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Resonance category

Dmitry N. Kozlov*

Abstract.  The main purpose of this paper is to introduce a new category, which we call
a resonance category, whose combinatorics reflect that of canonical stratifications of n-fold
symmetric smash products. The study of the stratifications can then be abstracted to the study
of functors satisfying certain sets of axioms, which we name resonance functors.

One frequently studied stratification is that of the set of all polynomials of degree n, defined
by fixing the allowed multiplicities of roots. We apply our abstract combinatorial framework,
in particular the notion of direct product of relative resonances, to study the Arnold problem of
computing the algebro-topological invariants of these strata.

Mathematics Subject Classification (2000). Primary 32S820; Secondary 18B30, 32S60,
58K15.

Keywords. Spaces of polynomials, symmetric smash products, stratifications, resonances,
partitions.

1. Introduction

Complicated combinatorial problems often arise when one studies the homological
properties of strata in some topological space with a given natural stratification. In
this paper, we study the symmetric smash products stratified by point multiplicities.

More specifically, let X be a pointed topological space (we refer to the base point
as a point at infinity), and denote

X® =XAXA---AX/S,,
——

n

where A is the smash product of pointed spaces, 4, is the symmetric group, and the
action of 4, on the n-fold smash product of X is the permutation action. In other
words, X ™ is the set of all unordered collections of n points on X with the collections
having at least one of the points at infinity identified, to form a new infinity point.
X ™ is naturally stratified by point coincidences, and the strata are indexed by the

*This research was supported by the Research Grant of the Swiss National Science Foundation.
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number partitions of n. Note that we consider the closed strata, so, for example, the
stratum indexed (1, 1, ..., 1) is the whole space X ™.
— ——

n

The main open stratum, that is the complement of the closed stratum (2, 1, ..., 1),
is a frequently studied object. It was suggested by Amold in a much more general
context, see for example [2], that in situations of this kind one should study the
problem for all closed strata. The main argument in support of this point of view is that
there is usually no natural stratification on the main open stratum, while there is one
on its complement, also known as discriminant. Having a natural stratification allows
one to apply such computational techniques as spectral sequences in a canonical way.
Once some information has been obtained about the closed strata, one can try to find
out something about the open stratum by means of some kind of duality.

If one specifies X = S!, resp. X = S?, one obtains as strata the spaces of all monic
real hyperbolic, resp. monic complex, polynomials of degree n with specified root
multiplicities. These spaces naturally appear in singularity theory, [1]. Homological
mvariants of several of these strata were in particular computed by Arnold, Shapiro,
Sundaram, Welker, Vassiliev, and the author, see [2], [4], [3], [8]. [9]. These are the
special cases which have inspired this general study.

Here we take a different, more abstract look at this set of problems. More specif-
ically, the idea is to introduce a new canonical combinatorial object, independent
of topology of particular X, where the combinatorial aspects of these stratifications
would be fully reflected. This object is a certain category, which we name the res-
onance category. It was suggested to the author by B. Shapiro, [7], to use the term
resonance as a generic reference to a certain type of linear relations among parts of
a number partition.

Having this canonically defined category at hand, one then can, for each specific
topological space X, view the natural stratification of X as a certain functor from
the resonance category to Top*. These functors satisfy a system of axioms, which
we take as a definition of resonance functors. The combinatorial structures in the
resonance category will then project to the corresponding structures in each specific
X This opens the door to develop the general combinatorial theory of the resonance
category, and then prove facts valid for all resonance functors satisfying some further
conditions, such as for example acyclicity of certain spaces.

The main combinatorial structure inside the resonance category, which we study,
1s that of relative resonances and their direct products. Intuitively, arelative resonance
encodes the combinatorial type of a stratum with a union of some substrata shrunk
to form the new infinity point. These spaces appear naturally if we are trying to
compute the homology groups of our strata by means of long exact sequences, or,
more generally, spectral sequences.

Our idea is that the combinatorial knowledge of which relative resonances are re-
ducible (that 1s, are direct products of other relative resonances) serves as a guidance
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for which long exact sequences one is to consider for the actual homology compu-
tations. This way, the Armold problem of computing the algebraic invariants of the
strata splits into two parts: the combinatorial one, embodied by various structures
in the resonance category such as the relative resonances, and the topological one,
reflecting the specific properties of X.

Our notions of sequential and strongly sequential resonances are intended to cap-
ture the combinatorial structure of those resonances, which are particularly compati-
ble with the spectral sequence computations. This, in turn, leads to the natural notion
of complexity of resonances.

As mentioned above, to illustrate a possible appearance of this abstract framework
we choose to use a class of topological spaces which come in particular from the
singularity theory, and whose topological properties have been studied: spaces of
polynomials (real or complex) with prescribed root multiplicitics. In particular, in
case of strata (k™, 1'), which were studied in [2], [4] for the complex case, and in [3],
[8] for the real case, we demonstrate how the inherent combinatorial structure of the
resonance category makes this particular resonance especially reducible.

The paper is organized as follows:

Section 2. We introduce the notion of resonance category and describe the structure
of its set of morphisms.

Section 3. We introduce the notions of relative resonances, direct products of relative
resonances, and resonance functors.

Section 4. We formulate the problem of Amold and Shapiro which motivated this
rescarch as that concerning a specific resonance functor. Then we analyze the combi-
natorial structure of resonances (a*, b'), which leads to the complete determination
of the homotopy types of the corresponding strata for X = S!.

Section 5. We analyze the combinatorial structure of the sequential and strongly se-
quential resonances. For X = S! this leads to the complete computation of homotopy
types of the strata corresponding to resonances (a¥, b!, 1) such that a — bl < m.
Next, we consider division chain resonances, which constitute a vast generalization
of the case (a¥, 1'). We prove that in this case the strata always have a homotopy
type of a bouquet of spheres. We describe a combinatorial model to enumerate these
spheres as paths in a certain weighted directed graph, with dimensions of the spheres
being given by the total weights of the paths.

Section 6. We introduce the notion of a complexity of a resonance and give a series
of examples of resonances having arbitrarily high complexity.

