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The macroscopic spectrum of nilmanifolds with an emphasis on
the Heisenberg groups

Constantin Vernicos*

Abstract. Take a Riemannian nilmanifold, lift its metric on its universal cover. In that way one
obtains a metric invariant under the action of some co-compact subgroup. We use it to define
metric balls and then study the spectrum of the Dirichlet Laplacian. Using homogenization
techniques we describe the asymptotic behavior of the spectrum when the radius of these balls
goes to infinity. This involves the spectrum, which we call macroscopic spectrum, of a so called
homogenized operator on a specific domain. Furthermore we show that the first macroscopic
eigenvalue is bounded from above, by a universal constant in the case of the three dimensional
Heisenberg group, and by a constant depending on the Albanese torus for the other nilmanifolds.
We also show that the Heisenberg groups belong to a family of nilmanifolds, where the equality
characterizes some pseudo-left-invariant metrics.

Mathematics Subject Classification (2000). Primary 53C24; Secondary 58C40, 74Q99.

Keywords. Spectrum of the Laplacian, nilmanifolds, homogenization, stable norm, asymptotic
volume, Albanese metric, rigidity.

1. Introduction and statement of the results

This article deals with geometric properties of large balls in periodic Riemannian
manifolds. A Riemannian manifold (N", g) 1s periodic if it possesses a discrete
group I' of isometries with a compact fundamental domain. Given xy € N", we are
interested in the asymptotic behavior of two geometric invariants of the metric ball,
Bg(xg, p), with radius p and centered at xg, as o tends to oo:

o the Riemannian volume Vol, (B, (x0, p));
o the spectrum of the Dirichlet Laplacian on B, (xg, p).

Our approach consists in rescaling the metric, 1.e., replacing the original Rieman-
nian metric g on N with g, = 1/p%g, so that Bg (x0, p) becomes By, (xo, 1), and
applying homogenization techniques to the family of Riemannian manifolds with
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boundary N, = (Byg,(x0, 1), gp). There are several notions of convergence of met-
ric spaces (see [Gro81b], [Gro93]). It turns out that the balls N, converge, in the
Gromov—Hausdorff sense, to a compact metric space if and only if the group I" con-
tains a finite index subgroup I' that is nilpotent, torsion-free, and finitely generated.
This follows from a celebrated result of M. Gromov [Gro81a], characterizing finitely
generated groups of polynomial growth, completed by P. Pansu [Pan83] and Van den
Dries—Wilkie [vdDW84]. Therefore, actions of nilpotent groups seem to provide the
proper setting for application of homogenization techniques in Riemannian geome-
try. According to Malcev, such a group uniquely embeds into a simply connected
nilpotent Lie group G, and G/ T is called a nilmanifold. In the sequel, we assume
that N = G is equipped with a ["-invariant Riemannian metric. The manifold N"
can be viewed as the Riemannian universal covering of M" = G /T equipped with
the quotient metric.

Although the results presented here are geometric in nature, we use homogeniza-
tion techniques. Hence this article can be read under two different lights.

1.1. From the geometric point of view: The Riemannian volume and the Dirichlet
spectrum of By (xo, p) are linked by Weyl’s asymptotic formula, which states that if
Ai(p) is the kM eigenvalue of the ball of radius p and Vol(p) is its volume, then as
k — 00, there exists a universal constant ¢(n) such that
2/n
A NGO )T
k(o) ~ < )Volz/”(p)
One could expect that the asymptotic behaviors of the volume and the Dirichlet
spectrum when the radius of the balls increases would be related. This is not the case;
we shall see that they are described by two different limit metrics.

Problem 1. Make the asymptotic behavior of the volume of a ball with respect to its
radius, precise, and extract geometric information from it.

In the case of nilmanifolds there is a precise equivalent to the volume of balls
given by P. Pansu [Pan83], which depends on the algebraic structure. Let G! = G,
and G't! = [G', G]; then d), = Zfil dim G is called the homogeneous dimension
of G, and

Vol(p) ~ Asvol(g)p@.

The constant Asvol(g) is usually called the asymptotic volume. In the particular case
of tori, D. Burago and S. Ivanov [BI93] gave a lower bound on the asymptotic volume,
which is achieved if and only if the metric is flat (see also [Ver04] for an alternate
proof in dimension 2 using homogenization theory and [Bab91] for the first proof in
dimension 2).

To the nilpotent Lie group G, we can associate its limit group at infinity, Geo,
which is nilpotent and graded. Furthermore, thanks to a theorem of K. Nomizu
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[Nom54], Hi(M,R) can be identified with a subspace of the Lie algebra of G,
hence to a left invariant distribution # of vector fields over Go,. Thus to any norm
on Hi (M, R) we can associate a left-invariant sub-finslerian structure on G, hence,
thanks to Chow’s theorem on accessibility, a left-invariant distance on G,. For a
Euclidean norm we obtain a left-invariant sub-Riemannian structure. The metric g
induces two important norms on Hy (M, R). The first one, called the stable norm,
comes from the sup norm on the 1-forms over M, which induces a norm (usually #ot
Euclidean) on H'(M, R), and by duality on H;(M, R). The second one, called the
Albanese metric, comes from the L? normalized norm on 1-forms, which induces
a Euclidean norm on H'(M,R), and by duality on H;(M,R). The two distances
mduced by these two metrics on G are often said to be of Carnot—Carathéodory
type. We call them, respectively, the stable distance and the Albanese distance.

