2/A — G/A

such that the restriction of f to the subgroup scheme of SLoy/a is given

I =
0 1
by t > &(tX ), where X5 € g, gives X upon extension of scalars to k (recall
from [Sei00, Prop. 5.1] that ¢ is indeed defined over Z,) hence over A). Moreover,
the restriction of f to the standard maximal torus of SLy, A gives the cocharacter W
of T/ A-

Since G is strongly standard, its adjoint representation is self-dual. Together with
Proposition 29, this shows that we may apply Proposition 34 to the representation
Adof: SLyja — GL(Lie(G/p)). Thus the SLy-representation (Ad o f/g, g) is a
tilting module, and it follows from [Sei00, Lemma 2.3(d)] that

cgle(tX)) = cg(X)

for each ¢ € k*. The orbits of e(1X) and X are separable by Proposition 5; thus we
know that Lie Cg(e(t X)) = Lie Cg(X). In particular, Cg(X) and Cg(e(X)) have
the same dimension; assertion (1) will follow if we show that CZ,(X) < CZ (e(X)).
For any connected linear group H, we write H; for the subgroup generated by the
maximal tori in H. Applying [Spr98, 13.3.12], to the group H = CZ(X), we find
that H is generated by H; and Cy(S), where S is our fixed maximal torus of H: i.c.

(%) H = (H;, Cy(9)).
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Working for the moment inside the Levi subgroup L = Cg(S) of G, the “distin-
guished” case of part (1) of the proposition means that Cg (S) = Cr(X) = Cr(e(X));
i particular Cg(S) centralizes ¢(X). So according to (x), the containment H <
CZ(e(X)), and hence (1), will follow if we just show that £(X) is centralized by each
maximal torus T of Cg(X). Since c4(e(X)) = ¢4(X) = Lie C(X), one knows that
&(X) centralizes Lie(T). We claim that (x) Co(T) = Cg(Lie(T)); this shows that
T centralizes (X) as desired.

Write M = Cg(T). Since T is a maximal torus of CZ(X), it follows that 7T is
a maximal torus of the center of M. Thus (%) is a consequence of the next lemma
(Lemma 36), and (1) is proved. For (2), notice that if s> = 7, we have by (1) that

Cg(e(X)) = W(s)CGe(X)W(s™) = C(e(Ad(W(5)X)) = C5(e(1X)). O

Lemma 36. Let G be a strongly standard reductive group, let T < G be a torus,
and write M = Cg(T). If T is a maximal torus of the center of M, then Co(T) =
Cg(Lie(T)).

Proof. We essentially just reproduce the proof of [Se1i00, Lemma 6.2]. Let 7y be a
maximal torus of G containing 7. Denote by R C X*(Tp) the roots of G and by
R; C R theroots of L. Choose a system «y, ..., o € X (Tp) of simple roots for
G such that «, ..., o is a system of simple roots for M = Cg(T) (sot < r). If
we write U, < G for the root subgroup corresponding to « € R, then U, < L for
« € Ry ;moreover,

Co(T) = (To;: Uy | r = 1), and Cg(Lie(T)) = (To; Uy | daojriery = 0).

We have always C(T) < Cg(Lie(T)). If the lemma were not true, there would
be some root B of G such that fjr # 1 but dBjLiecry = 0. We may write 8 =
o+ Z;:t—}—l cia; with @ € Ry. Since p is good, the ¢; are integers with 0 < ¢; < p
[SS70,1.4.3]. Since B # 1, itfollowsthat c; isnon-zeroin k forsomez+1 < j <r.

Since G and M are strongly standard, [SS70, Corollary I.5.2] implies that 3(g) =
Lie Z(G) and 3(m) = Lie Z(M) (where 3(?) denotes the center of a Lie algebra,
and Z(?) that of a group). We thus have dim 7" = dim 3(g) + (r — ). It follows
that {dotsy1, - - -, do,} s a linearly independent subset of Lie(7)" (the dual space of
Lie(T)). In particular, there is A € Lie(T") such that

dOl,'(A) = 8,"1'.

But then df(A) = ¢; # 0, contradicting the choice of 8. This completes the proof.
O

Remark 37. If S, S < Cy are maximal tori, let us write U and U’ for the unipotent
radicals of the distinguished parabolic subgroups Pr (V) < L and P, (W) < L’
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where L = Cg(S) and L' = Cg(S). If ¢: Lie(U) — U and ¢’: Lie(U’) —
U’ are the isomorphisms of Proposition 26, then ¢(rX) = &'(tX) for each ¢ € k.
Indeed, we may choose g € Cy,(X) with gSg~! = & It is then clear that U’ =
gUg™! and the uniqueness statement of Proposition 26 shows that &’ = Int(g) o & o
Ad(g™"): Lie(U") — U’. Lett e k*. Proposition 35 shows that g centralizes
&(tX) in addition to X. So indeed

g(tX)=1Int(g)oeo Ad(g_l)(tX) =Int(g) oe(tX) = e(tX)
as asserted.

