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Quelques nouveaux phénoménes de rang 1 pour les groupes de
difféomorphismes du cercle

Andrés Navas

Résumé. Nous démontrons un théoréme de super-rigidité pour les actions de réseaux de rang
supérieur par difféomorphismes du cercle.

Abstract. We prove a superrigidity theorem for actions of higher rank lattices by diffeomor-
phisms of the circle.

Mathematics Subject Classification (2000). 57MO07, 58D05, 22F05, 37E10.
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1. Introduction

Le groupe des difféomorphismes du cercle partage quelques propriétés avec certains
groupes de Lie simples derang réel 1. L’un des phénomeénes principaux qui permettent
de justifier cette affirmation est donné par un théoréme obtenu par I’auteur dans
[27], lequel généralise dans plusicurs directions des résultats contenus dans [4], [5],
[11], [16], [34], [39] et [40] (valables toutefois sous des hypothéses de régularité
plus faibles). Rappelons qu’un groupe topologique localement compact possede la
propriété (T) de Kazhdan si toute représentation affine (isométrique) de I' sur un
espace de Hilbert admet un vecteur invariant.

Théoréme ([27]). Soit " un sous-groupe de Diff f’a (SY), avecw > 1/2. SiT posséde
la propriété (T) de Kazhdan, alors soit il est fini, soit il est topologiquement conjugué
au groupe des rotations.

Une question qui se pose de maniére naturelle est celle de savoir si les sous-groupes

localement compacts de Diff f’o‘ (SY, a > 1/2, sont toujours (T)-moyennables (c’est-

a-dire s’ils admettent des représentations affines géométriquement propres sur des
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espaces de Hilbert). L une des difficultés de cette question est le fait que I’on connait
trés peu de groupes qui ne sont pas (T)-moyennables et n’ont pas non plus la propriété
(T). En effet, la seule obstruction qu’on connait pour la (T)-moyennabilité est une
forme faible de la propriété (T), a savoir la propriété (T) relative.

Rappelons que si I' est un groupe localement compact et I'g est un sous-groupe
de I, alors on dit que la paire (I, I'g) posséde la propriété (T) relative si pour toute
représentation affine de I' sur un espace de Hilbert, il existe un vecteur invariant
par I'g. Un exemple non trivial d’une paire satisfaisant la propriété (T) relative est
(Z* xSL(2, Z), Z*). On trouve d’autres exemples ainsi que des reférences sur le sujet
dans [9] et [18]. Notons que pour tous les exemples connus, si aucun des groupes
I" ou I'p n’a déja la propriété (T), alors I'g contient un sous-groupe cocompact I')
qui est distingué dans un sous-groupe IV de I" de sorte que (I, I'}) vérifie encore la
propriété (T) relative (voir cependant [10]). Sous une telle hypothése, nous démon-
trons le résultat suivant, lequel peut étre considéré comme une petite généralisation
du théoréme énoncé précédemment.

Théoréme A. Soit T" un sous-groupe de Diff}["o‘(sl), avec a > 1/2. Supposons que
" possede un sous-groupe distingué U tel que la paire (I, T'y) satisfait la propriété
(T) relative. Alors soit T est topologiquement conjugué a un groupe de rotations, soit
[y est fini.

La démonstration de ce théoréme est inspirée de [27]. L’amélioration technique
essentielle consiste en une preuve courte et conceptuelle d’une proposition énon-
cée (et non démontrée) dans [27], suivant laquelle les sous-groupes de Diff 1++”‘(Sl),
a > 1/2, sur lesquels le «cocycle de Liouville » est cohomologiquement trivial sont
topologiquement conjugués a des sous-groupes de PSL(2, R).

Rappelons que les réseaux de groupes de Lie simples de rang supérieur satisfont
la propriété (T). Le théoréme dans [27] donne donc en particulier une nouvelle dé-
monstration (en classe C1+%, & > 1/2) de1’un des résultats obtenus par E. Ghys dans
[16] et indépendamment par M. Burger et N. Monod dans [4], a savoir pour toute
représentation ¢ d’un réseau I d’un groupe de Lie simple de rang réel supérieur ou
égal a2 dans le groupe des difféomorphismes directs et de classe C! du cercle, I'image
¢ (I") est finie. Néanmoins, dans [16], E. Ghys obtient également la classification des
actions de réseaux irréductibles de groupes de Lie semi-simples de rang supérieur par
difféomorphismes directs et de classe C! du cercle (voir aussi [5] et le §14 de [23],
ou M. Burger et N. Monod obtiennent des résultats analogues grace a leur étude de
la cohomologie bornée). Signalons en passant que dans [4], [5] et [16], on trouve des
résultats partiels pour des actions par hroméomorphismes du cercle.

Théoréme ([16]). Soit G un groupe de Lie semi-simple connexe de rang réel supérieur
ou égal a2 et I" un réseau irréductible de G. Soit o un homomorphisme de I" vers le
groupe des difféomorphismes de classe C' du cercle respectant 'orientation. Alors,
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ou bien ¢ a une image finie cyclique, ou bien ¢ est semiconjugué a un revétement fini
d’un homomorphisme obtenu en faisant suivre -

— le plongement de T" dans G,
— une surjection de G sur PSL(2, R),

— [Dactionprojective de PSL(2, R) sur le cercle (identifié a la droite projective réelle).

Pour parvenir a la preuve de ce résultat, E. Ghys examine d’abord le cas des ré-
seaux de groupes de Lie semi-simples <classiques > (SL(n, R), Sp(2r, R), SO(2, q),
SU(2, g) et PSL(2, R) x PSL(2, R)), et puis en utilisant quelques aspects de la théo-
rie de classification des groupes de Lie semi-simples, il aboutit au résultat énoncé.
Remarquons que les quatre premiers cas correspondent a des groupes de Lie simples
de rang réel supérieur ou égal a 2 (les réseaux correspondants vérifient donc la pro-
priété (T) de Kazhdan). Le dernier cas est dynamiquement plus intéressant. Dans cette
situation, E. Ghys démontre que tout homomorphisme ¢ : I' — Diff L(Sl) transite,
modulo une semiconjugaison et un revétement fini, par la projection de I' sur 1’'un
des facteurs, et puis par ’action projective de ce facteur sur le cercle.