Acknowledgments. I would like to thank Peter Mani-Levitska and Eva-Maria Feicht-
ner for the helpful discussions during the preparation of this paper. I am grateful to
the anonymous referee, whose comments helped to make this paper more transparent.
I also express my gratitude to the Swiss National Science Foundation for supporting
this research.
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2. Resonance Category

2.1. Resonances and their symbolic notation. For every positive integer n, let
{—1,0, 1}* denote the set of all points in R" with coordinates in the set {—1, 0, 1}.
We say that a subset S € {—1, 0, 1}" is span-closed if span(S) N {—1,0, 1}* = S,
where span(5S) is the linear subspace spanned by the origin and points in S. Of course
the origin lies in every span-closed set. For x = (x1, ..., x,) € {—1, 0, 1}", we use
the notations Plus(x) = {i € [n] | x; = 1} and Minus(x) = {i € [n] | x; = —1}.

Definition 2.1. (1) A subset S € {—1, 0, 1}"* is called an r-cuf if it is span-closed
and for every x € S\ {origin} we have Plus(x) # @ and Minus(x) # ¢. We denote
the set of all n-cuts by R,,.

(2) 8, acts on {—1, 0, 1} by permuting coordinates, which in turn induces 4§;,-
action on R,. The n-resonances are defined to be the orbits of the latter §,,-action.
We let [S] denote the n-resonance represented by the n-cut S.

The resonance consisting of origin only is called frivial.

Example 2.2 (n-resonances for small values of n). (1) There are no nontrivial 1-
resonances.

(2) There is one nontrivial 2-resonance: [{(0, 0), (1, —1), (=1, 1)}].

(3) There are four nontrivial 3-resonances:
[{(0,0,0), (1, —1,0), (-1, 1, 0)}],
[{(0,0,0), (1, —1,0), (=1,1,0), (1,0, =1, (—1,0, 1), (0, 1, =1), (0, —1, 1)},
[{(0,0,0), (1, =1, =1), (=1, I, H}],
[{(0,0,0), (1, =1, =1), (=1,1,1), (0, 1, 1), (0, =1, )}].

(4) Here is an example of a nontrivial 6-resonance:
[{(07030703070), :i:(lv 1,0,_1,_1,0), :l:(ov 17 1,0,_1,_1), :l:(lyoy _17 _1703 1)}]'

Symbolic notation. To describe an n-resonance, rather than to list all of the elements
of one of its representatives, it is more convenient to use the following symbolic
notation: we write a sequence of n linear expressions in some number (between 1
and n) of parameters, the order in which the expressions are written is inessential.

Here is how to get from such a symbolic expression to the n-resonance: choose
an order on the n linear expressions and observe that now they parameterize some
linear subspace of R”, which we denote by A. The n-resonance is now the orbit of
At n{-1,0, 1}
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Reversely, to go from an n-resonance to a symbolic expression: choose a repre-
sentative n-cut S, the symbolic expression can now be obtained as a lincar parame-
terization of span(S)~L.

For example the 6 nontrivial resonances listed in Example 2.2 are (in the same
order):

(a,a), (a,a,b), (a,a,a), (a+b,ab),
2a,a,a), (a+b,b+c,a+d,b+d,c+4d,2d).

2.2. Acting on cuts with ordered set partitions. We say that 7 is an ordered set
partition of [n] with m parts (sometimes called blocks) when # = (1, ..., 7Tp),
7 0, [n]l =i 7, and 7y Nw; = @, for i # j. If the order of the parts is not
specified, then 7 is just called a set partition. We denote the set of all partitions, resp.
ordered partitions, of a set A by P(A), resp. OP(A). For P([n]), resp. OP([n]), we
use the shorthand notations P(n), resp. OP(n). Furthermore, for every set A, we let
un: OP(A) — P(A) be the map which takes the ordered partition to the associated
unordered partition.

Definition 2.3. Given 7 = (iy, ..., ) an ordered set partition of [m] with & parts,
and v = (v1, ..., vy) an ordered set partition of [n] with m parts, their composition
7 ov 1s an ordered set partition of [n] with k parts, defined by w ov = (pq, ..., pi),
i = Ujem' vj,fori = 1, ...,k.

Analogously, we can define 7 o v for an ordered set partition v and a set partition
7, in which case = o v is a set partition without any specified order on the blocks.

In particular, when m = n, and |7;| = 1, fori = 1,...,n, we can identify
7 = (71, ..., m,) with the corresponding permutation of [n]. The composition of
two such ordered set partitions corresponds to the multiplication of corresponding
permutations, and we denote the ordered set partition ({1}, . .., {n}) by id,, or just id.

Definition 2.4. For A € B, let pp 4: P(B) — P(A) denote map induced by the
restriction from B to A. For two disjoint set A and B, and [T € P(A), A € P(B),
wedefine [T x A ={m ¢ P(AUB) | paup,a(m) € I1, paup,p(m™) € A}.

The following definition provides the combinatorial constructions necessary to
describe the morphisms of the resonance category, as well as to define the relative
resonances.

Definition 2.5. Assume S is an n-cut. For an ordered set partition of [#], denoted
7 = (71, ...,7y), we define 7S € R,, to be the set of all m-tuples (11, ..., ty) €
{—1,0, 1", for which there exists (s1, ..., s;) € S such that for all j € [m], and
i € mj, wehave s; = 1.
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Clearly id S = S, and one can sce that (7 o v)S = 7 (vS).

Verification of (7w o v)§ = 7 (vS). By definition we have
(wov)S={(t1, ..., 1) | Is1,...,8.) € Sst. Vjelkl,i e s =t;},

vS = {(x1, ..., xy) | 3(s1,...,8) € Sst. Vg € [m],i € vy 15 = x4},
a(S) ={(t, ..., %) | Ix1, ..., xp) €VSst. Vjelkl,g emj,i €v, s =t;}.

The identity (7 o v)S = 7 (vS) follows now from the equality p; = quﬂj vy

There are many different ways to formulate Definition 2.5. We chose the ad
hoc combinatorial language, but it is also possible to put it in the lincar-algebraic
terms. An ordered set partition of [n], 7 = (7y, ..., 7,), defines an inclusion map
¢: R" — R" by ¢p(e;) = Zjem ¢j, where {e1, ..., ey}, resp. {1, ..., é,}, is the
standard orthonormal basis of R, resp. R*. Given S € R, 7 S can then be defined
as p~1(Im¢p N S).