The following inequality, if not the best one, gives a hint of what we might expect
for all nilmanifolds.

Theorem 1. Let (M", g) be a nilmanifold. Let G be the limit group at infinity
associated to the universal covering of M". Then the asymptotic volume of M"
satisfies the following:
p(Ba(l))

w(Du)
2. in case of equality the stable norm coincides with the Albanese metric.

1. Asvol(g) > Volg(M")

Here, p is a Haar measure on G, Ba(1) is the unit ball of the Albanese distance
centered at the unit element, and Dy is the image in Goo of a fundamental domain
on the universal covering of M", by the canonical projection.

Concerning the spectrum of the Laplacian on balls, atheorem of R. Brooks [Bro83]
(see also Sunada [ Sun89]) states that the bottom of the spectrum on the universal cover
is zero if and only if the fundamental group is amenable. The first eigenvalue goes
to the bottom of the spectrum as the radius of the ball goes to infinity. R. Brooks’s
theorem implies, in our case, as the fundamental group is nilpotent hence amenable,
that the first eigenvalue goes to zero as the radius goes to infinity.

Problem 2. Make the speed of convergence to the bottom of the spectrum on the
universal cover with respect to the radius, precise, and extract more geometric infor-
mation from the spectrum of large balls.

To state our results to that problem, let us remark that to the Albanese metric we
can also associate a kind of Laplacian A on Go,. A 1s usually called the Kohn
Laplacian. 1t 1s a dilation invariant hypoelliptic second order differential operator,
which is symmetric and without a constant term.
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Theorem 2. Let (M", g) be a nilmanifold, with universal cover M and let x € 1\:4
Let By(x, p) be the corresponding Riemannian ball of radius p and center x € M,
and let L1(Bg(x, p)) be the first eigenvalue of the Laplacian for the Dirichlet problem
on By(x, p). Then

L 1m0 0201 (Bg (x, p)) = AJ° < A (g, Alb);

2. in case of equality, the stable norm coincides with the Albanese metric, hence all
harmonic 1-forms are of constant length.

Here, 11(g, Alb) is the first eigenvalue of the Kohn Laplacian arising from the Al-
banese metric for the Dirichlet problem on By (1), the unit ball of the Albanese
distance centered at the unit element. Furthermore, for tori this is a constant depen-
dent only on the dimension, and for the 3-dimensional Heisenberg group it is also
independent of the metric.

In the case of a 2-step nilmanifold with a 1-dimensional center, we can determine
for which metrics equality holds. We call these metrics pseudo-left-invariant (see
Section 6 for the definition). One of their main properties being that they arise as
fiber metrics over a flat torus (i.e. the nilmanifold submerges onto a flat torus).

Theorem 3. In the case of a 2-step nilmanifold whose center is one dimensional, the
Albanese metric and the stable norm coincide if and only if the metric is pseudo-lefi-
invariant.

Actually this behavior is shared by all the eigenvalues, and Theorem 2 1s partially
a consequence of the following;:

Theorem 4. Let (M", g) be a nilmanifold, with universal cover M, and let x € M.
Let By(x, p) be the corresponding Riemannian ball of radius p, and center x € M
and let };(Bg(x, p)) be the i eigenvalue of the Laplacian for the Dirichlet problem
on By (x, p).

Then there exists an hypoelliptic operator A~ (the Kohn Laplacian of the Al-
banese metric), whose i™ eigenvalue for the Dirichlet problem on the unit ball of the
stable distance (centered at the unit element) is A:°, and such that

lim p?4;(Bg()) = A%
£—>00
We call (A7°);cn the macroscopic spectrum.

1.2. From the point of view of analysis, let

d d
T = s () —
ox; @i (x) ax;’
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be a uniformly elliptic differential operator on R”, and assume that the coefficients
a;j are periodic, i.e., aj; (x + k) = a;;(x) for any k € Z" and C*. After rescaling we
get a family of operators

d x\ o
0<€§ 1, L6 :—gdij ; g
11 1

We can associate, to this family of operators, a so-called homogenized operator,

Lo — 0 a
4 =4 dx; dx;’

Now, if D i1s a domain of R”, then we can consider the Dirichlet problem for this
family of operators, and hence we have eigenvalues and eigenfunctions, denoted
respectively by

M SA =A< and ¢, 6045
We now have the following problem.

Problem 1’.  Study the convergence of A{ and ¢ to A? and gb? , respectively, as
€ — 0.

In the case of R”, this is the subject of Chapter III of [OSY92], and Chapter 11
of [JKO94], and of [CD99].

The operators L. define Riemannian distances d.. So another related problem is
the following:

Problem 2’. Study the relationship between the distance d. and the distance dj.

The papers [Dav93], [Nor94] and [Nor97] are related to this problem in conjunc-
tion with the existence of bounds on the heat kernel (see also [KS00] for a probabilistic
approach).

The present paper is concerned with the problem above, when R” is replaced by
anilpotent Lie group N and Z" by a uniform lattice I' of N. Homogenization in this
context, when N is stratified (graded), has been the subject of [BBJRI5], [BMT96]
and [BMT97].