Pour généraliser le théoréme de Ghys ci-dessus, on est confronté au probléme de
définir la notion de rang réel pour un groupe quelconque. Bien que plusieurs tentatives
ont été déja faites dans cette direction (voir par exemple [2]), nous suivrons plutdt
une idée trés simple qui a été introduite par Y. Shalom dans [35]. Le point essentiel
de son approche consiste a tirer partic de la commutativité des facteurs d’un groupe,
vue comme une hypothése de rang supérieur. Ainsi, le <cadre général > que nous
considérerons — et qui est aussi celui de [35] — est le suivant :

(@) G = G| x --- x Gy est un groupe topologique compactement engendré, avec
k > 2, et I' est un réseau de type fini et uniforme (c’est-a-dire un sous-groupe
discret et cocompact) de G |

(b) les projections de I' sur chaque facteur G; sont denses (nous désignérons par pr;
la projection de G sur G;);

(¢) dans le cas ou chaque G; est un groupe algébrique linéaire sur un corps local, on
acceptera aussi la possibilité que I" soit un réseau non cocompact dans G.

Remarquons que dans le cas (¢) ci-dessus, le réseau I” est automatiquement de type
fini. Ceci découle de certains résultats de D. Kazhdan et G. Margulis. D autre part, la
condition (b) est une condition d’irréductibilité comme celle des résecaux considérés
dans le théoréme de Ghys.

Dans 'introduction de [35] on peut trouver des motivations ainsi que des réfé-
rences concernant le cadre général que nous considérons. Signalons en tout cas que
des exemples de réseaux <non linéaires> vérifiant les propriétés (a) et (b) ont été
construits dans [3], [6] et [33]. Pour ces réseaux, ainsi que pour les réseaux irréduc-
tibles <linéaires >, nous obtenons le résultat de super-rigidité suivant.
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Théoréme B. Dans le cadre précédent, supposons que ¢: I' — Diff }|_+”‘ (S1) soit un
homomorphisme tel que o« > 1/2 et tel que ¢ (I') ne préserve aucune mesure de proba-
bilité sur le cercle. Alors soit ¢ (I") est topologiquement conjugué a un sous-groupe
de PSL(2, R), soit ¢ est semiconjugué a un revétement fini d'un homomorphisme
obtenu en faisant suivre

— le plongement de 1" dans G,
— la projection de G sur ['un des G;,

— une action ® de G; par homéomorphismes du cercle.

L’hypothése suivant laquelle ¢ (I') ne fixe aucune mesure de probabilité du cercle
peut étre supprimée, pourvu que 1’on suppose que le premier espace de cohomologie
a valeurs réels de tout sous-groupe distingué et d’indice fini de I" soit trivial. Remar-
quons que d’aprés [35], cette hypothése est vérifiée lorsque H! (G, R) est trivial (¢ est
le cas par exemple si les G; sont des groupes linéaires algébriques semi-simples sur
des corps locaux).

Corollaire. Soit I' un réseau vérifiant les hypotheses du cadre général et p: I' —
Diffﬂj’a(sl) un homomorphisme, avec o > 1/2. Si HY(T'o,R) = {0} pour tout
sous-groupe Uy d’indice fini et distingué dans I, alors la conclusion du théoréeme B
ci-dessus est encore satisfaite.

D’aprés ce qui précede, pour comprendre les actions de réseaux irréductibles de
rang supérieur par difféomorphismes du cercle, il suffit de connaitre les actions de
groupes topologiques compactement engendrés. Or, ces groupes étant localement
compacts, une application simple du théoréme de Montgomery et Zippin montre que
@ (G;) aune structure de groupe de Lie (réel). D’autre part, on connait parfaitement
la classification des actions fidéles de groupes de Lie connexes par homéomorphismes
directs du cercle : ces actions sont induites par celles du groupe des rotations SO(2, R),
du groupe des translations (R, 4), du groupe affine Aff (R, +), du groupe projectif
et ses revétements finis PSLy(2,R), k > 1, ainsi que de son revétement univer-
sel PSL(2, R). En nous appuyant sur cette classification, nous pouvons donner une
version plus précise du théoréme B sous 1’'une quelconque des hypothéses suivantes :

(1) le noyau de ¢ est fini et les orbites de ¢ (I") sont denses,

(i1) lenoyau de ¢ est fini et ¢ est a valeurs dans le groupe Diff? (SY) des difféomor-
phismes directs et analytiques réels du cercle,

(1i1) les sous-groupes distingués de I" sont soit finis soit d’indice fini (c’est-a-dire
que I satisfait le théoréme des sous-groupes distingués de Margulis).

Théoréme C. Supposons que les hypotheses du corollaire soient vérifiées, que chaque
groupe G; soit non discret, et qu’au moins ['une des hypothéses (1), (i) ou (ii1)
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ci-dessus soit satisfaite. Si l'image ¢ (") n'est pas finie alors, a semiconjugaison
topologique et a revétement fini prés, ¢(I") est un sous-groupe non métabélien de
PSL(2, R).

Les hypotheses (1), (i1) ou (ii1) sont faites de sorte a éviter le cas éventuel d’un
groupe de Lic avec une infinité de composantes connexes dont 1’action sur le cercle
transite, a semiconjugaison topologique pres, a travers du quotient par rapport a la
composante connexe de I'identité. Signalons que I’hypothése (iii) est satisfaite par
les réseaux de groupes algébriques, ainsi que par ceux qui sont construits dans [6]
(voir [1] pour une version générale de ce fait).

Un corollaire intéressant de ce qui précede est le fait que le groupe G de Thompson
n’est pas un réseau vérifiant les hypothéses du théoréme C. Remarquons toutefois que
le fait que G n’est pas un réseau dans un groupe algébrique sur un corps local découle
du fait que G, étant un groupe simple, n’est pas résiducllement fini. De plus, sa
dimension cohomologique est infinie (voir [17]).

Latechnique de démonstration des théorémes B et C est fortement inspirée par les
résultats obtenus par Y. Shalom dans [35], notamment le théoréme de super-rigidité
cohomologique. Remarquons par ailleurs qu’avec nos résultat et le théoréme d’arith-
meticité 0.5 de [35], il est possible de donner dans notre contexte une description
précise (du point de vue algébrique) des réseaux qui agissent sur le cercle (avec
mmage infinie). Ceci permet d’utiliser ’argument du §10 de [16] pour obtenir des
conjugaisons lisses dés que les actions sont suffisamment différentiables (on obtient
en particulier de véritables conjugaisons topologiques pour des morphismes a valeurs
dans Diff2 (S1)).