Now let ¢: G, — G be an injective homomorphism of algebraic groups with
X = d¢(1), and assume that the cocharacter W associated to X has the property that

W(O)p(s)W (™) = ¢p(r%s) foreachs € k* and s € k.

Since ¢ 1s injective, the cocharacter W is non-trivial; this means in particular that
X # 0 and so d¢ is non-zero.

We remark that the homomorphism %: G, — G given by ¢ — &(tX) is injec-
tive. Indeed, as in the proof of Proposition 35, there 1s an optimal homomorphism
f: SLy — G such that h(s) = f(x1(s)) for s € G,. The group SL, is almost
simple; its unique normal subgroup is contained in each maximal torus. In particular,
ker h is trivial as asserted.

Fix now a maximal torus S of C(X) centralized by the image of ¥, and hence
a Levi subgroup L = C¢(S) such that ¥(G,,) < L and X € Lie(L).

Proposition 38. With ¢ and\V as above, we have ¢ (t) = e(tX) foreacht € k, where
&: Lie(U) — U is the isomorphism of Proposition 26 for the unipotent radical U of
the distinguished parabolic subgroup Pr (V) < L. In particular, $(G,) < L.

Proof. Notice that ¢(s) € CZ(X) for all s € G,. According to Proposition 35 this
shows that ¢ (s) € CZ(e(rX)) forall ¢ € k*, hence that

s> e(—sX) - p(s)

is a homomorphism ¢1: G, — G. Moreover, V(1)1 (s)W (™) = ¢1(t%s) for
t € k* and s € k, and a quick calculation shows d¢; to be trivial.

Assume that the proposition is not true, hence that ¢»; # 1; it has positive dimen-
sional image and so by Corollary 20 there 1s a homomorphism ¢, : G, — G and
an integer » > 1 such that ¢1 = ¢, o F'", where F denotes the Frobenius morphism
for SL;, and such that d¢, # 0. On the additive group, F 1s given by s — s?, so
we know that ¢ (s) = ¢o(s?") for s € k. [Notice we have used the fact that G, is
defined over I, so that G, identifies with G forr > 0]
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Observe that if ¢1 (sg) = 1 for some sg # 0, then 1 = ¢ (sg) = e(—s0X) P (s0) s0
that e(soX) = ¢ (s0); applying Int(W (z)) for r € k*, we see that e(s X) = ¢ (s) for
all s € k, so that p; = 1. Thus if ¢1 # 1, then ¢ is an injective map on the points
of G,. It is then clear that ¢ is injective as well [since d¢, is non-zero, ¢; is even
an mnjective homomorphism of algebraic groups].

Since W (G ,,) normalizes the image of ¢, we have W (1), (s)W(1~1) = ¢y(t"s)
for some n € Z. Letnow r € k™ and s € k. Then

$1(%5) = W1 ()W (™) = W(O)ha(sPHW (™) = a(e"s?"):

since ¢; and ¢, are injective, we have (tzs)Pr =1"s? forallt € k" ands € k. It
follows thatn = 2p".

Denoting by 0 # Y an element in the image of d¢s, it s clear that Ad(W(1))Y =
127"y so that Y € g(W: 2p"). Since r > 1, since W is associated with X, and since
X171 = 0, this contradicts Proposition 30; hence ¢1 = 1 and ¢(s) = £(sX) for all
s € k as asserted. O

Remark 39. Assume that p > h, where & is the Coxeter number of G. Then the
nilpotence class of the unipotent radical U of a Borel subgroup B of G is < p.
Thus there is a B-equivariant isomorphism &: Lie(U) — U as in Proposition 26.
Fix a regular nilpotent element X € Lie(U) and write u = &(X). According to
Proposition 11, there is a unique Springer isomorphism A : U — N with A(u) = X.
It 1s then clear by the unicity of ¢ that A|1}e ) =€ for the unipotent radical U of any
Borel subgroup of G. Since the unipotent radical V' of any parabolic subgroup P of
G is contained in that of some Borel subgroup, it is then clear that A~! [Lie(v) 1s the
isomorphism of Proposition 26 (of course, the nilpotence class of V is < p). This
permits for these p a simple proof of Proposition 35 and hence of Proposition 38 (i.c.
a proof independent of the tilting module considerations of Proposition 34)

8.1. Conjugacy of optimal SL; homomorphisms. The goal of this paragraph is to
show that any two optimal SL;-homomorphisms for X are conjugate by an element
of CZ(X).

Let ¢ be an optimal SL,-homomorphism for X € g with cocharacter W = ¢y
Choose a maximal torus S < Cy, so that X is distinguished in Lie(L), where L =
Ci(S) 1s a Levi subgroup of G. If ¢ is defined over K, then the maximal torus S —
and so also L —may be chosen over K.