However our paper differs in three ways from the previous work. First of all,
we are not dealing with a stratified group, hence we must not only homogenize the
operator, but also the space, by using its associated graded Lie group. Secondly we
begin by studying a family of elliptic operators, which happens to have an hypoel-
liptic homogenized operator. And finally, our domain moves with the operator. The
relationship with the long time asymptotics of the heat kernel is shortly studied in
Section 8.
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2. Geometry of nilmanifolds

2.1. Nilpotent Lie algebras. Let u be a Lie algebra. One says that it is nilpotent if
the sequence defined by ' _
w =u, uit =y,

is such that for some k € N, u¥*t! = {0}. Let r be the smallest of such k; then we say

that 1t is an r-step nilpotent Lie algebra.
A distinguished family of nilpotent Lie algebras consists of the graded ones. A
nilpotent Lie Algebra u is graded if it admits a decomposition:

u=vVi®e- oV, M

such that
1. Vi is a complement of u/*! in u;
2 [V, Vi1 C Vi
It is quite important in our work that to such a graduation one can attach a one-
parameter group of automorphisms (z,) ,cr+ called dilations such that:

To(x) = pix forallx € V.

In fact, the existence of such a family of dilations is equivalent to the existence of a
graduation. These dilations play the same role as the dilations in Euclidean space.

Not all nilpotent Lie algebras are graded. But to each nilpotent Lie algebra, we
can associate a graded nilpotent one in the following way:

r
Uso = E u; /Uiy,
=l

the Lie bracket being induced. We will denote by 77 : 1t — U the induced projection
and by 7,, the dilations in ux.
The Homogeneous dimension of u is the number

.
dy =Y idim@ /u'th).
i=1

There is another way to make that graded Lie algebra appear: start with a nilpotent
Lie algebra u, remark that for all i, u'*! < u', and build a basis (X;); of u by taking
independent vectors X4, 4..4d, 141 - - - » Xdy+--+d;_,+d; Such that the vector space V;
that they span is a complement of 1! in u’. Hence the direct sum (1) holds. We
shall denote by pry, the projection induced on V; by this direct sum. Now we define
a function 7,: u — u by

T (Xp) = pae(p)Xp’
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with a(p) =iifdi_; < p <d;,and dy = 0.

We obtain a new Lie algebra u, by modifying the Lie bracket in the following
way: for any X and Y inu,, [X, Y], = 11/p[tpX, 7oY]. Thus 7, becomes a Lie
algebra isomorphism from u, = (u, [+, -Jp) to (u, [, -]).

Now as p goes to infinity, 1, goes to U, in the sense thatfori, j =1, ..., n, we
have

[Xi ’ X}]OO = per(i)+a(j) [Xi’ X]]

Notice that all u,, have the same graded Lie algebra. We will denote by 77, the
projection from u, to U (in fact we could avoid the subscript in 77,,, because we can
identify the Lie algebras as linear spaces).

Notice that if the Lic algebra is graded, then [X, Y], = [X, Y], and 7, is a Lie
algebra automorphism. Otherwise, remark that for all X € u,

7 (1p (X)) = Tp(7p(X)).

2.2. Remarks on exponential coordinates. Let G be the simply connected Lie
group associated with the nilpotent Lie algebra u. For nilpotent Lie groups, the
exponential is a diffeomorphism between the Lie algebra and the Lie group, hence
thanks to the exponential coordinates, we can identify G, as a differential manifold,
with some R":

¢:R'"—> G, ¢:x=(x1,...,%) —~expx1 X1...expx,Xy.

Let X/ be the dual form of X;.
Moreover, we denote by &, the following family of dilations:

Sp(xt, s xn) = (p* Dy, oo, p*™),

Notice also that d8, = 7,. We define a family of group products s, by setting

X% Y = 81/0[8,(x)8()].

Finally
X¥eo Yy = lim x %, y.
p—00

Thus we get a family of nilpotent Lie groups G, = (G, %,), 0 < p < oo, whose
Lic algebras are isomorphic, respectively, to the algebras u,, 0 < p < oo. We
also denote by 7,: G, — G the function which sends x € G, to x € G, ie.,
T = Poo © ¢;1 (and to simplify 7; = 7).

Observe that for 1 < j < dj, the x; liveon G/[G, G].

If ¢ € G is the unit element and X € u, then for p € R, X will be the o left
mvariant field in G, such that X?(e¢) = X(e). Thus to the basis (X;) defined in 2.1,
we will associate the *,, left invariant fields (X!'). Notice also that

d8,(X0) = 1,(X0) = p*VX;.
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We also define Vy by

Vaf =XP fio. XT - f).

3. Asymptotic behavior of the distance

3.1. The stable norm

3.1.a. Recall that (M", g) is a manifold whose universal covering is a simply con-
nected nilpotent Lie group G. We shall denote by g the lifted metric on G. On the
graded nilpotent Lie group G associated to G, we obtain a natural distribution by
left multiplication of V1 = uj/uy C us. We shall call that distribution horizontal
and denote it by .

Let us remark that since the Lie algebra uq is generated by Vi, a basis of V)
satisfies the so called Chow (or Hormander) condition in the Lie group G. Let us
recall what the stable norm is:

Definition 5. Let || - ||, be the quotient of the sup norm on 1-forms, arising from
the metric g, on the cohomology H'(M",R). Then its dual norm on the homology
Hy(M",R), 1s called the stable norm and we denote it by || - || cc.

