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1. A conjecture of Kodaira

A fundamental question in Kéhler geometry asks whether any compact Kéhler man-
ifold can be realised as a deformation of a projective manifold. This is made more
precise in the following

Definition 1. A compact Kéhler manifold X is said to be algebraically approximable,
or almost algebraic, if there exists acomplex manifold X and a surjective holomorphic
submersion 7 : 5 — A to the unit disc A C C such that the fibers X; = 71 (1)
satisfy X ~ X and there is a sequence (#;) converging to 0 such that all X;, are
projective.

In [Kod63] Kodaira proved that every Kéahler surface is almost algebraic, and it
was a standard conjecture, known as the Kodaira conjecture, that this should be also
true m higher dimensions. In particular, according to that conjecture, every rigid
compact Kéhler manifold should have been algebraic.

However recently, a few months after this paper was completed, C. Voisin [Vo04a]
came up with a counterexample: she constructed a rigid non-algebraic Kéhler three-
fold, arising as a blow-up of a complex torus. Later Oguiso [Og04] constructed a
simply connected counterexample. During the final revision of this paper, C. Voisin
[Vo04b] even announced the construction of Kahler manifolds such that no smooth
bimeromorphic model can be deformed to a projective complex manifold, thereby
showing that a weakened “bimeromorphic version™ of the Kodaira conjecture does
not hold either.

However, even with the original version of the Kodaira conjecture, we still believe
that there are important classes of compact Kahler manifolds for which algebraic
approximation is possible. Such a class might be the class of minimal compact Kéhler
manifolds, i.e. manifolds with K x nef, since blow-up tricks used to manipulate tori are
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then forbidden. Another such class should be the class of compact Kéhler manifolds
with hermitian seminegative canonical bundle (or, even more generally, with —Kx
nef). A structure theorem for compact Kéhler manifolds of this type states that they
have afinite étale covering mapping surjectively onto the Albanese torus, and the fibers
of the Albanese map are products of Calabi—Yau manifolds, hyperkahler manifolds or
manifolds X with —Ky semipositive and H(X, Q%m) = 0 for all m > 0 [DPS96].
The latter manifolds are projective algebraic, while tori and hyperkéhler manifolds are
algebraically approximable, so there is indeed a very good hope to reach a proof for
this class; the very special case of numerically flat projective bundles over complex
tori follows in fact from Proposition 2 below.

The main idea is the following easy general argument for projective bundles over
tori, which asserts that the projective bundle structure survives by deformation.

Proposition 2. Let X be a compact Kcihler manifold which has a P-bundle structure
X — A over some complex torus A. Then for every deformation X, — S with
Xo = X, the nearby fibers X; have a P.-bundle structure X; — +; where A is
a deformation of A in a neighborhood of't = 0. Moreover, if X = P(V) for some
vector bundle V on A, then X; = P(V;) for a suitable deformation V; — A; of
V > A

Proof. We look at the relative Albanese map «: X — A. Then A — Sis a
deformation of tori such that «;: X6; — A, 1s the Albanese map for each t € S.
Since « is a submersion, «; should be also a submersion 7 in a neighborhood U C S
of 0, and the fibers of «; are deformations of IP,. Since P, is undeformable, we
conclude that «;: X; — oA is also a Pr-bundle for small z. Now, the fact that
X = P(V;) 1s equivalent to the fact that the relative anticanonical bundle K %c, Joby
has an (r 4+ 1)-root L; on X, in which case V; = («y)+(L;). However, the obstruction
for a line bundle to have an (r + 1)-root lies in H2(X;, Z/(r +1)Z). This is adiscrete
locally constant coefficient system, so if the obstruction vanishes for 1 = 0, it must
also vanish on the connected component of 0 in U C S. O

Proposition 2 more generally holds for arbitrary projective bundles over compact
manifolds and even for bundles whose fibers are rigid manifolds without holomorphic
1-forms; the proof is slightly more involved and is given in the last section.

In view of this, it is natural to look at the following potential candidate for a
counter-example: Start with a 3-dimensional complex torus A with Picard number
p(A) > 3. Let L; € NS(A) be (numerical equivalence classes of) linearly inde-
pendent holomorphic line bundles over A. Let U < C° be a neighborhood of [A]
i the universal deformation space of A. As explained in the next section, every L;
determines a 3-codimensional subspace V; = V(L;) in U such that ¢;(L;) 1s (1, 1),
i.e. L; is a holomorphic line bundle on A’ if and only if [A'] € V;.
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Now we make the following Assumption:
The intersection of the V; ’s has the expected dimension 0, i.e.

