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Quelques nouveaux phénomènes de rang 1 pour les groupes de

difféomorphismes du cercle

Andres Navas

Résumé. Nous démontrons un théorème de super-rigidité pour les actions de réseaux de rang
supérieur par difféomorphismes du cercle.

Abstract. We prove a superrigidity theorem for actions of higher rank lattices by diffeomor-
phisms of the circle.

Mathematics Subject Classification (2000). 57M07, 58D05, 22F05, 37E10.
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1. Introduction

Le groupe des difféomorphismes du cercle partage quelques propriétés avec certains

groupes de Lie simples de rang réel 1. L'un des phénomènes principaux qui permettent
de justifier cette affirmation est donné par un théorème obtenu par l'auteur dans

[27], lequel généralise dans plusieurs directions des résultats contenus dans [4], [5],
[11], [16], [34], [39] et [40] (valables toutefois sous des hypothèses de régularité
plus faibles). Rappelons qu'un groupe topologique localement compact possède la

propriété (T) de Kazhdan si toute représentation affine (isométrique) de F sur un

espace de Hubert admet un vecteur invariant.

Théorème ([27]). Soit F un sous-groupe de Diff++" (S1), avec a > 1/2. Si V possède
lapropriété (T) de Kazhdan, alors soit il estfini, soit il est topologiquement conjugué
au groupe des rotations.

Une question qui se pose de manière naturelle est celle de savoir si les sous-groupes
localement compacts de Diff++" (S1 a > 1/2, sont toujours (T)-moyennables (c'est-
à-dire s'ils admettent des représentations affines géométriquement propres sur des
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espaces de Hubert). L'une des difficultés de cette question est le fait que l'on connaît
très peu de groupes qui ne sont pas (T)-moyennables et n'ont pas non plus la propriété
(T). En effet, la seule obstruction qu'on connaît pour la (T)-moyennabilité est une
forme faible de la propriété (T), à savoir la propriété (T) relative.

Rappelons que si F est un groupe localement compact et Fo est un sous-groupe
de F, alors on dit que la paire (F, Fo) possède la propriété (T) relative si pour toute
représentation affine de F sur un espace de Hubert, il existe un vecteur invariant

par Fo. Un exemple non trivial d'une paire satisfaisant la propriété (T) relative est

(Z2 x SL(2, Z), Z2). On trouve d'autres exemples ainsi que des références sur le sujet
dans [9] et [18]. Notons que pour tous les exemples connus, si aucun des groupes
F ou Fo n'a déjà la propriété (T), alors Fo contient un sous-groupe cocompact F'o

qui est distingué dans un sous-groupe F' de F de sorte que (F', Y'o) vérifie encore la
propriété (T) relative (voir cependant [10]). Sous une telle hypothèse, nous démontrons

le résultat suivant, lequel peut être considéré comme une petite généralisation
du théorème énoncé précédemment.

Théorème A. Soit F un sous-groupe de Diff++"(S1), avec a > 1/2. Supposons que
F possède un sous-groupe distingué Yq tel que la paire (F, Yq) satisfait la propriété
(T) relative. Alors soit F est topologiquement conjugué à un groupe de rotations, soit
Fo est fini.

La démonstration de ce théorème est inspirée de [27]. L'amélioration technique
essentielle consiste en une preuve courte et conceptuelle d'une proposition énoncée

(et non démontrée) dans [27], suivant laquelle les sous-groupes de Diff^(+"(S1),
a > 1/2, sur lesquels le «cocycle de Liouville » est cohomologiquement trivial sont

topologiquement conjugués à des sous-groupes de PSL(2, R).
Rappelons que les réseaux de groupes de Lie simples de rang supérieur satisfont

la propriété (T). Le théorème dans [27] donne donc en particulier une nouvelle
démonstration (en classe Cl+a, a > 1/2) de l'un des résultats obtenus par É. Ghys dans

[16] et indépendamment par M. Burger et N. Monod dans [4], à savoir pour toute
représentation cf> d'un réseau F d'un groupe de Lie simple de rang réel supérieur ou
égal à 2 dans le groupe des difféomorphismes directs et de classe C1 du cercle, l'image
4>{Y) est finie. Néanmoins, dans [16], É. Ghys obtient également la classification des

actions de réseaux irréductibles de groupes de Lie semi-simples de rang supérieur par
difféomorphismes directs et de classe C1 du cercle (voir aussi [5] et le §14 de [23],
où M. Burger et N. Monod obtiennent des résultats analogues grâce à leur étude de

la cohomologie bornée). Signalons en passant que dans [4], [5] et [16], on trouve des

résultats partiels pour des actions par homéomorphismes du cercle.

Théorème ([16]). Soit G un groupe de Lie semi-simple connexe de rang réel supérieur
ou égal à 2 et Y un réseau irréductible de G. Soit tfi un homomorphisme de Y vers le

groupe des difféomorphismes de classe C1 du cercle respectant l'orientation. Alors,



Vol. 80 (2005) Phénomènes de rang 1 pour les groupes de difféomorphismes du cercle 357

ou bien 4> a une imagefinie cyclique, ou bien 4> est semiconjugué à un revêtement fini
d'un homomorphisme obtenu en faisant suivre :

- le plongement de F dans G,

- une surjection de G sur PSL(2, R),

- / 'actionprojective de PSL(2, R) sur le cercle (identifié à la droiteprojective réelle).

Pour parvenir à la preuve de ce résultat, É. Ghys examine d'abord le cas des

réseaux de groupes de Lie semi-simples «classiques» (SL(ra, R), Sp(2r, R), SO(2, q),
SU(2, q) et PSL(2, R) x PSL(2, R)), et puis en utilisant quelques aspects de la théorie

de classification des groupes de Lie semi-simples, il aboutit au résultat énoncé.

Remarquons que les quatre premiers cas correspondent à des groupes de Lie simples
de rang réel supérieur ou égal à 2 (les réseaux correspondants vérifient donc la
propriété (T) de Kazhdan). Le dernier cas est dynamiquement plus intéressant. Dans cette

situation, É. Ghys démontre que tout homomorphisme f F-> Diff^S1) transite,
modulo une semiconjugaison et un revêtement fini, par la projection de F sur l'un
des facteurs, et puis par l'action projective de ce facteur sur le cercle.