By a theorem of K. Nomizu [Nom34], H;(M",R) = Vi, thus we can transport
the stable norm on J#¢. Now the Rashevsky—Chow theorem (see Theorem 2.4, p. 15, in
[BR96]) asserts that two points of G, can be joined by a curve tangent to J¢ (usually
called an admissible curve). For an admissible curve y : [a, b] — G, we consider
its stable length /o (y) = fab lv (£)||oodt. Hence we can define a distance do, which
we call the stable distance, between two points of G, by taking the infimum of the
stable lengths of admissible curves between these points. This kind of distance is
usually said to be of Camot—Carathéodory type. We shall call the unit ball for the
stable distance centered at 0 the stable ball and denote it by Boo(1).

dg(8px,8py)

3.1.b. For any x,y € G, let us introduce d,(x, y) = . Then the

work of P. Pansu [Pan83], implies that for any x, y € G,

lim 20 ), mp(3)) L deolm 00p(x), 08, (y))

1.
p—>00 do(x,) p—>00 dg(8px,8,y)

This implies the simple convergence of the functionals x — d,(0, np_l (x)) toward
X > deo(0, x) on Bog(1)\d B (1).
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3.1.c. Remark that the distance d,, is also given by the metric g, on G, obtained
by rescaling the pull back of the metric g on G in the following way:

1 .~
8p = ?(5,0) 8.
3.2. Gromov—Hausdorff convergence of balls

3.2.a. Recall that a family of spaces X, endowed with metrics d,, and measures
n. 18 said to converge in the Gromov—Hausdorff Measured sense toward (X, d, w) if
and only if there is a family ( f;, )N, where for all n, f, is an u,, measurable function
from X, to X, and there is a sequence (¢,), decreasing to 0, such that

1. the ¢, neighborhood of f,(X,) m X is X
2. forany x,y € Xy, |dn(x, y) —d(fu(x), V)] < €u;

3. for any continuous function # : X — R we have

/ uo fudpy —>/ udp.
n X

3.2.b. Let u, (resp. pig) denote the Riemannian volume associated to g, (resp. g),
and let oo be defined as follows. Let Dr be a fundamental domain in G and 1 a
Haar measure on G ,, then (recall that 7 is the canonical projection from G — G )

N Mg(DF)
= u=(dry

Adding to this that for any compact domain A in G, whose boundary is of Haar
measure 0, and any function f € L'(A, o), we have

o]

lim /7] f(ﬂp(X))dup(X)=f fdpeo. ()
o (A) A

p—>00 J o

Theorem 6. The family of metric spaces (B, (1), dy, 11,) converges in the Gromov—
Hausdorff measure topology to (Bso(1), dos, [Loo) as p goes to infinity.

To prove the convergence (2) let A be a domain in G, then zrp_l (A) belongs to
G, and 8, o yrp“l(A) belongs to G. We will denote by * the law group of G. Let
Z1, ..., zkand &1, ..., & be elements of I such that ¢; = Dr N §, oyrp_l(A) # () for
any j, and

Jzi*Dr c 8, om; (4 c | g = Dr.
i j
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Let us notice that

D
pg(Dpy = &)

= mﬂ(”(DF)) = foo(7(Dr)).

Then we get

inf f®pee((Dr)) < /

" Spom; ! (x)€zi*Dr 8pomy (A

: FB1yp o m(x))dpug(x)

<> sup S ) troo(7(Dr)).

j (Spon,jl(x)ezj*Dr

Dividing both sides by p@ (see 2.1), we get:

>t f@uGyeen Do) < [ fpduy

" x€mpod1yp(zi*Dr) 7, (A)

< Z sup F() poo(81/p o (Dr)).

j X€EMpod1/p(Lj*Dr)

Then the extremal terms are Riemann sums that converge toward | 4 fdieo.

3.2.c. We are now able to define and identify the asymptotic volume by

Asvol(g) = lim W = oo (Boo(1)).

[o9)
3.3. Convergence of the elements of the set £2

33.a. Forp € R, Lf7 = LZ(B,O(I), du,) will be the space of square integrable
functions over the ball B, (1), which is a Hilbert space with the scalar product

(u7 v)p :/ uD d/,Lp.
By(1)

Its norm will be denoted by | - |,.

Let «£2 be the set of nets (4p) per+ such that for 1 < p < o0, u, € ij‘ Thanks
to the Gromov—Hausdorff measured convergence of balls, we can give a meaning to
the sentence “the net (u,) ,cr+ converges™ in the following way.

Definition 7. Let (u,),cr+ be an element of £2, we say that it strongly converges
to 1w if and only if there exists a net (vy) in C%(Bso (1)) strongly converging to o
in L2, and such that

hcrln lim sup |vg 0 Ty — tplp = 0.
)
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This allows us to introduce the weak convergence as follows.

Definition 8. Let (u,),cr+ be an element of £2. We say that it converges weakly
to o, if for every strongly convergent net (v,) pep+ of £2, we have
pkr-lr-loo(up’ Vp)p = (Moo, Voo) oo
For the properties of these convergences see our previous work [Ver04] and
[VerO1]. It suffices to say that they satisfy the usual properties of weak and strong
convergence in L.