(x)  ViNVaN V3 contains {A} as an isolated point.
Then consider the 6-dimensional manifold
Y =P(Os® L1) xaP(Oa @ Ly) xaP(O4 @ L3).

Thisis a IP? -bundle over A with projection 7 : ¥ — A. In each subspace P(O4 & L;)
there is a section Z; at infinity given by the direct summand @ 4. This gives a section Z
of 7 by selecting over every a € A the point (x1, x2, x3), where {x;} = Z; N7~ (a).

Proposition 3. The blowup o: X — Y of Z C Y is rigid in the sense that there is
no positive-dimensional family of deformations of X.

Proof. Notice that, denoting by ]P’? (x) the blow up of IP? i one point, X 1S a
IP“;’ (x)-bundle over A. Solet (X;) be a deformation of X = X over the 1-dimensional
unit disc A. The first step is to proof that, possibly after shrinking A, every X, is
a ]P’?(x)-bundle over its (3-dimensional) Albanese torus A;. In fact, ¢(X;) = 3 for
all 7 and the Albanese map «; is smooth for small #. In order to prove that «; 1s a
]P’? (x)-bundle, it suffices to show that ]P’? (x) 1s rigid, 1.¢. every small deformation of
]P’? (x) 1s again IP’? (x).

In fact, let Z = IP’? (x) for simplicity of notations. Lett: Z — IP’? be the blow-up
map with exceptional divisor £ >~ P;. Then there is an exact sequence

0—>T7 — t*TP? — Tg(—1) = 0.

Since dim HO(TM) =9, dim H%(Tz) = 6, H*(Tg(—1)) = 3 and Hl(f*TP%) =0,
by taking cohomology of the above exact sequence it follows

HY(T7) =0,

in particular Z is rigid.

Let X be the total space of (X;) and let 7: X — + be the relative Albanese
map for X0 — A. Then A — A is a torus bundle; let A; be the fiber over ¢, so that
A = Ag. Now the exceptional divisor D of ¢ moves in 6. This is easy to see by
considering D N7~ (a) = P, for a € A. In fact, the normal bundle of this IP; is
O (—1) ® 0%, so that the P, moves and forces D to move. Therefore one obtains a
fiberwise blow-down X — ¥ inducing the birational map o : X — Y. Of course
there is a factorisation X — Y — Aand Y — Aisa ]P’?-bundle. Again let ¥; be
the fiber over ¢. Next it is shown that it 1s possible to write

Yi =Y xa, Yor xa, Y3
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with Py-bundles Y;;/A;, and this can be done simultaneously, 1.e. the (¥; ;) form
a family ¥;. The most economic way to do that is to note that the relative Picard
number p(Y/A) equals 3 since p(Yo/Ap) = 3 and since Ky, is relatively ample
over A; (this is a product situation). By taking relative extremal contractions in the
sense of Mori theory one gets a tower of three P;-bundles. Of course there are three
choices of the first one and then two choices for the second since the situation is
completely symmetric in i. (This situation could possibly lead to some monodromy
action 71 (A;) — &3, but since such actions are discrete and depend continuously
on ¢, the fact that we have a non twisted product for 1 = 0 implies that we have
no such twist for ¢ arbitrary). The last contraction will provide the space ¥; for the
appropriate i. Now consider the canonical map

Yi — Y1 xa, Yo x4, Y31,

Then this map 1s immediately seen to be an isomorphism.
Since Y; ; is a [P1-bundle over A, and since it is has a section by construction, it
follows

Yip =P(E,)

with a rank 2-bundle E; ; (normalized such that Eg ; = O4, @ L;), and the E; ; form
a holomorphic rank 2-bundle &; over 4. Since the section at infinity in ¥ deforms
by construction to sections in Y;, one obtains a global quotient & — 4; — 0 such
that §;|Ao = Oa,. By changing &; appropriately, one may assume that §; = O 4.
Let £; be the kemel of & — @4. Then L£;|Ag = L;. But this implies that there is a
deformation of A = Ag such that all three line bundles L; remain holomorphic. But
the assumption