Signalons finalement que Y. Neretin a introduit un groupe (a savoir, le groupe
des sphéromorphismes, connu aussi sous le nom de groupe de Neretin) qui est un
analogue combinatoire (ou p-adique) du groupe des difféomorphismes du cercle. En
utilisant une technique introduite par D. Farley dans [12], nous avons établi dans [28]
un résultat analogue a celui de [27] pour ce groupe, qui étend également le théoréme
classique d’Alperin et Watatani dans le cas d’un arbre simplicial homogéne (voir
[18]). Nous ignorons si ’on peut obtenir un analogue du théoréme B pour le groupe
de Neretin. Un tel résultat serait une généralisation du théoréme de super-rigidité
pour des actions isométriques sur des arbres obtenu par Y. Shalom dans [35] (voir
aussi [24]).

2. Rappels cohomologiques

2.1. Cohomologie continue. Soit & une représentation unitaire d’un groupe topo-
logique localement compact I sur un espace de Hilbert #¢. On dit que ¢: ' — #
estun cocycle par rapport a 6 si c est une application continue et si la correspondance
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g > 0(g) + c(g) définit une représentation affine de I, ce qui revient a dire que
pour tout g, 2 € I" on a c(gh) = c(g) + 0(g)c(h). On dit qu’un cocycle ¢ est un
cobord s’1l existe K € J¢ qui est fix¢é par I’action affine induite, ce qui se traduit par
le fait que c(g) = K — 0(g)K pour tout g € I'. Le premier espace de cohomologie
(continue) HI(T", ) est défini comme le quotient entre 1’espace des cocycles et le
sous-espace des cobords. Un groupe topologique localement compact I" possede la
propriété (T) de Kazhdan si pour toute représentation 0 continue et unitaire de I',
’espace HY(T", 0) est trivial.

Comme nous I’avons déja signalé dans I'introduction, le fait que Difff'“(sl) ne
contient pas de sous-groupe de Kazhdan non compact pour & > 1/2 est un résultat
obtenu dans [27]. Le probléme de savoir s’il existe des sous-groupes (non triviaux)
de Homéo, (R) vérifiant la propriéte (T) est ouvert. Quant au cas des difféomor-
phismes de I'intervalle, rappelons que d’aprés le théoreme de stabilité de Thurston,
tout sous-groupe I" de Diff L([O, 1]) de type fini et non réduit a 1’identité admet un
homomorphisme non trivial ¢ : I' — (R, +) (voir [7] pour une preuve élémentaire de
cerésultat ou [37] pour la démonstration originale). Puisque la propriété (T) passe aux
quotients et puisque les groupes abéliens de type fini et non finis n’ont pas la propriété
(T), ceci implique qu’aucun sous-groupe de type fini et non trivial de Diffi_([O, 1]
n’a la propriété (T).

Une preuve simple de ce dernier fait apparait dans [41]. En maniére d’exemple,
nous le redémontrerons sous une hypothése de régularité supplémentaire. La preuve
ci-dessus est inspirée de [27].

Exemple 2.1. Rappelons d’abord que Diffi_"’”([o, 1]) (resp. Diffif"‘(sl)) désigne
le groupe des difféomorphismes directs de I'intervalle (resp. du cercle) qui ont une
dérivée Holder continue d’exposant ¢ > 0, avec un inverse satisfaisant la méme
propriété.

Soit I" un sous-groupe de Diff f’"‘ ([0, 17), ou & > 0. Quitte a considérer un quotient
de I', on peut supposer qu’il n’admet pas de point (globalement) fixe sur 10, 1[.
Considérons la mesure de Radon dpe = dx/x sur 10, 1[, et notons 6 la représentation
réguliére de I" dans J¢ = QCHZQ([O, 1], dw), c’est-a-dire

e dg 12
0(e™HK () = Kz -]
o
Pour chaque g € I' considérons la fonction
B dg 1/2
e =1-[Fw]". M
"

Larelation de cocycle c(gh) = c(g)+0(g)c(h) estsatisfaite, car c estle cobord formel
de la fonction constante égale a 1 (qui n’appartient pas a #¢). Nous affirmons d’autre
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part que c(g) appartient a J¢. En effet, sig € I" et x €]0, 1] alors g(x) = xg’(y) pour
certain y €]0, x[, et donc

xg'(x) _ xg'(x) _ g'o)
glx)  xg/(y) g

En notant C = infy¢[o 1] ¢'(x), du fait que |/ (x) — g/(y)| < C|x — y|* < Cx% on

obtient
171/2 g'x)q2) 1 g (x)71/2
H —[g<x>] =7 [g/m] —1‘
1 lg"(x) — &'y
S x2 g ()2 (g ()12 + g (1))
C x“
< E ; m7

et cette dernicre fonction appartient a DCHz{([O, 1], dx) dés que & > 0. Puisque

1 ’
_ 17172 [g/(x)71/2
e = [ |[5]7 - [55]
o |Lx g(x)
ceci montre 1’affirmation.
Si T possede la propriété (T) alors il existe une fonction K € J telle que c(g) =

K — 6(g)K . En reprenant les définitions on vérifie que la mesure v sur 10, 1] dont la
fonction densité (par rapport a du) est le carré de

2

x—1—-K(x)

est invariante par I". Cette mesure de Radon v a une masse infinie sur 0, 1[. D autre
part, on a v(Je, 1[) < oo pour tout ¢ > 0. Le fait que I' ne peut pas avoir la propriété
(T) découle ainsi du lemme élémentaire suivant.

Lemme 2.2. Soit v une mesure de Radon (non triviale) sur 10, 1[ telle que v (e, 1[) <
0o pour tout ¢ > 0. Si T" est un sous-groupe de Homéo, ([0, 1]) qui préserve v, alors
I" admet des points (globalement) fixes sur 10, 1[.

Preuve. Fixons deux points a et b dans 10, 1] tels que a < b et v([a, b)) > 0.
Supposons que I' n’ait pas de point globalement fixe sur ]0, 1[ et désignons par
¢ € [a, 1]1e supremum de 1’orbite de a par I'. Le point ¢ est globalement fixé, et donc
¢ = 1. Ceci entraine 1’existence d’un élément g € I tel que g(a) > b. On obtient
ainsiv([b, 1)) < v([a, b)) +v([b, 1)) = v([a, 1]) = v([g(a), 1D < v([b, 1), ce qui
est absurde. O
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Remarquons par ailleurs que si un sous-groupe de Homéo ([0, 1]) préserve une
mesure de Radon (non triviale) sur 10, 1[, alors la fonction nombre de translation par
rapport a v fournit un homomorphisme de I" sur (R, +), et cet homomorphisme est
non trivial si et seulement si I n’admet pas de point globalement fixe a I’'intéricur de
I'intervalle (voir [31]).