3.3.b. We shall say that a function f is periodic with respect to I' (the co-compact
subgroup) if for every ¥ € I' and x € G we have f(y *x) = f(x). Thus the metric
¢ lifted from M™ to G is periodic with respect to I

To finish this section remark, that it is not difficult to adapt the proof of the limit
(2) to obtain (see [BBJRIS] page 431).

Lemma 9. Let h be a function that is periodic with respect to I" on G. Let h, be
defined on G, by hy(x) = h(8,x). Then (hy)ocr+ weakly converges in L2 toward

o0

= hdp,.
ng(Dr) Jpr ¢

Le. for any u, — u strongly in L2, we have

/ uphpdpy — hoo/ U ool oo
B,(1) Boo(1)

4. Behavior of the eigenvalues: setting
4.1. The Albanese metric

4.1.a. Let Dr be a fundamental domain for the action of I' on G. Let x' be the
unique solution (up to an additive constant) of

Ax'=Axion Dp, forl <i<r,

that 1s periodic with respect to I'.
Let us define the operator Ao, by

1 ij - i j 00 00
Mook = ~Gorn 2 (/Drgf—Zg"Xk-xfd@Xi XFf ()

1<i,j<d; k=1

1=i,j<d
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Remark that n; (x) = X/ (x) —x ; 1s a harmonic function on G, and by construction
so are the 1-forms dn; on the nilmanifold. It is not difficult to show the following.

Proposition 10. Let (-, -), be the scalar product induced on 1-forms by the Rieman-
nian metric g. Then
. 1 .
i _ dni,dni)s = g’t
7" = Yolg) (dni,dnj)a=q

Thus A~ is an Hypoelliptic operator.

4.1.b. Recall that thanks to Nomizu’s work [Nom54], H;(M", R) = V;, hence by
duality we get that the dimension of H'(M", R) is d1. Remark that (¢*/) is the matrix
of the L2 normalized scalar product on harmonic 1-forms, written in the basis (d7;),
hence on H'(M",R) by Hodge’s theorem (whose norm will be written || - [|2). By
duality it gives a scalar product on I} (M", R) (whose norms will be written || - ||3).

The norm || - || induces another Carnot—Carathéodory metric, which we shall
call the Albanese metric and denote by d,, as follows. Take on #, = H{(M, R)
(the horizontal subspace of the tangent space at the unit element) an orthonormal
basis Yi(e), ..., ¥y (e) for || - |[3. It induces a left-invariant orthonormal frame
field on J¢, and for any admissible curve y : [a, b] — Goo, we have that y (1) =

?;1 a; (1) Y; (y(1)). Thenthe Albaneselength of y isly (y) = fab (2?1:1 ociz(t))l/zdt,
and the Albanese distance between two points is the shortest Albanese length among
all admissible curves joining them. A comparison of the L? norm and the L> norm
gives the following

Proposition 11. For every 1-form « and y € Hi(M", R) we have
lellz < llells and llyllo < lI¥ 3. &)

In other words the unit ball B, (1) of the Albanese metric dy is included in Boo(1).

Proof. For « a 1-form we have

1/2
1 2
allp = | ——— al*d < sup |a(x)| = |||
llee]l2 <V01g(M)/ || /’Lg) _xep| (x)] I ”oo

Hence our proposition follows, first by passing to the quotient and by duality, and
finally by integrating over admissible paths. O

4.2. The eigenvalues, at last! All the balls considered here, will be centered at a
fixed point x¢ of the universal covering of M* = (G /T, g). We study the eigenvalues
of the Dirichlet problem on B, (p), the geodesic ball of radius p:

A =2$ on By(p);
¢ =0 on dBg(p).
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It 1s well known that the eigenvalues are a discrete family accumulating at infinity.
We shall denote them by A1(p) < A2(p) < --- < Ai(p)....

R. Brooks’s theorem [Bro85] on the first eigenvalue of the whole group implies
that as p goes to infinity, A1 (p) — 0. We are going to estimate how fast it converges
n our case.

4.2.a. Oneach G, (see 3.1.c), we pulled back the lifted metric of M" on G, g, and
rescaled it in the following way

1 .-
8o = F(Sp) g.

This gives a net of Riemannian manifolds (G, go)per+. Let B,(1) be the unit
geodesic ball for the metric g,, and consider the Dirichlet problem for A, the Lapla-
cian associated to g,, i.¢.,

Ay =1 on B,(1);
¢ =0 on dB,(1).

To a function f from B,(p) to R let us associate a function f, on B,(1) by
Sfo(x) = f(8,-x). Then it is an easy calculation to see that for any x € B, (1),

PP (AL (Bp-x) = (Ap fo)(x).

This implies that the eigenvalues of A, on B, (1) are exactly the eigenvalues of
A on Bg(p) multiplied by P2,

Enlightened by what happens on tori we would like to show that the net of re-
solvents of the Laplacians (A),cgr+ compactly converges towards the resolvent of
Ao, which implies the convergence of the spectrum towards the spectrum of A, for
the Dirichlet problem on Bso(1) (see Theorem 15, 17 and 21 of [Ver04]).