Pour généraliser le théorème de Ghys ci-dessus, on est confronté au problème de

définir la notion de rang réel pour un groupe quelconque. Bien que plusieurs tentatives

ont été déjà faites dans cette direction (voir par exemple [2]), nous suivrons plutôt
une idée très simple qui a été introduite par Y. Shalom dans [35]. Le point essentiel

de son approche consiste à tirer partie de la commutativité des facteurs d'un groupe,
vue comme une hypothèse de rang supérieur. Ainsi, le «cadre général» que nous
considérerons - et qui est aussi celui de [35] - est le suivant :

(a) G G\ x ¦ ¦ ¦ x Gk est un groupe topologique compactement engendré, avec
k > 2, et F est un réseau de type fini et uniforme (c'est-à-dire un sous-groupe
discret et cocompact) de G ;

(b) les projections de F sur chaque facteur G, sont denses (nous désignerons par pr,-

la projection de G sur G,) ;

(c) dans le cas où chaque G, est un groupe algébrique linéaire sur un corps local, on
acceptera aussi la possibilité que F soit un réseau non cocompact dans G.

Remarquons que dans le cas (c) ci-dessus, le réseau F est automatiquement de type
fini. Ceci découle de certains résultats de D. Kazhdan et G. Margulis. D'autre part, la
condition (b) est une condition d'irréductibilité comme celle des réseaux considérés

dans le théorème de Ghys.
Dans l'introduction de [35] on peut trouver des motivations ainsi que des

références concernant le cadre général que nous considérons. Signalons en tout cas que
des exemples de réseaux «non linéaires» vérifiant les propriétés (a) et (b) ont été

construits dans [3], [6] et [33]. Pour ces réseaux, ainsi que pour les réseaux irréductibles

«linéaires», nous obtenons le résultat de super-rigidité suivant.
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Théorème B. Dans le cadre précédent, supposons que <p : F —>¦ Diff^+"(S1) soit un

homomorphisme tel que a > 1/2 et tel que </> (F nepréserve aucune mesure de probabilité

sur le cercle. Alors soit <t>(T) est topologiquement conjugué à un sous-groupe
de PSL(2, R), soit 4> est semiconjugué à un revêtement fini d'un homomorphisme
obtenu en faisant suivre :

- le plongement de F dans G,

- la projection de G sur l'un des G,,

- une action <£> de G\ par homéomorphismes du cercle.

L'hypothèse suivant laquelle 0 (F) ne fixe aucune mesure de probabilité du cercle

peut être supprimée, pourvu que l'on suppose que le premier espace de cohomologie
à valeurs réels de tout sous-groupe distingué et d'indice fini de F soit trivial. Remarquons

que d'après [35], cette hypothèse est vérifiée lorsque H1 (G, R) est trivial (c'est
le cas par exemple si les G, sont des groupes linéaires algébriques semi-simples sur
des corps locaux).

Corollaire. Soit F un réseau vérifiant les hypothèses du cadre général et <fi: F —*

Diff++"(S1) un homomorphisme, avec a > 1/2. Si H^fo.R) {0} pour tout

sous-groupe Fo d'indice fini et distingué dans F, alors la conclusion du théorème B
ci-dessus est encore satisfaite.

D'après ce qui précède, pour comprendre les actions de réseaux irréductibles de

rang supérieur par difféomorphismes du cercle, il suffit de connaître les actions de

groupes topologiques compactement engendrés. Or, ces groupes étant localement

compacts, une application simple du théorème de Montgomery et Zippin montre que
4>(G,) a une structure de groupe de Lie (réel). D'autre part, on connaît parfaitement
la classification des actions fidèles de groupes de Lie connexes par homéomorphismes
directs du cercle : ces actions sont induites parcelles du groupe des rotations SO(2, R),
du groupe des translations (R, +), du groupe affine Aff+(R, +), du groupe projectif
et ses revêtements finis PSLjt(2,R), k > 1, ainsi que de son revêtement universel

PSL(2, R). En nous appuyant sur cette classification, nous pouvons donner une
version plus précise du théorème B sous l'une quelconque des hypothèses suivantes :

(i) le noyau de 4> est fini et les orbites de <f>(T) sont denses,

(ii) le noyau de 4> est fini et cf> est à valeurs dans le groupe Diff+ (S1 des difféomor¬
phismes directs et analytiques réels du cercle,

(iii) les sous-groupes distingués de F sont soit finis soit d'indice fini (c'est-à-dire

que F satisfait le théorème des sous-groupes distingués de Margulis).

Théorème C. Supposons que les hypothèses du corollaire soientvérifiées, que chaque

groupe G; soit non discret, et qu'au moins l'une des hypothèses (i), (ii) ou (iii)
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ci-dessus soit satisfaite. Si l'image </>(F) n'est pas finie alors, à semiconjugaison
topologique et à revêtement fini près, </>(F) est un sous-groupe non métabélien de

PSL(2,R).

Les hypothèses (i), (ii) ou (iii) sont faites de sorte à éviter le cas éventuel d'un

groupe de Lie avec une infinité de composantes connexes dont l'action sur le cercle

transite, à semiconjugaison topologique près, à travers du quotient par rapport à la

composante connexe de l'identité. Signalons que l'hypothèse (iii) est satisfaite par
les réseaux de groupes algébriques, ainsi que par ceux qui sont construits dans [6]
(voir [1] pour une version générale de ce fait).

Un corollaire intéressant de ce qui précède est le fait que le groupe G de Thompson
n'est pas un réseau vérifiant les hypothèses du théorème C. Remarquons toutefois que
le fait que G n'est pas un réseau dans un groupe algébrique sur un corps local découle
du fait que G, étant un groupe simple, n'est pas résiduellement fini. De plus, sa

dimension cohomologique est infinie (voir [17]).
La technique de démonstration des théorèmes B et C est fortement inspirée par les

résultats obtenus par Y. Shalom dans [35], notamment le théorème de super-rigidité
cohomologique. Remarquons par ailleurs qu'avec nos résultat et le théorème d'arith-
meticité 0.5 de [35], il est possible de donner dans notre contexte une description
précise (du point de vue algébrique) des réseaux qui agissent sur le cercle (avec

image infinie). Ceci permet d'utiliser l'argument du §10 de [16] pour obtenir des

conjugaisons lisses dès que les actions sont suffisamment différentiables (on obtient
en particulier de véritables conjugaisons topologiques pour des morphismes à valeurs
dans Diff^S1)).