2.2. Cohomologie réduite. Etant donnée une représentation unitaire 6 d’un groupe
topologique localement compact I" sur un espace de Hilbert ¢, on considére la to-
pologie sur 1’espace des cocycles suivant laquelle une suite ¢, de cocycles converge
vers ¢ si et sculement si pour tout sous-ensemble compact C de I', la valeur de
sup,ec llen(g) — c(g) || converge vers zéro lorsque n tend vers I'infini. Le premier es-

pace de cohomologie réduite H' (T, §) est alors défini comme étant le quotient entre
I’espace des cocycles et la fermeture du sous-espace des cobords. Signalons que
dans [35], Y. Shalom a démontré que la propriété (T) peut étre testée en cohomolo-
gie réduite pour les groupes compactement engendrés. Plus précisément, un groupe
topologique compactement engendré I" posséde la propriété (T) de Kazhdan si et
seulement si pour toute représentation 6 continue et unitaire de I', I’espace H' (T, 6)
est trivial (voir aussi [22]).

Définition 2.3. La représentation unitaire 6 posséde presque des vecteurs invariants
s’1l existe une suite de vecteurs unitaires K, € J telle que pour tout sous-ensemble
compact C de I', 1a valeur de supycc [|Kn — 0(g) K| tend vers zéro lorsque n tend
vers I’infini.

Le lemme élémentaire suivant, di a P. Delorme (voir [18]), s avére fondamental
pour étudier la cohomologie réduite. Nous en rappelons la preuve afin que le texte
soit le plus autocontenu possible.

Lemme 2.4. Si 0 n'a pas presque des vecteurs invariants alors [’injection de la
cohomologie continue H\(T", ) dans la cohomologie réduite H' (", 0) est un isomor-
phisme.

Preuve. Soit ¢ un cocycle associé a & dont sa classe en cohomologie réduite estnulle.
Supposons que ¢ n’ait pas presque des vecteurs invariants. Nous allons démontrer
dans ce cas que ¢ est nul en cohomologie continue.

SoitI'! une partie génératrice compacte de I'. Par hypothése, il existe une constante
& > 0 telle que pour tout K € #,

sup [|[K —0(h)K|| > || K. 2
hel'l

Puisque ¢ est nul en cohomologie réduite, il existe une suite (K,) dans F telle
que pour tout g € I on a ¢(g) = lim,_, 1 (K, — 0(g)K,). L'inégalité (2) donne
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M = supyri lle(h)|| > elim sup,, ||K,|l, et donc lim sup, | K, || < M /e. Par suite,
le(@)|l < limsup,_, o ([IKnll + [10(2)Knll) < 2M /e pour tout g € I'. Le cocycle
¢ est donc uniformément borné, et par le lemme du centre de Tits (voir [18]), il est
cohomologiquement trivial. Ceci termine la démonstration. a

Nous donnons ci-dessus un énonc¢ du théoréme de super-rigidité en cohomologie
réduite d a'Y. Shalom. Nous signalons cependant que nous n’utiliserons pas ce théo-
réme dans toute sa puissance. En effet, dans nos applications nous nous raménerons
assez rapidement au cas ou il n’y a pas presque des vecteurs invariants pour 1’action
unitaire correspondante. Or, il se trouve que dans ce cas les cohomologies réduite et
continue coincident, et le théoreme de super-rigidité devient bien plus élémentaire
dans ce dernier contexte. Néanmoins, nous avons préféré présenter nos résultats en
termes de la cohomologie réduite car nous partageons le principe exprimé au §II de
[35]. suivant lequel «le bon contexte de présentation est celui de la cohomologie
réduite > (voir le commentaire précédant la proposition 1.22 dans [35]).

Théoréme ([31])). Soient G = G1 x - - - x G un groupe topologique compactement
engendré et I un réseau dans G satisfaisant les propriétés du cadre général. Si
0: T — U(H) est une représentation unitaire et ¢ un cocycle associé, alors c est
cohomologue dans H\ (T, 0) a un cocycle de la forme cq 4 c1 + - - - + ¢ qui satisfait :

(1) cg est a valeurs dans ['espace Hy des vecteurs 6 (I')-invariants, et il s étend
continilment en un cocycle ( par rapport a la représentation unitaire triviale)
de G avaleurs dans o ,

(1) pourtouti € {1,...,k} le cocycle c; est avaleurs dans un sous-espace ; de
F qui est O(1)-invariant, et sur lequel [’action affine 6 +c; s 'étend continiiment
en une action affine de G qui se factorise sur Gj.

Remarquons que, si 6 n’a pas de vecteur invariant non nul, alors la composante
cg ci-dessus est triviale. De plus, d’aprés le lemme de Delorme, si 6 n’a pas presque
des vecteurs invariants, alors ¢ est en fait cohomologue (dans H'(T", 0)) au cocycle
c1+ -+t

Ce résultat remarquable a été obtenu par Y. Shalom en s’inspirant de la preuve du
théoréme des sous-groupes distingués de G. Margulis. Nous n’avons malheureuse-
ment pas assez de place pour en dire plus. Nous nous contenterons de rappeler I'un des
lemmes clés de la fin de sa démonstration, lequel sera utilisé plus loin pour étendre des
homomorphismes. Pour cela, rappelons qu’un groupe topologique H est séquentiel-
lement complet si toute suite (h,) de H vérifiant lim,, ,_, 4 o0 h,;lhn = 1dy converge
dans H. Le lemme ci-dessus s’appuie sur le fait (facile a vérifier) qu une application
uniformément continue définie sur un sous-espace d’un espace métrique séparable
et a valeurs dans un groupe topologique Hausdorff séquentiellement complet s’étend
contintiment a la fermeture de ce sous-espace.
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Lemme 2.5. Soient G et I" deux groupes comme dans le cadre général, et soitp: I' —
H un homomorphisme, ott H est un groupe topologique Hausdorff séquentiellement
complet. Supposons qu'il existe i € {1, ..., k} tel que pour toute suite (g,) dans I"
vérifiant lim,_ 100 pr;(gn) = 1dgG,, on a lim,_ 1 ¢(gy) = 1du. Alors ¢ s'étend
continfiment en un homomorphisme de G vers H qui se factorise sur G;.