We will write P;, = Py (W) for the parabolic subgroup of L determined by the
cocharacter ¥, and U for the unipotent radical of P;. Denote by : Lie(U) — U
the unique Pr-equivariant isomorphism of Proposition 26.

Proposition 40. (1) 7%e torus S centralizes ¢(X); in particular, p(X) C U.
2) p(x1(t)) = e(tX) foreach t € k.
(3) Foreacht € k*, CL(X) = CZ(ur)) where uy = ¢ (x1(1)).
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Proof. We apply the result of Proposition 38; that proposition shows that ¢(r) =
e(tX). (1) and (2) are then immediate, and (3) follows from Proposition 35. O

Proposition 41. The image of ¢ lies in the derived group of the Levi subgroup
L = Cg(9).

Proof. Since SL; is equal to its own derived group, we only must sce that the image
of ¢ liesin L.
Now write

Y=dp(Y))eg and uf =) e G fort k.

Since SL; is generated by the subgroups X and X, it suffices to show that u;, u, €
L = Cg(S) forall t € k*. Fixt € k™. It was proved in Proposition 40(1) that
Ur € L.

Now, there is ¢ € ¢(SLy) with gu;g~! = u; and Ad(g)X = Y. Together with
Proposition 40, this implies that C(u; ) = CL(Y) for t € k™. So the proof is
complete once we show that S < Cg(Y).

Since S and the image of ¥ commute, g(\; —2) 1s S-stable and is thus a direct
sum of S-weight spaces

gW:-2) = Y g(¥:-2),.

YEXH(S)

Hence, we may write Y € g(W; —2) as a sum of S-weight vectors:

Y=>"Y, withY, eg(¥:-2),.
Y

We need to show that ¥ = Yy, or equivalently that ¥, = 0 for y # 0.

As Wisassociated to X , it follows from Proposition 21 that cg(X) € > ;. g(V; 0).
Since S centralizes X, it follows that ad(X): g(¥; 2) — g(W¥; 0) is an injective map
of S-representations. Writing H = dW (1) € g, wehave ad(X)Y = [X, Y] =H ¢
g(W; 0)g. Since ad(X)Y, € g(W;0),, the injectivity of ad(X) implies that ¥, = 0
unless y = 0, as desired. Thus ¥ = Y, and the proof is complete. O

Proposition 42. Let X € g satisfy X'P! = 0. If ¢\ and ¢, are optimal SL,-
homomorphisms for X and if ¢1\7 = ¢, then ¢y = ¢

Proof. Combined with Proposition 41, the hypotheses yield a maximal torus S <
Cg(X) such that the image of ¢; liesin L = Cg(S) fori = 1, 2. Thus we may replace
G by the strongly standard reductive group L and so suppose that X is distinguished.

Proposition 40 shows that ¢1(x1 (1)) = e(t X) = ¢2(x1(¢t)) forall ¢ € k. It follows
that ¢ and ¢, coincide on the Borel subgroup B = 7 X of SL;. Using this, we argue
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that ¢»; and ¢, coincide on all of SL;. Indeed, consider the morphism of varieties
SL, — G given by
g > $1(2)a(e™).

Since the ¢; are homomorphisms, this morphism factors through the flag variety
SL, /B = P! (the projective line); since P! is an irreducible complete variety, and
since G is affine, this morphism must be constant. The proof is complete. O

Corollary 43. If ¢ is an optimal homomorphism, let as usual X = d¢(X1) and
W = ¢5. Then the centralizer of p(SLs) is Cy = C(X) N Co(W(Gy)).

Proof This 1s just a restatement of the previous proposition. O

Theorem 44. Suppose that G is strongly standard, and that X € g satisfies X'P1 = 0.
Then any two optimal SLy-homomorphisms for X are conjugate by a unique element
of the unipotent radical of CZ(X).

Proof. Let ¢1, ¢3 be optimal SLp-homomorphisms for X, and write V; = ¢; 5 for
the corresponding cocharacters. According to Proposition 21, the cocharacters Wy
and W, associated with X are conjugate by a unique element of the unipotent radical
U of C{,(X). Replacing ¢2 by a U-conjugate, we may thus suppose that Wy = W,
It then follows from Proposition 42 that ¢ = ¢». O

8.2. Uniqueness of a principal homomorphism. Suppose that X € g is a distin-
guished nilpotent element. Then any cocharacter ¥ € X, (G) with X € g(WV; 2)
is associated to X. In particular, if ¢: SL, — G is any homomorphism with
dp(X1) = X, then ¥ = @7 is a cocharacter associated with X; thus ¢ is opti-
mal.

An application of Theorem 44 now gives:

Proposition 45. If ¢1, p2: SLy — G are homomorphisms such that dp(X,) =
dpr(X1) = X is a distinguished nilpotent element, then ¢, and ¢, are conjugate by
an element of C(X).