Signalons finalement que Y. Neretin a introduit un groupe (à savoir, le groupe
des sphéromorphismes, connu aussi sous le nom de groupe de Neretin) qui est un
analogue combinatoire (ou p-adique) du groupe des difféomorphismes du cercle. En
utilisant une technique introduite par D. Farley dans [12], nous avons établi dans [28]
un résultat analogue à celui de [27] pour ce groupe, qui étend également le théorème

classique d'Alperin et Watatani dans le cas d'un arbre simplicial homogène (voir
[18]). Nous ignorons si l'on peut obtenir un analogue du théorème B pour le groupe
de Neretin. Un tel résultat serait une généralisation du théorème de super-rigidité

pour des actions isométriques sur des arbres obtenu par Y. Shalom dans [35] (voir
aussi [24]).

2. Rappels cohomologiques

2.1. Cohomologie continue. Soit 9 une représentation unitaire d'un groupe
topologique localement compact F sur un espace de Hubert M. On dit que c : F —>¦ M
est un cocycle par rapport à 6 sic est une application continue et si la correspondance
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g *--* 9 (g) + c(g) définit une représentation affine de F, ce qui revient à dire que

pour tout g, h G F on a c(gh) c(g) + 9(g)c(h). On dit qu'un cocycle c est un
cobord s'il existe K G M qui est fixé par l'action affine induite, ce qui se traduit par
le fait que c(g) K — 9(g)K pour tout g G F. Le premier espace de cohomologie
(continue) H1 (F, 9) est défini comme le quotient entre l'espace des cocycles et le

sous-espace des cobords. Un groupe topologique localement compact F possède la

propriété (T) de Kazhdan si pour toute représentation 9 continue et unitaire de F,
l'espace H1 (F, 9) est trivial.

Comme nous l'avons déjà signalé dans l'introduction, le fait que Diff^(+"(S1) ne
contient pas de sous-groupe de Kazhdan non compact pour a > 1/2 est un résultat
obtenu dans [27]. Le problème de savoir s'il existe des sous-groupes (non triviaux)
de Homéo_|_(IR) vérifiant la propriété (T) est ouvert. Quant au cas des difféomor-
phismes de l'intervalle, rappelons que d'après le théorème de stabilité de Thurston,
tout sous-groupe F de Diff+([0, 1]) de type fini et non réduit à l'identité admet un
homomorphisme non trivial tfi '¦ F —>¦ (R, +) (voir [7] pour une preuve élémentaire de

ce résultat ou [37] pour la démonstration originale). Puisque la propriété (T) passe aux
quotients et puisque les groupes abéliens de type fini et non finis n'ont pas la propriété
(T), ceci implique qu'aucun sous-groupe de type fini et non trivial de Diff+^O, 1])

n 'a la propriété (T).
Une preuve simple de ce dernier fait apparaît dans [41]. En manière d'exemple,

nous le redémontrerons sous une hypothèse de régularité supplémentaire. La preuve
ci-dessus est inspirée de [27].

Exemple 2.1. Rappelons d'abord que Diff^+"([0, 1]) (resp. Diff^S1)) désigne
le groupe des difféomorphismes directs de l'intervalle (resp. du cercle) qui ont une
dérivée Holder continue d'exposant a > 0, avec un inverse satisfaisant la même

propriété.
Soit F un sous-groupe de Diff++" [0, 1 ]), où a > 0. Quitte à considérer un quotient

de F, on peut supposer qu'il n'admet pas de point (globalement) fixe sur ]0, 1[.

Considérons la mesure de Radon d/j, dx/x sur ]0, 1 [, et notons 9 la représentation
régulière de F dans M =Cr([0, 1], du), c'est-à-dire

9{g-l)K(x)

Pour chaque g G F considérons la fonction

Larelation de cocycle c{gh) c{g)+9 (g)c(h) est satisfaite, car c est le cobordformel
de la fonction constante égale à 1 (qui n'appartient pas à M). Nous affirmons d'autre



Vol. 80 (2005) Phénomènes de rang 1 pour les groupes de difféomorphismes du cercle 361

part que c(g) appartient à H. En effet, si g G F et x g]0, 1[ alors g(x) xg'(y) pour
certain y g]0, x[, et donc

xg'(x) xg'(x) g'(x)
g(x) xg'(y) ~ g'(y)'

En notant C infxe[0,i] g'(x), du fait que \g'(x) - g'(y)\ < C\x - y\a < Cxa on
obtient

1

x1/2

1

C xa

2C ,1/2'

et cette dernière fonction appartient à =Cr([0, 1], dx) dès que a > 0. Puisque

1/2
dx,

ceci montre l'affirmation.
Si F possède la propriété (T) alors il existe une fonction K g M telle que c{g)

K —6(g)K. En reprenant les définitions on vérifie que la mesure v sur ]0, 1[ dont la
fonction densité (par rapport à d\.£) est le carré de

ml- K{x)

est invariante par F. Cette mesure de Radon v a une masse infinie sur ]0, 1 [. D'autre
part, on a v(]e, 1 [) < oo pour tout e > 0. Le fait que F ne peut pas avoir la propriété
(T) découle ainsi du lemme élémentaire suivant.

Lemme2.2. Soitv une mesure de Radon (non triviale) sur']0, l[ telle que vQe, 1[) <
oo pour tout e > 0. Si F est un sous-groupe de Homéo+([0, 1]) qui préserve v, alors
F admet des points (globalement) fixes sur ]0, 1[.

Preuve. Fixons deux points a et b dans ]0, 1[ tels que a < b et v([a, b[) > 0.

Supposons que F n'ait pas de point globalement fixe sur ]0, 1[ et désignons par
c G [a, 1 ] le supremum de l'orbite de a par F. Le point c est globalement fixé, et donc

c 1. Ceci entraîne l'existence d'un élément g G F tel que g (a) > b. On obtient
ainsi v([b,l[) < v([a, b[) +v([b, 1[) v([a, 1[) v([g(a), 1[) < v([è, 1[), ce qui
est absurde.
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Remarquons par ailleurs que si un sous-groupe de Homéo+([0, 1]) préserve une

mesure de Radon (non triviale) sur ]0, 1 [, alors la fonction nombre de translation par
rapport à v fournit un homomorphisme de F sur (R, +), et cet homomorphisme est

non trivial si et seulement si F n'admet pas de point globalement fixe à l'intérieur de

l'intervalle (voir [31]).