Vin VN Vs = {A)

implies that there is no such (nontrivial) deformation of A. O

It is therefore a very natural question to ask whether these rigid 6-dimensional
Kéhler manifolds are projective or not. If they were not projective, we would get
counter-examples to the Kodaira conjecture. Unfortunately (in view of getting easy
counter-examples!), Theorem 4 of the next section tells us that a complex torus A
verifying Assumption (x) for some triple of holomorphic line bundles L; is always
an abelian variety. In fact, Theorem 4 even shows that (IP;)3-bundles of the special
type

Y =P(Oa® L1) xa P(Oa B L2) xa P(O4 @ L3)

satisfy the Kodaira conjecture, even without assumption (x) for L1, Ly, L3 (see
Lemma 6).
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2. Holomorphic line bundles on complex tori

Let X be a complex torus of dimension g. As explained in [BL99], [LB92] X admits
a period matrix of the form (r, 1,) with € M,(C), the g x g-matrices with entries
in € such that det(Im 7) # 0. Conversely every such matrix is the period matrix of
a complex torus.

If A € €8 := V denotes the lattice generated by the columns of (7, 1) the
Néron—Severi group of X may be described as

_ (A B A and C alternating, and
NS(X) = {E - (—fB c) € Mas(Z) ‘ A—Br+'t'B+'tCr =0 }

The equality ensures that the alternating form E is a (1, 1)-form, cf. [BL99, p. 10].

Theorem 4. Let X be a 3-dimensional complex torus with period matrix (v, 13) and
let Ey - Z@& Ey - ZD E3-Z C NS(X) be arank 3 subgroup of the Néron—Severi group
NS(X) of X generated by Ei, E;, E3 € NS(X). Then there is a sequence (X,) of
3-dimensional complex tori with period matrices (t,, 13) such that

(1) the t, converge to t for n — o,
) E, Z@®E, Z& E;-7Z C NS(X,), and

(1) X, is a complex abelian variety.

As afirst step towards a proof, £ = <—i‘B g) may be considered as an element
0 a a
of the free abelian group Z!°: the matrices A = | —a; 0 a3| and C =
—dy —a3 0
0 1 %) bl b2 b3
—c1 0  ¢3 | are alternating, and B = | by bs bg | is arbitrary. Since
—c3 —c3 0 b7 bg bo

k- E € NS(X) implies E € NS(X), condition (i1) is equivalent to
E1- Qe E; Qo E3-Q C NS(X,) ®z Q,

and E1 - Q@ E; - Q& E3 - Q may be interpreted as a Q-rational point in the Grass-
mannian G(3, 15).

For a given 3-dimensional subspace E£; -Q@® E,-Q® E3-Q ¢ QU the equations
A; — Bt +1t'B; +'tC;t = 0,1 = 1,2, 3 imply algebraic relations between the
entries of
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Since the A; — B;t + 't B; + 't C;t are alternating matrices, the number of these
relations can be reduced to 9 ¢ =1, 2, 3):

0 = aj1 — bi1ta — biats — biztg + biat1 + bista + bist7

+ ci1(r175 — 1274) + ci2(T178 — T277) + Ci3(T4T8 — T577)
0 = ajp — bj173 — biat6 — bi3to + bi7t1 + bigty + biot7

+ ci1(T176 — 1374) + ci2(T1T9 — 7377) + ¢13(T4T9 — T6T7)
0 = aj3 — biatz — bist6 — bisTo + bi712 + bigTs + biotg

+ ¢i1(1276 — 1375) + ¢i2(T2T9 — T378) + ¢i3(T5T9 — T6TR).

()

So there is an algebraic subset Ug, £, £, of C° such that
Ug, £y.5s N {7 € © : det(Im 7) # 0}

describes all T’s with E1 - Q@ E; - Q @ Ez - Q € NS(X;) ®7 Q where X, is the
complex torus corresponding to the period matrix (7, 13). In particular, the union of
allthese U, f,, £, is an algebraic family U € G(3,15)xC°. LetU C G(3, 15) xP?
denote the projective closure of U.

The heart of the proof is now a careful analysis of this family U, especially of
the fibers over Q-rational points of G(3, 15). If they always contain an (analytically)
dense subset of 7’s such that X ; is a complex abelian variety, the theorem will follow.

