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Vanishing and non-vanishing for the first L”-cohomology
of groups

Marc Bourdon, Florian Martin and Alain Valette

Abstract. We prove two results on the first L”-cohomology H(lp) (I") of a finitely generated
group I™:

DIfN ¢ H C T is a chain of subgroups, with N non-amenable and normal in I', then
P_I(lp) (I'") = 0 as soon as ﬁ(lp) (H) = 0. This allows for a short proof of a result of W. Luck:
if N < I', N is infinite, finitely generated as a group, and I'/N contains an element of infinite
order, then ﬁ(z) Iy =0.

2)If ' acts isometrically, properly discontinuously on a proper CAT(—1) space X, with at
least 3 limit points in 2 X, then for p larger than the critical exponent ¢(I") of ' in X, one has

ﬁ(lp) (I") # 0. As a consequence we extend a result of Y. Shalom: let G be a cocompact lattice
in a rank 1 simple Lie group; if G is isomorphic to I, then e(G) < e(T").

Mathematics Subject Classification (2000). 20J06, 43A07, 43A15, 57TMO07.
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1. Introduction

Let I' be a countable group. Assume first that I" admits a K (I", 1)-space which 1s a
simplicial complex X finite in every dimension. Let X be the universal cover of X.
Fix p € [1, oo[. Denote by £2C* the space of p-summable complex k-cochains on
X, i.e. the £7-functions on the set C¥ of k-simplices of X. The L?-cohomology of T
is the reduced cohomology of the complex

di: £PC* — gpChHL
where dj, is the simplicial coboundary operator; we denote it by
E(kp) (I') = Kerdy/Im dy_;.

As explained at the beginning of [Gro93], this definition only depends on I



378 M. Bourdon, F. Martin and A. Valette CMH

For p = 2, the space 17("2) (I") 1s amodule over the von Neumann algebraof I, and
its von Neumann dimension is the k-th L2-Betti number of T, denoted by b’(‘2)(F);
recall that b’(‘z) (I')y = 0 if and only if 17(’;) (I') = 0.

For k = 1, it 1s possible to define the first L?-cohomology of I under the mere
assumption that I" is finitely generated. Denote by F (I') the space of all complex-
valued functions on I', and by A the left regular representation of I" on F (I"). Define
then the space of p-Dirichlet Bnite functions on I

D) ={f € FT) | Ar(g)f — f € £7(I) for every g € I'}.

If S 1s a finite generating set of I', define a norm on D, (I") /C by:

1f11p, = D lacs) f = £l

seSs

Denote by i : £7(I") — D, (I") the inclusion. The mrst L?-cohomology of I is
HY,) (1) = Dy(D)/i(€P ) +C.

Let us recall briefly why this definition is coherent with the previous one. If I" admits

afinite K (I", 1)-space X, we can choose one such that the 1-skeleton of X is a Cayley
graph G(I', S) of I'. This means that S is some finite generating subset of I, that
C% =T, and that C! is the set E- of oriented edges:

Er ={(x,sx) |xel,s eS8}
Then dy 1s the restriction to £7(I") of the coboundary operator
dr: F () - FEr); [ xy)—> fO)—f)]

Since X is contractible, by Poincaré’s lemma any closed cochain is exact, i.e. any
clement in Ker d; can be written as dr f, for some f € D,(I") defined up to an
additive constant. This means that dr: D,(I") — £#(Er) induces an isomorphism
of Banach spaces D,(I")/C — Ker d;, which maps i (¢#(I")) to Im dy. This shows

the equivalence of both definitions of H(IP) I).
Our first result is:

Theorem 1. Let N C H C I" be a chain of groups, with H and " Bnitely generated,
N inmnite and normal in T.

1) If H is non-amenable and ﬁ(lp)(H ) =0, then H}

(r)
2) Ifb(12)(H) =0, then b(12)(f‘) =0.

