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Hilbert modular foliations on the projective plane

L. G. Mendes and J. V. Pereira*

Abstract. We describe explicitly holomorphic singular foliations on the projective plane corre-
sponding to natural foliations of Hilbert modular surfaces associated to the field Q/3). These
are concrete models for a very special class of foliations in the recent birational classification of
foliations on projective surfaces.
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1. Introduction and statement of results

Our aim is to give concrete models in the projective plane for the holomorphic singular
foliations which are the natural foliations of Hilbert modular surfaces.

Such foliations are called Hilbert modular foliations and have a distinguished
role in the birational classification of foliations on projective surfaces (cf. [12], [4],
[13]). Recently M. Brunella ([5]) and M. McQuillan ([12]) completed the birational
classification of holomorphic singular foliations showing that rational fibrations and
modular foliations are the unique foliations with negative foliated Kodaira dimen-
sion. Besides the role in the birational classification, Hilbert modular foliations have
some remarkable dynamical properties and also a distinguished place in the theory
of transversally projective foliations.

We recall the definitions. Let N be a square free positive integer, K the totally real
quadratic field Q(+/N) and O the ring of integers of K. The two distinct embeddings
of K mto R induce an embedding of PSL(2, K) into PSL(2,R) x PSL(2, R). If
I C Ok is amaximal ideal then I'; will be the lattice defined by the following exact
sequence:

0 — I'y — PSL(2, Ok) — PSL(2, Ok /I) — 0. 1)

Denote by H? := H x H the product of Poincaré upper planes. Then the Hilbert
modular surface Y (N, I) is defined as the minimal desingularization of the compact-
ification of H?/I";. When the quotient is made by the full Hilbert modular group
PSL(2, Ok) the associated surface is the Hilbert modular surface Y (V). The Hilbert
modular foliations are defined as the singular foliations which are the extensions of
the images of the horizontal and vertical fibrations under the quotient defining the
Hilbert modular surfaces.

In order to motivate the study of this class of foliations, we list in Theorem 1
some properties of modular foliations. By a reduced foliation we mean a foliation
whose singularities are reduced in Seidenberg’s sense, see [4]. For the concepts of
transversally afine and transversally projective foliations we refer to [16], [17] and
references therein.

Theorem 1. Let # be a reduced modular foliation on the projective surface S and
Z the reduced divisor whose support are the invariant algebraic curves of #. Then
H has the following properties.

a. Quasi-minimality: The algebraic invariant curves are rational curves and every
non-algebraic leaf is dense.
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b. Hyperbolicity: Except for a Bnite set, every leaf is hyperbolic and simply-connec-
ted, i.e., biholomorphic to the Poincaré disc.

c. Uniformity: # is transversally projective outside Z and there exists a neighbor-
hood U of Z such that #y\z is transversally afane.

d. Sporadicity: If L is the class of the cotangent line bundle T3, in Pic(S), then H is
the unique holomorphic singular foliation S whose class for the cotangent bundle
is L € Pic(S).

In the realm of modular surfaces some particular cases are rational surfaces, 1.¢.,
birational to P2. We will focus on the following three rational Hilbert modular surfaces
Y(5),Y(5,(2) and Y (5, (v/5)).

We first obtain plane models for the Hilbert modular foliations of Y (5, (2)). In
the statement below by a dicritical point we mean a singularity of foliation having
infinitely many local analytic separatrices and radial points are dicritical singularities
locally given by @ = xdy — ydx +h.o.t. = 0:

Theorem 2. The Hilbert modular foliations of Y (5, (2)) can be obtained from folia-
tions Fs and Fo of the projective plane by means of one blow up at each of sixteen
distinct points p1, ..., pie in the plane, with the following properties:

1. Js5 and a Ho have degrees 5 and 9, respectively.
1. Js has 16 radial points at p., ..., pis and 15 linearizable saddle points; the
quotient of eigenvalues of the saddles is _3+“/§

. s and Ho have the same invariant algebraic curves, a connguration of 15
straight lines for which p1 ..., p1o are triple points, pi1, ..., p1e¢ are 3-ple
points and the 15 saddle-points of #s or o are nodes. Moreover, the analytical
type of the singularities of both foliations on the singular points is the same,
except for 6 points p11, ..., p1¢ which for #9 are analytically equivalent to
dicritical points with algebraic multiplicity 3 and Milnor number 11.

v. Hs and Ho are invariant under the irreducible action of As, the icosahedral
group, on the projective plane.

v. There exists an involutive Cremonian transformation of degree 5 which trans-
forms Hs into Fo.

Moreover, there exist afane coordinates on the plane, for which one of the invariant
lines is the line at inmnity, such that #s is given by the vector geld

x = (x2 — D)(x? — (V5 - 2)2)(x ++/5)
¥ = 0= DO = (V35 -2))( +5x),
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while #y is given by
¥ = @2 = D2 = (V5 = 2D[(—40 + 18v/5)y + (—10+/5 +20)y°
+ 44597 + (845 — 18)x + (=30 + 124/3)xy? + 20xy*
+ 4 — 2\/§)x2y + 6\/§x2y3 + (10 — 4\/§)x3 +2x3y?]
Vv =2 = D)2 = W5 = 2)H[(—40 + 18V3)x + (=10+/5 + 20)x3

+ 455 + (845 — 18)y + (=30 + 124/5)x%y + 20x*y
+ (4 = 2v/5)xy? 4+ 6/5x3y% + (10 — 44/5)y° + 2x%y°].

Figure 1. Real picture of the arrangement of lines invariant by #fs and F9. The line at infinity
is also invariant.

Remarks on Theorem 2. In Figure 1 there are four directions determined by parallel
lines, which correspond to 4 dicritical singularitics of J#¢5 and Fy at infinity. Also we
remark that the 15 invariant lines determine a simplicial decomposition of Pﬂz{ such
that each triangle has one saddle and two dicritical singularities as vertices. Note that
both J¢5 and J¢ are induced by real equations and therefore they induce (singular)
foliations of ]P’]Izg. The qualitative behavior of both of these foliations on the cells of
the simplicial decomposition of IP’%R is topologically conjugated to the one presented
in Figure 2. It has to be noted that the foliation J¢5 appeared in [1] as an example of
a degree 5 foliation of R? with the maximum number of invariant lines.

The degree five Cremonian involution sending #€s to #¢9 in Theorem 2 becomes,
after blowing-up the 6 points pi1, ..., pis, an automorphism of a rational surface
corresponding to the natural involution of Y (3, (2)).

Searching for models in the plane where the involution of Y (5, (2)) corresponds
to minimal automorphism as defined in [3], we obtain other models in the plane:
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Figure 2. The qualitative behavior of #5 and Jf9 on each cell.

Theorem 3. The pair of Hilbert modular foliations of Y (3, (2)) is birationally equiv-
alent to a pair of foliations ¥, G of the projective plane, where both ¥ and § have
degree 7. There exists an involutive automorphism ¢ of P? such that $*(F) = §
and $* () = F. Moreover, the algebraic invariant curves are 7 straight lines and 4
Conics.

We remark that by the same methods used in the proof of Theorem 3 we can
produce another model for the modular foliations of ¥ (5, (2)) in the plane for which
both have degree 10.

Our next result is a detailed description of the Hilbert modular foliations of Y (5),
which is regarded as the desingularized quotient P?/As (cf. [11]). In the statement
below by a minimal reduction of singularities of a foliation we mean a sequence of
blow ups in which blow ups at reduced singularities or at regular points of foliations
are not allowed.

Theorem 4. The modular foliations of Y (5) are obtained by means of the minimal
reduction of singularities of the foliations #¢, and #3 of the projective plane with the
following properties.

1. The degrees of J, and F5 are 2 and 3, respectively, and there are afane coor-
dinates (x, y) where they are induced respectively by

x' =y +32x — 36x2

y' =80y — 60xy — 80x>
and

x' =4y —3xy — 4x2

y = —5y% 4+ 80xy — 240x>.

1. The tangency set of #2 and F3 is an invariant curve composed by the line at
inAnity and the rational quintic given in the coordinates (x, y) by

Q: —1728x° + 720x3y — 80xy? + 64(5x% — y)* + 3> = 0.
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1. The non-reduced singularities of ¥, and #5 are at the cuspidal points of Q,
namely: (0,0), (%, %) and the point at inanity (0,0) = (w,s) = (%, %)
which are dicritical singularities for both foliations.

iv. The sequence of blow upso : Y (5) — P2 producing the reduction of singularities
of foliations is composed by eleven blow ups: four blow ups at (0, 0) and inBnitely
near points; four at the point at inanity (0, 0) = (w, s) and inBnitely near points;

three at (%, %) and inBnitely near points.

v. The singularities of both foliations at (1,4) = (x, y) are reduced saddles with

. . —34+/5
quotient of eigenvalues equal to ===,

In Figure 3 we represent (qualitatively) the cuspidal quintic curve.

Figure 3. A cuspidal quintic curve and the line at infinity are the tangency set of J¢ and Jf3.

Next, we consider the Hilbert modular foliations on Y (3, (+/3)). Through asimilar
analysis to the one made in the proof of Theorem 3 we obtain:

Theorem 5. The pair of Hilbert modular foliations of Y (5, (\/3)) is birationally
equivalent to a pair of foliations ¥, § of the projective plane, where both ¥ and §
have degree 9. There exists an involutive automorphism ¢ of P? such that p*(F) = §
and ¢*(4) = F. Moreover, the algebraic invariant curves are 5 straight lines and 7
conics.

Again, by the same methods, we can give a second model in the plane for the
modular foliations of Y (3, (+/3)) where the degree is 12 for both modular foliations
and the algebraic invariant curves are 1 straight line and 12 conics.

Acknowledgments. The authors thank Karl Otto Stohr for calling their attention to
the work of Hirzebruch on Hilbert modular surfaces. They also thank E. Ghys and
the participants of the Seminar of Complex Dynamics at IMPA for the interest and
enthusiasm concerning this work. The first author heartly thanks the attention of
S. Cantat, D. Cerveau, C. Favre, S. Lamy, J.-M. Lion, L. Meersseman and F. Touzet.
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Remark. After this paper was completed and being submitted, the authors found
a paper by R. Kobayashi and 1. Naruki, Math. Ann. 279 (1988), 485-500, where
they describe the 1-forms inducing #¢5 and F#fo in another coordinate system. Their
mterest is in the uniformization theory of surfaces and they do not give a detailed
description of the pair of foliations. So we think that our description, by completely
different methods, gives new information on the foliations of Y (5, (2)). They also
describe explicitely the irreducible 2-web produced by the 2-fold ramified covering
p: Y5, (v/3)) — P2, which is complementary to our description of the foliations of
Y (5, (V3)).

2. Preliminaries

2.1. Hilbert modular surfaces and foliations. After having recalled the definition
of modular surfaces in the Introduction, let us say a few words about the compactifica-
tion H2/I"; of H2 /T'1. The two embeddings of K into the reals induce an embedding
of P} into P, x Py, C Pl x Pl.. PSL(2, R) acts on P} by fractional linear transfor-
mations, thus so does PSL(2, K) on IP’}Y.

The action of the lattice I'; < PSL(2, K) < PSL(2,R) x PSL(2, R) preserves
P}{ C I% X IP’(IC. The orbits of ]P’IlK under the action of I'; are called cusps.

The compactification of H?/I'; is then obtained by adding the cusps, i.c.,

H2/T; = H?/T; U PL/T.