The first observation is that all coefficients in the equations of (x) are rational.
Hence, Q is the field of definition of U, i.e. there exists a Q-scheme ﬁ@ such that

U = ﬁ@ x@ Spec C. In particular, every fiber of U over a Q-rational point of
G (3, 15) has Q as field of definition, too.

Next, one computes a fiber U Ey,E,,Es Of U with sufficiently general entries in the
matrices E1, E, E3. This can be done with the computer algebra program Macaulay2
(IGS], [EGSS02]). Setting

0 0 0 1 10 0 1 0
Ar=1(0 0 2], Bi=|112), Ci=|-1 0 0],

0 -2 0 1 1 2 0 0 0

0 1 2 0 0 0 0 0 0
Ay =|-1 1y, Bo=(|11 1), CG=10 0 1],

-2 -1 0 01 0 0 -1 0

0 1 2 1 11 0 01
Az =1 -1 1], B3=1(1 2 1], Gs=|0 0 0

-2 -1 0 1 21 -1 0 0

(the matrix entries were chosen by a random number generator) and using the fol-
lowing Macaulay?2 script
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k = QQ;

PT = k[t _0..t 9];

Al = matrix(PT, {{0,0,0},{0,0,2},{0,-2,0}});
Bl = matrix(PT,{{1,1,0},{1,1,2},{1,1,2}});

Cl = matrix(PT,{{0,1,0},{-1,0,0},{0,0,0}});
A2 = matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});
B2 = matrix (PT, {{0,0,0},{1,1,1},{0,1,0}});

C2 = matrix(PT,{{0,0,0},{0,0,1},{0,-1,0}});
A3 = matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});
B3 = matrix (PT,{{1,1,1},{1,2,1},{1,2,1}});

C3 = matrix(PT,{{0,0,1},{0,0,0},{-1,0,0}});

gent = genericMatrix(PT,t 1,3,3);

sl = matrix(PT,{{t_0,0,0},{0o,t 0,0},{0,0,t 0}});
s2 = sl*sl;

Q1 = Al*s2 - Bl*gent*sl + transpose(gent) *transpose
(Bl) *s1l + transpose(gent) *Cl*gent;

Q2 = A2*s2 - B2*gent*sl + transpose(gent) *transpose
(B2) *s1 + transpose(gent) *C2*gent;

Q3 = A3*s2 - B3*gent*sl + transpose(gent) *transpose
(B3)*sl + transpose(gent) *C3*gent;

Q0 = Q1|02]|03; --- Q contains the 9 relations between

the t i’s homogenized with respect to t 0

g = saturate(ideal (flatten Q), ideal(t 0))
-- saturation with t 0 removes all components on
the hyperplane t 0 = 0

betti g

one gets 8 lincar and 1 quadratic equation describing the projective closure of
U, Bz, B3

t 7+3/5t_8+8/5t 9

t 6-3/20t_8+1/10t_9

t 5-3/5t 8+2/5t 9

t 4+1/2t 8+t 9

t 3-1/20t_8-3/10t_9

t 2+3/10t_8+9/5t 9

t 1-3/10t_8+1/5t 9

t 0-1/4t_8-3/2t 9

t 8°2-48t 8t 9-172/3t 972

Since the quadratic generator has discriminant 24 4 4l3ﬂ > () which is not the square
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of a rational number, this is a Q-irreducible 0-dimensional scheme of degree 2; over
C it consists of two points.

Unfortunately, these equations may cut out too much, since the projective closure
of a fiber may be less than the fiber of the projective closure of a family. To deal with
this problem one has to do alittle detour: First one looks at the (inhomogencous) ideal
of the whole family U pulled back to (A12)3 x P° where each A2 parametrizes triples
A, B, C with C normalized. This pull back is necessary since otherwise one has to
embed G (3, 15) in some projective space which makes the computations impossible.

k = Q0Q;

P = k[t 0..t 9];

PE = k[e 0..e 11,f 0..f 11,9 0..g_11];
PT = P ** PE;

Al = matrix(PT, {{0, e 1,-e 2,0}});