(') = 0.
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We do not know whether part 1) of Theorem 1 holds when H is amenable!.
As an application of part 2) of Theorem 1, we will give a very short proof of the
following result of W. Liick (Theorem 0.7 in [Lue97]):

Corollary 1. Let I" be a nnitely generated group. Assume that I contains an inBnite,
normal subgroup N, which is Qnitely generated as a group, and such that I /N is not
a torsion group. Then b(lz)(f‘ ) =0.

Using his theory of L2-Betti numbers for equivalence relations and group actions,
D. Gaboriau was able to improve the previous result by merely assuming that I'/N
is infinite (see [Gab02], Théoréme 6.8). It is a challenging, and vaguely irritating
question, to find a purely group cohomological proof of Gaboriau’s result.

As shown by Gaboriau’s result, non-vanishing of 17(12) is an obstruction for the
existence of finitely generated normal subgroups. We now present a non-vanishing
result. Its proof is based on an idea due to G. Elek (see [Ele97], Theorem 2).

Let X be a proper CAT(—1) space (see [BH99] for the definitions), and let I' be
an infinite, finitely generated, properly discontinuous subgroup of isometries of X.
Recall that the critical exponent of T 1s defined as

e(T) =inf{s > 0| X cre™187° < +o0},

where o is any origin in X, and where | - — - | denotes the distance in X. In many cases,
e(I") < 4-00; in particular, this happens when the isometry group of X is co-compact
(see Proposition 1.7 in [BM96]).

Theorem 2. Assume that e(I') is nnite. If the limit set of T" in 0X has at least 3
points, then for p > max{l, e(I")} the Banach space H(lp) (T") is non zero.

When I’ is in addition co-compact, Theorem 2 was already known to Pansu and
Gromov (see [Pan89] and page 258 in [Gro93]).

Theorem 2 is optimal for the co-compact lattices in rank one semi-simple Lie
group: for those p > ¢(I') if and only if H(;)(F) # 0, thanks to a result of Pansu
[Pan89]. Recall that e(I") = 1 for lattices I' in SO(2, 1) (and exactly for those among
rank one lattices). Since L?-cohomology of groups is an invariant of isomorphism,
by combining Pansu’s result with Theorem 2, we obtain the following generalisation
of a result of Shalom (Theorem 1.1 in [Sha00]):

Corollary 2. Let G be a co-compact lattice in a rank one semi-simple Lie group
(other than SO(2, 1)). Assume that G is isomorphic to a properly discontinuous
subgroup I of isometries of a proper CAT(—1) space X. Then ¢(G) < e(T). O

IWhen p = 2 and H is amenable, we appeal to the Cheeger-Gromov vanishing theorem [CG86]; to the best
of our knowledge, there is no analogue of this result in L”-cohomology for p # 2, although Gromov notices in
Remark (Ay) of [Gro93], 8.A41, that it should be the case.
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Shalom established this by different methods in the special case where X is the
symmetric space associated to SO(n, 1) or SU(n, 1); his result also holds for non-
cocompact lattices (when the Lie group is different from SO(2, 1)). In [BCG99] the
authors establish Corollary 2 in the case I is quasi-convex, this assumption simplifies
their proof but they do not really need it.

The equality case in Corollary 2, which leads to a rigidity theorem, is studied in
[Bou96] and [Yue96] and in [BCG99], when I' is in addition quasi-convex. Again
methods of proofs developed in [BCG99] should apply without the quasi-convex
assumption.

2. Group cohomology; proof of Theorem 1

Let V be a topological I"-module, i.c. a real or complex topological vector space
endowed with a continuous, lincar representation 7 : ' x V — V: (g, v) — 7w (g)v.
If H 1s a subgroup of I, we denote by V|y the space V viewed as an H-module for
the restricted action, and by V¥ the set of H-fixed points:

VE —weV |nhv=viorall h € H}.
We now introduce the space of 1-cocycles and 1-coboundaries on I', and the
I-cohomology with coefficients in V':
o ZWI, V) ={b:T — V| b(gh) =b(g)+n(g)b(h)forall g, h e T'};
e BUI', V) ={b e Z\(T', V) | there exists v € V such that b(g) = 7 (g)v — v for
allg eT'};
e HU(T',V)=Z\T,V)/BYT, V).