3. Le cocycle de Liouville

3.1. Annulation du cocycle de Liouville en cohomologie continue. Nous nous
proposons de donner dans la suite une formulation plus conceptuelle de la méthode
mtroduite dans [27]. Pour cela, rappelons d’abord que la mesure de Liouville Lv sur
S! x S est celle dont la fonction densité est

1
X, Y) > —————.
O G )
Cette mesure a une masse totale infinie. De plus, elle est invariante par PSL(2, R),

car pour toute quadruple de points a < b < ¢ < d < a cycliquement ordonnés sur le
cercle on a

Lv([a, b] x [¢,d]) = log([a, b, ¢, d]), 3)

oulf[-,-,-, ] désigne le birapport. La mesure Lv induit une mesure de Radon sur
I’espace des géodésiques non orientées du disque de Poincaré (un courant géode-
sique).

Désignons par # = QC%A(SI x S!, Lv) I'espace des fonctions K de carré in-
tégrable qui satisfont presque-partout I’égalité¢ K (x, y) = K (y, x). Pour le groupe
Diff E’O‘(Sl), a > 1/2, il existe un cocycle naturel associé a la représentation régu-
liere 6 sur #. Ce cocycle de Liouville ¢ correspond au cobord formel associé a la
fonction constante égale a 1. Plus concrétement,

g™ ) =1 [sin (F72) [/ @& 0]/ sin (£ ED)|
Le fait que ¢(g) appartient a J€ dés que @ > 1/2 estune remarque diie essentiellement
a G. Segal et A. Reznikov. Ceci reste valable lorsque g est de classe C! et sa dérivée
appartient a I’espace de Sobolev #1/2+¢(S1), avec & > 0 (voir [32]).

Supposons que I' soit un sous-groupe de Diff}|_+a(Sl), a > 1/2, tel que la res-
triction du cocycle de Liouville a I' soit triviale (en cohomologie continue). Il existe
alors une fonction K € J# telle que ¢(g) = K — 6(g)K pour tout g € I". Ceci se
traduit par le fait que la mesure Lvg sur S! x S! donnée par dLvg = [1 — K]?dLv
est invariante par .
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Fixons une quadruple quelconque de points a < b < ¢ < d < a cycliquement
ordonngés sur le cercle. Puisque pour tout g € I on a

b pd
Lvg([a,b] x [c,d]) = / / [1 — K(r, s)]2 dLv,

d’aprés 1’inégalité triangulaire et 1’égalité (3) on obtient

[/ Lok (fa, b1 x [e, d1) — flog (1a. b, ¢ d1)| < K.

Par le méme argument,

Lok (12(@, g)] x [2(0), e(@)]) — | log (1g(@). ), &(@). g(@)])| < IK .

Puisque Lvg est invariante par g,

|Viog ([e(@), ¢(B). ¢(0), g@1) — og(la, b, e, dD| < 2IK .

Dong, si [a, b, ¢, d] = 2 alors

[8(a), g(0), 2(e), g(d)] < exp([Iog @) + 21K [12]*).
Nous en déduisons le lemme suivant.

Lemme 3.1. Si I" est un sous-groupe de Diff f‘“ (SY, « > 1/2, tel que la restriction
du cocycle de Liouville a ' est cohomologiquement triviale, alors il existe M > 0
telle que pour tout g € I et toute quadruple de points a <b < ¢ < d < a vérifiant
la,b,c,d] =2, 0nalga), gb),glc), g(d)] <2M.

Les sous-groupes de Homéo_, (S') vérifiant 1a conclusion du lemme précédent sont
appelés uniformément quasi-symétriques (ils sont appelés M-uniformément quasi-
symétriques si 1’on veut insister sur la constante M). Ces groupes furent étudiés
dans [20] et [21] par A. Hinkkanen, qui s’intéressait au probleéme de savoir s’ils sont
toujours quasi-symétriquement conjugués a des sous-groupes de PSL(2, R). L'une
des motivations de ce probléme était le fait que la version en dimension 2 (remplacer
«quasi-symétrique > par <quasi-conforme> et le «cercle> par la «sphére>) était
déja connue (voir [36]). A. Hinkkanen n’a pas complétement résolu cette question,
mais il y a répondu par I"affirmative dans plusieurs cas. Quelque temps apres, et a
I’aide du théoréme de convergence (voir [8] et [14]), on a démontré que la réponse
est affirmative si 1’on considére seulement des conjugaisons topologiques. Bien que
le probléme de la conjugaison quasi-symétrique reste encore ouvert, ce résultat suffit
pour établir la proposition suivante, énoncée toutefois sur une forme un peu plus forte
dans [27] (voir [30] pour la preuve de la version générale).
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Proposition 3.2. Si I est un sous-groupe de Diﬂ'f'“(Sl), a > 172, tel que la
restriction du cocycle de Liouville a T est cohomologiquement triviale, alors " est
topologiquement conjugué a un sous-groupe de PSL(2, R).

Un point remarquable de la proposition précédente consiste en ce que la classe
de différentiabilité démandée est plus petite que C? : le théoréme de Denjoy n’est
pas a priori valable ! (voir le Chapitre X de [19]). Le fait d”avoir obtenu une vraie
conjugaison topologique et pas seulement une semiconjugaison est donc relié a des
propriétés de I’action du groupe en général, et pas a celles d”un seul de ses ¢léments.

3.2. Une application pour les paires avec la propriété (T) relative. Le but de
ce paragraphe est de donner la démonstration du théoréme A. Pour cela, reprenons
la technique du paragraphe précédent. Le cocycle de Liouville considéré induit une
représentation affine de I' sur OCHZQ’A(SI x S, Lv). Si (I', T'y) posséde la propriété (T)
relative alors cette représentation admet un vecteur invariant par I'g, et les arguments
du §3.1 (voir la proposition 3.2) montrent que le groupe 'y est topologiquement
conjugué a un sous-groupe du groupe de Mébius.

Lapropriété (T) relative est stable par des extensions centrales finies. Ainsi, I’argu-
ment de passage au revétement a trois feuillets de la preuve du lemme 3.3 de [27]
montre que g est en fait topologiquement conjugué a un sous-groupe du groupe
des rotations. Pour que le texte soit autocontenu, nous rappelons cet argument, dii a
D. Witte Morris.

Considérons le revétement a trois feuillets du cercle. Sur ce revétement S' agit
(par difféomorphismes de classe C'T%) une extension I" de T de la forme

0—7Z/3Z —1 —T—0.

Si 1’on désigne par Iy la préimage de Ty dans I, alors du fait que la paire (I, I')
a la propriété (T) relative et que Z/3Z est un groupe fini, la paire (', T'g) vérifie
encore la propriété (T) relative (voir la page 9 de [18] pour I'idée de la preuve de
cette affirmation). Comme S! g’identifie au cercle, I’argument plus haut montre que
le groupe I'o lui aussi est topologiquement conjugué a un sous-groupe de PSL(2, R).
Or, si g est un élément de 'y qui fixe un point du cercle nitial, alors 1’'une de ses
préimages dans Iy fixe trois points de S! par 1’action induite (voir la figure 1). Ceci
mplique évidemment que I'g est en fait topologiquement conjugué a un sous-groupe
de SO(2,R).