There exists a bijection between the cusps of Y (N) and the ideal class group of
K (see Proposition 1.1 in [7]). In the particular case where the class number of K is
one, equivalently Qg is factorial, the cusps of Y (N, I) are parametrized by the finite
projective space Pk, where F is the finite field O /1. From (1) we see that the group
PSL (2, OTK) actson Y (N, I). Of course this action must preserve the cusps and when
the cusps of Y (N, I) are parametrized by PL, the induced action on ]P’]lF is the usual
action. The modular forms induce a structure of projective, resp. quasi-projective,
varieties on H2/T';, resp. H?/TI";. For more details the reader can consult the two
first chapters of [7].

As already defined, the Hilbert modular foliations are the singular foliations which
are extensions of the images of the horizontal and vertical fibrations under the quo-
tient defining the Hilbert modular surfaces. The algebraic curves introduced in the
compactification and desingularization defining the modular surfaces are invariants
for both modular foliations.

Along this section we prove Theorem 1, except for the proof of the sporadicity
property of modular foliations. This oneis postponed to Section 2.2 .4, since it depends
on notions from the birational classification of foliations which we will recall in 2.2.
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2.1.1. Quasi-minimality. Let I’ ¢ PSL(2, R)? be the lattice defining the Hilbert
modular surface. If F is the horizontal foliation of H x H and

pHxH-—> Y ZXHY/T

is the quotient map, then the density of leaves of p. & on Y is equivalent to the density
of 7(I") on PSL(2, R), where 7 : PSL(2, R)?> — PSL(2, R) is the projection on the
second factor.

In the case I' is the image of PSL(2, Ok) on PSL(2, R)? under the pair of em-
beddings of the totally real quadratic field K, 77 (I") contains the elements

1 u 1 0
Au:|:0 1} and B”:[M 1],

for arbitrary i € Og. Let G denote the closure of PSL(2, Ok ) in PSL(2,R). Since
O 1s dense in R the Lie algebra of G contains the clements

0 1 0 0
X:[O O} and Y_[l 0]
Since [X, Y] is linearly independent of X and Y the Lie algebra of G has dimension
3, and since PSL(2, R) is a connected 3-dimensional Lie group, we conclude that
PSL(2, Okx) = PSL(2, R).

The general case follows from Margulis—Selberg’s Theorem, which asserts that
any lattice I' © PSL(2, R)? is commensurable with I" ¢ for some totally real quadratic
field K, i.c., there exists g € PSL(2, R)? such that gI'g ™! N 'k is of finite index in
both 'k and gl'g~ 1.

2.1.2. Hyperbolicity. Keeping the notation of the previous section we are going to
prove that all the leaves of p.F are hyperbolic and, except for a finite number of
exceptions, simply-connected.

The hyperbolicity is obvious since the leaves of o, F are presented as quotient of
the upper half-plane H. To conclude that the generic leaf'is simply-connected, observe
that the non-trivial elements in the fundamental group of a leaf are in correspondence
with fixed points of the action of some element of 7 (I') on H. As I' is discrete
we can see that the fixed points are countable, and since to any element of 7 (")
there correspond at most two fixed points, we may conclude that the generic leave is
simply-connected. To conclude observe that every non-simply connected leave must
pass through a quotient singularity and the finiteness of the number of non-simply
connected leaves follows.

2.1.3. Uniformity. Since the foliation p4F is described as a quotient of H? by I’
we can easily see that every element of the pseudogroup of holonomy of p.F is
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conjugated to a projective transformation, given by the action of PSL(2, O ) on the
second factor of HZ?; thus p4 F is transversely projective on the complement of Z in
the sense of [16], [17].

In order to understand the local structure of p, F in neighborhood of innity, 1.¢.
m the neighborhood of the cusps, one has to analyze the structure of the isotropy
group of the cusp.

Again, Margulis—Selberg’s Theorem allows us to reduce to the case where I' =
PSL(2, Ok) for some quadratic field K. If o 1s a cusp of I" then the isotropy group
of o under the action of I" is conjugated, inside I', to a group of type G(M, V),

GM,V)= Hg ’ﬂ €PSL2,K)lceV.p € M} =MxV,

where M C K is an additive subgroup of K which has rank 2 as a free abelian
group and V C U;<r is a subgroup of the positive units such that for every ¢ € V we
have e M = M. Therefore the isotropy group of the cusp is an affine group and on
neighborhood of infinity of the Y, o, F is transversally affine. Observe also that the
orbits are not locally dense.

2.2. Birational geometry of Hilbert modular foliations

2.2.1. Kodaira dimension of foliations. In this section we recall the concepts of
the birational theory of holomorphic foliations on projective surfaces that we will use
along the paper. The references for this section are [12], [4] and [13].

A holomorphic foliation ¥ on a compact complex surface S is given by an open
covering {U;} and holomorphic vector fields X; over each U; such that whenever
the intersection of U; and U; is non-empty there exists an invertible holomorphic
function g;; satisfying X; = g;; X ;. The collection {(g; j)_l} defines a holomorphic
line-bundle, called the tangent bundle of ¥ and denoted T¢. The dual of T is the
cotangent bundle TF..

Similarly, a holomorphic foliation # on a compact complex surface S can be
given by an open covering {U;} and holomorphic 1-forms w; over each U; such
that whenever the intersection of U; and U; is non-empty there exists an invertible
holomorphic function £;; satisfying @; = h;ijw;. The collection {(%;;)} defines a
holomorphic line-bundle, called the normal bundle of ¥ and denoted N¢. The dual
of Ny is the conormal bundle N..

Along the paper, a foliation means a holomorphic foliation with a finite number of
singularities of a smooth projective surface. Observe that there is no loss of generality
since every codimension one component of the singular set can be eliminated by
factoring out its defining equations from the local vector fields, or 1-forms, inducing
the foliations.
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A reduced foliation ¥ is a foliation such that every singularity p is reduced in
Seidenberg’s sense, i.e., for every vector field X generating ¥ and every singular
point p of X, the eigenvalues of the linear part of X are not both zero and their
quotient, when defined, is not a positive rational number. For a reduced foliation F,
T is called the foliated canonical bundle and is denoted by K 5.

We define the Kodaira dimension kod(¥F) of a foliation # as follows.

Definition 1. If ¥ is a reduced holomorphic foliation on a projective surface S then

log hO(S, (K #)®"
el o Mmoo e S

n—00 10g n

When F is not reduced we set kod(F) as kod(F ), where F is any reduced foliation
birationally equivalent to &

In principle it is necessary to prove that the above definition is well-posed. In fact
this 1s done in [4], [13], [12].

The birational classification of foliations is built on the interplay of two birational
mvariants of foliations, the above defined foliated Kodaira dimension and the numer-
ical Kodaira dimension. This concept is based on Miyaoka’s semipositivity theorem
and the Zariski decomposition of pseudo-effective Z-divisors.

Miyaoka’s semipositivity theorem ([12], [4]) states that T is a pseudo-effective
line bundle (divisor) for any foliation on any projective surface, except for pencils of
rational curves (i.¢. foliations which after blow ups are rational fibrations). By pseudo-
effective we mean a divisor with non-negative intersection with any nef divisor. By
nef we mean a divisor whose intersection with any curve is non-negative.

The Zariski decomposition of a pseudo-effective divisor D (or of the associated
holomorphic line bundle) is the numerical decomposition of D as P + N, where N is
a Q*-divisor whose support (possibly empty) is contractible to a normal singularity
of surface, P is a nef Q-divisor and P - N; = 0 for any irreducible component on the
support of N.

Definition 2. Let ¥ be a reduced foliation on the complex surface S. If 7% is not
pseudo-effective then the numerical Kodaira dimension of ¥ , denoted by v(¥F), is
—00. Otherwise, if 72 = P + N is the Zariski’s decomposition then we set

0 when P is numerically equivalent to zero,
v(F) =131 when P? =0 but P is not numerically equivalent to zero,
2 when P2 > 0.

When ¥ is not reduced we set v(F) := v(F), where F is any reduced foliation
birationally equivalent to .
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Again, in order to verify the well-posedness of the above definition the reader
should consult [4], [12].

A foliation F of the surface S is relatively minimal if F is reduced and the
contraction of any —1-curve induces a non-reduced foliation on the blow-down of
S. If ¥ is arelatively minimal foliation, it is proven in [12] (see also [4]) that the
support of the divisor N of the Zariski decomposition of 7% is composed by chains
of ¥ -invariant rational curves of self-intersection lower than —1. The chain starts
with a curve C(V with just one singularity of the foliation and, if it has more than one
component, continues with curves C® with 2 singularities. Every singularity in the
support of the negative part admits a local holomorphic first integral.

2.2.2. Birational characterization of Hilbert modular foliations. Both notions
of Kodaira dimension and numerical dimension can be extended to any line bundle
(or divisor) D, cf. [15] and there is the general inequality kod(D) < v(D). When
kod(D) = v(D) we usually say that abundance holds for D.

The classification result of [12] (see also [5]) asserts that for any foliation F
of projective surface kod(F) = v(F), except uniquely for the modular foliations,
which are birationally characterized by kod(¥) = —o0 and v(¥) = 1. In other
terms, F is a modular foliation if, and only if, abundance does not hold for K .

We remark that our work gives also concrete examples of (nef) divisor D with
kod(D) = —o0 and v(D) = 1, for which D - K3y > 0 (a class of examples that,
as far we know, does not appear in the literature [15], [2]). The examples consist in
taking D := K s or D := K z, for the modular foliations of Theorem 2 (details are
given in Section 3).

2.2.3. Birational modifications and numerical data. In order to be able to trans-
late the information from the birational characterization of modular foliations into
numerical data about singularities and degrees of their projective models, we need to
understand the effect of sequences of blowing ups on foliations of the plane.

Definition 3. Let F be a holomorphic foliation on a surface S and p € sing(F). Let
o be a holomorphic 1-form generating & on a neighborhood of p and 7 : S — S the
blow-up at p.
a. The order of the first non-zero jet of @ will be denoted by m(p, F). The non-
negative integer m(p, F) is called the algebraic multiplicity of p.

b. The vanishing order of w*@ over the exceptional divisor will be denoted by
I(p, F).

The above defined indices are related as follows: when the exceptional divisor
E = m~1(p) is not invariant by 7*F then I(p, F) = m(p, F) + 1; otherwise
I(p, F) = m(p, F). More generally when the exceptional divisor E = 7~ (p) is
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not invariant by the transformed foliation, then
I(p, ) =tang(E, 0™ (F)) + 2,

where tang(E, 7*(¥)) is the number of tangency points, counted with multiplicities,
and when E = 7~ 1(p) is 7 *(F )-invariant then

I(p,F)=Z(E,F)—1,

where Z(E, ) denotes the sum of Poincaré—Hopf indices along E of local holo-
morphic vector fields inducing % .

If o is a composition of blow ups o; then cotangent line bundles of the transformed
foliation £ on M and of ¥ on M are related by

12 =0 (1) @05 (~ Y p. F) ~ 1) - E). @

where o denotes the composition of blow ups o; and E; = o ~!(p;). Here we consider
the total transforms, i.e., El2 =—land E; - E; =0ifi # j.
The conormal bundle N7. of ¥ on a surface M can be determined by means of
the adjunction formula
T @ Ny = Ky,

where K j; is the canonical divisor of M. From this relation, the previous isomorphism
and the formula
Ky=0o" K ©05( Y E),
i

we obtain for the normal bundle

Nz =o'V ® 0 = X lp. ) - 1),

On P2, the degree d(F) of a foliation ¥ is defined as the number of tangencies
between F and a generic straight line L, counted with multiplicities. There is the
following isomorphism:

T} = Opa(d(F) — 1)),

and from Kp2 = @(—3) we obtain in the plane Ng = O (d(F) + 2)).