2.2. Cohomologie réduite. Étant donnée une représentation unitaire 9 d'un groupe
topologique localement compact F sur un espace de Hubert M, on considère la to-
pologie sur l'espace des cocycles suivant laquelle une suite cn de cocycles converge
vers c si et seulement si pour tout sous-ensemble compact C de F, la valeur de

suPgeC IIe« (g) — c(g) II converge vers zéro lorsque n tend vers l'infini. Lepremier

espace de cohomologie réduite H1 (F, 9) est alors défini comme étant le quotient entre

l'espace des cocycles et la fermeture du sous-espace des cobords. Signalons que
dans [35], Y. Shalom a démontré que la propriété (T) peut être testée en cohomologie

réduite pour les groupes compactement engendrés. Plus précisément, un groupe
topologique compactement engendré F possède la propriété (T) de Kazhdan si et

seulement si pour toute représentation 9 continue et unitaire de F, l'espace H1 (F, 9)
est trivial (voir aussi [22]).

Définition 2.3. La représentation unitaire 9 possède presque des vecteurs invariants

s'il existe une suite de vecteurs unitaires Kn g M telle que pour tout sous-ensemble

compact C de F, la valeur de supgeC \\Kn — 9{g)Kn\\ tend vers zéro lorsque n tend

vers l'infini.

Le lemme élémentaire suivant, dû à P. Delorme (voir [18]), s'avère fondamental

pour étudier la cohomologie réduite. Nous en rappelons la preuve afin que le texte
soit le plus autocontenu possible.

Lemme 2.4. Si 9 n'a pas presque des vecteurs invariants alors l'injection de la

cohomologie continue H1 (F, 9) dans la cohomologie réduite H1 (F, 9) est un isomor-
phisme.

Preuve. Soit c un cocycle associé à 9 dont sa classe en cohomologie réduite est nulle.

Supposons que 9 n'ait pas presque des vecteurs invariants. Nous allons démontrer
dans ce cas que c est nul en cohomologie continue.

Soit Fl une partie génératrice compacte de F. Par hypothèse, ilexiste une constante

e > 0 telle que pour tout K g H,

(2)
her1

Puisque c est nul en cohomologie réduite, il existe une suite (Kn) dans M telle

que pour tout g G F on a c(g) limn^+œ(Kn — 9(g)Kn). L'inégalité (2) donne
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M supfteri ||c(/z)|| > elim sup„ ||Ä"„||, et donc lim sup„ ||Ä"„|| < M/s. Par suite,

||c(g)|| < limsup„^+00(||^„|| + \\9(g)Kn\\) < 2M/s pour tout g G T. Le cocycle
c est donc uniformément borné, et par le lemme du centre de Tits (voir [18]), il est

cohomologiquement trivial. Ceci termine la démonstration.

Nous donnons ci-dessus un énoncé du théorème de super-rigidité en cohomologie
réduite dû à Y. Shalom. Nous signalons cependant que nous n'utiliserons pas ce théorème

dans toute sa puissance. En effet, dans nos applications nous nous ramènerons

assez rapidement au cas où il n'y a pas presque des vecteurs invariants pour l'action
unitaire correspondante. Or, il se trouve que dans ce cas les cohomologies réduite et
continue coïncident, et le théorème de super-rigidité devient bien plus élémentaire
dans ce dernier contexte. Néanmoins, nous avons préféré présenter nos résultats en

termes de la cohomologie réduite car nous partageons le principe exprimé au §11 de

[35], suivant lequel «le bon contexte de présentation est celui de la cohomologie
réduite» (voir le commentaire précédant la proposition 1.22 dans [35]).

Théorème ([31])). Soient G G\ x ¦ ¦ ¦ x Gk un groupe topologique compactement
engendré et F un réseau dans G satisfaisant les propriétés du cadre général. Si
9 : F —>¦ U(M) est une représentation unitaire et c un cocycle associé, alors c est

cohomologue dans H1 (F, 9) à un cocycle de la forme cq + c\ + ¦ ¦ ¦ + Ck qui satisfait :

(i) co est à valeurs dans l'espace Mq des vecteurs 9 (T)-invariants, et il s'étend
continûment en un cocycle (par rapport à la représentation unitaire triviale)
de G à valeurs dans Mo ;

(ii) pour tout i e {1, k} le cocycle ci est à valeurs dans un sous-espace Mi de

H qui est 9 T)-invariant, et sur lequel l'action affine 6+Cj s'étend continûment
en une action affine de G qui se factorise sur G,.

Remarquons que, si 9 n'a pas de vecteur invariant non nul, alors la composante
co ci-dessus est triviale. De plus, d'après le lemme de Delorme, si 9 n'a pas presque
des vecteurs invariants, alors c est en fait cohomologue (dans H1 (F, 9)) au cocycle

ci + • • • + cjt.
Ce résultat remarquable a été obtenu par Y. Shalom en s'inspirant de la preuve du

théorème des sous-groupes distingués de G. Margulis. Nous n'avons malheureusement

pas assez de place pour en dire plus. Nous nous contenterons de rappeler l'un des

lemmes clés de la fin de sa démonstration, lequel sera utilisé plus loin pour étendre des

homomorphismes. Pour cela, rappelons qu'un groupe topologique H est séquentiellement

complet si toute suite (hn) de H vérifiant limmn^+00 h~^lhn idn converge
dans H. Le lemme ci-dessus s'appuie sur le fait (facile à vérifier) qu'une application
uniformément continue définie sur un sous-espace d'un espace métrique separable
et à valeurs dans un groupe topologique Hausdorff séquentiellement complet s'étend
continûment à la fermeture de ce sous-espace.
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Lemme 2.5. Soient G et F deuxgroupes comme dans le cadre général, et soit 4> : F —>¦

H un homomorphisme, où H est un groupe topologique Hausdorff séquentiellement
complet. Supposons qu 'il existe i e {1, k} tel que pour toute suite (gn) dans F

vérifiant lim„^.+ooprf(g„) idGt, on a limn^+oo <p(gn) idij- Alors <p s'étend
continûment en un homomorphisme de G vers H qui se factorise sur G,.