2.3. The definition of the resonance category and the terminology for its mor-
phisms

Definition 2.6. The resonance category, denoted R, 1s defined as follows:

(1) The set of objects is the set of all n-cuts, for all positive integers n, O(R) =

o2 5 R

(2) The set of morphisms 1s indexed by triples (S, T, ), where S € Ry, T € Ry,
and 7 1s an ordered set partition of [#] with m parts such that S € 7 T. For the reasons
which will become clear later we denote the morphism indexed with (S, T, ) by
S—aT ST

As the notation suggests, the mitial object of the morphism S — 7T S TisS
and terminal object is 7. The composition rule is defined by

(S =T ST)o (T »v0 > Q) =5 —m0 5 0,

where S € Ry, T € R, O € Ry, 7 is an ordered set partition of [m] with k parts,
and v is an ordered set partition of [n] with m parts.

An alert reader will notice that the resonances themselves did not appear explicitly
in the definition of the resonance category. In fact, it is not difficult to notice that
resonances are isomorphism classes of objects of R. Let us now look at the set of
morphisms of R in some more detail.

(1) For S € R, the identity morphism of Sis S — § fi—d> S.
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(2) Let us introduce short hand notations: S — T for S — T fi T.,andxT ST
for 7T — nT <> T. Then we have

S 7T ST =(S—al)oxlT S T).

id
Note also that S — S = § < S.

(3) The associativity of the composition rule can be derived from the commutation
relation . .
(7S —>8Ho(S>T)=@S >al)oxnT —T)

as follows:

S =7l —>T)o (I »vQ— Q)o(Q - pX — X)
=@l »al)o(@aal > T)o(T »vQ)o(vQ = Q) o(Q — pX) o (pX — X)
=S —=al)o(xnT - nvQ)o (wvQ — mvpX)

o(mvpX — vpX) o (VX — pX)o (pX — X).

(4) We shall use the following names: morphisms S — T are called gluings (or
n-gluings, if it is specified that S, T € R,); morphisms 7= 7T & T are called inclu-
sions (or (n, m)-inclusions, if it is specified that T € R,, nT € R,;), the inclusions
are called symmetries if 7 is a permutation. As observed above, the symmetries are
the only isomorphisms in R. Here are two examples of inclusions:

{0,0), (1, =1, (=1, D}V 0,0), (1, =1, —1), (-1, 1, )},

{€0,0), (1, =1), (-1, 1)}CM> {(0,0,0), £(1, -1, —1), £(0, 1, =1)}.

3. Relative resonances, direct products, and resonance functors

3.1. Relative Resonances. Let A(n) denote the set of all collections of non-empty
multisubsets of [n], and let P(n) € A(n) be the set of all partitions of [n]. For every
S € R, let us define a closure operation on A(n), resp. on P(n).

Definition 3.1. Let A € A(n). We define A || S € A(n) to be the minimal set

satisfying the following conditions:

1) AcAlS;

(2) if{B1,B2,...,Bpte A Y S, then {ByUBy,B3,...,Byp} €A | S,

(3) if {B1, Bz,...,Byu} € A | S, and there exists x € S such that Plus(x) € By,
then {(B; \ Plus(x)) U Minus(x), By, ..., By} € A | S.
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Forw € P(n), wedefiner | S CPn)asnw | S =(x § S)NPk). For
aset IT € P(n) wedefine IT | S = J,cqm | S. We say that I is S-closed if
nmys=I.

The idea behind this definition comes from the context of the standard stratification
of the n-fold symmetric product. Given a stratum X indexed by a number partition
of n with m parts, let us fix some order on the parts. A substratum Y is obtained
by choosing some partition 7 of [m] and summing the numbers within the blocks of
7. Since the order of the parts of the number partition indexing X is fixed, X gives
rise to a unique m-cut S. The set 7 | S describes all partitions v of [m] such that if
the numbers within the blocks of v are summed then the obtained stratum Z satisfies
Z < Y. In particular, if Y is shrunk to a point, then so is Z. The two following
examples illustrate how the different parts of Definition 3.1 might be needed.

Example 1. The equivalences of type (2) from the Dennition 3.1 are needed. Let
the stratum X be indexed by (3,2, 1, 1, 1) (fix this order of the parts), and let 7 =
{1}{23}{4}{5}. Then, the stratum Y is indexed by (3, 3, 1, 1). Clearly, the stratum Z,
which is indexed by (3, 3, 2), lies inside Y, hence {1}{2}{345} € = | S, where S is
the cut corresponding to (3,2, 1, 1, 1). However, if one starts from the partition 7
and uses equivalences of type (3) from Definition 3.1, the only other partitions one
can obtain are {1}{24}{3}{5}, and {1}{25}{3}{4}. None of them refines {1}{2}{345},
hence it would not be enough in Definition 3.1 to just take the partitions which can
be obtained via the equivalences of type (3) and then take = | S to be the set of all
the partitions which are refined by these.

Example 2. It is necessary to view the equivalence relation on the larger set A(n).
This time, let the stratum X be indexed by (¢ + b, b +c,a+d,b+d,c+d,2d)
(fix this order of the parts, and assume as usual that there are no linear relations on
the parts other than those induced by the algebraic identities on the variables a, b,
¢, and d). Furthermore, let # = {16}{23}{45}. Then the stratum Y is indexed by
(a+b+2d,a+b+c+d, b+ c+2d). Clearly, we have {34}{15}{26} e = | S,
where S is the cut corresponding to (a +b,b+c,a+d,b+d,c+d, 2d).

A natural idea for Definition 3.1 could have been to define the equivalence relation
directly on the set P(n) and use “swaps™ instead of the equivalences of type (3), i.c.,
to replace the condition (3) by the following one:

If{B1, B2, ..., By} € A | S, and there exists x € S, such that Plus(x) €
By, andMinus(x) C By, then {(B1\Plus(x))UMinus(x), (Bz\Minus(x))U
Plus(x), B3, ..., By} e A | S.

However, this would not have been sufficient as this example shows, since no swaps
would be possible on 7 = {16}{23}{45}.



Vol. 80 (2005) Resonance category 205
Definition 3.2. Let S be an n-cut, IT C P(n) an S-closed set of partitions. We define
S\IT =S\ {s € S| Minus(s), Plus(s), singletons) e IT},

where (Minus(s), Plus(s), singletons) is the partition which has only two nonsingle-
ton blocks: Minus(s) and Plus(s).

In the next definition we give a combinatorial analog of viewing a stratum relative
to a substratum.

Definition 3.3. (1) A relative n-cut is a pair (S, IT), where S € {—1,0,1}", IT <
P(n), such that the following two conditions are satisfied:

« (spanS)\ 1 =S;

+ Il 1s (span S)-closed.