From the previous remarks and formulae, we can deduce the behavior of the
cotangent and normal bundles of foliations of the plane under any finite sequence of
blowing ups. Since birational transformations arc compositions of blowing ups and
blowing downs, it is natural that along this paper an exceptional curve E = o~ 1(p)
arises as strict transform C of some rational curve C C P2 under blowing ups ¢”, i.c.
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C = E. Also, in some cases the foliation o*(¥) will be regarded as the transformed

foliation by o’ of another foliation § in the plane, ie. c*(F) = ¢ = (¢/)*(4). In
such a situation, for computing

I(p, F) =tang(E, o *(F)) + 2 = tang(C, §) + 2,

it will be necessary to know the following relation:

tang(C, §) = tang(C, §) —v,(C) - (v,(C) +1(p. §) — 1),
where v, (C) is the algebraic multiplicity of the curve.

2.2.4. Sporadicity of modular foliations. In our approach, after determining the
numerical data of the foliations in the plane (i.e. degrees and multiplicities of singu-
larities) we explicitly determine the polynomial vector ficlds inducing the modular
foliations. What justifies the uniqueness of the foliations submitted to the numerical
data is the sporadicity property of modular foliations (cf. [13] and [12]). For the
reader’s convenience, we sketch below the proof of sporadicity, for further details see
[13]. This will complete the proof of Theorem 1.

Let M be a projective surface and denote by Fol(M, £) the set of foliations of M
with foliated canonical bundle isomorphic to £, i.e., Fol(M, £) = PHY (M, Ty ®
L). We call a foliation F sporadic if Fol(M, £) = {F}. We assert that if ¥ is a
reduced modular foliation, then ¥ is sporadic.

In fact, suppose, on the contrary, that Fol(M, T%) # {F} and take § # ¥,
G € Fol(M, T§). Contractions of local holomorphic vector fields inducing F and
local 1-forms inducing § produce functions vanishing along a tangency curve, which
is an algebraic curve (possibly with non-reduced components) denoted by D#¢. In
equivalent terms we have the isomorphism of line bundles O (—D#g) = T ® Ng.
Thus

T¢ @ Ty = 0(Dgg) ® Ku,

1e., T;®2 = O(Dgg) ® Ky. As a consequence, Kﬁz 1s not effective: otherwise
T}®4 1s effective, contradicting kod(F) = —o0. On the other side, M has no (non-
trivial) global holomorphic 1-form (the existence would imply a global section either
of T*¥ or of the cotangent of the companion modular foliation). Thus we can apply
Castelnuovo’s criterion of rationality of surfaces, to conclude that M is rational. Now
we arrive at a contradiction using the following fact from [15] (a proof'is also given in
[13]): if D 1s a pseudo-effective divisor of the rational surface M, then Ky ® O (D)
is pseudo-effective if and only if kod(K 3 ® O (D)) > 0. This concludes the proof.
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3. Projective models for modular foliations of Y (5, (2))

In this section we first recall Hirzebruch’s description of Y (3, (2)) as the blown up P?
atpoints in ]P’%R ¢ P? determined by the vertices and centers of faces of an Icosahedron,
cf. [9]. After this, we determine the modular foliations in the plane, using the concepts
of Section 2.

Next we express the natural involution of the modular surface as a Cremona
transformation changing one foliation into the other. We finish the section proving
the existence of other models in the plane where the involution is expressed as an
automorphism. In particular, for some plane models the modular foliations can have
the same degree.

3.1. Y (5, (2)) as Klein’s icosahedral surface. Along this section we freely use
material from Hirzebruch’s paper [9] in order to describe the analytic isomorphism
between Y (5, (2)) and the blown up projective plane.

Some fundamental facts from [9] are: i) HZ/ Iy is a smooth complex open surface;
ii) its compactification H2/ 'y is a projective singular surface, obtained by adding 5
cusps.

The induced action of SL,(®)/ 'y on H2 /', permutes cusps, and for this reason
the cusps have the same analytical structure. The minimal resolution of singularities
of each cusp introduces a cycle composed by three rational curves of Y (5, (2)) with
self-intersection number —3.

The diagonal {z; = z,} of H? becomes a smooth rational curve C of H2/ T,
passing through exactly 3 of the 5 cusps (remark that € minus three points is hy-
perbolic). Let us denote by C the strict transform of Cin Y (5, (2)). There are 10
pairwise disjoint curves (including C itself) arising from C by the action induced
by SL,(@)/ 'z, which we call for short “diagonals™ on Y (5(2)). Each of these ten
diagonals has self-intersection number —1 in Y (5, (2)). If we label the cusps by c¢;,
i =0,...,4,then each “diagonal” can be identified as C;; (= Cj;), where i, j refer
the pair ¢;, ¢; of cusps that do not belong to C;;. Denote the pairwise disjoint cycles
mtroduced by elimination of the cusps ¢; by A; U B; U C;. The mtersections of the
smooth rational curves Cj;, A;, B;, C; are the following:

a. Ai-Bi=A; Ci=B;-C;=1land A? = B} = C? = -3,fori =0,...,4
b. C;; are pairwise disjoint with Cizj =—1;
c. each curve A;, B;, C; intersects 2 curves among the C;; and each C;; passes

through 3 components of (three) distinct cycles, as shown in Figure 4.

We also refer to the original paper for the computation of the Euler characteristic,
which verifies ¢(Y (5, (2)) = 19. The main fact is:
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Theorem 6 (Hirzebruch). Upto analytic isomorphism, Y (5, (2)) is the unique smooth
projective surface with Euler number 19 and having a connguration of 25 rational
curves with intersections described in a), b), ¢) and Figure 4.

Cn—1,m—2 Cn—1,m+2
Cm+l,m+2 e Cm+l,m72
./ Bp m N
Am
Con-timt1lt  Cm—2mi2

Figure 4. Intersections between diagonals C;; and cycles, with integers taken modulo 5.

Now we recall Hirzebruch’s description of how to obtain such a configuration
of rational curves, as in items a), b), ¢) and Figure 4, by means of 16 blow ups
of the projective plane. Consider an icosahedron I in R? (Figure 5) and denote

Figure 5. Vertices and centers of faces of an icosahedron.

by 01, ..., 029 the points in R? corresponding to the centers of the 20 faces of I.
These points can be seen as the vertices of a dual Dodecahedron D. Also denote by
U1, ..., U33 the points in R? corresponding to the 12 vertices of /. Now identify
antipodal points among the points o7, .. ., U3;. Denote the 16 points obtained in ]P’HZQ

byor,...,o1pand vig, ..., vis. The 30 edges of I determine 15 straight lines in P2,
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denoted L 4,, Lp;, Lc,, wherei =0, ..., 4:

La, :=7vi2vi3, L, :=7viavis, Lc,:=7vi1v1s,
La, :=vppv1s, Lp, :=7v11013, Lc, := V13056,
La, :=7viovis, L, :=viiviz, Lc, :=viavis,
L s, :=7v12v14, Lp, :=7v13015, Lc; :=711016,
La, :=v11v12, Lp, :=715016, Lc, :=713014,

Since 5 edges of [ intersect at each vertex of I, 5 lines of the 15 lines L4;, Lp,,
L, pass through each point v;, i = 11, ..., 16. Moreover, if 3 mutually orthogonal
edges of I C R? are prolonged they intersect at the center of a face of I; so we
conclude that 3 of the 15 lines pass through cach point o;. These intersections are
given in the tables below (we give the intersections in all details for further use along
the paper).

points intersection of lines
vitr | Ley-Lp, - Lp, Ley - La,
vig | Lag-La, -La,-La,-La,
V13 Ly, -Lc,-Lp,-Lp,- L,
vig | Lpy-Lp -Lc, La,-Le,
v1s Le,-La,-Le,-Lp, - Lp,
V16 Lp,-Lc,-La, Lc,-Lp,

points | intersection of lines || points | intersection of lines
4] LAo ~Lc2 ~LC3 02 LC1 ~LC2 ~LA4
03 LBO’LB3’LA4 04 LBO‘LA1 ’LBz
05 La,-Lc, Lc, 06 Lp, - La,-Lp,
07 Ley - La, L, 03 Lp, -La, Lp,
09 Ly, Lp, - L, 010 Ley L, - La,

We refer to this configuration of fifteen lines L 4,, L g, and L, as the icosahedral
connguration of lines, which is represented in Figure 6.

Consider now the inclusion ]P’%R C P? and the 15 complex projective lines deter-
mined by the icosahedral configuration. Consider the complex surface M obtained
by blow up of P? at the 16 points o1, .. ., 019, V11, . . . , v16. This complex surface M
is the Klein’s icosahedral surface. Since one blow up increases the Euler number by
one, we have e(M) = ¢(P?) + 16 = 19.
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A TN

Figure 6. The icosahedral configuration of lines.

Next, consider the strict transforms in M of the complex lines, denoted L_Ai s L_Bi s
Ifci, Since each complex line received 4 blow ups, we obtain in M:

Denote now by C;; the exceptional lines Ej = o Wop), fork =1, ..., 10, if ox does
not belong to lines in the icosahedral configuration indexed by i or j. The reader can
check that the 25 curves L_Ai, L_BZ. R L_q , Cij have the intersection properties described

in items a), b), c) and Figure 4. Also we can check that L4, U L, U L, are five
disjoint cycles in M.

3.2. Numerical data of the foliations

Proposition 1. Let /' and §' be the modular foliations in the plane producing the
modular foliations ¥ and G of Y (5, (2)) under the 16 blow ups o : Y (5, (2)) — P?
denning Y (5, (2)) as Klein’s icosahedral surface. Then ' and §' have the following
properties:

(1) The degree of F' is 5 and the degree of §' is 9.
(2) Foreveryi € {1, ..., 10}, the algebraic multiplicities are

m(o;, F') = m(o;, §) = 1.

(3) Foreveryi € {11,...,16}, m(v;, F') = Ll and m(v;, §') = 3.

(4) The o; are radial singularities for ¥ and 4.

(5) The v; are dicritical singularities eliminable by one blow-up for both ¥ and §/;
Jor F' the v; have Milnor number 1, while for G’ they have Milnor number 11.
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Proof. The singularities of F and § at the comers of the cycles A; U B; U C; C
Y (5, (2)) are not affected by the blowing downs producing P2, see Figure 4. Such
singularities at corners are reduced, with Milnor number one. Plugging in Al.2 =
B} = C? = —3 in Camacho-Sad’s formula the quotient of eigenvalues of the

singularities of ¥ and § is determined and turns out to be equal to A = #g
These singularities sum 15 reduced singularities, for both ¥’ and §’, with the same
quotient of ecigenvalues.

The 16 blow downs transforming M = Y (5, (2)) into P? include the blowing
downs of 10 “diagonals™ C;;. Since the C;; are completely transverse to both # and
g, cf. Figure 4, the transformed foliations ¥ and ¢’ in the plane have radial points
at o;, with m(o;, F') = m(0;, ') = 1fori =1, ..., 10.

The points vy, ..., vig are also obtained from the blow down of extra (—1)-
curves which are neither & - nor §-invariant and that do not pass through the corners
of the cycles m Y (5, (2)), cf. Figure 4. Thus v; i = 11, ..., 16) are dicritical points
for both ¥/ and &/, with the extra property that the transformed foliations have no
singularities along oi_l (vp).

The automorphism group of ¥ (5, (2)) permutes the cycles resolving the cusps,
therefore

m(i, Fy = =m(vig, F') and m(vi1,$) = =m(vis, §).