A principal homomorphism ¢ SLy — G is one for which d¢(X1) is a regular
nilpotent element. Since a regular nilpotent element is distinguished, we have:

Proposition 46. A principal homomorphism is optimal. Any two principal homo-
morphisms are conjugate in G.

8.3. Optimal homomorphisms over ground fields. Recall that K is an arbitrary
ground field. The following theorem gives both an existence result and a conjugacy
result for optimal homomorphisms over the ground field K. If X € g(K), write
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C = CZ(X) for its connected centralizer; recall by Proposition 21 that the unipotent
radical of C is defined over K.

Theorem 47. Let G be a strongly standard reductive K -group, and let X € g(K)
satisfy X171 = 0.

(1) There is an optimal SLy-homomorphism ¢ for X which is defined over K.

(2) Let U be the unipotent radical of C = C(,(X). Any two optimal SLy-homomor-
phism for X defined over K are conjugate by a unique element of U(K).

Proof. To prove (1), we need first to quote a more precise form of Proposition 33.
The proof of that Proposition given in [Mc03] shows that there is a nilpotent element
X" in the orbit of X which is rational over the separable closure Kgp of K in k and
an optimal SL,-homomorphism ¢” for X” defined over K. Since the orbit of X
is separable, one can mimic the proof of [Spr98, 12.1.4] to see that X and X” are
conjugate by an element rational over K.p. Indeed, let @ be the orbit of X and
let o: G — O be the orbit map 1 (g) = Ad(g)X. The separability of the orbit @
means that dup : T1(G) — Tx(0O) is surjective, and it follows for each g € G that
dpg: Te(G) — Tade)x(0) 1s surjective. It follows from [Spr98, 11.2.14] that the
fiber =1 (X”) is defined over K. sep» SO that by [Spr98, 11.2.7] there is a Kep-rational
point g in this fiber. It follows that ¢’ = Int(g) o¢” is an optimal SL,-homomorphism
for X which is defined over K.

According to Proposition 21, we can find a cocharacter W associated with X
which is defined over K. Writing C = C¢,(X), that same proposition shows that the
cocharacters ¥ and W' = ¢5|’7 are conjugate by an element i € C(Kgep) [in fact,
can be chosen to be a Kep-rational element of the unipotent radical of C].

It now follows that ¢ = Int(h~!) o ¢’ is an optimal SL,-homomorphism for
X which is defined over Ky, We argue that ¢ is actually defined over K. Let
v € Gal(Kgp, K). Then ¢, = y oo y~1: SL, — G is another optimal SL,-
homomorphism for X; since ¥ = ¢ is defined over K, ¢j7 = qble. Thus
Proposition 42 shows that ¢ = ¢,,. Since ¢ is defined over K., Galois descent (e.g.
[Spr98, Cor. 11.2.9]) shows that ¢ is defined over K.

We now give the proof of (2), which is the same as the proof of Theorem 44.
If ¢ and ¢ are optimal SL,-homomorphisms for X, each defined over K, then by
Proposition 21, the K-cocharacters & = ¢7 and W = 7 associated with X are
conjugate by aunique element of U (K'). Thus we may replace ¢ by a U (K )-conjugate
and suppose that ¢ = 5. Proposition 42 then shows that ¢ = ¢ and the proof is
complete. O

Remark 48. In the case of a finite ground ficld K, Seitz [Sei00, Proposition 9.1]
obtained existence and conjugacy over K for good A subgroups (see §8.5 below for
their definition).
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8.4. Complete reducibility of optimal homomorphisms. Let G be any reductive
group. Generalizing the notion of a completely reducible representation of a group,
J.-P. Serre has introduced the following definition. A subgroup H < G is said to
be G-completely reducible (for short: G-cr) if for every parabolic subgroup P of G
containing H there is a Levi subgroup of P which also contains H. See [Ser04] for
more on this notion.

We are going to prove that the image of an optimal homomorphism is G-cr. We
establish some technical lemmas needed in the proof. First, we show that a suitable
generalization of Proposition 35 is valid.

Lemma49. Let\V € X.(G) andsupposethat P = P (\V) is a distinguished parabolic
subgroup with unipotent radical U = Ry, P. Suppose that the nilpotence class of U
is < p, and let

g: LieU) - U

be the isomorphism of Proposition 26. If Xo € g(\V;n) for some n > 1, then
Xo € Lie(U) and CZ(Xo) = CZ(e(Xp)).

Proof Let N(Xy) = {g € G | Ad(g)Xo € kXy} < G. By assumption, the torus
W (Gyy,) 1s contained in N (Xg); in particular, this torus normalizes Ci(Xo). We may
choose amaximal torus S of C(Xg) centralized by W(Gy,); thus S’ = S - W(G,,) is
a maximal torus of N(Xp). According to [Mc04, Lemma 25], there is a cocharacter
A € X(S) which is associated to Xy. Let T be a maximal torus of G containing
S’: thus T lies in the centralizer of A(G,,), of S, and of W (G,,).