Revenons a la preuve du théoréme A. Si le groupe I'g n’est pas fini, alors il est
topologiquement conjugué a un groupe dense de rotations. Or, il est facile de voir que
le normalisateur dans Homéo. (S!) d’un sous-groupe dense de SO(2, R) coincide
avec le groupe des rotations. Par suite, I" est topologiquement conjugué a un sous-
groupe de SO(2, R), ce qui achéve la démonstration.
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Sl

gl —

Figure 1

Remarque 3.3. Le théoréme A et ce paragraphe en général ne font que rendre plus
naturelle la question suivante : quels sont les sous-groupes de Diff}|_+a(Sl), a>1/2,
pour lesquels 1’action affine associée a la restriction du cocycle de Liouville est
géométriquement propre ? Par exemple, ce n’est pas le cas pour le (lissage du) groupe
de Thompson G (voir [17]), mais ce groupe est encore (T)-moyennable (voir [12]).
La méme question se pose pour ’extension finie I' de I qui agit sur le revétement a
trois feuillets du cercle original.

3.3. Annulation en cohomologie réduite. Soient « > 1/2 et I' un sous-groupe de
Diff }|_+O‘ (S1). Nous savons d’aprés le §3.1 que si la restriction du cocycle de Liouville
a I esttriviale (en cohomologie continue), alors I" est topologiquement conjugué a un
sous-groupe de PSL(2, R). Dans la suite, nous allons étudier le cocycle de Liouville
en cohomologie réduite a I’aide du lemme de Delorme.

Lemme 3.4. Supposons que le cocycle de Liouville restreint a I" soit non nul en
cohomologie continue mais nul en cohomologie réduite. Alors il existe une mesure
de probabilité sur le cercle qui est invariante par T

Preuve. D’apres le lemme de Delorme, si ¢ est nul en cohomologie réduite et non nul
en cohomologie continue, alors 6 posséde presque des vecteurs invariants. Autrement
dit, 1l existe une suite (K,,) de vecteurs unitaires de °C@zRgA(Sl x S!, Lv) telle que pour
tout g € I', la valeur de || K, — 6(g)K,|| converge vers zéro lorsque n tend vers
I’infini. Définisons une suite (1) de mesures de probabilité sur S' par

mA):/ fK%(m)dLu
st JA
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Pour toute fonction continue ¢: S!' — Ron a

1 @) = # @)@ <holle [ [ K2 = @K 2| Lo

<llelleoll Kn +0(2) Knll p211Kn — 6()Knll g2
<2|plleellKn — () Knll g2

On déduit que |, (@) — d(2)«(un)(@)| tend vers zéro lorsque n tend vers 'infini.
Ainsi, st p est un point d’adhérence de (1), alors p est une mesure de probabilité
sur S! invariante par I'. m]

Remarque 3.5. Notons que si 6 a un vecteur invariant non nul K € OC%RgA(Sl X
S!, Lv), alors quitte a remplacer K par K/| K ||, la mesure g est une mesure de
probabilité du cercle qui est invariante par I".

4. Super-rigidité pour les réseaux de rang supérieur

4.1. Prolongement de ’action. Plagons-nous sous les hypothéses du théoréme B.

Pour chaque fonction K € # = £%R§A(Sl x S!, Lv) de norme 1, notons g la
mesure de probabilité sur S! obtenue en projettant sur la premiére coordonnée. Plus

précisément,
pet) = [ [ Kowyito.
s1Ja

Désignons par mes I’application mes(K) = g définie sur la sphére unité de J€ et a
valeurs dans ’espace des mesures de probabilité du cercle absolument continues par
rapport a la mesure de Lebesgue. Remarquons que I’on aurait pu définir I’application
mes en projettant sur la deuxieme coordonnée, mais étant donnée la propriété de
symétrie des fonctions de £%R§A(Sl x S1, Lv), ceci revient au méme.

L’application mes est équivariante par rapport a I', dans le sens que pour tout
g € I' et pour toute fonction K € £HZ§A(SI x S!, Lv) de norme 1,

mes(0(g)K) = ¢(g)«(mes(K)). )

Supposons que ¢ (I") ne fixe aucune mesure de probabilité sur le cercle et que
¢ (I") ne soit pas conjugué a un sous-groupe de PSL(2, R). Dans ce cas, d’apres le §3,
le théoréme de super-rigidité¢ de Shalom fournit une famille {F#¢y, ..., #} de sous-
espaces 6 (I")-invariants de # = cCHZQ’A(S1 x S, Lv), et des cocycles ¢; : I' — H,
dont au moins 1’'un d’entre eux est non identiquement nul, de sorte que sur chaque
H; la représentation affine associée a ¢; s étend continiiment a G et se factorise sur
G;. Fixons un indice i € {1, ..., k} tel que #; soit non trivial. Nous affirmons que
I’'image de la sphere unité de J¢; par I’application mes consiste d’au moins deux
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mesures distinctes. En effet, si cette image était identiquement égale a une mesure
mes(K) alors, d’apres la propriété d’équivariance (4) et du fait que #¢; est un sous-
espace 6 (I")-invariant, mes(K ) serait une mesure de probabilité sur le cercle invariante
par I, contredisant notre hypothése.

Fixons une base Hilbertienne (orthonormée) {K1, K>, ...} de J¢;, et posons

= | Kl K
n 1Kl

La mesure de probabilité ;g de S! est une sorte de <mesure a support maximal >
parmi les mesures obtenues en projettant des fonctions de J¢;. Elle est sans atome
et absolument continue par rapport a la mesure de Lebesgue. Si I’on désigne par K
la fermeture du support de (g, alors K est un ensemble compact sans points isolés.
De plus, étant donné que J¢; est 6 (I")-invariant, I’ensemble K est invariant par I, et
puisque ¢(I") ne fixe aucune mesure de probabilité du cercle, K n’est pas réduit a une
réunion finie disjointe de sous-intervalles fermés de S'.