Denoting the blow ups producing Y (35, (2)) from P2 by o := o1 0. .. 016, we have,
cf. (2), the isomorphisms

10 16
T} =o*Opd(F)-1)® OM(—(Z E — Y mu, }")Ei),
i=1 i=11
10 16
Tj = 0" 0p(d(§) — 1) ® Ou(—( Y Ei = Y mvi, §)E; ),
i=1 i=11
where E; = o~ Y(0;) fori = 1,...,10 and E; = o~ (v;) fori = 11,...,16.
Remark that the 15 reduced singularities are not affected.
The rational invariant curves for ¥ or § are the cycles, so the N-part for 7'} and
Té" is empty, cf. Section 2. Therefore, since the numerical Kodaira dimension is one
for modular foliations, we have 7% - 7% = 0 and Tg* . Tg’f = 0, which can be written

as
16

(d(FH)-=1D? =10+ Z mi, FH2 =10+ 6 - m(F")? 3)
i=11

and
16

(@) —1D*=10+ > m(v;, §)* =10+6-m(g)?, )

i=11
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from which we have (') > 5 and d(¢/) > 5.

The tangency locus of & and ¢ on M = Y (5, (2)) is the reduced (i.e. free of
multiple components) curve given by the union of the five cycles of M = Y (5, (2)),
of. [4], [12].

We can write

4 10 16
@M(ZA,- + B + ci) — 0*Op(15) ® (9( 335 -3 5E,~),
=

i=0 =11

since o; are triple points and v; are 5-uple points in the arrangement of 15 lines. Since
the tangency locus is described by a section of 7% ® Ng, cf. Section 2,

10 16
T: ® Ny = 0*0p(15) ® 0( ~SEE =Y 5E,~).
i=1 i=11

Expanding the left hand side of the equation above in terms of the generators o * Op2 (1),
Eq, ..., E1g of Pic(M) we deduce that d(F') + d(4’) = 14 and

mi, FH+m(v;,9)=4, foralli =11,...,16.

Since d(F”), d(§’) > 3, the unique possible positive solutions with d(F’) < d(4/)
are
(d(F"),d(g)) €{(5,9),(6,8), (7,7}

The possibilities (d(F '), d(§")) = (6, 8) or (7, 7) are excluded by (3) and (4). There-
fore (d(F"),d(§")) = (5,9) and

m(v, F)=--=mi, F)=1 and m(vi1,§) = =m(vie §) =3.

To conclude observe that the sum of Milnor numbers for ¢’ is 92 +9 4+ 1 = 91
(Darboux’s theorem) and that there are 15 reduced saddles and 10 radial points for
g/ thus pu(v;, ¢’y =1l foralli =11,..., 16. o

Remark 1. We will show in Appendix A that there are Cremona maps transform-
ing the pair of modular foliations with degrees 5 and 9 given in this Proposition 1
into pairs of modular foliations with degrees (6, 8) and also (7, 7). But either the
Cremona transformations produce invariant conics or the transformed foliations have
singularities no longer eliminable by just one blow up.

3.3. Determining the vector fields. Taking in consideration Proposition 1, we de-
note by #5 and Ffo, respectively, the modular foliations of the plane of degree 5
and of degree 9. In order to explicitly determine polynomial vector fields inducing
the foliations #¢s and Fy, we will first locate its dicritical singularities in the plane.
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These are the points o1, ..., 019, V11, - . -, V16 of Proposition 1. In order to construct
a plane model for this arrangement we follow [6] and take the coordinates in R? of
the 12 vertices of an Icosahedron I (whose edge is 2):

(&1, 0y k8), (Bhbmal), (r=L0)

where 7 = % is the golden ratio (recall the basic equation 2 = v + 1). The
coordinates of the vertices of the dual Dodecahedron D (with edge 27 1) are

0, £t~ Y 1), (27,0, £c7Y, (7l £7,0), (£], £1, +1).
In the projectivization of R3 to P2, we determine

o1=(0:771 1), oa=(=1:1:1), o3=("1:=7:0),
04:(r_1:f:0), os=(1:1:1), o6 =(1:1:-1),
o7=(r:0:t7™Y), og=(1:=1:1), 09=(0:—-1t"1:1),

o10=(—1:0:77h,
and from the vertices of I the following points in P%:

vii=(—1:0:7), vip=0:7:-1), viz=O0:7:1),
vig=(—7:1:0), vis5=0:0:71), vig = (t :1:0).

Let us determine convenient afine coordinates for the singularities of #¢5 and Fo.
Take affine coordinates (x, y) := (X : ¥ : 1), for which the line Lp; := U401 in
the icosahedral configuration becomes the line at infinity.

So 03, 04, V14, V16 become points at infinity and this produces four parallel direc-
tions for some of the affine lines of the icosahedral configuration (Figure 6), which
now is represented in Figure 7.

From these affine coordinates (x, y) we obtain after achange of affine coordinates,

given by
Tt T+ - -
(xvy) o <—'L' T—f—l)'(x,y)’

the affine coordinates desired in R2, for which the lines in the arrangement are those
given in Figure 1 in the Introduction: four horizontallinesy = +landy = +(2t+1)
and four vertical lines x = £1 and x = £(27 + 1). The coordinates (x, y) for the
singular points are shown in Table 1.

The strategy now is to associate to the general polynomial vector field X =
X (x, y) of degree 5 a system of linear equations in its coefficients in such a way that
the solutions of this linear system correspond to foliations of degree 3 with oy, . .., 010
and vi1, ..., vig as radial singularities.
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Figure 7. The arrangement of lines induced by the icosahedron, with one line at infinity.

1-5

Table 1. Affine coordinates for the singularities, where 7 = == is the golden ratio.
o1 =(1,1) oy =(1,2t 4+ 1) os =2t +1,1)
o =(—2t—1,-1) o7=(2t—1,2t+1) | og=(-1,-2t—1)
o9 =(—1,-1) o0 = (2t —=1,2t+1) | vy = (=1, 1)
vip=(-2t—1,-2r—-1) vy =Rt + 1,2t + 1) vys = (1, —=1),

Let & be a foliation corresponding to a solution of this linear system. Let L be
any line of the configuration. Suppose that L is not G-invariant. Then, since 4 has 4
radial singularities on L, the order of tangency between § and L is at least 8. This is
in contradiction with the fact that § has degree 5. Then any line L of the configuration
must be invariant by . From this we deduce that § is also the unique solution, since
with any other solution the tangency locus of § should have degree 11 and contains the
15 lines of the configuration. Hence to determine #¢5 we found the unique solution
of the linear system mentioned above, obtaining the result stated in Theorem 2. The
computations were carried out with the help of a computer algebra system.

To determine J¢9 we can repeat the same strategy, i.c., writing down the linear
system in the coefficients of the generic foliation of degree 9 whose solutions cor-
responds to foliations with radial singularities on o1, . .., 019 and singularitics with
algebraic multiplicity at least 3 on v11, ..., vi6. In order to reduce the number of
indeterminates we use the fact that any solution to our problem must be written in the
form

(x? = D(x? - 2r + 1>2>Psai +? =D - Q2r+ 1>2>Q5i,
X ay

where Ps and Qs are generic polynomials of degree 5. This follows from our choice
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of coordinates (x, y) for which the lines y = &1, y = £(27 + 1) and x = =1,
x = +(27 + 1) are invariant by the foliations.

Solving the linear system in the coefficients of Ps and Qs leads to the vector field
of degree 9 presented in the statement of Theorem 2.

3.3.1. Theinvolution of Y (5, (2)) as abirational transformation ofthe plane. We
will describe the Cremonian transformation 7 of the plane to itself transforming s
mto Fy, which expresses in the plane the automorphism 7: Y (5, (2)) — Y (5, (2))
sending one modular foliation to the other. More precisely, we will show that, if
¥ : N — P? denotes the blow up at the six vertices {v11, . .., v16}, then there exists a
Cremonian transformation 7 such that ¥ o / o £~ = 7, where by abuse of notation
I denotes the involution of N sending one modular foliation to the other.

The definition of the involution 7 as a birational transformation is the following
(cf. [14]). Let E; C N be the exceptional lines of the blowing ups of v11, v12, v13,
V14, V15, V16. Consider the 6 conics Cp, .. s passing through exactly five vertices

pi € {v11, v12, V13, V14, V15, V16}, . Therefore its strict transforms E,,l’,,,’pj C N are
(—1)-curves, because

~2 _ (2 5 — _
Cplw’ps - Cplwwps S=-L

The involution /: N — N sends each C,, . to the unique E; which does not
intersectit. The six curves C, .. s can be blown down to six points in a non-singular

surface N’. Let E; C N’ denote the strict transforms of the exceptional lines E;
by such blow downs. Since exactly five conics among the Cp, ... ps passes through

each vertex vy ;, each E; intersects exactly five curves among the Cp, 5., and we
conclude that the self-intersections of E in N satisfy

2 _ 2 _
E}=E}1+5=4.

Moreover, since N is a rational surface and e(N’) = ¢(N) — 6 = 3, then N’ = [P?
and E; is a conic.

It is well known that the surface N obtained from P? by one blow up at each vertex
{v11, ..., v} 1s embedded in the projective 3-space as a smooth cubic surface. A
smooth cubic surface in 3-space has exactly 27 straight lines. Among these lines we
will find the strict transforms of the 15 lines in the icosahedral arrangement of lines.
The remaining 12 lines are given by the set £;, j = 1,..., 6 and the six curves

C
P1s--sP5°
In Appendix A we describe T as a degree 5 Cremonian transformation 7 = 75,

which factorizes as a composition of three quadratic birational transformations of the
plane:

Ts = 030020 01.
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The understanding of this factorization will enable us to give more models of modular
foliations, with degrees 6, 7, 8, starting from F¢s.

3.4. A model where the involution is an automorphism of the plane. In the pre-
vious section we described the involution 7 sending the modular foliation #¢5 to
Hy as a birational transformation. Now we show that we can obtain models in the
plane for the Hilbert modular foliations of Y (5, (2)) for which the involution is an
automorphism of the plane (in particular the pair of foliations has the same degree),
that is, we want to prove here Theorem 3 stated in the Introduction.

Let : N — P? be the blowing up at the six indetermination points v1g, . . ., v1¢
of 7 and consider again the 6 conics C,, . s passing through exactly five points
among v1y,...,vig. Thus I = 71 o T o X is a non-minimal regular involution
in the sense of Bayle-Beauville [3]. This is due to the fact that C,, . is sent to
E; and these (—1)-curves are disjoint. Our task now is to obtain from /: N — N
a minimal involution I of Pl x P, and from this an automorphism L of the plane.
For this purpose we firstly describe the map g and the birational map E in the next
diagram, where I is the birational transformation stated in Theorem 3:

ION—=PLxPLOT
I
z [ £

Y
TOP--->P2OL .

Consider again the lines L4,, Lp, and L¢, of the icosahedral configuration, and
denote now by La,, L, and L, the strict transforms by X. Remark that these are

(—=1)-curves of N. Since the involution has order two and there are 5 curves L_Ai n
N, it can be proved [9] that the effect of the involution is described as

I(La) =La, I(La))=1La,, I(Lay)=La,.

Consider now the blow down of the 5 curves L4, C N to points denoted 74,, i =
1, ..., 5 of the resulting smooth surface W, denoted g: N — W. That is, we have
chosen to blow down one component of each triangle L4, U L, U L¢, of N. In [9]
it is proven that the rational surface W, which is minimal (since its Euler number
is e(M) =9 —5 = 4), in fact is 1somorphic to ]P’(lc X ]P’(lc. We can verify that the
transformed curves by g of L_Bi and L_q (we keep the same notation for the curves
in V) have self-intersection equal to 2 in W = ch X ]P’(lc. For instance, in N we have

2 . o
Lp, = —1, but the intersections in N are

Ly, Lay=Lp Lay=Lp L =1
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(as we can check from the tables in Section 3.1), and so by blowing down L4,
L_Al, L_AZ, the intersection number of the L_B] in IP(%: X ]P’é: is increased by 3. So
the transformed curves of L, and L, are curves of PL. x PJ. with self-intersection
number 2; so they are curves of bi-degrees (1, 1). Besides the point 4, they intersect
along an extra point g of IP’(IC X IP’}C. The points r 4, are dicritical points for the foliations
and the extra-point ¢ is a saddle point for the foliations (sce Figure 8).