3. Le cocycle de Liouville

3.1. Annulation du cocycle de Liouville en cohomologie continue. Nous nous

proposons de donner dans la suite une formulation plus conceptuelle de la méthode
introduite dans [27]. Pour cela, rappelons d'abord que la mesure de Liouville Lv sur
S1 x S1 est celle dont la fonction densité est

(x,y) i-

Cette mesure a une masse totale infinie. De plus, elle est invariante par PSL(2, R),
car pour toute quadruple de points a <b < c < d < a cycliquement ordonnés sur le

cercle on a

Lv([a, b] x [c, d]) log ([a, b, c, d]), (3)

où [•,-,-,•] désigne le birapport. La mesure Lv induit une mesure de Radon sur

l'espace des géodésiques non orientées du disque de Poincaré (un courant géodé-
sique).

Désignons par M £^ (S1 x S1, Lv) l'espace des fonctions K de carré in-
tégrable qui satisfont presque-partout l'égalité K(x, y) K{y,x). Pour le groupe
Diff++œ(S1), a > 1/2, il existe un cocycle naturel associé à la représentation régulière

9 sur K. Ce cocycle de Liouville c correspond au cobord formel associé à la
fonction constante égale à 1. Plus concrètement,

c{g-l)(x,y) l-
Le fait que c{g) appartient à M dès que a > 1/2 estune remarque due essentiellement
à G. Segal et A. Reznikov. Ceci reste valable lorsque g est de classe C1 et sa dérivée

appartient à l'espace de Sobolev J^1/2+e(S1), avec e > 0 (voir [32]).
Supposons que F soit un sous-groupe de Diff^(+"(S1), a > 1/2, tel que la

restriction du cocycle de Liouville à F soit triviale (en cohomologie continue). Il existe
alors une fonction K g K telle que c(g) K — 6(g)K pour tout g G F. Ceci se

traduit par le fait que la mesure Lvk sur S1 x S1 donnée par dLvx [1 — K]2dLv
est invariante par F.
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Fixons une quadruple quelconque de points a < b < c < d < a cycliquement
ordonnés sur le cercle. Puisque pour tout g G F on a

pb pd
LvK([a,b] x [c, d]) / / [1 - K(r, s)]2 dLv,

Ja Je

d'après l'inégalité triangulaire et l'égalité (3) on obtient

[a, b]x[c, d]) - yiog ([a, b, c, d])| <

Par le même argument,

yJLvK{[g{a), g(b)] x [g(c), g(d)]) - yiog ([g(a), g(b), g(c), g(d)])\ < \\K\\2.

Puisque Lvk est invariante par g,

g (Ma), g(b), g(c), g(d)]) - Vlog([a, b, c, d])\ <2\\K\\2.

Donc, si [a, b, c, d] 2 alors

[g(a), g(b), g(c), g(d)] < exp([Vlog(2)+2||/T||2]2).

Nous en déduisons le lemme suivant.

Lemme 3.1. Si F est un sous-groupe de Diff++"(S1), a > 1/2, tel que la restriction
du cocycle de Liouville à F est cohomologiquement triviale, alors il existe M > 0

telle que pour tout g € F et toute quadruple de points a < b < c < d < a vérifiant
[a, b, c, d} =2, on a [g(a), g(b), g(c), g(d)] < 2M.

Les sous-groupes de Homéo+ Sl vérifiant la conclusion du lemme précédent sont

appelés uniformément quasi-symétriques (ils sont appelés M-uniformément quasi-
symétriques si l'on veut insister sur la constante M). Ces groupes furent étudiés

dans [20] et [21] par A. Hinkkanen, qui s'intéressait au problème de savoir s'ils sont

toujours quasi-symétriquement conjugués à des sous-groupes de PSL(2, R). L'une
des motivations de ce problème était le fait que la version en dimension 2 (remplacer
«quasi-symétrique» par «quasi-conforme» et le «cercle» par la «sphère») était

déjà connue (voir [36]). A. Hinkkanen n'a pas complètement résolu cette question,
mais il y a répondu par l'affirmative dans plusieurs cas. Quelque temps après, et à

l'aide du théorème de convergence (voir [8] et [14]), on a démontré que la réponse
est affirmative si l'on considère seulement des conjugaisons topologiques. Bien que
le problème de la conjugaison quasi-symétrique reste encore ouvert, ce résultat suffit

pour établir la proposition suivante, énoncée toutefois sur une forme un peu plus forte
dans [27] (voir [30] pour la preuve de la version générale).
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Proposition 3.2. Si F est un sous-groupe de Difif^+"(S1), a > 1/2, tel que la
restriction du cocycle de Liouville à F est cohomologiquement triviale, alors V est

topologiquement conjugué à un sous-groupe de PSL(2, R).

Un point remarquable de la proposition précédente consiste en ce que la classe

de différentiabilité démandée est plus petite que C2 : le théorème de Denjoy n'est

pas a priori valable (voir le Chapitre X de [19]). Le fait d'avoir obtenu une vraie
conjugaison topologique et pas seulement une semiconjugaison est donc relié à des

propriétés de l'action du groupe en général, et pas à celles d'un seul de ses éléments.

3.2. Une application pour les paires avec la propriété (T) relative. Le but de

ce paragraphe est de donner la démonstration du théorème A. Pour cela, reprenons
la technique du paragraphe précédent. Le cocycle de Liouville considéré induit une
représentation affine de F sur X^ (S1 x S1, Lv). Si (F, Fo) possède la propriété (T)
relative alors cette représentation admet un vecteur invariant par Fo, et les arguments
du §3.1 (voir la proposition 3.2) montrent que le groupe Fo est topologiquement
conjugué à un sous-groupe du groupe de Möbius.

Lapropriété (T) relative est stable par des extensions centrales finies. Ainsi, l'argument

de passage au revêtement à trois feuillets de la preuve du lemme 3.3 de [27]
montre que Fo est en fait topologiquement conjugué à un sous-groupe du groupe
des rotations. Pour que le texte soit autocontenu, nous rappelons cet argument, dû à

D. Witte Morris.
Considérons le revêtement à trois feuillets du cercle. Sur ce revêtement S1 agit

(par difféomorphismes de classe C1+") une extension F de F de la forme

0 —> Z/3Z —>f —> F —>0.