Suppose that V is a Banach space. The space Z!(I", V) of 1-cocycles is a
Fréchet space when endowed with the topology of pointwise convergence on I'. The
I-reduced cohomology space with coefficients in V is

I?I(F, V) =z, V)/B\(T, V).
Recall that V almost has invariant vectors if, for every finite subset F in I, and every
€ > 0, there exists a vector v of norm 1 in V, such that ||7(g)v — v|| < € for every
g € F. The following result is due to Guichardet (Theorem 1 and Corollary 1 in
[Gui72]).2

Proposition 1. Let I" be a countable group.

2Strictly speaking, Guichardet proves this result for unitary I"-modules; but his proof, only appealing to the
Banach isomorphism theorem, carries over without change to Banach I"-modules.
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1) Let V be a Banach I'-module with V' = 0. The map

HY(T, V) — H\(T, V)

is an isomorphism if and only if V does not almost have invariant vectors.

2) Let p € [1, oo[. Assume that I" is innite. The map
H\(T, e7(I") - H'(T, ¢ (I"))
is an isomorphism if and only if T" is non-amenable. O
We will prove:

Proposition 2. Let p € [1,o0[. Let N C H C I be a chain of groups, where I'
mnitely generated and N is inbnite and normal in T. If H'(H, (P (H)) = 0, then
HY(T, ¢7(I")) = 0.

The following link between ﬁ(lp)(f‘) and H'(T", £2(I")) has been noticed by sev-

eral people — see ¢.g. Lemma 3 in [BV97] (for p = 2 and I" non-amenable), or in
[Pul03] (in general). We give the easy argument for completeness.

Lemma 1. For mnitely generated I, there are isomorphisms
Dp(D)/G(¢F (1) +©) = H'(T, 7)) and  H},(T) = H'(T, €7 ().

Proof. The map D,(I") — ZYT, eP(T)): f — [g — Ar(g)f — f]is contin-
vous, with kernel the space C of constant functions, and the image of i (¢7(I")) 1s
exactly BY(T", ¢7(I")). Morcover this map is onto because of the classical fact that
HY(T, #(I)) =0. ]

Before proving Proposition 2 (for which we will actually give two proofs), we
explain how to deduce Theorem 1 from it.

Proof of Theorem 1 from Proposition 2. 1) In view of Lemma 1, the assumption of

Theorem 1 reads H'(H, ¢7 (H)) = 0. Since H is non-amenable, by Proposition 1
we have H'(H, ¢ (H)) = 0. By Proposition 2 we deduce H'(I", ¢7(I")) = 0. By
Lemma 1 again, we get the conclusion.

2) If H 1s non-amenable, the result is a particular case of the first part. If H is
amenable, then so 1s N, and the result follows from the Cheeger—Gromov vanishing
theorem [CG86]: if a group I" contains an infinite, amenable, normal subgroup, then
all L*-Betti numbers of I are zero. a
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Important remark. Cheeger and Gromov [CG86] defined L2-Betti numbers of
a group I" without any assumption on I', in particular not assuming I" to be finitely
generated. Using their definition, D. Gaboriau has shown us (private communication)
aproofthat b(lz) (I') = 0 always implies H'(T", £2(I")) = 0. As aconsequence, part 2)
of Theorem 1 holds even if H is not Bnitely generated.

Our first proof of Proposition 2 will require the following lemma, which is classical
for p =2.

Lemma 2. Let p € [1, oo. Let H be a countable group. Let X be a countable set
on which H acts freely. The following statements are equivalent:

1) H is amenable.