(2) The permutation 4, -action on {—1, 0, 1}" induces an 5, -action on the relative
n-cuts by (S, IT) > (68, Tlo™Y), for o € &,,. The relative n-resonances are defined

to be the orbits of this $,-action. We let [S, IT] denote the relative n-resonance
represented by the relative n-cut (S, IT).

When S € R, and IT € P(n), IT is S-closed, it is convenient to use the no-
tation Q(S, IT) to denote the relative cut (S \ I, IT). Clearly we have (S, I1) =
Q(spanS, IT). Analogously, [Q(S, IT)] denotes the relative resonance [S \ IT, IT].
We use these two notations interchangeably depending on which one is more natural
in the current context.

The special case of the particular importance for our computations in the later
sections is that of Q(S, 7 | S), where 7 is a partition of [n] with m parts. In this
case, we call (S\ (w | S), 7 | S) the relative (n, m)-cut associated to S and 7.

By Definition 3.3, the relative cut (S, IT) = ((span S) \ I1, IT) consists of two
parts. We intuitively think of (span S) \ IT as the set of all resonances which survive
the shrinking of the strata associated to the elements of I1, so it is natural to call them
surviving elements. We also think of IT as the set of all partitions whose associated
strata are shrunk to the infinity point, so, accordingly, we call them partitions at
in@nity.

3.2. Direct products of relative resonances
Definition 3.4. For relative resonances (S, IT) and (7', A) we define
(S, T x (T, A) = (S x T, (Il x P(m)) U (P(n) x A)).

Clearly the orbit [(S, IT) x (T, A)] does not depend on the choice of representatives of
the orbits [S, IT]and [T, A], so we may define [S, IT]x [T, Altobe [(S, IT) x (T, A)].
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The following special cases are of particular importance for our computation:

(1) A direct product of two resonances. For an m-cut S, and an n-cut T, we have

SXT:{(xly'~'7xﬂ’hy1’-~~7yn) | (x1s~~-7xm)€S7(y1’~~wyn)eT}€<Rm+n,
and [S] x [T] =[S xT].

(2) A direct product of a relative resonance and a resonance. For S € R,, I1 <
P(n) an S-closed set of partitions, and 7" € Ry, wehave Q(S, I xT = Q(SxT, IT),
where I[1 = TIxP({n+1,n+2,...,n+k}),and [Q(S, ID)]x [T] = [Q(S, T) x T].

Example.
0({(0,0,0), £(1, =1, —1), (0, 1, =D}, {1H23})
={0)} x 2({(0, 0), £(1, =D}, {12}).

Remark 3.5. One can define a category, called relative resonance category, whose
set of objects is the set of all relative n-cuts. A new structure which it has in
comparison to R is provided by “shrinking morphisms™: (S, 1) ~~ (T, A), for
S, T € {—1,0,1}*, P(n) 2 A 2 II, such that (span S) \ A = T. They correspond
to shrinking strata to infinity.

3.3. Resonance Functors. Given a functor £ : R — Top*, we introduce the
following notation:

FES. M) =F©)/ |J mF@ss).

un(m)ell

Definition 3.6. A functor ¥ : R —> Top* is called a resonance functor if it satisfies
the following axioms:
(A1) Inclusion axiom.
IfS e R,, and # € OP(n), then ¥ (7S & S) is an inclusion map, and
F(S)/Im F (7S > §) ~ F(QS, 7 | S)).
(A2) Relative resonance axiont.
If, for some S, T € R;, and [T, A € P(n), [Q(S,I1)] = [Q(T, A)], then
F(Q(S, ) = F(O(T, A)).
(A2) Direct product axiom.
For two relative n-cuts (S, IT) and (7, A) we have

F(S, T x F (T, A) ~ F (S, ) x (T, A)).
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Given S € Ry, and w € OP(n), let is » denote the inclusion map ¥ (7 S 5 S).
There is a canonical homology long exact sequence associated to the triple

S, p

F S 2 #(8)

FQ(S, 7 | S)), G.D

namely

'« ~ (iS,n)* ~ * s
s H,(F (78)) === H,(F (8)) == Hy(F (Q(S. 7 | $))
(3.2

3* o (iS,n)*
_— Hﬂ~l(?’(7rs)) —_— s

We call (3.1), resp. (3.2), the standard triple, resp. the standard long exact sequence

associated to the morphism 7 S < S and the functor F (usually F i1s fixed, so its
mentioning is omitted).

4. First applications

4.1. Resonance compatible compactifications. As mentioned in the introduction
we shall now look at the natural strata of the spaces X ™. The strata are defined by
point coincidences and are indexed by number partitions of n. Let Ef denote the
stratum indexed by A.

Let A be a number partition of » and let A be A with some fixed order on the
parts. Then A can be thought of as a vector with positive integer coordinates in R”,
Let S; be the set {x € {—1,0, I}" | (x, 1) = 0}. Obviously, S; is an n-cut and the
n-resonance S;, which it defines, does not depend on the choice of %, but only on the
number partition A.

The crucial topological observation is that if v is another partition of n such
that S, = S), then the spaces X ,{( and T are homeomorphic. This is precisely
the fact which leads one to introduce resonances and the surrounding combinatorial
framework and to forget about the number partitions themselves.

This allows us to introduce a functor # mapping S; to X f; the morphisms map
accordingly. Clearly,  (1') = X One can observe in this example the justification
for the names which we chose for the morphisms of R: “inclusions™ and “gluings”™.
Furthermore, it is easy, in this case, to verify the axioms of Definition 3.6, and hence
to conclude that F is a resonance functor. The only nontrivial point is the verification
of the second part of (A1), which we do in the next proposition.

Proposition 4.1. Let S be an n-cut and w € OP(n). Then ¥ (vS) € F (= S) if and
only if un(v) € un(z) | S.
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Proof. 1t is obvious that all the steps of the definition of un(z) | S which change the
partition preserve the property F (vS) € F (7 S), hence the if direction follows.

Assume now £ (vS) € F (7 S). This means that there exists T € OP(m), where
m 1is the number of parts of 7, such that # (t7S) = F (vS). By definition, T o 7 €
un(r) | S. Now, we can reach un(v) from un(z o ) by moves of type (3) from the
definition of the relative resonances.