Si l'on désigne par fo la préimage de Fo dans f, alors du fait que la paire (F, Fo)

a la propriété (T) relative et que Z/3Z est un groupe fini, la paire (F, fo) vérifie

encore la propriété (T) relative (voir la page 9 de [18] pour l'idée de la preuve de

cette affirmation). Comme S1 s'identifie au cercle, l'argument plus haut montre que
le groupe f o lui aussi est topologiquement conjugué à un sous-groupe de PSL(2, R).
Or, si g est un élément de Fo qui fixe un point du cercle initial, alors l'une de ses

préimages dans f o fixe trois points de S1 par l'action induite (voir la figure 1). Ceci

implique évidemment que Fo est en fait topologiquement conjugué à un sous-groupe
deSO(2,R).

Revenons à la preuve du théorème A. Si le groupe Fo n'est pas fini, alors il est

topologiquement conjugué à un groupe dense de rotations. Or, il est facile de voir que
le normalisateur dans Homéo+(S1) d'un sous-groupe dense de SO(2, R) coïncide

avec le groupe des rotations. Par suite, F est topologiquement conjugué à un sous-

groupe de SO(2, R), ce qui achève la démonstration.
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S1

Figure 1

Remarque 3.3. Le théorème A et ce paragraphe en général ne font que rendre plus
naturelle la question suivante : quels sont les sous-groupes de Diff^(+"(S1), a > 1/2,

pour lesquels l'action affine associée à la restriction du cocycle de Liouville est

géométriquement propre Par exemple, ce n'est pas le cas pour le (lissage du) groupe
de Thompson G (voir [17]), mais ce groupe est encore (T)-moyennable (voir [12]).
La même question se pose pour l'extension finie F de F qui agit sur le revêtement à

trois feuillets du cercle original.

3.3. Annulation en cohomologie réduite. Soient a > 1/2 et F un sous-groupe de

Diff^(+"(S1). Nous savons d'après le §3.1 que si la restriction du cocycle de Liouville
à F est triviale (en cohomologie continue), alors F est topologiquement conjugué à un

sous-groupe de PSL(2, R). Dans la suite, nous allons étudier le cocycle de Liouville
en cohomologie réduite à l'aide du lemme de Delorme.

Lemme 3.4. Supposons que le cocycle de Liouville restreint à F soit non nul en

cohomologie continue mais nul en cohomologie réduite. Alors il existe une mesure
de probabilité sur le cercle qui est invariante par F.

Preuve. D'après le lemme de Delorme, si c est nul en cohomologie réduite et non nul
en cohomologie continue, alors 9 possède presque des vecteurs invariants. Autrement
dit, il existe une suite (Kn) de vecteurs unitaires de <£jgA(S1 x S1, Lv) telle que pour
tout g G F, la valeur de \\Kn — 9(g)Kn\\ converge vers zéro lorsque n tend vers
l'infini. Définisons une suite (yu.n) de mesures de probabilité sur S1 par

K2n{x,y)dLv.
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Pour toute fonction continue <p: S1 -^-lona

Pn(<P)-<Kg)*(Pn)(<P)\<\\<P\\x°° f f \K2n-(6{g)Kn)2\dLv

<\\<P\\£«>\\Kn+0(.g)Kn\\£2\\Kn-e{g)Kn\\j.2

<2\\cp\\X<*\\Kn-6(g)Kn\\X2.

On déduit que \ßn{(p) — 0(g)*(Mn)(^)l tend vers zéro lorsque n tend vers l'infini.
Ainsi, si \.i est un point d'adhérence de (m„), alors \.i est une mesure de probabilité
sur S1 invariante par F.

Remarque 3.5. Notons que si 6 a un vecteur invariant non nul K g <£k' (S1 x
S1, Lv), alors quitte à remplacer K par K/\\K\\, la mesure hk est une mesure de

probabilité du cercle qui est invariante par F.

4. Super-rigidité pour les réseaux de rang supérieur

4.1. Prolongement de l'action. Plaçons-nous sous les hypothèses du théorème B.

Pour chaque fonction K G M <£K' (S1 x S1, Lv) de norme 1, notons \lk la

mesure de probabilité sur S1 obtenue en projettant sur la première coordonnée. Plus

précisément,

K2(x,y)dLv.

Désignons par mes l'application mes(K) hk définie sur la sphère unité de K et à

valeurs dans l'espace des mesures de probabilité du cercle absolument continues par
rapport à la mesure de Lebesgue. Remarquons que l'on aurait pu définir l'application
mes en projettant sur la deuxième coordonnée, mais étant donnée la propriété de

symétrie des fonctions de »CR' (S1 x S1, Lv), ceci revient au même.

L'application mes est équivariante par rapport à F, dans le sens que pour tout

g G F et pour toute fonction K g »CR' (S1 x S1, Lv) de norme 1,

mes(0(g)*) 0(g)*(mes(*)). (4)

Supposons que <f>(T) ne fixe aucune mesure de probabilité sur le cercle et que
0(F) ne soit pas conjugué àun sous-groupe de PSL(2, R). Dans ce cas, d'après le §3,
le théorème de super-rigidité de Shalom fournit une famille {K\, Mu) de sous-

espaces 6 (F) -invariants de ,K <£K' (S1 x S1, Lv), et des cocycles c,-:r^ I,,
dont au moins l'un d'entre eux est non identiquement nul, de sorte que sur chaque

Mi la représentation affine associée à c, s'étend continûment à G et se factorise sur
G;. Fixons un indice i G {1, ...,£} tel que Mi soit non trivial. Nous affirmons que
l'image de la sphère unité de Mi par l'application mes consiste d'au moins deux
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mesures distinctes. En effet, si cette image était identiquement égale à une mesure

mes(K) alors, d'après la propriété d'équivariance (4) et du fait que Mi est un sous-

espace 9 (r)-invariant, mes(K) serait une mesure de probabilité sur le cercle invariante

par F, contredisant notre hypothèse.
Fixons une base Hilbertienne (orthonormée) {K\, K2, ¦ ¦ ¦} de M\, et posons

n
2"

La mesure de probabilité \.ik de S1 est une sorte de «mesure à support maximal»
parmi les mesures obtenues en projettant des fonctions de M\. Elle est sans atome

et absolument continue par rapport à la mesure de Lebesgue. Si l'on désigne par K
la fermeture du support de hk, alors K est un ensemble compact sans points isolés.

De plus, étant donné que Mi est ö(r)-invariant, l'ensemble K est invariant par F, et

puisque 4> (F) ne fixe aucune mesure de probabilité du cercle, K n'est pas réduit à une
réunion finie disjointe de sous-intervalles fermés de S1.