0,e 0,e_1},{-e 0,0,e_2},{-
Bl = matrix(PT, {{e 3,e 4,e 5},{e 6,e 7,e 8},{e 9,e 10,e 11}});
C1 = matrix (PT, {{0,1,0},{-1,0,0},{0,0,0}});
A2 = matrix(PT,{{0,f o,f 1},{-f 0,0,f 2},{-f 1,-f 2,0}});
B2 = matrix(PT, {{f 3,f 4,f 5},{f 6,£ 7,£ 8},{f 9,f£ 10,f 11}});
€2 = matrix(PT, {{0,0,0},{0,0,1},{0,-1,0}});
A3 = matrix(PT,{{0,9 0,9_1},{-g. 0,0,9 2},{-g.1,-g.2,0}});
B3 = matrix(PT, {{g 3,9 4,9 5},{g 6,9 7,9 8},{g 9,9 10,9 11}});
C3 = matrix(PT, {{0,0,1},{0,0,0},{-1,0,0}});

gent = genericMatrix(PT,t 1,3,3);

Q1 = A1l - Bl*gent + transpose(gent) *transpose(Bl) +
transpose (gent) *Cl*gent;

Q2 = A2 - B2*gent + transpose(gent) *transpose (B2) +
transpose (gent) *C2*gent;

Q3 = A3 - B3*gent + transpose(gent) *transpose (B3) +
transpose (gent) *C3*gent;

Q
q

The projective closure of U may be determined by computing a Groebner basis of this
ideal with respect to a monomial order refining the order by degree in the #; ’s and then
homogenizing the generators with respect to 7y ([Eis93, 15.31]). This computation is
too complicated for the whole Groebner basis, but it is already enough to look at the
first few elements which are added to the original generators:

01]02]|Q3;
ideal flatten Q;

gbasis = gb(g,PairLimit=>31);

hgbasis = homogenize (gens gbasis,t 0,
0,0,0,0,0,0,0,0,0,0,0, 0,0
0,0,0,0,0,0,0,0,0,0,0});
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Evaluation at (E;, E,, E3)
f = map(PT,PT,matrix (PT
t 6,k 7,k 8,t 9, 0,0,2, ,0,1,1,2,1,
0;1;1;1,;0:1;04;1;2;1;1;1:1;2,2;1,;1,;2,;1
genfibre = ideal f (hgbasis);

betti gb genfibre

shows that the fibre (U) g, g, .k, is contained in a scheme cut out by 8 linear and 1
quadratic equation, so

(U)E1,E2,E3 = UEl,Ez,E3'

One can get further information about U from the homogenized equations col-
lected in hgbasis. Since the projective closure of a fiber is equal to the fiber of the
projective closure on an open subset they contain 9 equations describing the fibers of
U over an open subset around (E;, E», E3). Furthermore the command

transpose leadTerm hgbasis

shows that all of these equations contain ¢-variables. Hence each of these fibers is cut
out by 9 non-constant equations, so it is not empty. Consequently, 7o fiber 1s empty.
Turning to the fibers of U over € (resp. P) one sees immediately that these are non-
empty lincar subspaces. Hence U is connected. Finally, the regularity of U follows
directly by deriving the equations in () with respect to the a;;’s. Taken all these facts

together it follows that U and hence U is irreducible. So every 0-dimensional fiber
must have degree 2.

Now it is easy to prove for these 0-dimensional fibers over Q-rational points that
they describe period matrices © belonging to complex abelian varieties: Since the
fibers are Q-rational, too, the entries of 7 are elements of a ficld extension of Q of
degree 2. The defining equations of the Néron—Severi group show that then NS(X ;)
isa 15 —2 x 3 = 9-dimensional Q-vector space. But a 3-dimensional complex torus
with maximal Picard number 9 is algebraic (cf. [BL99]).

What about the higher dimensional fibers? We consider the Q-rational map
¢: G(3,15) --» Hilb? (]P’?Q) whose existence is the essence of the arguments used
above. Let

G ot
l ¢
e
G@3, 15) —2> Hilb2(PY)
be the resolution of the singularities of ¢ by blowing up centers smooth over Q. This
is possible by the Hironaka package, see [Hir64], [BM97] or [HLOQ97]. Now the
theorem is a consequence of the following result.
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Lemma 5. Let Z C Y be an embedding of regular Q-schemes, let z € Z be a
Q-rational point and let ¢: Y — Y be the blow up of Y with center Z. Then the
Q-rational points are dense on the fiber ¢p~1(z).