4.3. Upper bound on the eigenvalues, lower bound on the asymptotic volume
and the equality cases. Recall that B, (1) is the unit ball for the Albanese metric
on Gy, centered at the unit element. Let D be a bounded domain of G4, and
denote by A°(D) the i th eigenvalue of A, on D for the Dirichlet problem. Then by
Proposition 11, we have By (1) O B, (1). Thus by the min-max property, for any i,
we obtain

A (Boo(1)) < A% (Ba(1)). ©)

Following the maximum principle (see J.-M. Bony [Bon69]), equality holds if and
only if the two balls coincide, and thus the norms in Proposition 11 also coincide.
The same argument also shows that we have equality in the following estimate if and
only if the stable norm and the Albanese metric coincide.
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Proposition 12. Let (M", g) be a nilmanifold. Let G, be the limit group at infinity
associated to the universal covering of M". Then the asymptotic volume of M"
satisfies the following inequality:

p(Bal(1))

p(z(Dr))

Here, p is a Haar measure on G, By (1) is the unit ball for the Albanese distance
and Dr a fundamental domain on the universal covering of M".

Asvol(g) > pug(M")

Proof. From 11, for any Haar measure p, one gets the following inequality:
H(Bai(1)) < u(Boso(1)).

We can conclude by taking the Haar measure 11 for 1 (see Section 3.2), giving the
asymptotic volume. O

5. Homogenization and proof of Theorem 4

The first step consists in showing the convergence of the metric geodesic balls with
respect to the Gromov—Hausdorff measure topology (completed in 3.2).

5.1. Asymptotic compactness

5.1.a. Let us now define the various functional spaces involved. Recall (see 3.3.a)
that for p € Ri L% = LZ(BP(I), du,) is the Hilbert space of square integrable
functions over the ball B,,(1) with the norm | - |,.

5.1.b. Following the usual nomenclature, we will be interested in the following
spaces, for an r-step nilmanifold (see Section 2.1):

HY(Bo(1)) = {v | v, X{ -v e LX(B,(1),dp,), 1 <al(i) <r} (7
(resp. Hiy(Boo(1) = {v | v, X{° v € L*(Boo(1), duco), L <i <di}).  (8)

These spaces become Hilbert spaces when endowed with the quadratic forms
| - Il o, defined by

ol =2+ > X0 vl ©)
1<a(i)<r
(resp. [vllZ, = vl% + > X7 vllZ). (10)

1<i<d;
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We will denote by H 1 O(B (1)) the closure in H, 1 (Bo(1)), with respect to the norm
| - |, of the space of C°°(Bp (1)) functions w1th compact support in B, (1).

5.1.c. We can define a self adjoint operator on L2, whose resolvent will be Rf
forh € R, thanks to the Friedrichs extension of the Laplacian (sub-Laplacian for
Ao) defined on H;’O(Bp(l)), endowed with the following quadratic form

10126 = [0 + (0. Apv),.

Now for a bounded net in (H y 0(Bp (1))),0 <+ With respect to these quadratic forms
we have the following Lemma

Lemma 13. Let (uy),cp+ be a net with u, € H;’O(Bp(l))for every p > 1, and
assume the existence of a constant C such that for every p > 1, we have

”u,o”p,O <C.

Then there is sub-net which is strongly convergent in £2.

Proof. Let B be acompactset such that UpeR+ 7o(Bp(1)) C B C Goo. Weare going
to show that the strong convergence in L?(B, pt~) implies the strong convergence in
£2. Then the compact embedding of Hgo (B) in L?(B, 1to) will conclude the proof.

Let us first notice that the periodicity with respect to I, and the co-compactness

of I" gives the existence of two constants « and B such that (we suppose the norms
are defined on B, and identify B and 7' B)

a|vloo < Iv]p < BlV]oo -

Let us start by taking a net (v,), strongly converging in L%(B, 1is0) t0 Uso. We also
assume v, © 7, € H;’O(Bp(l)) for every p and is zero outside B, (1) (because it is
all we need).

First we will prove that ve, € Lgo (we mean that, outside B (1), v can be
considered equal to zero), indeed, the strong L2 convergence implies the existence of a
subnet of (v,) which simply converges almost everywhere to voo. Hence the Gromov—
Hausdorff convergence implies that v 1s zero almost everywhere on B\ B.

Thus, let us take ¢, € C§°(Bo(1)), p € N, such that (cp)pen is a sequence of
functions strongly converging to v in L2,. We have

|Cp 0Ty — Vp O7Tp|p = ﬁ|cp — Voloo + ¥ Vo0 — Up|oo~

Now let & > 0. Then for p large enough, Blc, — voloo < &. We fix p large enough,
and take p large enough for the second term to converge to 0, which gives us the
strong convergence we needed (see Definition 7).
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Now to conclude, observe that from the assumptions, the net (u,, Ty 1) (if need be
we extend this function by zero outside B, (1)) is bounded in /, C}O (B), hence using the
compact embedding of Holo(B) in L2(B, jtoo) (with the right regularity assumption
on the boundary of B), we can extract a strongly converging net in L?(B, jt) and
by what we just did in £2. O

5.2. Compact convergence of the resolvents. Forx > Oand p > 1, let af (u,v) =
(Apu, v), + A(u, v), and Gf be the operator from Lf7 to H,é)o C Lf, such that

al (G f.¢) = (f.¢), forallgp e H . (11)

Forany u, v € H! . let

00,0°

a;° (u, v) 2/ q" X®u X0 dpioo + Mu, v)os.
Boo(1)

Then we define G, : Lgo — H;o,oa by
a’(GLF, ®) = (F, ®)o forall d e Holo,O‘ (12)

The aim of this part is the following theorem, after noticing that R = —G* , and
RY =—-G_,.