Si K n'est pas tout le cercle, retirons chaque composante connexe de S1 \ K, et

puis identifions ses extrémités. Par ce procédé on obtient un cercle topologique S^,
sur lequel l'action originale de F induit une action par homéomorphismes directs.

Remarquons cependant que les orbites de cette action induite ne sont pas forcément
denses : l'ensemble K ne coïncide pas nécessairement avec le minimal exceptionnel
de l'action originale (voir [29]). Lorsque K est tout le cercle, notons encore S^ S1.

Quelque soit le cas, le cercle S^ hérite d'une structure métrique naturelle : on peut le

paramétrer en utilisant la mesure \.ik ¦

Pour g G F notons 4>K(g) l'homéomorphisme de S^ induit par g. Fixons une
fonction K' de la sphère unité de Mi telle que la mesure \.ik! soit distincte de \.ik, et

désignons par TßK (resp. FM/f/) le groupe des homéomorphismes directs de S^ qui

préservent la mesure (induite sur S^ par) hk (resp. h-k1)- Remarquons que le groupe
TßK est topologiquement conjugué au groupe des rotations. Si (gn) est une suite

d'éléments de F telle que limn^_|_oopr,(gn) idG,, alors la valeur de \\9{gn)K — K\\
tend vers zéro lorsque n tend vers l'infini, et de même pour \\6(gn)K' — K'\\. Un

argument analogue à celui de la preuve du lemme 3.4 montre que (4'K(gn))*(ßK)
(resp. (4>K(gn))*(lJ-K>)) tend vers hk (resp. vers /j,k>) lorsque n tend vers l'infini.
D'après la première de ces convergences on conclut aisément que la suite (0k(§«))
possède des points d'adhérence dans Homéo+(S^), et d'après ces deux convergences
on déduit que tous ces homéomorphismes limites sont contenus dans TßK n TßRl.
Puisque \.ik! est distincte de \.ik et son support est contenu dans celui de \.ik le groupe
TßK n rfÀK, est strictement contenu dans F^. Tout sous-groupe non dense du groupe
des rotations étant fini et TßK n FM/f/ étant un sous-groupe fermé de Homéo+(S^),
le groupe TßK n TßK, doit nécessairement être fini.

Désignons par H l'ensemble des h g Homéo+(Si)telsque/î lim„^+00
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pour une suite (gn) dans F vérifiant lim„^+00 pr( (gn) ido, • À partir de la définition,

il est facile de voir que H est un sous-groupe fermé de Homéo+(S^). De plus,
l'argument plus haut montre que H est contenu dans TßK n FM/f/. C'est donc un

groupe fini. Notons r l'ordre de H et, dans le cas où r > 1, fixons un générateur h

de H. Remarquons que p{h) 7^ 0 (où p désigne le nombre de rotation). Fixons une
suite (gn) de F telle que lim„^+00 pr((gn) idGï et h lim„^+00 0K(g«)-

Nous allons démontrer que H est contenu dans le centralisateur de c/>k(T) dans

Homéo_|_(S^). Pour cela, fixons g G F. Remarquons que pr( (g"1 g„g) tend aussi vers

idGï lorsque n tend vers l'infini. Par définition, la suite (4>k(§~1 gng)) tend vers un
élément de H, c'est-à-dire vers h-> pour certain j G {1, r}. À partir de l'égalité
P(,4>K(,g~lgng)) p(,g~lgng) P(gn) pifaign)), « G N, on conclut aisément

que 7 1. Ceci implique que 4>k (g) commute avec h. Puisque g G F était un élément

arbitraire, le groupe H centralise 0k(T)-
Désignons par S^/~ le cercle topologique obtenu en identifiant les points de S^

qui sont dans la même orbite par H. Le cercle S^ est un revêtement fini de degré r du
cercle S^/~. De plus, la représentation c/>k '¦ T —>¦ Homéo+(S^) induit de manière
naturelle une représentation

4>: F ^Homéo+(SK/-).

Notons que si (gn) est une suite de F telle que pr, (gn) tend vers idG; lorsque n tend vers

l'infini, alors 4> (gn) tend vers l'application identité de S^/~. Nous sommes donc sous

les hypothèses du lemme 2.5, lequel nous permet de conclure que (ji> s'étend en une
représentation 4> : G —>¦ Homéo+(S^/~) qui se factorise sur G,. Cette représentation
4> étend 4> à semiconjugaison topologique et à revêtement fini près, et ceci termine la

preuve du théorème B.

Remarque 4.1. Notons que d'après la démonstration du théorème B, dans le cas

éventuel d'une semiconjugaison topologique, la partie invariante K a une mesure de

Lebesgue positive.

Rappelons que les sous-groupes finis de Homéo+ (S1 sont topologiquement conjugués

à des groupes de rotations, et donc à des sous-groupes de PSL(2, R) (voir [15]).
Ainsi, pour démontrer le corollaire du théorème B, nous montrerons que si cf>{T)

préserve une mesure de probabilité sur le cercle et si H1 (Fo, M) {0} pour tout sous-

groupe distingué et d'indice fini Fo de F, alors cf>{T) est fini. En effet, si la mesure
invariante n'a pas d'atome alors <f>(T) est semiconjugué à un groupe de rotations.

Sinon, 0(F) possède une orbite finie. Étant donné que F et Fo sont de type fini, ceci

implique que 0(F) est un groupe fini. Dans le cas d'une orbite finie ceci découle du
théorème de stabilité de Thurston, tandis que dans le cas d'une semiconjugaison à

un groupe de rotations ceci est à peu près évident. La preuve du corollaire est donc
terminée.
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Exemple 4.2. On pourrait être tenté de vouloir utiliser le cocycle de contact à l'origine
introduit dans l'exemple 2.1 afin d'obtenir un résultat analogue au théorème B pour
les sous-groupes de Diff++œ([0, 1]) qui ne préservent pas de mesure de Radon sur
]0, 1[. Or, un lemme bien connu et attribué à M. Muller et T. Tsuboi permet de se

ramener au cas où les difféomorphismes sont tangents à l'identité à l'origine (voir [26]
et [38]), et dans ce cas il a été déjà remarqué dans [41] que la représentation régulière
correspondante possède presque des vecteurs invariants. Nous montrerons (toujours
dans ce même cas) que le cocycle c donné par (1) est en fait nul en cohomologie
réduite.