/
Aj /\ Le,

N

oy

-—
h
= |

Figure 8. Contraction producing the point r 4, of ]P(IC X IF’}C.

In coordinates of IP’(IC X ]P’(lc, the involution obtained can be written as

- 11
I()C, y) = R .
v x
With v = 1=3_following [9] we put
raA, :(1)1)’ A, :(0’0), VAZZ(OO,OO),

ray = (_T’ T — 1), ra, = (_T + 1’ f)'

The singularities of the pair of foliations # and § obtained in ]P’é: X ]P’é: are exactly:
a) 5 singularities at 4, with Milnor number 9 and algebraic multiplicity m(rs;) = 3
(since its blow up produces an invariant exceptional line with two radial points and
two reduced singularities) and b) 5 saddle points.

Denoting by H and V horizontal and vertical fibers, we write

TX = 0(i(F)H +dy(F)V),
Nz = O(di(F)+2)H + (do(F) +2)V)

=
(analogously for §), and when combined with Darboux’s theorem

D W(F . p)—e@L x BL) = T Ng
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we obtain
5:945-1-4=2d(F) d(F) +2d(F) + dr(F)),

hence d1(F) - do(F) + di (F) + da(F) = 23.
Now we consider the Poincaré—Hopf formula applied to the transformed curve of
Lp, in P}, x PL:

* _ T
Ti Lg=T: (H+V)
=1+ Z0rp,) +ZGrry) +Z(ry) — x(Lp)
—F.5+ ] -F=8§

wherei # j #k € {0, 1,2, 3, 4}; so we conclude that 4, (F) + d»(¥) = 8 and
di(F) dy(F)=23—-8=15

from the previous relations. Easily we obtain that the unique solutions for the bi-
degree (di(F), dy(F)) are (3,3) and (5,3). If F has bi-degree (3, 5) then the
companion modular foliation § has bi-degree (5, 3), since they are related by the
involution of I: IP’(IC X ]P’(%: O.

3.4.1. The birational map E. We will consider the birational map E: IP’(IC X IP’(%:
— —> P2, in order to obtain from the foliations with bi-degrees (d1(F ), da(F)) =
(3,5) and (d1(4), d2(4)) = (5, 3) apair of foliations of the plane, both with degree 7.

Then the so-called elementary transformation E is defined as follows: it is given
by blowing up a point p and then contracting the strict transforms of the horizontal
and vertical fibers through p.

We will compute the degree of foliations in the plane, denoted ¥/ and 4/, by using
the Poincaré—Hopf theorem applied to the straight line L in the plane which is the
transform of the exceptional line E = o~ (p). Let us choose p = ra, € ]P’é: X ]P’é:,
a singularity of both # and § (cf. previous section).

If h = col(H) and v = col(V) are the dicritical points produced by the blow
downs of the transformed curves of the horizontal and vertical fibers, H and V in
Figure 9, then Poincaré—Hopf in the plane yields

AF)—1=) Z(g. F) = x(L) =4+mh, F)+m@, ) -2,
geLl

where 4 is the contribution of two radial points and two reduced points. We can use
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PL x PL p2 3 col(H)

Figure 9. Passing from ]P’(lC X IP’}C to P2,

the remarks of Section 2.2.3 for the computation of m(p, F'), obtaining

A(F) —1 =4+ [tang(F, H) + 1] + [tang(F, V) + 1] -2
=44 [(d1(F) =3) + 1]+ [(da(F)=3)+1] -2
= di(F) + da(F) — 2,

thus d(F’) — 1 = 6 as desired. Since we blow up a point p belonging to 6 of
the invariant (1, 1)- curves, the pair of modular foliations obtained in the plane has
6 mnvariant straight lines besides the line L and 4 invariant conics, images of the
(1, 1)-curves not blown up.

Of course, we could have chosen another point p for the elementary transforma-
tion. For instance if we choose a point which is regular for both foliations, then the
pair of foliations in the plane would have degree 10.

4. Projective models for modular foliations of Y (5)

4.1. The quotient of P? by the icosahedral group. We can regard the quotient in
the definition of Y (5) (cf. (1) in the Introduction) as

H?/PSLy(O) = (H?/ T2)/ PSL2(0k /(2)),

and it is known that PSL,(Og/(2)) = PSL,(F4) = As, the icosahedral group.
Following the classical approach due to F. Klein, we describe Y (5) as a birational
modification of the quotient S := P?/As, where As acts on the plane (which is the
blow down of Y (5, (2))). In other words, we consider the modular foliations of Y (5)
as the quotients of €5 and F#9 of Theorem 2 under their group of symmetries As.
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The facts described in detail in [11] that we use are the following. Let7: S — S
be the minimal desingularization of S = P?/As. Since As is finite, S is birationally
equivalent to P2, From Hirzebruch’s work we know that the Euler characteristic
of Y(5) is 14 and Y (5) can be obtained from the plane P? by means of 11 blow
ups, denoted f: Y(5) — P2. Denoting again o : Y(5, (2)) — P? the sixteen blow
ups of the Klein icosahedral surface (cf. previous sections), there is the following
commutative diagram:

Y(5)= 43, - Y5, 2)
ok
P? P?

s

S'é_;iTS:IPZ/AS.

In what follows we exploit the map f: Y(5) — P2, but we remark that the
explicit coordinates of the rational map Tk are known from Klein’s work on the ring
of mvariants for the action of As on the plane [11], and so the study of Tk could be
another way to get the modular foliations of Y (5).

The strict transform by the birational transformation ¢ : P2 ——> S of the quotient
of the icosahedral arrangement of lines is an irreducible rational quintic curve Q C P2.
There are affine coordinates (x, y) of P2 — L, for which the quinticis Q : —1728x°+
720x3y — 80xy? 4 64(5x2 — y)2 + y3 = 0; the line at infinity L = Lo, C P? is the
strict transform by ¢ of a component of the exceptional divisor introduced by 7.

The eleven points to be blown up by f: Y (5) — P? are the points that must be
blown up in order to obtain normal crossing between the strict transform of Q by
S and the exceptional divisor of its resolution, see pages 635-636 of [11]. The
singularities of the quintic Q are at the points (0, 0), (1, 4), (%, %) and at infinity
0,0) = (w,s) = (%, %) At (0, 0) and at infinity the quintic is locally given as
22— 15 =0,at (32, 182) it is locally given as z2 — > = O and at (1,4) Q has a
nodal point. The resolution process is done by means of four blow ups at (0, 0) (and
infinitely near points), four blow ups at infinity (0, 0) = (w, s) (and infinitely near
points) and three at (%, %) (and infinitely near points), as shown in Figure 10.
Some remarks on Figure 10 are useful. We denote by E; the exceptional line of the
i-th blow up E; = oi_l(pi), fori = 1,...,11. Then we denote by E; their strict

transforms by subsequent blow ups. For instance, according to Figure 10: Ef =-1
fori € {4,8,11}, E? = =2, fori € {1,3,5,7,10} and L2 = 2, E? = -3 for
i €{2,6,9).

Denoting the sequence of eleven blow ups by f, the strict transform of the quintic
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99

EDZ
(32/27, 1024/81)

0,00 = (w,s)

Figure 10. The 11 blow ups composing f: ¥ (5) — P2,



Vol. 80 (2005) Hilbert modular foliations on the projective plane 271
in Y (5), denoted Q, can be described @ (Q) in Pic(Y (5) as
f*(gpz(S)@@(—ZEl —2E,—FE3—E4—2Es—2E¢—E7—Eg—2E9—E9— Ell)-

Hence Q is a rational nodal curve with self-intersection 52 — 26 = —1, as shown

m Figure 11. In Y(5), O corresponds to the desingularization of the unique cusp
introduced by compactification of H?/PSL,(9g).

Figure 11. O C Y(5) is a cycle introduced in the resolution of the cusp.

4.2. Numerical data and determination of vector fields. Considering Y (5) as the
blown up plane by £, its pair of modular foliations, denoted #¢; and #3 (the indices
2 and 3 will be justified), are the transformed foliations of foliations in the plane
denoted #, and 5.

The pair #, and J6; has as (reduced) tangency curve the following curves:
i) the strict transform of the quintic Q, denoted Q, ii) the strict transform of the
line at infinity L, denoted L and iii) the curves E;, fori =1,2,3,5,6,7,9, 10.

Remark that E4, Eg, E11 are not J¢; or J¢;-invariant, since they intersect the
cycle Q and the unique singularities of these foliations along the cycle are at the node
of 0.

The strict transform of the line at infinity L in Y (5), denoted L, can be described
i Pic(Y (5)) as

O(L) = f*O(1) ® O(~E1 — E — E3),
and we can easily write E; in terms of E; s, for instance

Ey=E —E;, Ey=Ey;—E;—Ey,
etc. So the tangency curve Diy,g between Jt, and 65 satisfies

O(Dang) = [*O(6) ® O(—2E; —3E; —2E3 —3E4 — Es
=1 2E6 — E7 — 3Eg = E9 — EIO = 3Ell)-

Recalling that the tangency divisor Diang verifies O (Dtang) = T;? ® N 7 We
2
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obtain

11
FrO@(3) +d(s) + 1) © O = 3 (U(H2, pi) = 1+ 1(365, pi) - Er )

= f*O6)® O(-2E; —3E, —2E3 —3E4 — E5
—2E¢ — E7 —3E3 — E9 — E1g —3En).
From this isomorphism we obtain the following numerical equalities:
d(F#2) +d(#3) =35,
U(F, pi) +1(H3, pi) =3  fori=1,3,6,
(3, pi) +1(H3, pi) =4  fori =2,4,8,11,
I(#, pi) +1(H3, pi) =2 fori =5,7,9,10.

Now we determine the numerical data of both foliations:

Proposition 2. For F¢; we have

d(#) =2, l(p) =1, Up) =2, lp3)=11ps) =2 1llps)=1,
lps) =1, lp7) =1, Upg) =2, Upo)=1, I[(pro)=1 Ilpn) =2,

and for #3

d(#3) =3, lp) =2, l(p)=2, Up3)=2, Ilps) =2, Il(ps)=1,
lps) =2, Up7)=1, l(pg) =2, lpo)=1, Upw) =1 I[(pn) =2
Proof. Both foliations, #¢; and J¢3, admit as invariant algebraic curves the quintic
Q and the line L. This is sufficient to determine #¢,. If there exists F of degree 2
leaving Q and L », invariant then the tangency locus of  and #¢; would have degree 5
and would contain Q and L, thus ¥ and #¢, should coincide. We determined #;
using the computer and after making its resolution, cf. Appendix B, we determined

I(p),i=1,...,11, for F.
From this data we obtain that

T;—€ =0"0(1) Q@ O(—Ey — E4 — Eg — Eq1).