Si K n’est pas tout le cercle, retirons chaque composante connexe de S' \ K, et
puis identifions ses extrémités. Par ce procédé on obtient un cercle topologique Sk,
sur lequel 1’action originale de I' induit une action par homéomorphismes directs.
Remarquons cependant que les orbites de cette action induite ne sont pas forcément
denses : I’ensemble K ne coincide pas nécessairement avec le minimal exceptionnel
de I’action originale (voir [29]). Lorsque K est tout le cercle, notons encore SII< =S
Quelque soit le cas, le cercle SII< hérite d’une structure métrique naturelle : on peut le
paramétrer en utilisant la mesure g .

Pour g € T notons ¢k (g) ’homéomorphisme de SII< induit par g. Fixons une
fonction K’ de la sphére unité de #; telle que la mesure 11x soit distincte de g, et
désignons par I, (resp. I';,,,) le groupe des homéomorphismes directs de SII< qui
préservent la mesure (induite sur SII< par) g (resp. ;). Remarquons que le groupe
I',x est topologiquement conjugué au groupe des rotations. Si (g,) est une suite
d’¢léments de I" telle que lim— 400 p1; (gs) = idg,, alorslavaleurde |6 (g,) K — K ||
tend vers zéro lorsque n tend vers I'infini, et de méme pour ||0(g,)K’ — K’||. Un
argument analogue a celui de la preuve du lemme 3.4 montre que (¢px(gn))« (k)
(resp. (Ppx(gn))«(g)) tend vers pg (resp. vers ) lorsque n tend vers I'infini.
D’apres la premiére de ces convergences on conclut aisément que la suite (¢x (g,))
possede des points d’adhérence dans Homéo - (SII<), et d’aprés ces deux convergences
on déduit que tous ces homé¢omorphismes limites sont contenus dans Iy, N Ty,
Puisque 1 g est distincte de g et son support est contenu dans celui de p g, le groupe
Ipx Ny, eststrictement contenu dans I'x . Tout sous-groupe non dense du groupe
des rotations ¢tant finiet I'y . N T, ., étant un sous-groupe fermé de Homéo+(SII<),
le groupe I'y,, N T, doit nécessairement étre fini.

Désignons par Hl’ensemble des 2 € Homéo (S%() telsque = lim,,_, 4 o0 P (gn)
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pour une suite (g,) dans I vérifiant lim,_,  » pr; (g,) = 1dg;. A partir de la défini-
tion, il est facile de voir que H est un sous-groupe fermé de Homéo+(SII<). De plus,
I"argument plus haut montre que H est contenu dans I'y,, N Ty, ,. C'est donc un
groupe fini. Notons » 1’ordre de H et, dans le cas ou r > 1, fixons un générateur %
de H. Remarquons que p(h) # 0 (ou p désigne le nombre de rotation). Fixons une
suite (g) de I' telle que lim,_, 4 oo pr; () = idg, et 7 = lim,_, oo Px ().

Nous allons démontrer que H est contenu dans le centralisateur de ¢ (I') dans
Homé0+(SII<)‘ Pour cela, fixons g € I'. Remarquons que pr; (g 'gng) tend aussi vers
idg; lorsque » tend vers I'infini. Par définition, la suite (Px (g gng)) tend vers un
élément de H, c¢’est-a-dire vers i/ pour certain j € {1, ..., r}. A partir de 1’égalité
p(Px (27 gng)) = (g7 2ng) = p(gn) = p(¢K(gn)). n € N, on conclut aisément
que j = 1. Ceciimplique que ¢k (g) commute avec i. Puisque g € I" était un élément
arbitraire, le groupe H centralise ¢ (I").

Désignons par SII< /~ le cercle topologique obtenu en identifiant les points de SII<
qui sont dans la méme orbite par H. Le cercle SII< est un revétement fini de degré r du
cercle SII< /~. De plus, la représentation ¢ : I' — Homéo+(SII<) mduit de maniére
naturelle une représentation

$: T — Homéo+(SII</~).

Notons que si (g, ) estune suite de I telle que pr; (g, ) tend vers id g, lorsque n tend vers
I’infini, alors ¢ (g,) tend vers ’application identité de SII< /~. Nous sommes donc sous
les hypothéses du lemme 2.5, lequel nous permet de conclure que ¢ s’étend en une
représentation &: G — Homéo (SII< /~) qui se factorise sur G;. Cette représentation
d étend ¢ a semiconjugaison topologique et a revétement fini prés, et ceci termine la
preuve du théoréme B.

Remarque 4.1. Notons que d’aprés la démonstration du théoréme B, dans le cas
éventuel d’une semiconjugaison topologique, la partie invariante K a une mesure de
Lebesgue positive.

Rappelons que les sous-groupes finis de Homéo_4 (S!) sont topologiquement conju-
gués a des groupes de rotations, et donc a des sous-groupes de PSL(2, R) (voir [15]).
Ainsi, pour démontrer le corollaire du théoréme B, nous montrerons que si ¢(I7)
préserve une mesure de probabilité sur le cercle et si H! (I'g, R) = {0} pour tout sous-
groupe distingué et d’indice fini 'y de I', alors ¢ (I") est fini. En effet, si la mesure
mvariante n’a pas d’atome alors ¢(I") est semiconjugué a un groupe de rotations.
Sinon, ¢ (I") posséde une orbite finie. Etant donné que I' et I'g sont de type fini, ceci
mmplique que ¢ (I") est un groupe fini. Dans le cas d une orbite finie ceci découle du
théoréme de stabilité de Thurston, tandis que dans le cas d’une semiconjugaison a
un groupe de rotations ceci est a peu pres évident. La preuve du corollaire est donc
terminée.
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Exemple4.2. On pourrait étre tenté de vouloir utiliser le cocycle de contact a I’origine
mtroduit dans I’exemple 2.1 afin d’obtenir un résultat analogue au théoréme B pour
les sous-groupes de Diff ﬂ_+“([0, 11) qui ne préservent pas de mesure de Radon sur
10, 1[. Or, un lemme bien connu et attribué a M. Muller et T. Tsuboi permet de se
ramener au cas ou les difféomorphismes sont tangents al’identité a I’origine (voir [26]
et [38]), et dans ce cas il a été déja remarqué dans [41] que la représentation régulicre
correspondante posséde presque des vecteurs invariants. Nous montrerons (toujours
dans ce méme cas) que le cocycle ¢ donné par (1) est en fait nul en cohomologie
réduite.

Fixons un sous-groupe de type fini I dans Diff f’"‘([O, 17) tel que g’(0) = 1 pour
tout g € I'. Pour chaque n € N considérons la fonction

K, (x) = X1/n,11(x).