Indeed, if F (r7S) = F(S) = Ef , then the sizes of the resulting blocks after
gluing along v o 7 and along v are the same. For every block & of A we can go, by
means of moves of type (3), from the block of un(z o 7)) which glues to b to the block
of un(v) which glues to b. Since we can do it for any block of A, we can go from
un(t o 1) to un(v), and hence un(v) € un(x) | S. O

In the context of this stratification the following central question arises.

The Main Problem (Arnold, Shapiro [7]). Describe an algorithm which, for a given
resonance A, would compute the Betti numbers of &9 ' ,or Efz.

The case of the strata X f lis simpler, essentially because of the following elemen-
tary, but important property of smash products: if X and Y are pointed spaces and X
is contractible, then X A Y is also contractible.

In the subsequent subsections we shall look at a few interesting special cases, and
also will be able to say a few things about the general problem.

4.2. Resonances (ak, iy ). Leta, k, [ be positive integers such that « > 2. Let S be
the (I + k)-cut consisting of all the elements of {—1, 0, 1}'**, which are orthogonal to
the vector (1, ...,1,a, ..., a). Clearly, the (I + k)-resonance [ S] is equal to (a*, 11).
I k

The case | < a is not very interesting, since then (a*, 1') = (1¥) x (1'). Therefore
we may assume that/ > a.

We would like to understand the topological properties of the space ¥ (a*, 1/). In
general, this is rather hard. However, as the following theorem shows, it is possible
under some additional conditions on F .

Theorem 4.2. Letr F : R —> Top* be a resonance functor such that ¥ (1%) is con-
tractible forl > 2. Let] = am + ¢, where 0 <e¢ <a — 1.

(@) Ifk # 1, or ¢ > 2, then ¥ (a*, 1!) is contractible.
d) Ifk =1, and ¢ € {0, 1}, then

F(a*, 1) ~ susp™ (F (1) e+, 4.1)

where F (1)" ¢+ denotes the (m + € + 1)-fold smash product.
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Since for the resonance functor F described in the subsection 4.1 we have
F (1Y = XD, we have the following corollary.

Corollary 4.3. If X is contractible for | > 2, then

(a) Ifk #1, or e = 2 (againl = am + ¢), then E( k10

(b) Ifk = 1,and e € {0, 1}, then E( g1y  Susp (XM ywhere X H denotes
the (m + € + 1)-fold smash product

is contractible.

Note. Clearly, (S1)® is contractible for I > 2, so the Corollary 4.3 is valid. In this
situation, the case k > 1 was proved in [5], and the case k = 1 in [3], [8].

Before we proceed with proving Theorem 4.2 we need a crucial lemma. Let
7 ePk+Dbe ({l,...,a},{a+ 1}, {a +2},...,{k+1}). Tt is immediate that
[7S] = (&1, 1179, if un(7) = 7.

Lemmad.4. Let S be as above, T € R; such that [T] = (ll), and let v be the
partition ({1, ..., a},{a + 1}, {a+2},...,{l}), then we have

[Q(S, 7w | )] =[Q(T,v | T)] x (15). 4.2)

Note. Lemma 4.4 is a special case of Lemma 4.6, however we choose to include
a separate proof for it for two reasons: firstly, it is the first, still not too technical
example of investigating the combinatorial structure of the resonance category, which
is a new object; secondly, the particular case of (a*, 1') resonances was a subject of
substantial previous attention.

Proof of Lemma 4.4. Recall that by the definition of the direct product,
[Q(T. v D x (15 =[QT xU, (v | T) xP({I +1,....1+ k)],

where U € Ry and [U] = (1%). Clearly, (v | T) x P({L +1,...,1+k}) =7 | S,
hence we just need to show that S\ (w | S) = (T xU)\ (v | T) x
P{l +1,...,0 + k})). Note that (T x U) \ (v | T) x P{{ +1,...,
I+ kD)) =(T'\ (v | T)) xU. Furthermore,

I+k !
:{(xl,.‘ B L A DDA azizlxi:O},

and the set which we need to remove from S to get S\ (7 | S) is

[Gr, ) €(=1,0, 174 | ZH';H xjtay w=0,

max(| Plus(xy, ... ., )|, | Minus(xy, ..., x)[) > a}.
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Therefore, by the definition of the relative resonances, we have

S\ (x| S)= {(xl,..‘,x,%) e {—1,0, 1)+ | Z;xi =0,

I+k 0 1Pl
Zj=l+1x] =0, |Plus(xq, ..., x| <a}.

On the other hand, (1¥) = [{(1..... ) € {~1,0, 1}¥ | Y-5_, y; = 0}], and

!
Ny =@ me =101 [ 3 =0, |Plus,....2)| <a,
which proves (4.2). O

Proof of Theorem 4.2. (a) We use induction on /. The case [ < a can be taken
as an induction base, since then (a*, 1') = (1) x (1%), hence, by the axiom (A3),
F (a*, 11 = £ (15 A F (1Y), which is contractible, since F (1¥) is. Thus we assume
that/ > a, and F (a*, 1) is contractible for all I’ < I.

Let S and 77 be as in Lemma 4.4. The standard triple associated to the mor-
phism 7§ <> S is F (a1, 1179) < F@ak 1) — Fak, 1/F @+, 1-9).
Since, by the induction assumption, F (a**!, 1/=%) is contractible, we conclude that
F(ak 1) = F (@* 1)/ F (aFH 1179,

Basically by the definition, we have

F @ 1Y/ F @ 1 = £(0S, 7 | S)).

On the other hand, we have proved in Lemma 4.4 that [Q(S,7 | S)] =
Q(T,v | T) x (1%), where T and v are described in the formulation of that lemma.
By axioms (A2) and (A3) we get that F (Q(S, 7w | S) =~ F(Q(T,v | T) AF (15,
which is contractible, since F (1¥) is. Therefore, F (a*, 1') is also contractible.

(b) The argument 1s very similar to (a). We again assume / > «a, which implies
I > 2. By the using the same ordered set partition 7 as in (a), we get that F (a, 1) ~
F(a, 1)/ F (a2, 1'=%). Further, by Lemma 4.4 and the axioms (A2) and (A3) we
conclude that F (a, 1) ~ F (1) A (F (1) /F (a, 1'7%). Since F (1!) is contractible,
we get

F(a, 1) ~ F(1) Asusp F (a, 179). (4.3)
Since F(a) = F(1), Fa,1) = F(1) A F(1), and F(a, ') is contractible if
2 <[ < a, we obtain (4.1) by the repeated usage of (4.3). O

4.3. Resonances (a¥, b). The algebraic invariants of these strata have not been
computed before, not even in the case X = S!, and F - the standard resonance
functor associated to the stratification of X,
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We would like to apply a technique similar to the one used in the subsection 4.2.
A problem is that, once one starts to “glue” a’s, one cannot get b’s in the same
way as one could in the previous section from 1°s. Thus, we are forced to consider
amore general case of resonances, namely (g”, aX, b'), where g is the least common
multiple of 2 and b. Assume g =a-a =bh-b,and b > a > 2. Analogously with
the Theorem 4.2 we have the following result.