2

Since the tangency locus of #¢; and #3 is given by the formula
@(Dtang) = T;—€2 &® N}—€3

we obtain

T;? =0*0Q)® O(—E1 — Ey — Ez — E4 — Eg — Eg — E11).
3
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Observe that this determine [ (p;),i = 1, ..., 11, for #¢3. Therefore we can translate
these conditions into an algebraic system of equations in the coefficients of the degree
3 vector fields. Solving this system with the help of a computer algebra system we
can find the polynomial vector field of degree 3 with the numerical data prescribed
(degrees and multiplicities along the resolution). In Appendix B we give in detail the
reduction of singularities of #¢3 and also that of J¢;. O

4.2.1. Canonical line bundles of # and J#¢;. We describe the canonical line bun-
dles of the modular foliations of Y (5). These line bundles are explicit examples with
numerical Kodaira dimension 1 and Kodaira dimension —oo.

Remark, from the previous subsection, that

TEZ g* 8y 3
7 Hs ‘

From the Zariski decomposition T:T = Py, + Ny, and T;T’ = Py, + Ny, we
2 3

conclude that Ngfb = N§€3 = —3. But the sporadicity property of the modular

foliations imply that N, # Nyg,. The rational coefficients of cach component N;

of the N-part of T;_f and T;*? are easily computed, provided we use the property of
2 3}

Zariski decomposition
T ;? -N; =N -N;,

combined with the fact that cach N; is H;-invariant (McQuillan’s theorem from
Introduction) and Poincaré—Hopf theorem.

For this we need to know how many singularities exist over each E; and their
Poincaré—Hopf indices. This is provided by the study of the reduction of singularities
in Appendix 2 (see Figures 17 and 18). We obtain

3
N ==

1Z lE_ ZE_ 1
T3 L+ -Ls+ -Le+ <

- 1= 2_ — 11— 1
E -E K E -E -F
1+5 2+3 3+3 3 3 27—i—3 9+210

and

1. 2. 1l 2= 1_- 3_. 1_-. 1T-- 1-
N— =—-E -Ey,+-E —L+-E —Es+-E ~FEg+ —E
T3 1+5 2+3 3+3 +5 5+5 6+2 7+3 9+210

which satisfy N2 = N2 = -3,
FHo H3

5. Projective models for modular foliations of Y (5, (+/5))

5.1. Y (5, +/5) as a double covering of the plane. In this section we address The-
orem 5 of the Introduction. The description of Y (5, +/3) in [10] places it as an
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icosahedral-equivariant 2-fold ramified covering of the plane (blow up at 6 points).
So in order to prove Theorem 35, our first task is to show how to obtain ¥ (5, /5) from
the plane just using blowing ups and blowing downs, which is not explicitly described
in [10].

Known facts about Y (5, +/5) from [10] are: 1) H2/ T’ /3 1s asmooth open surface,
i) its compactification H?/T" /3 18 done by adding six cusps. Each one of the 6

cusps of Y (3, (+/3)) is desingularized as a cycle of two rational curves A; U B;, with
mtersection —3.

(=3

Figure 12. Cycles composed by two components on ¥ (5, (+/3)).

Also it is known from [10] that the smooth rational curve which extends the
diagonal in H? to Y (5, (+/35)), denoted by C, has self-intersection 2. The action of
SL,(0)/T ssonY(s, (+/5)) carries C to itself, and C passes through each one of the
six cycles A; N B; at the nodal points (see Figure 13).

ANOHOHOIOCY

Figure 13. The resolution of cusps of ¥ (5, (v/3)).

The extension of the involution 7: #2 O, I(x,y) = (y, x), is denoted also by
I1: Y(5, (+/3) O and obviously I(C) = C. Consider the quotient ¥ (5, (+/3))/I and
the 2-fold covering

Y5, (V3) = Y5, (V3)/1

ramified along C. It was also proven by Hirzebruch that Y (5, (+/3))/1 is isomorphic
to P2 blown up at the six points. These points are vq1, ..., vig given in Section 3
as associated to the vertices of the icosahedron. The ramification curve becomes in
the plane (so after six blow downs) Klein’s curve of degree 10, which is a rational
curve, having singularities at vy, ..., vig which are double cusps, invariant under
the action of the Icosahedron in the plane.
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Figure 14. Double cusps of Klein degree 10 curve at the points v;, i = 11, ..., 16.

p‘ Y(5, (+/5)

Y6, )T

'
\

Figure 15. The 2-fold covering of ¥ (5, (+/3)) over the blown up plane.

Remark that each cycle has self-intersection (A; + B;)? = -3 =3 +4 = —2
which is coherent with the fact that the cycle covers an exceptional line E = o~ (v;)
(thatis, —2 = 2 - E - E). Remark also that after 6 blow ups at v;, the self-intersection
of the degree 10 plane curve becomes equal to 10? — 6 - 42 = 4 (since v(C, v;) = 4)
and after covering it becomes equal to 2.

5.2. Y (5, +/5) as a modification of P? and the minimal involution. The fact that
the surface Y (3, (v/3)) is a rational surface follows from the fact that there is a smooth
rational curve with positive self-intersection, namely C with C? = 2. Our aim now
is to obtain it from the plane by means of blowing ups and blowing downs.

Consider in P? the six conics C; passing through 5 among the 6 vertices

1seeesls
Vi1, ..., V16. After the blow ups, these conics becomes (—1)-curves Eil,...,is n
Y (5, (¥/3))/1. We claim that Eil,m,is does not intersect the transformed curve of C.
In fact C;, . ;5 and C intersect at 5 among the 6 vertices v;; at which v(C, v;;) = 4.
Thus the local intersection at each of these points is at least 4 and it is greater than
4 if, and only if| éil,..-,is intersects the strict transform of C. Since we have 5 such
points and C - Cj, . ;; = 20, the claim follows.
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Therefore, taking the 2-fold covering, there are 12 pairwise disjoint (—1)-curves,

which are the pre-images of the curves Cy, ... ;;. Each curve A; and B; of the cycles
mtersects 5 of these 12 (—1)-curves (see Figure 16)

i

Y

Ig" Ciiis

i

|

L @ Y (5, (V3)
i i1

OO 71

Figure 16. Curves Ci(ll) is and Ci(lz) ;5 are pre-images of Eil""’iS'

,,,,,,,,,,

Now we consider the map %: Y (5, (+/3)) — W, which corresponds to the blow
down of all the 12 exceptional lines described in ¥ (5, (v5)).

Then itis clear that the Euler characteristic of W is e(W) = e(Y (5, (+/3)) —12. It
is proven in [10] that e(Y (5, (+/5)) = 16. So the rational surface W with e(W) = 4
is a Hirzebruch surface X,. Also we see that the transformed curves of A; and B;
in S have self-intersection —3 + 5 = 2. Now, using that these rational curves have
self-intersection 2 in the surface W = X, see [9], we can show that W = ]P’(lC X ]P’(lc.

5.3. Numerical data of the foliations. In order to find the numerical data of the
modular foliations in W = I% X ]P’(lc, let us apply the tangency formula to the image
of Cim W = IP(%: X ]P’(lc, whose self-intersection 2 has not changed by the map
h: Y5, (x/5)) > W. We have

T - C =tang(C,F) —C* =12 -2

since the twelve reduced singularities along the cycles A; U B; belong to C. Then
Adi(F) +da(F) = 10 (also d1($) + d2(4) = 10 ). The tangency curve of the pair of
modular foliations in P}, x P{. is then composed by 12 curves of bi-degrees (1, 1),
images of the components of cycles by /. If we denote again by F and § the foliations
n IP(%: X IP’(IC then the tangency along these curves produces the relations

di(F)+dy (@) +2=d(F)+di1(§)+2=12.

Let us now determine the Milnor numbers of the 12 dicritical singularities r;,
mtroduced by the blowing downs. For computing this, we use Darboux’s theorem in
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IP’(IC X ]P’(lc, taking into consideration the twelve saddle singularities along C:

12

12+ ) (i) —4=T}  Ng.
=1

Then

12
D o u(ri, F) =2 (di(F) - do(F) + di(F) + o (F)) — 8
i=1

=2d1(F) - do(F) + 12

and so, for each r;, _

s, ) = BEBE)
The unique solution of this equation for (non-zero) bi-degrees (whose sum we know
1s 10) 1s d1(F) = 4, da(F) = 6 (or vice-versa) and p(r;, F) = 5. After we know
the Milnor numbers, the invariants I (r;, ) are easily computed: they are equal to 3
foralli =1,...,12.

Now, by an elementary transformation E : ]P’(lC X ]P’é: — —> P2 (cf. Section 3.4.1)
we get foliations in the plane with the same degrees. As remarked in that section, these
transformations are defined by blowing up a point p and subsequent contraction of the
transformed curves of horizontal and vertical lines, denoted H and V. For instance,
if we blow up a regular point p for the foliations, we get foliations in the plane
whose degrees are both equal to 12. On the other hand, if we choose the elementary
transformation which blows up one dicritical point p = r;, we get degree 9 for both
modular foliations. In this model, the algebraic curves invariant by the modular
foliations are 5 straight lines and 7 conics. The lines are images in the plane of the
(1, 1)-curves passing through p = r;, whose self-intersection decreases by one by
the blow up at p and which are not affected by the contraction of H and V. The
conics correspond to the (1, 1)-curves not affected by the blow up at p but whose
self-intersection 2 is increased by 2 under the contractions of H and V.

Atlast, aremark on the canonical line bundles is in place. If # denotes a reduction
of singularities of the modular foliation in P<1c X ]P’(}:, obtained from 12 blow ups at
dicritical points, then T;; is nef (the N-part is empty) and

12
* P .
TL=O@H +6V) ®(9<—ZZE,>
i=1

gives T% . TJ; = 0. Also ng‘ . Tg* = 0 holds for the companion foliation, since

T2 = 0(6H +4V) © 0= 12, 2£y).
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A. Factorization of the Cremonian involution

In this section we construct the involution 7 in the plane associated to the involution
of Y (5, (2)) (which sends #¢s5 to €9 in Theorem 2) as a composition of three quadratic
transformations of the plane:

T =030020 0.

The transformation 7 is a degree five Cremonian transformation with six inde-
termination points and is described by Godeaux [8] as a degenerated case of a Geiser
involution (in general a degree eight involution with seven indetermination points).
In this particular case, the 2-net of rational curves defining 7 is composed by degree
five curves with double points at the six indetermination points. According to [8], in
this case, there is a non-empty fixed part of degree 3 in the 2-net of curves of degree
8 defining the general Geiser involution.

Moreover, in this section we construct birational modifications of #¢s5, denoted
Hi, k = 6, 8,9 of degrees 6, 8, 9, respectively, given as follows: s = (Ql_l)*(J(%),
Hg = ((Q2 0 Q1) 1)*(Hs) and Ho = ((Q3 © Q2 0 Q1) 1)*(Hs). With this factor-
ization process we are also led to a better understanding of the effect of 7 = 75 on
the foliations and on the configuration of lines.

The standard quadratic transformation of the plane, Q : P2 — —> P?_ is given
in homogeneous coordinates by Q(xp : x1 : x3) = (x1-x2 : X0 -x2 : xp - x1). It
factorizes as the blowup ate; ;= (1:0:0),e2:=(0:1:0),e3:=(0:0:1), with
E; = ol-_l (e;), followed by the blow downs of the strict transforms L of the three
lines Ly := ¢; - ¢ to points g, k = 1, 2, 3. The strict transforms of E; are three lines
E C P2 connecting two points among gy.

Lemma 1. Let Q: P? — —> P? be the standard quadratic transformation (keeping
the previous notations). If C is a degree d = d(C) curve, then the degree of the strict
transform Q(C) is2-d(C) — Z?:l Ve, (C), where v, (C) is the algebraic multiplicity.
Moreover

qu(Q(C)) = d(C) - Vei(c) - Uej(C), i 7&] 7& ke {l’ 2a 3}

If #€ is a foliation of degree d = d(H), then the degree of the foliation Q. (¥)
(with isolated singularities) is equal to 2 - d(F#) + 2 — Z?:l [(e;, #¢). Furthermore

Hqie, Q+(H)) = d(H) +2 — l(ei, H) —(ej, H), i #jFke{l, 2,3}

Proof. The assertion on curves in this lemma is well known from classical books on
algebraic curves.