11) The permutation representation Ax of H on €7 (X), almost has invariant vectors.

Proof. We recall (see [Eym72]) that a group I" is amenable if and only if it satisfies
Reiter’s condition (Pp), i.e. for every finite subset ' C I' and € > 0, there exists
f et?)suchthat f > 0, | fll, =1, and |[Ar(g)f — fllp < eforg e F. In
particular 7 (I") almost has invariant vectors.

So if H is amenable, then ¢7 (X) almost has invariant vectors since it contains
£P(H) as a sub-module. This proves (1) = (i1).

To prove (i1) = (1), we assume that £7 (X) almost has invariant vectors and prove
in 3 steps that H satisfies Reiter’s property (P;), so is amenable. So fix a finite subset
FcH,ande > 0;find f € £7(X), | fll, =1,suchthat [Ax(h)f — fll, < ﬁ for
helF.

1) Replacing f with | f|, we may assume that f > 0.

2)Setg = fP,sothat g € £1(X), |lglli =1, g = 0. For h € F, we have:

Irx (g — gl = Y _1f(h'x)? — fx)?]

xeX
<p YIS0 — f@I G 4 P
xeX
= p(Z | f ") — f(x)|p);<2(f(h_1x)p_1 + f(x)p—l>%>_
xeX ex

p—1

< plAx()f = 1, (277 Y (P71 + )7

xeX

=2plax(W)f — fllp <€

where we have used consecutively® the inequalities

3The expert will recognize here the argument to pass from property (P, ) to property (Py), as in [Eym72].
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o |a? —bP| < pla—b|(@P~ ' +bPYHfora, b >0,
e Holder’s inequality,

2 1 » i
o (a+b)rT <27(aP-1 4+ br-T)fora,b >0,
and the fact that || /||, = 1.
3) Let (x;)n>1 be a set of representatives for the orbits of H in X. Define a

function g, on H by g,(h) = g(hx,), and set G = Y 2, g;. Then G > 0 and
1Gllh =Y jem ooy 8(hxy) = 3. g(x) = 1. Moreover, for h € F:

(MG =Gl =Y \ > (@ yxa) — glyxa))| < Ihx(hg —gll <€
yeH n=1

by the previous step. This establishes property (P;) for H. O

First proof of Proposition 2 (homological algebra)

Claim. H'(H, ¢?(T")|g) = 0. Choosing representatives for the right cosets of H in
", we identify £7(I")| i in an H -equivariant way with the ¢7-direct sum &¢7(H) of
[T" : H] copies of £ (H). Since cohomology commutes with finite direct sums, the
claim is clear if [I" : H] < co. Soassume that [I", H] = co. If b € Z'(H, ¢ (I")|g).
write b = (by)g>1 where by € ZY(H, ¢?(H)) for every k > 1. By assumption, for
each k, there is a function f; € £7(H) such that by (h) = Ay (h) fi — fi for every
he H. Set

Byh) = Gufi— fio.. ., A N — [N, 0,0,..)

so that By € BL(H, ¢7(I) |7) and By converges to b pomntwise on H, for N — o0.
This already shows that H' (H, ¢7(I")|z7) = 0. Notice now that, by Proposition 1 (2),
the assumption H'(H, ¢ (H)) = 0 implies that H is non-amenable. By Lemma 2
applied to X = T, this means that £7 (I")| z does not almost have invariant vectors.
By Proposition 1 (1), we get H!(H, ¢7(I")|z) = 0, proving the claim.