Theorem 4.5. Let ¥ be as in Theorem 4.2. Let furthermore k = x - a + €,

l:y~l;+€2, where ) < ¢1 <a, 0 <¢ < b. Then

F e kbl = {susp“”ml<‘f<1>x+y+m+ﬂ+€2>, im0 0.1
point, otherwise.

Just as in Subsection 4.2 (Corollary 4.3), Theorem 4.5 is true if one replaces F (1)
with 5"

The proof of Theorem 4.5 follows the same general scheme as that of Theorem 4.2,
but the technical details are more numerous. Again there is a crucial combinatorial
lemma.

Let S be an (m + k + I)-cut consisting of all the elements of {—1, 0, 1}"+k+
which are orthogonal to the vector (a,...,a,b,...,b,g,...,g). Assume k > a,

k 1
and let an unordered set partition = be equal to ({1, .. a} {a +1}, ..., {k+1+m}).
We see that [S] = (g”, a, b!), and [#S] = (g" 11, aF4 b)), if 7 = un(yr)

Lemma 4.6. Let T € Ry such that [T] = (1%), andv = ({1, ...,a}, {a+ 1}, ...,
{k}), then B

[Q(S, 7 4 H]=[Q(T,v | )] x (B, 1. (4.5)
Proof. Again, it is easy to see that the sets of the partitions at infinity on both sides
of (4.5) coincide. Indeed,

[Q(T, )] x (B"™, 1) = [Q(T x U, (v | T) x PUk+1,.... k+m~+I))],
where U € Rpyqisuchthat (U] = (0™, 1), and (v | T)xP{k+1, ..., k+m+I}) =
m |} S. Also, we again have the equality

(TxH\N (W IT)xPlk+1,....k4+m+1}))=T\(v | T)xU,

which greatly helps to prove that the sets if the surviving elements on the two sides
of (4.5) coincide.
By the definition

k+1

k
k+1
:{(xl,...,xk+l+m)E{—I,O,l}++m IaZ,_mH? .

k+l+m
= k+l+1
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and, again, the set which we have to remove from S to get S\ (7 | S) is
k K+
k+l+m . .
[(xl,...,xk+l+m) e{-1,0,1} | a§ :i:H’ +b§ :i:kal

k+14+m . -
— ¢ >
+¢ E i:k+l+1x’ 0, max(| Plus(xy, ..., xz)|, | Minus(x1, ..., xx)|) > a}.

By the definition of the relative resonances and some elementary number theory we
conclude that

SNG4 $) = {0 i) € (1,0, | [ Plusx, . w0l < @,

k ket ktl4m
X =0,b %= }
Zi:l ! Zi=k+l i ki1

The number theory argument which we need is that if ax + by + lem(a, b)z = 0,
then a | x, where a - @ = lem(a, b). This can be seen by, for example, noticing that if
ax + by +lem(a, b)z = 0, then b | ax, but since also a | ax, we have lem(a, b) | ax,
hence a | x.

The equation (4.5) follows now from the carlier observations together with the
equalities

r\wlT)
=Gt o) € (10, | Plus(ar, ol < Yo xi =0),
and
b1

! I+m
=[O =10 | 3 w+bY " x=0)] D

Proof of Theorem4.5. The cases k < a and | < b are easily reduced to Theorem 4.2.
Assume therefore that k > a and! > b. Recall alsothatb > a > 2, and hencea > 2.
Let S and 7 be as in the formulation of Lemma 4.6. The standard triple associated

to the morphism 7 S & Sis
F(g"t,ak =0, ply  F (g™, ak by — F (g™, a" b))/ F (" a0 b, (4.6)

We break the rest of the proof into 3 cases.

Case m > 2. Again, we prove that ¥ (g”, a*, b') is contractible by induction on k.
This is clear if k < a. If k > a, it follows from (4.6) that F (g™, a*,b') =~
F (", a* bhy/F (gt a*=a by = F(Q(S, 7 | S)). By Lemma 4.6 we conclude
that (g™, a*, b') ~ F(Q(T,v | T)) A F (™, 1)). By Theorem 4.2, F (b, 1}) is
contractible, hence so is F (g™, a¥, b').
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Case m = (). By Lemma 4.6 we get that

FQS.m L S) = FQT,v] THAFah.
Since I > 2, we have that ¥ (1%) is contractible, hence so is F (@S, 7w | 8) =
F(ak, b1/ F (g, a*=7, b). Therefore, by (4.6) F (a*, b') ~ F (g, a*%, bl).
Case m = 1. Since F (g2, a*=%, b} is contractible, we conclude by (4.6) that
F (g, ak by >~ F(g,a* b1)/F (g%, a7 b1y = F(Q(S, 7w | 5)). By Lemma 4.6,
and the properties of the resonance functors, we have

F(g,a",b) = F (b, 1) A (F(1Y/F @, 15%)

_ _ 47
~ F (b, 1) A susp(F (a, 159)). *.7)

By the repeated usage of (4.7) we obtain (4.4). O

5. Sequential resonances
5.1. The structure theory of strata associated to sequential resonances

Definition 5.1. LetA = (A1, ..., Ay), A1 < -+ < Ay, be anumber partition. We call
A sequential if, whenever ), ., hi = Doy Aj,and g € I such that g = max(/UJ),
then there exists J C J, such that A, = Zjef Aj.

Correspondingly, we call a resonance S sequential, if it can be associated to
a sequential partition.

Note that the set of sequential partitions is closed under removing blocks.
Examples of sequential partitions. (1) All partitions whose blocks are equal to
powers of some number.

(2) (a*, b, 1) such that a > bl; more generally (a]fl, @3ep alk’, 1) such that
a; > Z;:i+1 ajk;, foralli e [r].