The assertion on the degrees of foliations can be proven if we remark that by
definition, d(Q.(#¢)) is the sum of tangencies with a generic straight line L; but L



Vol. 80 (2005) Hilbert modular foliations on the projective plane 279

is the strict transform by Q of a conic C passing through ¢;, ¢; and e3. So the proof
follows easily from the formula for the variation of order of tangencies under blow
ups (at the end of Section 2.2.3) and from the formula

tang(C, #) = Ny - C — x(C) =2 - d(3) + 2.

As explained in Section 2.2.3, the computation of [ (g, Q+(F#)) depends on the sum
of tangencies along the exceptional line Ly (if it is not invariant by the foliation) or
on the sum of Poincaré—Hopf indices along L and is casily done. O

Let us start the definition of 7 = Q3 o Q02 o Q1.

Definition of Q1. By a linear transformation of the plane we can put three vertices
as

el ="vi1, € =Vi3, €3 ="U]s5,
and take for Q; the standard transformation based on these points. So the strict
transforms of Lp, = v1jv13, Lp, = U13v15 and L, = v1rv1s by the blow ups done
by Q1 will be contracted, producing again the projective plane.

By Lemma 1, the transforms of L, = V14016, La, = V12016 and L4, = V12014
(cf. Section 3) under the Cremonian transformation are conics passing through the
points introduced by contraction of the strict transforms of L,, L g, and Lc,, which
we denote ¢p,, gp, and gc,, respectively. All other lines L,,, Lp;,, L, in the
configuration are transformed into straight lines, because each one has received one
blow up at one point from {vy1, v13, vi5}.

Let # denote the transformed foliation (Q7 . )*(#s) (with isolated singularities).
By Lemma 1, d(#{) =2 -542 —3 -2 = 6 and its singular set is the following:

i. J¢; has singularities at the images of 01, 02, 05, 09, v12, v14 and vig by Q; that
are isomorphic to those of #s, that is, are radial points.

ii. There are degenerate singularities of #¢; at ¢p,, ¢, and g¢,. The reduction of
singularities of g, is as follows: one blow up produces an invariant exceptional
line E with two radial points, isomorphic to the radial points og and o4 (which
need to be blown up again) and two more reduced singularities isomorphic to the
singularities L 4, N Lp, and L¢, N L, of . The picture is like that of Figure 8
in Section 3.4 (see page 266).

In order to compute the algebraic multiplicity of #5 at ¢,, ¢, and g¢,, we use
the known formula

D (O (H), p) = pag — mg(H) - (mg (35 — 1) + 1,
peEE
which gives

4= Z p (0™ (H5)) = g, (H5) — mgp (Hs) - (mgy, (H5) —1) + 1
PEE
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and, summing up for the three points,

myp, - (mgp, — 1) +mgp - (mgp, — 1) +mge, - (mge, —1) +9
= Uap, (H5) + gy, (H5) + 11gc, (H5)
=[6°+6+1—(52+5+1-3-3-4)]
=27

from the homogeneity in the definition of g,, 8., 9c, we obtain
Mgp, = Mgp, = Mygc, = 3.

At this point we can verify directly that the numerical Kodaira dimension of ¢}
is one, exemplifying the birational invariance of this concept; we have

(d(H5) — 1)* = (m(gp,, H5) — 1)* + (m(gp, H5) — 1)

+ (mgeo, #5) —D*+ > m(p, ),
P#4By 4By -4Cy

where in

> mpHy)?

P#4B,:4B3-4C

we include the contribution of the blow ups of radial points along the exceptional
introduced by blow up of ¢5,, ¢8,, 9¢, that is, we have the equality 25 =3 -4 4-13.
We conclude that #; is a degree 6 modular foliation, denoted Hs = (Q1)+(Hs).

Definition of Q>. Now consider the points Q1(vi2), Q1(v14), Q1(vis). They are
not collinear and we can take a linear transformation putting

e1=(1:0:0) = Q1(v12),
e2=1(0:1:0) = Q1(v14),
e3=(0:0:1) = Q1(ve),

and we define Q5 as the standard quadratic transformation with base points at these
points. Since Hs has [, (#s) = 2, we obtain from Lemma 1

d((Q2)sHs) =2-6+2—-3.2=38,
I ((02)sHs) =6+2—2-2=4.

Remark that the lines Ly := e;e; are not Hs-invariant. Since e; and ¢; are radial
points for F#, tang(Lg, ¢;) + tang(Lg, ¢;) = 4 and the points g introduced by the
blow downs of (the transforms of) Ly are dicritical and we have [, ((Q2)+ ) = 4.
So we have obtained that (Q).H#s = (Q2 o Q1)+H5 1s amodel Fg of degree 8.
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Definition of Q3. In order to complete the construction of the Cremonian transforma-
tion 7 = Q30 Qs0 Q1, letus define Q3. For doing this, take a linear transformation
of the plane such that

e1=(1:0:0)= 02(01(v11)),
e =(0:1:0)= Q2(01(v13)),
e3=1(0:0:1) = Q2(Q1(v15)).

Now again by Lemma 1,

d((Q3)yHs) =2-84+2—-3.3=9,
lqk((Q3)*]€8) =84+2-2.3=4

and g are dicritical points eliminable by one blow up, since Q3 has blown up all
singular points of Jfg that needed more that one blow up in its reduction. In this way
we have obtained the model of degree 9 in the pair (Fs, o) as Ho = T (Hs5).

The composition T = Q3 0 Q2 o Q1 of three quadratic transformations has degree
Ove as a birational transformation (the degree of the composition is not eight, because
the base points of the quadratic transformation in the composition are not disjoint).
In order to see this, consider the image of the 2-dimensional linear system of curves
of degree 5 passing doubly through viy, ..., vig. If C denotes one of these curves,
the degrees of its strict transforms are computed, by means of the previous lemma as

d(Q1(C) =2-5-3-2=4, v, (01(C) =1
and
d(Q2(01(C)) =2-d(Q1(C)) —3-2=2.

Finally d(Q3(Q2(Q1(C))) = 2-d(Q2(Q1(C)) =31 =2-2-3 = 1 which
gives a 2-dimensional system of lines, that is P?. The birational transformation

T:P2 — —> P2 = N canbe given as T (xq : x1 : x3) = (Py : P; : P5) where
Py, P;, P, 1s abasis of the C-vector space of polynomials of degree 5 vanishing with
order two at the five points vy, .. ., vi.

At last, let us explain how the transformation 7 = Q1 o O, o Q3 does preserve
the configuration of 15 lines La,, LB;, Lc;, although this is not the case for any of
the quadratic transformations Q;,i =1, 2, 3.

For showing this, let us divide the set of 15 lines into three subsets; a) lines that
do not pass through v, neither by vy3, nor vys; b) lines that pass through exactly
one point in {v11, v13, vis}; and ¢) lines that pass through a pair of points from
{v11, v13, v15}.

In case a), for fixing ideas, take the line Lp, = vigvis. The strict transform
Q1(By) 1s aconic. Since By does not contain vz, the transformation Q> operates on
Q1(Bo) by means of two blow ups at Q1(v14), Q1(v16) and so d(Q2(Q1(Co))) =
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2-2—-2 =2 and Q2(Q1(By)) also is a conic. Now since Q;(By) contains gc,, B,,
4B, we conclude that d(Q3(Q2(Q1(Bo)))) =2 -2 —3 =1 and we obtain a line as
desired.

In case b), if a line in the configuration contains just one point from {v;1, vi3, v15},
for fixing ideas let us suppose this point is vy;. Then Q;(L) is also a line, passing
through just one of the points g¢,, 95,. ¢8,, namely by gp,, because Lp, = v13015.

But any line in the configuration of 15 lines must contain 2 vertices v;;. Now vi1 €
L, vi3,v15 € L, hence L contains exactly one point from {v13, v14, v16}. So when
applying Q; exactly one point of Q1(L) (a line) is blown up and d(Q2(Q1(L))) =
2-1—1= 1. When applying Q3 we blow up Q2(ps,); so d(Q3(Q2(Q1(L)))) =
2 -1 —1 =1 and again we have a line.

Finally, in the case c), if a line in the configuration contains a pair of points from
{v11, v13, v1s} it does not contains the third one (they are not collinear). But then L
is blown down by Q1 and re-introduced as one of the three lines created by Q3.

B. Reduction of singularities of the plane models of Y (5)

Here we give a detailed reduction of singularities for the modular foliations in the
plane associated to Y (5), given in Proposition 2. Figures 17 and 18 present all the
reduction processes, composed each by eleven blowing ups f: ¥ (5) — P2. Remark
that the reduced singularities which are not at the corners of the exceptional divisors
are denoted respectively by ¢;, g7, and r; in these figures.

B.1. Resolution of #>. We begin with the reduction of singularities of #¢; at infinity
in the plane. The foliation #¢; 1s induced in affine coordinates (x, y) of the projective
plane by

Q = (80y — 60xy — 80x%)dx — (y + 32x — 36x%)dy = 0.
In the chart (i, v) = (%, %) there is a reduced singularity at g7 := (0, —13—0) = (u, v)
(with Camacho—Sad index —% relative to the line at infinity ), as can be easily verified.
The foliation #¢; is induced at the point at infinity p; := (0, 0) = (w, s) = (%, %) by
Q(w, s) = (8052 — 60ws — 80w?s)dw + (s — 48ws + 24w? + 80w3)ds = 0,

where s = 0 1is an affine equation of the J¢;-invariant line at infinity. The blowing up
o1 at pp 1s written in local charts as

o1(x1, 1) = (x1, x111) = (w, s), o1(u1, y1) = (u1y1, y1) = (W, 5),
and
o7 Q(w, s) = x1 - [(=36x11 4+ 17 +32x118)doy + (x1 11 +24x7 — 48xE 1y +80x3)d1y ],
that is, [ (#3, p1) = 1.
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Figure 17. Resolution of #>.
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Figure 18. Resolution of /3.
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The unique singularity of the transformed foliation along E; := o, L(p1) is at
(0,0) = (x1,11), as is easily verified. The blowing up o7 at py := (0, 0) = (x1, 11)
is written in local charts as

o2(x2, ty) = (x2, x212) = (x1, y1), 02(uz, y2) = (u2y2, y2) = (x1, ¥1),
and

oS [(=36x11y + 1§ +32x113)dxy + (x1ty 4 24xE 4+ 80x] — 48xF1))dn ]
=2 - [(—=121y — 16x17 + 80x217 + 213)dxy
+ (24x7 + tyxy + 80x3 — 48x312)d1a],
that is, [(H2, p2) = 2.
The non-reduced singularity of the transformed foliation along E; is at (0, 0) =

(x2, 12). There are also two reduced singularities, one at g3 := (0,6) = (x2, 12)
(with Camacho—Sad index —% relative to E3) and the other is at infinity (0,0) =

(12, y2) = E1 N E; (with Camacho—Sad index —% relative to E,).
The blowing up o3 at p3 := (0, 0) = (x2, 12) 1s written in local charts as

o3(x3, 13) = (x3, x313) = (x2,y2), 03(u3, ¥3) = (43y3, y3) = (x2, y2),
and
o [(—12ty — 16x212 + 80x212 + 2t2)dxy + (24x3 + taxy + 80x3 — 48x312)d 1]
= x3 - [(24x3 + 80x7 — 47x3+)dn
+ (1213 + 160x313 4 3x317 — 64x312)dx3],

that is, [(#a, p3) = 1.