Recall from group cohomology (see ¢.g. 8.1 in [Gui80]) that, for any I"-module
V, there is an exact sequence

e R N
0— HYT/N,V¥y 5 HYT, V) et HYN, V)Y

wherei: VY — V denotes the inclusion. In particular,if VY = 0, then the restriction
map
Rest : HY(I', V) — HY(N, V|y)

is injective. We apply this with V = £7(I") (noticing that VY = 0 as N is infinite).
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Consider then the composition of restriction maps
H
Resty

H\(T, 07 () 25 HY(H, 07 (D)) — HY(N, €7(T)|):;

this composition is RestY, which is injective as we just saw. On the other hand, by
the claim this composition is also the zero map. So H(I', £7(I")) = 0, as was to be
established. O

Second proof of Proposition 2 (geometry). This proof works under the extra as-
sumption that H is finitely generated. Fix finite generating sets T for H, S for ",
with T C S, and consider the Cayley graph 4.(I", S) and its coboundary operator
dp: F(I') — F(Er). Then D,(I') = {f € F(') : dp f € ¢/ (Er)}. Similarly, let
dy be the coboundary operator associated with the Cayley graph 4(H, T').

Fix f € Dp(I'); the goal is to show that f € £7(I") + C. Let (g;);er be a set of
representatives for the right cosets of H in I, sothat I' = [ [;; Hgi. Fori € I, set
fitx) = f(xgi) (x € H). Then

lde (flly = > > 1 f (sxei) — f(xgn)|?

xeH seT

<D Y Ifsx) = f)IP

xel’ seS
= |ldr fII” < o0,

Lre. fi € Dp(H). Using our assumption and Lemma 1, we may write
fi = hi+ ui

where h; € £P(H) and u; € C. Define functions i and u on I" by h(xg;) = h;(x)
and u(xg;) = u; (x € H).

First claim. h € ¢P(I"). Indeed, since H is non-amenable (by Proposition 1), there
exists a constant C' > 0 (depending only on p, H, T') such that for every i € I:

IAillp < Clldu (hi)llp-
Then summing over i we obtain
1RG5 =D Ihill}
iel

<CPY Ndu(f)llp = CP YD > " hi(sx) — hi(x)l?

iel i€l xeH seT

=CPY D Y Ufilsx) = fit)lP = CP YN U f(sx) — f)I

iel xeH seT xel seT
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<CPY N 1flsx) = fI

xel sesS

= CPlldr ()l < oc.

Second claim. u is constant. Indeed, since f = h + u, and dr(f), dr(h) € £7(Er),
we have dr (1) € £7(Er). In particular this implies, for fixed indices i, j € I:

00 > Y |u((gjg; Hxgi) —ulxg)l” =Y |u((gjgr xgi) — uil?

xeN xeN

D lulx(gjg e — wil?

xeN

since N is normal in I". The latter sum is equal to
Z |btj —ui|p < Q.
xeN

Since N is infinite, this forces u#; = u, i.e. u is constant.
The first and the second claim together prove Proposition 2. O

3. Some results of W. Liick

The following result was obtained by Liick in [Luc94], Theorem 2.1. We recall his
short, clegant argument.

Lemma 3. Let N be a nitely generated group, and let « be an automorphism of N.
Let H = N X, Z be the corresponding semi-direct product. Then b%z)(H ) = 0.

Proof. The proof depends on two classical properties of the L2-Betti numbers for a
finitely generated group I':
. bé (I") < d(I"), where d(I") denotes the minimal number of generators of I';

« 1if A is a subgroup of finite index & in I, then b]&)(A) =d- bé)(f‘).

Let then p: H — Z denote the quotient map; for n > 1, set H, = p~'(nZ), a
subgroup of index n in H. Then:

n-bly (H) = blyy (Hy) < d(H,) < d(N) +1.

Since this holds for every n > 1, the lemma follows. O
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Proof of Corollary 1. Since I'/N is not a torsion group, we find a subgroup H of I",
containing N, such that H /N is infinite cyclic. Since N is finitely generated, we have
b(lz) (H) = 0, by Lemma 3. The result follows then immediately from Theorem 1.