Through the rest of this subsection, we let A be as in Definition 5.1. For such A
we use the following additional notations:

o mm()) = |{i € [n]]| A; = An}|. In other words

)Vn—mm(}n) 7'é }Vn—mm(k)+l == Ay

o I(A) C [n] 1s the lexicographically maximal set (see below the convention that
we use to order lexicographically), such that [I(1)] > 2, and 1, = > ;¢ 1) M-
Note that it may happen that /(1) does not exist, in which case ¥ (1) =~
F s oo dammm)) A F (1)) and can be dealt with by induction.
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Let n be a positive integer. We use the following convention for the lexicographic
orderon [n]. For A = {a1,...,ax}, B=1{b1,...,bn}, A, B C[nl,a; < - <ay,
by < -+ < by, we say that A is lexicographically larger than B if either A O B or
there exists ¢ < min(k, m) suchthatay = by, ax—1 = bpm-1,.. ., AGk—g+1 = bn—g+1,
and ax_g > bp—g.

Propositio_n S2. If A = (A1, ..., ), A1 < -+ < Ay, IS a sequential partition,
thensoish = (Aj, ..., A}, Zie](k) X)), wheret = n — |I(M)|, and {j1, ..., ji} =
]\ I().

Proof. Let A1 = Ajy, ... ke = Aj ki1 = Yy hi- We need to check the
condition of Definition 5.1 for the identity

X k=¥ i (5.1)
iel jeJ
If1+1 ¢ 1 U J, then it follows from the assumption that A is sequential. Assume
tr+1el. Ifk] = An, for some j € J, take J = {7}, and we are done. If A = Ap,
for some i € I\ {t + 1}, then, since A is sequential, there exists J < J such that
ZjeJN}_‘j = An = Ary1, and we are done again.
Finally, assume A; # A,, fori € (1UJ)\ {t+ 1}. Substituting A, instead of A,
into the identity (5.1) is allowed, since A, does not appear among {%; He@un\fr+1}-
This gives us an identity for A, and again, since A is sequential, we find the desired

set J C J such that Z]GJ = Aral. ]

Let S € R, be the set of all elements of {—1, 0, 1}"*, which are orthogonal to
the vector A = (A1,...,An). Clearly, [S] = A. Let 7 € P(n) be the partition
whose only nonsingleton block is given by 7 (2). The next lemma expresses the main
combinatorial property of sequential partitions.

Lemma 5.3. Let v € P(n) be a partition which has only one nonsingleton block B,
and assume hy =Y ;cphi. Thent e | S.

Proof. Assume there exists partitions 7 as in the formulation of the lemma such that
7 ¢ w | S. Choose one so that the block B is lexicographically largest possible. Let
C = BNI(}). By the definition of / (), and the choice of B,wehave } ; ;;)\c i =
ZjeB\C Aj,and g € I(A) \ C, where g = max((I(2) U B) \ C).

Since partition 1 is sequential, there exists D € B\ C'suchthat i, = > .p2;.
Let y € P(n) be the partition whose only nonsingleton block is G = (B \ D) U {¢}.
Clearly, ;. »i = Aq, and |G| > 2. By the choice of ¢, G is lexicographically
larger than B, hencey € 7w | S.

Let furthermore ¥ € P(n) be the partition having two nonsingleton blocks:
D and G. By Definition 3.12)if y e w | S, then y € 7 | S. By Definition 3.1(3),
ify en | S, thent €7 | S, which yields a contradiction. O
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Let T € Ruy_mm@.) be the set of all elements of {—1, 0, 1}r—mm3) which are
orthogonal to the vector (A1, ..., As—mmm)). Let v € P(n —mm(1)) be the partition
whose only nonsingleton block is given by I(A). We are now ready to state the
combinatorial result which is crucial for our topological applications.

Lemma 5.4.

[Q(S, 7 § H] =[Q(T,v | T)] x (1""M). (52

Proof. By definition we must verify that the sets of partitions at infinity and the
surviving elements coincide on both sides of the equation (5.2).

Let us start with the partitions at infinity. Filtered through Proposition 4.1, the
dentity m | S=@w | T) xP{n —mm(x) + 1, ..., n}) becomes essentially tau-

tological. Both sides consist of the partitions 7 = (71, ..., %) € P(n) such that
the number partition ( > gioy Mg 534 > g Ai) can be obtained from the number
partition (A, ..., Aj, D icry*i), where {j1, ..., ji} = [n]\ I (&), by summing
parts.

Let us now look at the surviving elements. It is obvious that S\ (@ | §) 2
(T\ (v {T)) xU,where U € Ry such that [U] = (1""®)_ and we need to show

the converse inclusion. Let x = (x1,...,%;) € S such that Y7, o4 % # 0
(otherwise x € (T'\ (v | T)) x U). We can assume Y ;_, _,...;y41% > 0. Then,
since S is a sequential resonance, there exists y = (y1, ..., yu) € S such that

o ify; #0, then x; = y;;
e |Plus(y)| =1, and Plus(y) € {n —mm(x) + 1, ..., n}.

This, by Lemma 5.3, means that y ¢ S\ (w | S), which in turn necessitates
x & S\ (| S). This finishes the proof of the lemma. a

Just as before, this combinatorial fact about the resonances translates into a topo-
logical statement, which can be further strengthened by requiring some additional
properties from A.

Definition 5.5. Let A = (A1, ..., Ay). A1 < --+ < Ay, be a sequential partition, and
letg = max I(x). Aiscalled strongly sequential, if either I (1) does not exist or there
exists J € (&) \ {g} such that A, = > . _; A; (note that we do not require |J| > 2).

We are now in a position to prove the main topological structure theorem con-
cerning the sequential resonances.

Theorem 5.6. Let F be as in Theorem 4.2. Let A be a sequential partition such that
1 (A\) exists. Then the following holds.

(1) If mm (X)) > 2, then F ()) is contractible.
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Q) If mm(x) = 1, then F(A) ~ FQ(T,v | T)) A F(), and we have the
inclusion triple ¥ (u) < Fri,y ooy rpn1) = F(Q(T,v | T)), where
=g, .., k), s i} = mINTQ), andv € P(n — mm(X)) is the
partition whose only nonsingleton block is given by I ()). We set F () to be
a point, if I (A) does not exist.