Since a Richardson orbit representative X for the dense P-orbit on U satisfies
X1 = 0, we have also X ([)p ] — 0. Now consider the Levi subgroup L = C(S); the
nilpotent element X is distinguished in Lie(L). Let Q = Py (A),and let V = R, QO
be the unipotent radical of Q. Proposition 26 gives a unique isomorphism

g’ Lie(V) — V,

and we know from Proposition 35 that C¢;(Xo) = CZ(¢'(Xo)). Thus our lemma will
follow if we show that £(X¢) = &/(Xy).

Notice that 7" is contained in the Levi factors Zg (V) of P and Zj (A) of Q, so
that 7 normalizes the connected unipotent subgroup W = (U N V)? of G. Since the
nilpotence class of W is < p, [Sei00, Proposition 5.2] gives a unique isomorphism
of algebraic groups

g Lie(W) - W

whose tangent map is the identity and which is compatible with the action of the
connected solvable group 7 - W by conjugation. On the other hand, the tangent maps
of the restrictions &y je(w) and 8|/Lie(W) are the identity, and these maps are compatible
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with the action of 7 - W; we thus have

ElLie(w) =& = ElLjeqw)-
This implies that e(Xg) = &’(Xg) as desired, and the proof is complete. O

We now show that a suitable deformation of an optimal homomorphism remains
optimal.

Lemma 50. Let ¢: SLy — G be an optimal SLy-homomorphism, and suppose that
¢ takes its values in the parabolic subgroup P.

(1) There is a cocharacter y € X.(P) such that y(Gy,) centralizes ¢ () and such
that P = P(y).

(2) Denotingby L = Z(y) the Levi factor of P determined by y, write ?5; SL, — L
for the homomorphism

x> lim y (D¢ )y (17
t—0
of Lemma 7. Then ais an optimal SLy-homomorphism as well.

Proof. Since ¢ (T7) lies in some maximal torus of P, (1) follows from Lemma 6.

Let us prove (2). Let X = d¢(X1) as usual, and write W for the cocharacter
@7 it is associated with X. Denoting by Cy the corresponding Levi factor of the
centralizer of X, we may choose amaximal torus S < Cy and Proposition 41 implies
that ¢ takes its values in the Levi subgroup C(S). We may evidently replace G by
L and so assume that X is distinguished.

Nowlet X = Xg+ X, Y =Yy + Y w1th Xo, Yo € Lle(L) = g(y; 0) and with
X', Y’ € Lie(Ry P). Lemma 7 shows that dgb(Xl) = X¢ and d¢(Y1) =Y.

To shows that ¢ is optimal for X, it is enough to show that qb takes values in some
Levi subgroup M of L such that X¢ € Lie(M) is distinguished. Indeed, since SL; is
its own derived group, this will imply that W = ¢7 takes its values in (M, M), so
that W 1s indeed associated with Xj.

Note that the torus ¥ (G,,) normalizes C; (X(). Since ¥V (G,,) lies in a maximal
torus of the semidirect product of Cy (Xy) and ¥ (G,,), it is clear that there is a
maximal torus S of Cyr (Xg) centralized by V(G,,). Taking M = Cy(S), we claim
that ¢ takes its values in M.

Notice that

Plx1(1) = Sli_I)I%)V(S)E(IX)V(S_l) = lim £(z(Xo +Ad(y () X)) = e(tXo)

for each ¢ € k, Similarly, a(yl(t)) =e(tYp) foreach r € k.
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Since S is contained in the centralizer of X, it is contained in the instability
parabolic Py for X by Proposition 21. Thus ¢ is S-equivariant. Since SL; is generated
by X and X, this equivariance shows that we are done if S centralizes both X and
Yo — of course, S centralizes Xg by assumption. N

Write H = dW(1); since W and y commute, ¢ = . Now, ad(Xo)Yy =
[Xo, Yo] = H. As in the proof of Proposition 41, we write Yy = Zkex*m Yo,5
as a sum of weight vectors for the torus S. Since ¥ (G,,) commutes with S, H is
centralized by S, and so we have [Xg, Yp,,] = 0 when 1 # 0; we want to conclude
that Yy, = 0. We do not know that ¥ is associated with X, so we can not simply
invoke Proposition 21. However, since Yy, € g(W; —2), the general theory of
SL,-representations shows: if Yy, # 0, then p(x;(¢)) = &(tX,) acts non-trivially
on Yy, for some r € k*. On the other hand, according to Lemma 49 we have
CZ(X()) = CZ(E(tX())), so that YO,A € CLie(L)(XO) = tLie(L)(E(l‘Xo)). Thus indeed
Yo, = 0 for each non-zero A, as required. Thus Yy = Yp,0 so that S centralizes Yo;
the proof is now complete. o

Lemma 51. Let X € g be any nilpotent element, let v € X,.(G) a cocharacter
associated with X, and let L = Cg (¢ (G,,)) be the Levi factor in the instability
parabolic determined by r.