Theorem 14. Forevery A < 0, the net of resolvents (Rf ) pei+ 0f the net of Laplacians
(Ap) per+ converges compactly to R7°, the resolvent of Ao from the homogenized
problem, i.e, for any net (up) pcr+ of £2 weakly converging, the net (fo7 CUp)peR+
of L£?* strongly converges to R - oo

The proof is an adaptation of Tartar’s method of oscillating test functions (see
Chapter 8 of [CD99] for the classical method).

Proof. First step: Let f, be a weakly convergent net to f in ££2. Then up to subnets

Up = fop — i, strongly in £2; (13)
P, = (8)\VGYf, — P, weaklyin £2. (14)

One obtains (13) because the net (f,) ecr+ is uniformly bounded in £2, and for
all p € R, f, is also bounded in H 1 the dual space of H 3’0. Thus thanks to
equality (11) and Lemma 13, we can extract a strongly converging net in £? from
the uniformly bounded net (Gf fo)per+ (with respect to the norms (|| - [15,0) per+).
To get (14), simply remark that (P,) ,cp+ is also bounded in L2,
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Now for any ¢, € L2, by passing to the limit in equation (11), we obtain
/ | P Vit i 42005, o) = o) (15)
Beo(l

~ Before passing to the next step, remark that P, is horizontal. Indeed denoting by
P}, and P; the coordinates of P, and P, we have

P! = (g)VGY fo = p*~*D=D (g1 (8,x))V G f,.

So_ _if a(i) > 2, then this net of coordinates strongly converges to 0 in £2, because
(8"7(8,x))VG? f, is also bounded for any p € RT.

Second step: This step consists in showing P = (¢ YV yii; on Bso(1), as it induces
U, =Gyf.

We just give the ingredient needed to copy the classical proof (see also [Ver04],
section 4.3).

Consider x*(y) (see 4.1.a) such that its mean value on a fundamental domain is

zero, and for every k = 1, . . ., dy, define the oscillating function
1
wh (x) = xx — ;xk@px» (16)
Then we have
wg — x;  strongly in £2. a7

Using the usual trick in Tartar’s method, we obtain for every ¢ € Ci° (B (1))
and for p large enough, for the support of ¢ to be in 7, (B, (1)):

/ g (Xuo (X[ (9 0 mp))wp — XJwp(X{ (9 0 7p))up)dps

Pt (18)

:/ fpwp(porrpdup—}\/ @Yoyl Wy dldp.
By(1) B, (1)

To pass to the limit in this identity, we use the following facts:
Fact 1. (X l'.o (o np))wl’; strongly converges to (X ¢)xy in £? because, writing the
left multiplication by x in G, as 1£, we have

X{)(‘ﬂ 0 Tp)x = d‘ﬂn,,oz;’(e) & d”pu;’(e) odlf - Xf(e)~
Now by definition 1§ — [ ¢ and 7, — idg,,, which explains why
X(pomp) > X0

pointwise (and weakly «£2 from the claim in the proof of Section 3.2).
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Fact2. Forl <i,j < d, ngXfwf) is periodic with respect to 81,,1" and weakly
converges in £2, by Lemma 9, towards its mean value

| 1 "
et = ne(Dr) Jp (87 (»)(Bir — XiXk<y)))dMg'
g r

Fact 3. Fora(i)+a(j) > 2, ngXfwﬁ = p2= =) i (§,x) X wk, thus this term
weakly converges in £2 towards 0.
Hence the identity (18) becomes

| Bl dMixFodus = [ fapdus =i [ giindus,
Boo (1) B

oo (1) Boo(1)
(19)

Furthermore, if we put ¢ = @x; Into equation (15) and subtract the result from
the equality (19), then we obtain the following identity in terms of distribution.

& d dq
=Y XPB 5 —qtiy) ==Y XPP x = Pf =) ¢/* X, O
Jj=1 =il j=1

5.3. Conclusion. Theorem 14 gives the compact convergence of the resolvents.
Hence we can use Theorem 21 in [Ver04], which states that if the resolvents are
compact, and they converge compactly, then the net of k™ cigenvalues converges to
the kM eigenvalue of the limit operator.

6. Emphasis on the Heisenberg Groups in the equality case

The aim of this part is to characterize metrics for which the inequality (6) is an
equality (see also Theorem 2) for a class of nilmanifolds that contains the Heisenberg
nilmanifolds. The first thing to remark, which is always true, is that equality holds
if and only if the stable norm and the Albanese metric are equal. In that case, all
harmonic 1-forms are of constant pointwise norm (same proof as in [Ver04]). Now
let us introduce the pseudo-left-invariant metrics.

Definition 15. Let N"+! = I'\G be a nilmanifold such that G is 2-step nilpotent
with one dimensional kernel. Let p be a submersion of N"*+1 onto a flat torus T". Let
(a1, ..., ay) be the lift of an orthonormal basis of harmonic 1-forms over the torus,
and choose a 1-form @ of N"*! such that 9 = p*b, where b is a closed 2-form
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over the torus (in other words we chose a connection). Let gy be the Riemannian
metric such that the dual basis of («q, ..., oy, ) is orthonormal. Thus p becomes a
Riemannian submersion. We will call such a metric pseudo-left-invariant or bundle-
like.