Proof. This is almost trivial: Choose a regular sequence (f1, ..., fs, fs+1s -+, ft)
in the local ring Oy, defined over Q such that mz , = (fsqls-- s f1) C 0z, and
my,; = (f1, ..., ft). The blowing up of Spec@y,; with center Spec@ 7 . is given by

Proj Oy [ fs41, -, fil = (Spec Oy, x B* 1)/ V(T f; = T; o),
and the fiber over z is = ]P’f@_ s m]

Apply the lemmaon ¢: If [E; - QD E, - Q& E3 - Q] = [W] € G3,15) 1s
a Q-rational point then 7 ~1([W]) C G will contain an -analytically dense subset of
Q-rational points, and the same will be true of the image ¢ (7 ~1([W])) C Hilb? (]P’?Q).

But Q-rational points in Hilb? (]P’?Q) describe pairs of points corresponding to abelian

varieties, and all pairs in ¢( ~1([W])) map surjectively on the fiber over [W] in U.
Hence this fiber contains a dense open subset of period matrices © such that X, is an
abelian variety.

Remark. Some words about the Macaulay2 computations: Since all the relevant
equations and varieties are defined over Q and also the operations applied to them
like taking the projective closure work over Q, these calculations give exact results.

3. Modifications and a general setting for counter-examples

Of course the construction in Section 1 possibly could be modified in several ways
and then might lead to a counter-example to the Kodaira conjecture.

First we show that even without Assumption (%) the variety X constructed as
before Proposition 3 is algebraically approximable. Indeed in that situation (using
the previous terminology), V7 N V, N V3 contains other complex tori than A. Then
theorem 4 assures the existence of a sequence {A;},cy € Vi N Vo N Vs of abelian
varieties converging to A. The following lemma shows that this implies X almost
algebraic:

A B

Lemma6. Let E = _ig ¢

> € M1o(Z) be a skew symmetric matrix with integral

entries and let
V={teM(C)|A—-Br+'t'B+'tCr =0; detImt # 0} c C°

be the set of period matrices t such that X, is a complex torus with E € NS(X,).
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Let X =V x C8/A be the family of these tori X. where Ay = (t,1,) is the
lattice belonging to X = C8/A.. Then every tg € V has an open neighborhood

U C V such that there exists a holomorphic line bundle Ly on Xy such that
ci(Ly)=E forallt € U.

Proof. Letm: X — V be the projection of X onto V. By taking direct images with
respect to 7 and deriving the long exact sequence from 0 — Z — Ox — 0% — 1
one obtains the sequence

Rln*@gc — R’7,Z — R*7,0x.

The skew symmetric matrix E gives a section of R%7,Z which is mapped to 0 in
R%m,0x since E € NS(X;) for all = € V. Hence E is the image of a section in
Rln*(9’§c. Take an open neighborhood U of 7y such that the section restricted to U
1s a cohomology class in HI(DC|,,71(U), O%). This class gives the line bundle L.

O

Next, consider the following more general setting: Take an n-dimensonal complex
torus A and k vector bundles Eq, ..., Ex over Aofrank ry, ..., 7 < n. Let Y be
the (n +r1 + - - - + ri)-dimensional manifold

P(OA D E) g xaP(O4 D Ep).

This a (P! x - - - x IP"*)-bundle over A with projection 7 : ¥ — A. Ineach subspace
P(O4 @ E;) there is a section Z; at infinity given by the direct summand @ 4. This
gives a section Z of 7 by selecting over every a € A the point (x1, ..., xg), where
(xi}=Z; N7 Ya). Leto: X — Y bethe blowupof Z C Y.

Similar arguments as in Section 1 show

Proposition 7. If there is a positive-dimensional family of deformations of X then
there will also exist a deformation family of complex tori {A;},;ea Such that A = Ag
and all vector bundles E1, . . ., Ey remain holomorphic on A;. O

The condition on the vector bundles to remain holomorphic requires some further
explanations: Let E be a vector bundle of rank » over an g-dimensional torus A.
Then the Chern classes ¢;(E) are (i, i)-classes in H¥ (A, Z) = A* Hom(A, Z),
where A C C2 =: V is a (non-degenerate) lattice such that A = V/A. Since
H"(A,C) = N\ Home(V, C) x A\' Homz(V, C), the (i, i)-classes in H* (A, Z)
may be interpreted as a real valued alternating form F on /\i V such that

i

F(id,iV)=F(d, V) and F(/\A,/\A)cz.
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As in the case of (1, 1)-classes these conditions induce relations between F (writ-
ten in terms of a base of A) and the period matrix 7. In a family {A;};cA of complex
tori these relations must be satisfied for 7;, t # 0, if a holomorphic vector bundle £
on Ay still has a holomorphic structure on A;.