(1) The L orbit'V = Ad(L)X is a Zariski open subset of g(r; 2).

(2) Let Y € gbe nilpotent. Then  is a cocharacter associated with Y if and only if
Yev.

Proof. To prove (1), note that the orbit map
y—>AdW)X: L — g(¥:2)

has differential ad(X): Lie(L) = g(y; 0) — g(¢; 2); if we know that the differen-
tial 1s surjective, then the orbit map is dominant and separable and (1) follows. To
see the surjectivity, we argue as follows. Recall from Proposition 21 that cy(X) is
contained in ) ;. g(4: i); in particular, g(y; —2) Ncg(X) = 0. According to [Ja04,
Lemma 5.7] this last observation implies (in fact: is equivalent to) the statement
[g(r; 0), X1 = g(i; 2); this proves the required surjectivity (note that [Ja04, 5.7]
is applicable since the Lie algebra of a strongly standard reductive group has on it a
nondegenerate, invariant, symmetric, bilinear form — cf. Proposition 2).

For (2) note first that ¢ is evidently associated to any ¥ € V. Conversely, if ¢
is associated to Y, then ¥ € g(v; 2), and (1) shows that Ad(L)Y is also open and
densc in g(v; 2). Thus Ad(L)X N Ad(L)Y # #,sothatY € Ad(L)X = V. O

Theorem 52. Let G be strongly standard, and let ¢: SLy — G be an optimal SLy
homomorphism. Then the image of ¢ is G-cr.
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Proof. Let X = d¢(X1) as usual, and write W for the cocharacter ¢ ; it is associated
with X. Denoting by Cy the corresponding Levi factor of the centralizer of X, we
may choose a maximal torus S < Cy and Proposition 41 implies that ¢ takes its
values in the Levi subgroup L = Cg(S). Applying [Ser04, Proposition 3.2], one
knows that ¢ (SL;) is G-¢r if and only if it is L-cr. We replace G by L, and thus
suppose that X is distinguished.

Let P be a parabolic subgroup of G and suppose that the image of ¢ lies in P.
We claim that since X is distinguished, we must have P = G this will prove the
theorem.

To prove our claim, first notice that by Lemma 50(1) we may choose v € X, (P)
with P = P(y) and such that y (G,,) commutes with ¥ (G,,).

Let us write X = ) ;. X; with X; € g(y;i). Consider the homomorphism
55: SL, — Z(y) constructed in Lemma 50; according to (2) of that lemma, :p\is
optimal for Xg, so that the cocharacter W is associated to X as well as to X.

We now claim that X and X are conjugate. This will show that X is distinguished
in G, hence that G = Z(y) so that also P = G as desired. Let L = C5(V(G,)).
Then Lemma 51 implies that X is contained in the orbit V = Ad(L)X C g(\¥; 2),
proving our claim. O

8.5. Comparison with good homomorphisms. According to Seitz [Sei00], an SL,
homomorphism ¢: SLy — G is called good (or restricted) provided that the weights
of a maximal torus of SL; on Lie(G) are all <2p — 2.

Proposition 53. Let ¢: SLy — G be a homomorphism, where G is a strongly
standard reductive group. Then ¢ is good if and only if it is optimal for X = d¢(X1).
In particular, all good SLay-homomorphisms whose image contains the unipotent
element v are conjugate by C{; (v).

Proof. That an optimal homomorphism 1s good follows from Proposition 30. Choose
a Springer isomorphism A : U — N. If u is a unipotent element of order p, choose
a Levi subgroup L in which « is distinguished; this just means that X = A(u) € g
is distinguished. It follows from Proposition 24 that X'?! = 0. Choose an optimal
homomorphism ¢’ for X; we know that ¢’ takes values in L (Proposition 41), and if
v = ¢'(x(1)), it is clear from Proposition 40 that v and « are Richardson elements in
the same parabolic subgroup of L; thus v and u are conjugate. This proves that u is
in the image of some optimal homomorphism ¢.

To prove that good homomorphisms are optimal, we use a result of Seitz. Since
¢ is optimal, we just observed that it is good, and Seitz proved [Sei00, Theorem 1.1]
that any good homomorphism with « in its image is conjugate by C (1) to ¢p. Thus,
any good homomorphism is indeed optimal. O



Vol. 80 (2005) Optimal SL(2)-homomorphisms 421
9. Rational elements of a nilpotent orbit defined over a ground field

In this section, we extend a result first obtained by R. Kottwitz [Ko82] in the case
where K has characteristic 0. We give here a proof which is also valid in positive
characteristic (under some assumptions on G). For the most part, we follow the
original argument of Kottwitz.