The 1dea is that if the 2-form » has constant coefficients, then ¢ can be chosen
so that the above construction gives a left invariant metric. Thus this pseudo-left-
mvariant metric can be seen as a perturbation of a left invariant metric, obtained by
perturbing a left invariant basis of vector fields.

We are now able to give our precise claim.

Lemma 16. Let (Hy, 11, g) be the 2n + 1-dimensional Heisenberg group, equipped
with a periodic metric. Then its stable norm coincides with its Albanese metric if and
only if g is pseudo-left-invariant.

Remark also that in the case of the 3-dimensional Heisenberg group, the function
A1(g, Alb) in Theorem 2 is actually a constant that does not depend on the metric. This
1s due to the fact that, up to isometries, there is only one left-invariant sub-Riemannian
metric in that case (see chapter IV of [Ver01]). Hence in that case, the theorem has
a similar form as the theorem for tori (sec [Ver04]), for which the function is also
constant because up to isometries there is only one Euclidean metric on R”™.

Actually, we have a result that is slightly more general than Lemma 16. We focus
on 2-step nilmanifolds, whose Lie algebras have a 1-dimensional center.

Lemma 17. Let (M"T!, g) be a 2-step nilmanifold whose center is of dimension 1.
Then its stable norm and its Albanese metric coincide if and only if the metric is
pseudo-lefi-invariant.

As the Albanese metric and the stable norm coincide if and only if all harmonic
I-forms are of constant norm, Lemma 17 is a consequence of the main theorem in

[NVO04]:

Theorem 18 (P.-A. Nagy, C. Vernicos [NV04]). Let (M"*!, ¢) be a Riemannian
manifold with first Betti number equal to n, all of whose harmonic 1-forms are of
constant norm. Then (M"*1, g)is a2-step nilmanifoldwhose center is of dimension 1,
and g is pseudo-lefi-invariant.

7. Graded nilmanifolds with totally geodesic fibers over a torus

There is one last particular case we would like to study, the case where the nilmanifold
is graded (i.e. its algebra is nilpotent and graded as defined in Section 2.1), and the
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metric on (M™", g) is as follows. We suppose that the first Betti number b1 (M™) = k,
and we recall that ¢ is the horizontal distribution coming from V; (see Sections 3.1.a
and 2.1). Moreover we assume that we have the following Riemannian submersion,
with totally geodesics fibers and with a metric equivariant on the fibers:

M, M] — (M", g) 2> (T*, §),

where dpy is an isometry (we write & = g ) from (Hy, &x) to (Tp(x)’]l‘k, Sp))-

Then, in the case of equality in Theorems 1 and 2, the Albanese map is a Rieman-
nian submersion, which implies that ¢ is flat. Which in turn, using our assumptions
mmplies that the metric g is left invariant (indeed see Chapter 9 Section F in [Bes87]).
In other words:

Proposition 19. Let (M, g) satisfy the above assumptions. The Albanese metric and
the stable norm coincides if and only if the metric is lefi invariant.

In other words, we could say heuristically that for sub-Riemannian metrics the
equality case in Theorem 2 (which holds in that context too, see [Ver01] for the
convergence of the spectrum) characterizes the left-invariant sub-Riemannian metrics.

8. On the long time asymptotics of the heat kernel

Let (G/T, g) be anilmanifold and (G, g) its universal cover with the lifted metrics.
Recall that we associated to this Lie group the net (G, g,,) of Riemannian manifolds.
Let us focus on the heat kernel:

(20)

WL Au=0 in 10, +00[xG;
u(0, x) = u,(x).

Let us introduce the rescaled functions on G,
up(t, x) = pu(p’t,8,x), p > 0.

Then an easy computation shows that « is a solution of (20) if and only if u, is a
solution of

3 .

SE A+ Apup, =0 m ]0, +00[xGp; 1)
1p(0, x) = p@Hug(3,x).

Thus the study of u(z, -) as ¢ goes to infinity is related to the study of u (1, -) as

p — 00. We can imitate the proof of Theorem 14 to obtain:

Theorem 20. The net of resolvent (Rf ) weakly converges to the resolvent (R7°) of
Axo 01 Gg.
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Imitating the proof of Theorems 4 and 6 in [ZKON79], as in [BBJR93], we get
the following theorem (let dai(e, x) = |x| be the Albanese distance between the unit
element and x).

Theorem 21. The fundamental solution k(t, x, y) of (20) has the following asymptotic
expansion

k(t,x,y) = keo(t, m(x), w(y)) + l_dThG(t, x, y).

Here koo (1, x, y) is the fundamental solution of

o
ot

+ Axoltog = 01110, +00[ X G o,

and 6(t, x, v) — 0 uniformly as t — oo on |x|? + |y|? < at, for any fived constant
a > 0.

The next theorem follows by integrating the previous one.

Theorem 22. Let ug € L'(G) N L®(G). Then u(t, x), the solution of (20), has the
following asymptotic expansion:

dh dh
s, Py iy / uo()dy +1-36(t, %),
G

and 6(t, x) converges uniformly to 0 for |x| < R, where R is a positive constant, and
co depends on A .

Acknowledgments. Many thanks to the referees for their careful reading and im-
provements. Thanks to F. Newberger the cats seats, and the dog stands!
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