But the existence problem for vector bundles of higher rank with prescribed Chern
classes is much more difficult than in the case of line bundles. On (non-algebraic)
complex tori this problem is completely solved only in dimension 2 and rank 2
[Tom99], [TT02]. Consequently, to construct a counter-example to Kodaira’s con-
jecture with vector bundles of higher rank it is not enough to give a set of Chern
classes and to prove that these classes can be Chern classes only for isolated period
matrix. On the other hand if there is a positive family of such period matrices there
may be still a counter-example depending on the existence of vector bundles with
these Chern classes only on isolated members of the families.

Finally the two simplest cases of this general setting are considered.

3.1. Linebundlesin arbitrary dimensions. Let X be acomplex torus of dimension
g given by the period matrix (7, 1g). By the characterization of the Néron—Severi
group in the last section a skew symmetric matrix £ € M, (Z) is a (1, 1)-form iff

the entries of t satisfy (i) equations. Consequently, 3 skew symmetric matrices

Ey, Ey, E3 € Mye(Z) should determine at most a finite number of g x g period
matrices 7 such that E;, E,, E3 are first Chern classes of line bundles on X ;.

Asinthelast section, for given g one can choose random entries for Ey, E;, E3 and
compute the locus V(E{)NV (E;)NV(E3) of T’s as above. But already in dimension
4 this locus turns out to be empty for randomly chosen entries. This means that only
special triples of matrices belong to the Néron—Severi group of a complex torus, and
it seems difficult to find one such that furthermore the above locus consists of isolated
points. And then one has still to prove that the period matrices in this locus determine
a non-algebraic complex torus.

3.2. Rank 2 vector bundles in dimension 3. This is the simplest case with vector
bundles of rank > 1. Unfortunately, by Poincaré duality

H?*%(X,7) ~ H (X, Z), H>'(X,7Z) =~ H>*(X,Z), H* (X, Z) = H*"(X, Z)

and the equations for a skew symmetric matrix in M, (Z) to be a (2, 2)-form do
not differ from those for (1, 1)-forms. Hence in this case a counter-example may be
found only by closer considering the question for which complex tori exist rank 2
vector bundles with given Chern classes.

Of course more difficult settings starting with rank 2 vector bundles on 4-dimen-
sional complex tori may give positive results. On the other hand the examples above
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give enough evidence to turn around one’s point of view, into an attempt to prove
Kodaira’s conjecture in these special cases.

4. Deformations of Projective Bundles
In this final section we generalize Proposition 2.

Theorem 8. Let X be a compact manifold which has a P.-bundle structure X — Y
over some compact manifold Y. Then for every deformation X — S with X >~ X,
the nearby fibers X; have a P.-bundle structure Xy — Y where Y, is a deformation
of Y in a neighborhood of t = 0. Moreover, if X = P(V) for some vector bundle V
on'Y, then X; = P(V;) for a suitable deformation V; — Y; of V. — Y.

Proof Let g: € — T be the irreducible component of the cycle space relative to
w: X — S containing the fibers of X — Y. So T parametrizes deformations of
the IP» to nearby fibers X . Since the normal bundle in € to these projective spaces
is trivial, it follows immediately that (possibly after shrinking S) 7 is smooth. Let
p: C — X denote the projection and notice that there is another canonical projection
r: T — Srealizing 7 as a family (7}). We will also consider C; = ¢~ '(T;) with
projection g to Ts. Now ¢ is a P.-bundle. Therefore for small s also the maps g,
are first submersions and second projective bundles (since projective space is locally
rigid). Having in mind that po: Co — Xo 1s an isomorphism, we see that p is an
isomorphism so that all X; are projective bundles for small ¢.

The vector bundle statement finally is proved just as in Proposition 2. O
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