11 est clair que chaque K, appartient a £%R([O, 1], dw). Nous montrerons que sil’on
désigne par ¢, le cobord associ¢ a cette fonction, alors ¢, (g) converge vers c¢(g) pour
tout g € I'. En effet, en utilisant les estimées de I’exemple 2.1, on vérific aisément

que
/ga/n) .
g t/my X

c
==t | log(ng ™" (1/n))| + | log(ng(1/n))|.

C
le(g) — (Ku — () Kn)ll% < — +

n

D’autre part, il existe nécessairement un point x, €10, 1/a[ tel que (g71) (x,;) =
ng~'(1/n). Puisque la suite (x,) converge vers zéro, (g7')(x,) tend vers 1. En
raisonnant de la méme maniére avec I’expression ng(1/n), on déduit que ||c(g) —
(K, —0(g)K,)|?* tend vers zéro. Ceci montre que ¢(g) est la limite des ¢, (g) =
Ky —0(g)Ky.

Ce qui précede rend naturelle la question de savoir si I’espace de cohomologie
réduite H! (", 6) associé a la représentation réguliére 6 ci-dessus est trivial ou non.
Signalons par ailleurs que le cocycle de Liouville peut encore étre défini pour des
groupes de difféomorphismes de ’intervalle (lorsque leur classe de différentiabilité
est supérieure a 3/2). Cependant, il n’est pas difficile de vérifier que, dans le cas de
tangence a I'identité a ’origine, la représentation unitaire correspondante possede
presque des vecteurs invariants.

4.2. Actions de groupes localement compacts. Rappelons d’abord le théoréme de
Montgomery et Zippin (voir [25]) : <si G est un groupe topologique localement
compact, alors G est un groupe de Lie si et sculement s’il existe un voisinage de
I’1dentité qui ne contient pas de sous-groupe compact non trivial > (¢’est-a-dire s’iln’y
apas de sous-groupe compact <petit>). En utilisant ce résultat profond (et difficile) on
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démontre que tout sous-groupe localement compact de Homéo . (S!) est un groupe de
Lie (réel). En effet, tout sous-groupe compact de Homéo, (S') étant topologiquement
conjugué a un groupe de rotations, Homéo (S') ne contient pas de sous-groupe
compact <petit> (voir [15]).

Dans I'introduction nous avons signalé que la classification des actions de groupes
de Lie connexes par homéomorphismes directs du cercle est bien connue (voir [13] ou
[15]). Plus concrétement, on sait que ces actions transitent par des homomorphismes
sur (R, +), Aff, (R), SO(2, R), PSL(2, R) ou PSL, (2, R) pour certain k > 1. Cette
classification sera essenticlle pour la démonstration suivante.

Preuve du théoreme C. Nous supposons que ¢(I") n’est pas fini, ce qui d’apres la
preuve du corollaire du théoréme B équivaut au fait que ¢ (I') ne préserve aucune
mesure de probabilité du cercle.

Considérons d’abord le cas ou 1’on admet I’hypothése (1). Le cercle SII< s’identifie
alors au cercle original S'. Du fait que le noyau de ¢ est fini on conclut qu’il existe
des suites (g,,) dans I' telles que pr;(g,) converge vers idg, et les ¢(g,) sont deux a
deux distincts. Ceci implique que le groupe de Lie O (G;) est non discret. D aprés la
classification précédente, la composante connexe de I'identité de ce groupe (G, )o
est soit SO(2, R), soit un sous-groupe d"un produit de groupes des translations, de
groupes affines et de groupes conjugués a PSL(2, R) agissant sur des intervalles
ouverts deux a deux disjoints, soit PSLx(2, R) pour certain & > 1. Le premier cas ne
peut pas se produire, étant donné que ¢ (I") ne fixe aucune mesure de probabilité du
cercle. Le deuxiéme cas ne peut pas se produire non plus, étant donné que les orbites
par ¢ (I') sont denses et que P(G;)g est distingué dans $(G;) (car I'ensemble des
mtervalles fixés par ®(G;)g doit étre préservé par I'). Le groupe $(G;)g est donc
conjugué a PSL;(2, R) pour certain k > 1, et puisque ces derniers groupes coincident
avec leurs normalisateurs dans Homéo (S1), ceci achéve la preuve du théoréme sous
I’hypothése (1).

Considérons maintenant le cas de ’hypothése (ii) suivant laquelle ¢ est a valeurs
dans Diﬁ"‘i(Sl)‘ Nous avons déja remarqué que les orbites par I’action de I' sur
S%( ne sont pas nécessairement denses. Soit K I’ensemble ferm¢é non vide invariant et
minimal de cette derniére action, et considérons 1’action induite ®: I' — Hom e’o(Sll‘()

sur le cercle topologique SII~< obtenu en retirant les composantes connexes de Sll< \K et

puis en identifiant ses extrémités. Les orbites par & sont denses. Ainsi, pour pouvoir
appliquer les arguments de la premiére partic de la preuve, on doit démontrer que le
noyau de d est fini. Or, ceci est évident, étant donné que les difféomorphismes de
¢ (I") sont analytiques réels, et ses points fixes sont donc isolés (par conséquence, le
noyau de la restriction de & a I" coincide avec celui de ¢).

Considérons finalement le cas de I’hypothése (ii1) suivant laquelle I" vérifie le
théoreme des sous-groupes distingués de Margulis. De nouveau, nos devons montrer
que le noyau de ® est fini. Or, si ¢’est ne pas le cas, alors ce noyau est d’indice fini dans
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I'. Ceci implique que les orbites par I" des points de K sont finies, ce qui est absurde,
car les orbites par & sont denses. La preuve du théoréme C est donc terminée. O

Remarque 4.3. Signalons que dans [35], Y. Shalom a obtenu — comme une autre ap-
plication de son théoréme de super-rigidité cohomologique — un résultat qui sous une
forme faible se lit : <sous les hypothéses du cadre général, si¢p: ' — PSL(2, R) est
un homomorphisme avec image non métabélienne, alors ¢ s’étend a G et se factorise
en un homomorphisme de I’'un des G; »>. Comme une conséquence de ce fait, sous les
hypotheses du théoréme C, lorsque I'image ¢ (I") n’est pas finie, ’homomorphisme
¢ s’étend foujours (a semiconjugaison topologique et a revétement fini prés) en un
homomorphisme de G qui transite par la projection sur 1’un des facteurs G;.

Remerciements. L auteur remercie Y. de Cornulier, D. Gaboriau, E. Ghys, C. Lecuire,
N. Monod, M. Pichot, B. Sevennec, Y. Shalom et A. Valette pour d’intéressantes
discussions sur le sujet.
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