Fixons un sous-groupe de type fini F dans Diff++œ([0, 1]) tel que g'(0) 1 pour
tout g G F. Pour chaque n G N considérons la fonction

Kn\.x) — *X>[l/n, 1] \X).

Il est clair que chaque Kn appartient à =Cr([0, 1], dix). Nous montrerons que si l'on
désigne par cn le cobord associé à cette fonction, alors cn (g) converge vers c{g) pour
tout g G F. En effet, en utilisant les estimées de l'exemple 2.1, on vérifie aisément

que

\\c{g) - (Kn - 6{g)Kn)\\2M < -^
C

fsUM dx

Je-Hl/n) X

D'autre part, il existe nécessairement un point xn g]0, l/«[ tel que (g~l)'{xn)
ng l(\/n). Puisque la suite (xn) converge vers zéro, (g~lY(xn) tend vers 1. En
raisonnant de la même manière avec l'expression ng{\/n), on déduit que \\c{g) —

(Kn — 6(g)Kn)\\2 tend vers zéro. Ceci montre que c(g) est la limite des cn(g)

Kn-6(g)Kn.
Ce qui précède rend naturelle la question de savoir si l'espace de cohomologie

réduite H1 (F, 6) associé à la représentation régulière 9 ci-dessus est trivial ou non.
Signalons par ailleurs que le cocycle de Liouville peut encore être défini pour des

groupes de difféomorphismes de l'intervalle (lorsque leur classe de différentiabilité
est supérieure à 3/2). Cependant, il n'est pas difficile de vérifier que, dans le cas de

tangence à l'identité à l'origine, la représentation unitaire correspondante possède

presque des vecteurs invariants.

4.2. Actions de groupes localement compacts. Rappelons d'abord le théorème de

Montgomery et Zippin (voir [25]) : «si G est un groupe topologique localement

compact, alors G est un groupe de Lie si et seulement s'il existe un voisinage de

l'identité qui ne contient pas de sous-groupe compact non trivial » (c'est-à-dire s'il n'y
a pas de sous-groupe compact «petit»). En utilisant ce résultat profond (et difficile) on
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démontre que tout sous-groupe localement compact de Homéo+ (Sl est un groupe de

Lie (réel). En effet, tout sous-groupe compact de Homéo+ (Sl étant topologiquement
conjugué à un groupe de rotations, Homéo+(S1) ne contient pas de sous-groupe
compact «petit» (voir [15]).

Dans l'introduction nous avons signalé que la classification des actions de groupes
de Lie connexes par homéomorphismes directs du cercle est bien connue (voir [13] ou
[15]). Plus concrètement, on sait que ces actions transitent par des homomorphismes

sur (R, +), Aff+(R), SO(2, R), PSL(2, R) ou PSLjt(2, R) pour certain k>\. Cette

classification sera essentielle pour la démonstration suivante.

Preuve du théorème C. Nous supposons que 0(F) n'est pas fini, ce qui d'après la

preuve du corollaire du théorème B équivaut au fait que </>(F) ne préserve aucune

mesure de probabilité du cercle.

Considérons d'abord le cas où l'on admet l'hypothèse (i). Le cercle S^ s'identifie
alors au cercle original S1. Du fait que le noyau de 4> est fini on conclut qu'il existe
des suites (gn) dans F telles que pr,(gn) converge vers ido, et les 4>(gn) sont deux à

deux distincts. Ceci implique que le groupe de Lie ^(G,-) est non discret. D'après la
classification précédente, la composante connexe de l'identité de ce groupe <£>(G,)o

est soit SO(2, R), soit un sous-groupe d'un produit de groupes des translations, de

groupes affines et de groupes conjugués à PSL(2, R) agissant sur des intervalles
ouverts deux à deux disjoints, soit PSL^(2, R) pour certain k > 1. Le premier cas ne

peut pas se produire, étant donné que 0(F) ne fixe aucune mesure de probabilité du
cercle. Le deuxième cas ne peut pas se produire non plus, étant donné que les orbites

par 0(F) sont denses et que <£>(G,)o est distingué dans ^(G,-) (car l'ensemble des

intervalles fixés par <£>(G,)o doit être préservé par F). Le groupe <£>(G,)o est donc

conjugué à PSL^(2, R) pour certain k > 1, et puisque ces derniers groupes coïncident

avec leurs normalisateurs dans Homéo+ (S1 ceci achève la preuve du théorème sous

l'hypothèse (i).
Considérons maintenant le cas de l'hypothèse (ii) suivant laquelle 4> est à valeurs

dans Diff^S1). Nous avons déjà remarqué que les orbites par l'action de F sur
S^ ne sont pas nécessairement denses. Soit K l'ensemble fermé non vide invariant et

minimal de cette dernière action, et considérons l'action induite 6: F —>¦ Homéo(Sj-)
K

sur le cercle topologique S)> obtenu en retirant les composantes connexes de Si \ K et

puis en identifiant ses extrémités. Les orbites par 4> sont denses. Ainsi, pour pouvoir
appliquer les arguments de la première partie de la preuve, on doit démontrer que le

noyau de 6 est fini. Or, ceci est évident, étant donné que les difféomorphismes de

0(F) sont analytiques réels, et ses points fixes sont donc isolés (par conséquence, le

noyau de la restriction de 6 à F coïncide avec celui de (/>).

Considérons finalement le cas de l'hypothèse (iii) suivant laquelle F vérifie le

théorème des sous-groupes distingués de Margulis. De nouveau, nos devons montrer

que le noyau de <fc est fini. Or, si c'est ne pas le cas, alors ce noyau est d'indice fini dans
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F. Ceci implique que les orbites par F des points de K sont finies, ce qui est absurde,

car les orbites par 6 sont denses. La preuve du théorème C est donc terminée.

Remarque 4.3. Signalons que dans [35], Y. Shalom a obtenu - comme une autre

application de son théorème de super-rigidité cohomologique - un résultat qui sous une
forme faible se lit : «sous les hypothèses du cadre général, si 4> '¦ T —>¦ PSL(2, R) est

un homomorphisme avec image non métabélienne, alors 4> s'étend à G et se factorise

en un homomorphisme de l'un des G, ». Comme une conséquence de ce fait, sous les

hypothèses du théorème C, lorsque l'image cf>{T) n'est pas finie, l'homomorphisme
4> s'étend toujours (à semiconjugaison topologique et à revêtement fini près) en un
homomorphisme de G qui transite par la projection sur l'un des facteurs G,.
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