Theorem 54. Let K be anyfield, and let G be a strongly standard connected reductive
K -group which is K -quasisplit. If the nilpotent orbit @ C N is defined over K, then
O has a K -rational point.

Proof If K is a finite field, the theorem is a consequence of the Lang—Steinberg
theorem; cf. [St68, §10] and [St65]. Suppose now K to be infinite.

We fix a Borel subgroup B of G which is defined over K, and a maximal torus
T C Bwhichis also over K. The roots of G in X*(T') which appear in the Lie algebra
of the unipotent radical of B are declared positive, and we will write C X, (T') for
the positive Weyl chamber determined by B:

C ={u| (a n) > 0forall positive roots o of G in X*(T)}.

IfW = Ng(T)/T denotes the Weyl group of 7, then each . € X,.(T) is W-conjugate
to a unique pointin C. We also write ' = Gal(Ksep/K) for the absolute Galois group
of the field K.

The K -variety © has a point X’ rational over the separable closure Kep of K in
k (c.g. by [Spr98, 11.2.7]). According to Proposition 21, there is a cocharacter ¥’
associated with X’ and defined over Ksp. Let 77 be a maximal torus of G defined
over K, which contains the image of W’.

For y e T, the cocharacter W’” is associated with the nilpotent X’”. Since ©
is defined over K, X’” and X’ are conjugate. Hence ¥’ and W'” are conjugate by
another application of Proposition 21.

According to [Spr98, Proposition 13.3.1 and 11.2.7] we may find ¢ € G(Ksep)
such that g7’/g~! = T'; the same reference shows that any element w of the Weyl
group of T may be represented by an element w € Ng(T') rational over Ksep. We
have that W = Int(g) o W' € X, (T) is defined over Kp. Replacing W by Int () o W
for a suitable w in the Weyl group of 7', we may suppose that ¥ € C C X.(T)
and is defined over Kgp. Of course, W is associated with the nilpotent element
X = Ad(wg)X'.

Since B and T are I'-stable, y permutes the positive roots in X*(7'). Thus, y
leaves C invariant; in particular, ¥V € C. We know ¥ and " to be conjugate in
G. Since T is a maximal torus of the centralizer of both W (G,,) and of W (G,,),
we may suppose that W7 = Int(1) W for some w in the Weyl group of 7. But C is a
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fundamental domain for the W-action on X.(7'), so we see that W = W, Since ¥
is defined over Ky and is I'-stable, W is defined over K [Spr98, 11.2.9].

This shows in particular that the subspace g(\W¥; 2) is defined over K. According
to Lemma 51, there is a Zariski open subset of g(W; 2) consisting of elements in @.
Since K is infinite, the K -rational points of g(W¥; 2) are Zariski dense in g(\W; 2).
Hence there 1s a K -rational point in O and the proof is complete. O

Corollary55. Let G be a strongly standard reductive K -group which is K -quasisplit.
There is a regular nilpotent element X € g(K). In particular, there is an optimal
homomorphism ¢ SLy — G defined over K with d¢(X1) = X.

Proof. Since G is split over a separable closure K, of K, there is a Kep rational
regular nilpotent element. Thus the regular nilpotent orbit is defined over Kep. Since
this orbit is clearly stable under Gal(Ksep/K), it is defined over K. So the theorem
shows that there is a K -rational regular nilpotent clement X. The final assertion
follows from Theorem 47. O

Remark 56. With G as in the theorem, there is a Springer isomorphism A : U — N
defined over K. Thus a unipotent conjugacy class defined over K has a K -rational
point.

10. Appendix: Springer isomorphisms (Jean-Pierre Serre, June 1999)

Let G be a simple algebraic group in char. p, which I assume to be “good” for G.
I also assume the ground field & to be algebraically closed. Call G* the variety of
unipotent elements of G and g” the subvariety of g = Lie(G) made up of the nilpotent
elements.

Springer has shown that there exist algebraic morphisms

f:G"—>g"

with the following properties:
a) f is compatible with the action of G by conjugation on both sides.
b) f is bijective.

In fact, it was later shown that these properties imply (at least when p is “very good™,
which is always the case if G is not of type A):

b’) f is an isomorphism of algebraic varieties.

Despite the fact that there are many such f’s (they make up an algebraic variety of
dimension ¢, where £ is the rank of G), one often finds in the literature the expression
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“the Springer isomorphism™ used — and abused —, especially to conclude that the
G-classes of unipotent elements of G and nilpotent elements of g are in a natural
correspondence, namely “the” Springer correspondence.