There is a reduced singularity at (0, 0) = (x3, 3) which is the crossing point
E3 N L (with Camacho—Sad index —2 relative to E3). The point at infinity p4 :=
(0,0) = (u3, y3), ps = E3N E,, is anon-reduced singularity, where the transformed
foliation is induced by

(12u34-3u3y34+160u3 y3 —64u y2)dys+(—12y3+ 22 +80u3y3 —16u3y3)duz = 0,

which clearly is a dicritical point of radial type, that is, [(F, p4) = 2.
Let us now consider the reduction of #¢; at ps := (0, 0) = (x, y) in the projective
plane. The blowing up o5 at ps is written in local charts as

os(xs, ts) = (x5, x585) = (x,¥), os5(us,ys) = (usys, ys) = (x,¥),
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and

o3 ((80y — 60xy — 80x%)dx — (y +32x — 36x%)dy)
= x5 - [(—32x5 — xst5 4 36x2)dt5 + (4815 — 80xs5 — 24xsts — t2)dxs],
that is, [(#2, p5s) = 1.
The singularities of the transformed foliation along E5 := 05_1 (ps) are areduced
singularity at gs := (0, 48) = (xs, t5) (with Camacho—Sad index —% relative to Es)

and a non-reduced singularity at (0, 0) = (xs, s).
The blowing up o5 at ps := (0, 0) = (x5, t5) 1s written in local charts as

o6(x6, t6) = (x6, x6l6) = (x5,¥5), 06(Us, ¥6) = (UsYe, y2) = (x5, ¥5),
and
o [(—xsts — 32xs + 36x2)dts + (4815 — 24uxsts — 80xs — 12)dxs]
= x6 - [(—80 + 165 + 12t5x6 — 2x6t2)dxg + (—32x6 + 36x2 — 16x2)d1s],

that is [ (F,, ps) = 1.

Thereis areduced singularity at (0, 0) = (ug, ys) which is the intersection EsNEg

(with Camacho—Sad index ~% relative to Es5). The non-reduced singularity of the

transformed foliation along Eg is at (0, 5) = (x¢, #s).
After the linear change of coordinates (xg, #5) — (x¢, t6¢ — ), the foliation around
p7 1s induced by

(16t6 + 10xs — 8xgts — 2x613)dxs + (—32x6 + 31x2 — x216)d1ts = 0.
The blowing up o7 at p7 is written in local charts as
o7(x7, 17) = (%7, X717) = (%6, ¥6),  07(u7, ¥7) = (U7y7, ¥7) = (X6, ¥6)>
and
o3 [(—2x6t2 — 8xgts + 10x6 + 16t6)dxg + (—x2ts + 31x2 — 32x6)dts]

= x7 - [(10 — 1617 4 26x7t7 — 2x3t7 — x2t2)dx7
4 (=32x7 + 312 — x317)d17],
that is [ (F¢, p7) = 1.
There is a reduced singularity at g7 := (O, %) = (x7, t7) (with Camacho—Sad

index —2 relative to E7). The non-reduced singularity of the transformed foliation is
at (0, 0) = (u7, y7) € E7, where the foliation is induced by

(—16u7 + 10u3 — 3u3y? + 23u3y3)dy7 + (16y7 + 10u7y7 — Su7y3 — 2u7y3)dus,
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which is clearly a dicritical singularity of radial type; that is, [(F3, pg) = 2.

Now let us reduce the singularity of #¢, in the projective plane at (%, %) =
(x,y). The blowing up o9 at po = (%, %) produces two singularities along
E9 = 045 ' (po); a reduced singularity at go := (0,%) = (xo, o) with index —3
relative to E1 and a non-reduced singularity at (0, 22) = (xo, o). It can be casily
verified that [(F5, po) = 1.

Next, the blow up o0 at p1p := (0, %) = (x9, f9) produces two singularitics
along Ej9 = ol_ol(plo). One 1s a reduced singularity at g10 := (0, 105) = (x10, t10)
with index —2 relative to Ejo and the other is a non-reduced singularity at infinity
(0,0) = (u10, y10). It 1s easily verified that also [(F#,, p1o) = 1. At last, it can be
verified that pi; := (0,0) = (u10, y10) 1s a dicritical point of radial type, that is,
[(#, p11) = 2.

Finally, at the point (1,4) = (x, y) in the projective plane, J¢; has a reduced
singularity. The quotient of eigenvalues of the linear part of a vector field inducing it

—3+/3

is equal to =5~

B.2. Resolution of #3. We begin with the singularity at infinity in the projective
plane, which has the more involved resolution.
The foliation #¢3 is induced in affine coordinates (x, y) of the plane by

Q= (— %y2+20xy—60x3>dx+ (—y+%xy+x2>dy =0.

In the chart at infinity (u, v) = (%, 2} there is no singularity, as can be easily verified.
The foliation #; is induced at p1 := (0,0) = (w, s) = (%, %) by
Qitan, 5) = (— %sZ +20ws? — 60w3s)dw n (%ws —21w?s + 60w + s2>ds —0,

where s = 0 1s an affine equation of the F3-invariant line at infinity.
The blowing up o7 at p; 1s written in local charts as

o1(x1, 1) = (x1, x111) = (w, 5),  o1(ur, y) = (u1y1, y1) = (w, s),

and

ot (Q(w, 5)) = x2- [(— 32 —xltlz+tl3>dx1 + (%xltl —21x2y +60x§+xlzf)dz1],

4
that is, [(F5, p1) = 2.

The singularities of the transformed foliation along £ := o Ypp areat (0, 0) =
(x1, 1) and (0, %) = (x1, 11). The point r; := (0, %) = (x1, 1) is a reduced singu-
larity (with CS index equal to —% relative to E1).
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The blowing up o7 at p; := (0, 0) = (x1, 1) 1s written in local charts as
oa(x2, o) = (x2, x212) = (x1, ¥1), 02(u2, y2) = (u2y2, y2) = (x1, y1),
and

OZ*I:( — %tlz — xltlz + t13>dX1 + (%xltl — 21X%ll + 60)C% +X1t12)dt1]

- [(60x2t2 _ %:g 222+ 2x2123)dx2
+ (%xm — 21331 + 6033 + wad)dsy |,

that is [ (Ft3, p2) = 2.

The non-reduced singularity of the transformed foliation along E» is at (0, 0) =
(x3, 7). Also there is a reduced singularity at infinity (0, 0) = (u3, y2) = E» N E;
(with CS index —% relative to E;).

The blowing up o3 at p3 := (0, 0) = (x2, 1) 1s written in local charts as

o3(x3, 13) = (x3, x313) = (x2,y2), 03(u3, y3) = (u3y3, y3) = (x2, y2),
and
o3 (60wan2 - itg —22my2 + 203 ) dxy + (%m 2133 + 602 + 213 )|
=2 [<6Ox3 ¥ %xﬁg —21x25 + x§z§>dz3
+ (1205 + %132 — 4332} + 323 ) s,

that is, [(F3, p3) = 2.

There is a reduced singularity at r3 := (0, —480) = (x3,13) € E3 and a reduced
singularity at (0, 0) = (x3, £3) which is the crossing point with L (with Camacho—Sad
index —2 relative to L). The point at infinity in E3, that is, p4 := (0, 0) = (u3, y3)
is a non- reduced singularity, where the foliation is induced by

(%y3+60u3y3 —22y32u3+2u3y32>du3+<iu3 —43uy34+3udyi+ 120u§>dy3 =0,

which clearly is a dicritical point of radial type, that is, [(J3, ps4) = 2.
Let us now reduce the singularity of J¢3 in the projective plane at ps := (0, 0) =
(x, y). The blowing up o5 at (0, 0) is written in local charts as

os(xs, t5) = (x5, x585) = (x, ), os(us, ys) = (usys, ys) = (x,y),

and, since 3 is given by

e, 7 = (— %yz 1 Fy — 60x3>dx + (— v+ %xy +x2)dy =,
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we have
oX(Q(x, y)) = .(2 32— 1 2 a2 2
5 , V) = X5 X5+4)C515 xsts )dts + ( 21xsts ZX5t5 60x35 — 15 )dxs |,

thatis I (F¢3, ps) = 1.
The singularity of the transformed foliation along Es := o5 Y(ps) is just (0, 0) =
(x5, t5). The blowing up og at ps := (0, 0) = (x5, t5) 1s written in local charts as

o6(x6, t6) = (x6, x6l6) = (x5, ¥s), 06(ts, ¥6) = (UeYs, ¥y2) = (x5, y5),

and
06*[<X52 + %X?G — )C5t5>dl5 + (21X5t5 — %X5152 — 60)652 — Zsz)d)cs]
— 2. [( — 60 4+ 2216 + img - 2z62)dx6

%xé% = x6t6)dt6],
that 1s I[(#5, ps) = 2. There is a reduced singularity at r¢ := (0,6) = (ug, v¢)
(with Camacho—Sad index —% relative to Eg). Also there is a reduced singularity
at the intersection (0,0) = (ug, y¢) = Es N Eg (with Camacho—Sad index —2
relative to Es). Also there is a non-reduced singularity of the transformed foliation
at (0,5) = (x¢, 1) € Es.

After the linear change of coordinates (x¢, ;) — (x¢, tg — 3)), the foliation is
induced by

+(x6+

= (2[6 + %)% + %Xstg — 2[62 + %xdg)d)%

+ < 4x6 — x6ls + ~x6 + 3X62t62 + X6t6)dt6
The blowing up o7 at p7 := (0, 5) = (xs, t6) 1s written locally as

07(x7, 17) = (x7, X717) = (%6, Y6), 07(u7, y7) = (U7y7, y7) = (X6, Y6),

and
3
oin = x7- [(% —2t7 + —)C7 + )C7l7 4 31x%t72 2)67t72 -+ gx;t;)dm
+ ( 4x7 + 74—5x% — x7t7 + ¥X7t7 + ix;t%)dm},

that is, [(#63, p7) = 1.
There 1s a reduced singularity at (0, _725) = (x7, t7) (with Camacho—Sad index
—2 relative to E7). The non-reduced singularity of the transformed foliation is at
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(0, 0) = (u7, y7), where the foliation is induced by

31
(=207 = 3uzyr + 203 + By 1 2083+ Zads? )y

25 10 1
+ <2y7 —2y2 + 2 Uy + Tlmy% + Zu7y3>du7,

which is clearly a dicritical singularity of radial type; that is, [(J€3, pg) = 2.

Let us reduce the singularity of #¢3 in the projective plane at (32, 124) = (x, y).

270 8l
The blowing up oo at po = (32, 1284) produces two singularities along Ey =

09_1( po); a reduced singularity at ro := (0,0) = (xo, fo) with index —3 relative
to E; and a non-reduced singularity at (O, %) = (x9, 19). It can be easily verified
that [(F5, po) = 1.

Next, the blow up o9 at p1o := (0,222) = (xo. 1) produces two singularities
along Ejg = 01_01 (p10). One is a reduced singularity at (0, 25) = (xj9, t19) with
index —2 relative to E1g, the other a non-reduced singularity at infinity (0, 0) =
(10, y10). It 1s easily verified that [(F¢3, p1g) = 1. At last, it is easily verified that
p11 = (0,0) = (u19, y10) 1s a dicritical point of radial type, that is, [(#3, p11) = 2.

At the point (1, 4) = (x, y) in the projective plane, #¢3 has a reduced singularity.
The quotient of eigenvalues of the linear part of a vector field inducing it is given
by —_342'*/5.
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