Od

Example 1. We point out that Lemma 3 has no analogue in L?-cohomology, with
p # 2. To see it, let M be a 3-dimensional, compact, hyperbolic manifold which
fibers over the circle. Denote by X, the fiber of that fibration: this is a closed Riemann
surface of genus ¢ > 2. Then the fundamental group I' = 71 (M) admits a semi-
direct product decomposition I = 71 (%) X Z, so that H(lz)(F) = 0 by Lemma 2.
However

inf{p > 1: H,)(T) # 0} =2,

as was proven by Pansu [Pan89].

4. Proof of Theorem 2

Denote by 8 X the (Gromov) boundary of X. Let A = T'o N 8 X be the limit set of I'
m 30X (the closure of "o is taken in the compact set X U 0 X).

Since X i1s a CAT(—1) space, its boundary carries a natural metric d (called a
visual metric) which can be defined as follows (see [Bou95], Théoréme 2.5.1); for
every £ and n in 0X:

d(g.n) = e,

where (- | -) denotes the Gromov product on 3 X based on o, namely

, 1
€= lim 5o —xl+lo— ~lx = D.

Observe that there exists a constant B such that for every g € I there is a point
& in 0 X with d(go, [0, £)) < B. Indeed this property does not depend on the choice
of the origin 0. So we choose o on a bi-infinite geodesic (11, 2). Then go belongs
to (gn1, gn2). Now since X is Gromov-hyperbolic, one of the two points gn; or gn;
satisfies the claim.

Let u# be a Lipschitz function of (83X, d) which is non-constant on A ; such
functions do exist since A is not reduced to a point. Following G. Elek [Ele97], let
f be the function on I' defined by f(g) = u(&,), where &, is a point in 3X such that
d(g~0.[0.&)) < B.
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Claim. f € D,(I') for p > max{l, e(I')}. Indeed we have

£, =D D 168 = f@NP =D Y lulEsg) — ulEe)l?

seS gel’ ses gel’
<CY D ldEsg 61 =C Y Y e Pl
ses gel’ gel’ ses
< DX:e_plg_lo_O| < 400,
gel

where C, D are constants depending only on «, B and S. The details for the first in-
equality in the last line are the following. Observe that |(sg) " lo—g~o| = |s"lo—o|
is bounded above by an absolute constant. This implies that if x, and x,, respectively
denote the points on [0, &) and [o, &) whose distance from o is equal to | ¢ lo—ol,
then |x; — x,¢| 1s bounded above by an absolute constant. Now with the triangle
inequality

lx —y| <|x _xsg| + |ng _Xg| + |Xg -yl

and from the definition of the Gromov product, it follows that

1
(ésg|§g) = §(|0 _ng| + o _xg| - |xsg _Xg|)a

so that (£5,|£,) is bounded below by lg~1o — o| plus an absolute additive constant.
This proves the claim.

Since A has at least 3 points, the group I' 1s non-amenable (namely it is well-
known that A i1s a minimal set, and that an amenable group stabilises one or two
points in 3X). So by Proposition 1 and by Lemma 1, we must prove that f does not
belong to i (¢7(I")) + C. Assume it does, then f(g) tends to a constant number when
the length of g in I tends to +oc0. This contradicts the fact that u is non-constant
on A. O

Acknowledgements. We thank G. Courtois, A. Karlsson, G. Mislin and M. Puls for
useful comments on the first draft of this paper.

Note added in proof. The following example, suggested by F. Paulin, shows that
Corollary 2 fails for lattices in SO(2, 1). Start with the free group IF; on two gen-
erators. Embed it as a lattice G in SO(2, 1), so that ¢(G) = 1. On the other hand,
let X; be the regular tree of degree 4, with edge length A > 0. This is a proper
CAT(—1) space. LetIF; act as a properly discontinuous group I" of isometries of X,
by viewing X, as the Cayley tree of ;. Then e(I") = 10,%3, which is less than 1 for
A large enough.
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