It might be good for the reader to consider the case of G = SL,, (or rather PGL,,,
if one wants an adjoint group). In that case a Springer isomorphism is of the form

1 4 e > aje 4~ +ay_1e" L,

where " = 0 (sothatu = 1+ e is unipotent), and the g; are elements of k witha; # 0.
Every such family @ = (ay, ..., a,_1) defines a unique Springer isomorphism f;,
and one gets in this way every Springer isomorphism, once and only once. This
example also shows that the Springer isomorphisms can be quite different: ¢.g., for
some one may have f(u™) = m.f(u) for all u and all m € Z ( such an f exists if
and only if p > n), and for some one does not even have f(u~!) = — f(u)!

In what follows, I want to repair this unfortunate mix-up by showing that all the
different Springer isomorphisms give the same bijection between the G-classes of G*
and the G-classes of g", so that one can indeed speak (in that case) of the Springer
bijection.

I have to recall first how the Springer isomorphisms are defined. Call GY the set
of regular unipotent elements of G it is an open dense set in G"; same definition for
g" in g = Lie(G). Choose an element « in G*" and let C(u) be its centralizer. It is
known that C(u) 1s smooth, connected, unipotent, commutative, of dimension ¢ (=
rank G). Let c(u) = Lie C(u) be its Lie algebra. Choose an element X of ¢(u) which
is regular. Then its centralizer is C(u), and the Springer construction shows that there
1s a unique Springer isomorphism f = f, x which has the property that f(u) = X.
Let us fix X; then it is clear that every Springer isomorphism is equal to f, x for
some v € C(u)", where C(u)" = C(u) N G™; moreover, v is uniquely defined by f.
Hence we have a one-to-one parametrization of the Springer isomorphisms by the
elements v of C(u)".

The next step consists in showing that this parametrization is “algebraic”. The
precise meaning of this is the following;:

Proposition. There exists an algebraic morphism F: C(u)" x G* — " such that
F(v,2) = fy,x(z) foreveryv € C(u)" and z € G".

Proof. Call N, the normalizer of C(u) in G. Since all regular unipotents are con-
jugate, N, acts transitively on C(u)", so that one can identify the algebraic variety
C(u)" with the coset space N,/ C(u). Similarly, one may identify G with G/ C(u).
Let us now define an algebraic map

F':NyxG— g"

by the formula
F'(n,z) = Ad(zn™1).X
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(i.c. the image of X € g by the inner automorphism defined by zn~1). It is clear
that £/ (n, z) depends on n only mod. C(u), and that it depends on z also mod C(u).
Hence F’ factors out and gives amap of N,/ C(u) x G/C(u) into g". If we identify
N, /C(u) with C(u)" and G/C(u) with G*, we thus get a map

Fy: Clu)' x G" — ¢g".

It is well-known that G" is a normal variety and that G* — G" has codimension > 1
m G". Hence the same is true for C(u)" x G* in C(u)" x G". Since g" is an affine
variety, the map I extends uniquely to an algebraic map F': C(u)" x G¥ — g™
One checks immediately that for every fixed v € C(u)", the map z — F (v, z) has
the following properties: a) it commutes with the action of G; b) it maps v to X.
(Property a) is checked on G" first; by continuity, it is valid everywhere.) This
shows that F is the map we wanted. O

Corollary. The bijection
G-classes of G* — G-classes of g"

given by a Springer isomorphism f is independent of the choice of f.
This is easy. One uses the following elementary lemma:

Lemma. LetY, Z be two G-spaces. Assume G has finitely many orbits in each. Let
T be a connected space, and F : T x Y — Z a morphism such that, for everyt € T,
the map y — F(t, y) is a G-isomorphism of Y on Z.

Then, for every y € Y, the points F(t,y), t € T, belong to the same G-orbit.

Proof by induction on dim Y = dim Z. The statement is clear in dimension zero,
because of the connexity of 7. If dim ¥ > 0, there are finitely many open orbits in
Y (resp. Z); call Yy and Zy their union. It is clear that, for every ¢, the isomorphism
Fi: y — F(t,y) maps Yy into Zg. Moreover, the connexity of 7" implies that the
F;’s map a given connected component of Y into the same connected component of
Zo. And the induction hypothesis applies to ¥ — Y and Z — Z.

The corollary follows from the lemma, applied with 7 = C(u)", ¥ = G" and

Z=g"
Note. The structure of N,/C(u) seems interesting. If I am not mistaken, it is the
semi-direct product of G,, by a unipotent connected group V of dimension £ — 1;
moreover, the action of G,, on Lie V has weights equaltoky — 1, k3 —1, ..., k; — 1
where the k;’s are the exponents of the Weyl group.

Another interesting (and related) question is the behaviour of a Springer i1somor-
phism f when one restricts f to C(u). The tangent map to f is an endomorphism of
c(u) = Lie C(u). Is it always a non-zero multiple of the identity?

>

J.-P. Serre, June 1999
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