If moreover A is strongly sequential, then the map i is homotopic to a trivial map
(mapping everything to a point), hence the triple splits and we conclude that

FR)=2(FDAF R, oo, p—1) Vsusp(F (L) A F (). (5.3)

Proof. (1) We use induction on Y ;" m3) 5, If () does not exist, then A, is
independent, i.e., F(A) = F (A1, ..., An—mmn)) X F (1™ and hence F (1) is
contractible. Otherwise consider the inclusion triple

F)—>F) - FR/F) =FQS, 7S, 54

where & = (hj;, ..., Aj, Y iergy M), and € P(n) is the partition whose only
nonsingleton block is given by I(x). By the induction assumption % (A) is con-
tractible. On the other hand, by Lemma 5.4, F(Q(S, 7 | S)) =~ F(Q(T,v |
7)) A F (1)) which is also contractible if mm (1) > 2.

(2) if mm()) = 1, then we can conclude from (5.4) that (1) ~ F(1) A
F(Q(T,v | T)). Next, consider the inclusion triple

?’(u)#?(kl,“‘,kn_l)%?(Q(T,viT)). (5.35)

If 2 is strongly sequential, then there exists J € I(A) \ {g} such that A, = )"
(here ¢ = max I(A)). The map i factors:

ies M

i i
Fu) }‘(xp], e Y xi) B FO, . M), (5.6)

iel(n)

where {p1, ..., pa—1-js)} = [n = 11\ J. Since (Ap,, ..., Ap, 1 ;s Dierny Ai) 18

sequential, and mm ((Ap,, ..., Ap, ;s Xiesny Ai)) = 2, we can conclude that the
middle space in (5.6) is contractible, and hence i in (5.5) is homotopic to a trivial
map. This yields the conclusion. O

5.2. Resonances (ak, b’, 1)

Theorem 5.7. Let a, b, k, I, m, r be positive integers such thatb > 1, m > r, and
a=>bl+r. Then

F @, b 1™ ~susp(FA)AF (@, 1" ") v (FAH AFGEL 1), (5.7)
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Note. Therestriction m > r isunimportant. Indeed, if m < r, thena > bl+m, hence
a isnotinvolved in any resonance other thana = a. Thisimpliesthat ¥ (a*, b', 1) =
F (1% x F (b, 1), and we have determined the homotopy type of F (a*, b, 1) by
the previous computations.

Proof of Theorem 5.7. Obviously, the condition a > bl guarantees that the partition
(a*, b', 1™) is sequential, hence Theorem 5.6 is valid. It follows that if & > 2, then
F (a®, b', 1) is contractible, hence (5.7) is true.

Furthermore, if / > 2, or,1 = 1 and m > b, then (a, b*, 1) is strongly sequen-
tial, hence in this case (5.3) is valid, which in new notations becomes precisely the
equation (5.7).

Finally, assume [ = 1l and b > m >r > 1. Leta = b +d. If F(a, lm_d)

or F (b, 1) is contractible, then the map i in the inclusion triple ¥ (a, 1”~%) <
F (b, 1"y — F (b, 1™)/F (a, 1"~%) is homotopic to a trivial map, and we again
conclude (5.7). If both of these spaces are not contractible then F (a, 1"~%) ~
S2ytetl and F (b, 1) ~ SP+a+l where nonnegative integers x, v, €1, €3 are
defined by

m=bx+e, m—d=b+d)y+e, e, el l) (5.8)

Letusshowthat2x+¢; > 2y+¢p. If x > y, then2x+¢; > 2x > 2y+2 > 2y+e.
From (5.8) we have that b(x —y) = d+dy+¢e3 —e€;. If x < y, then the left hand side
is nonpositive. On the other hand, since d > 1, the right hand side is nonnegative.
Hence, both sides are equal to 0, which implies x =y, d = ¢ =1, ¢, =y = 0.
This yields 2x 4+ €; > 2y + €.

The homotopic triviality of the map i follows now from the fact that the homotopy
groups of a sphere are trivial up to the dimension of that sphere, i.c., 7 (S™) = 0, for
0<k<n-1 o

5.3. Division chain resonances. We call the resonance (b, b "1', ..., b{'"") a di-
vision chain resonance if b; | b; 11, for any i € [n — 1]. For convenience, we assume
m; > 1,fori € [n],and setr; = b;/b;_1,forn >i > 2, and r; = by.

Let us see that division chain resonances are strongly sequential. First, we show

that A = (by", b }", ..., b]') is sequential. Assume that
Zaibi ZZﬂjb;’, (5.9
iel jelJ

and there are no equal size parts appearing on both sides. Set f = max( U J),
g = min(/ U J). We use induction on f — g. If f = g + 1 then the condition of
sequentiality is obviously satisfied. Otherwise, divide both sides by b,. The number
of parts of size 1 must be divisible by 7511, hence, in (5.9) all the parts of size b, can
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be replaced by a certain number of parts of size b, 1. By the induction assumption
the condition of sequentiality is satisfied for the new relation, hence it follows for (5.9)
as well.

Note that it also follows from the previous argument that 7 (1) must be of the form
{p,p+1,....n —mm(x) — 1, n — mm(X)}, for some p.

Itis now easy to see that 2 is strongly sequential. Assume b, = b,_1+) ;; @ibi,
then (r, — 1)b,—1 = > ;.; @ib;. The sequentiality condition is true for the latter
relation, hence the strong sequentiality condition is true for the first one.

Thus, Theorem 5.6 applies, and it yields:

(1) if my, > 2, then F (1) is contractible;
(2) if I (1) exusts, then

Fbu, b B (F)AF BB (5.10)
m My_
V(ST AFQ)AF Bn, by by 00 o BT,
where (b, b;nq, b;nz], ..., b") is obtained from (b, b)"7", ... B by re-

moving the parts indexed by 7 (1). We have nm, > 1.
(3) If I(x) does not exist, then
Fbn, b B = F W AF G D). (5.11)

n—1">

It is immediate from the formulae (5.10) and (5.11) that each topological space
F(bp", bZ1_"]1, — b’f“) is homotopy equivalent to a wedge of spaces of the form
F(1)* A SP, where F (1)% means an «-fold smash product of £ (1). The natural
combinatorial question which arises is how to enumerate these spaces. We shall now
construct acombinatorial model: aweighted graph which yields such an enumeration.

For convenience of notations, we set mg = 1. I', 1s a directed weighted graph on
the set of vertices {0, 1, . .., n} whose edges and weights are defined by the following
rule. Forx,x +d € {0, ..., n}, d > 1, there exists an edge e(x, x + d) (the edge 1s
directed from x to x 4+ d) if and only if

byya | bxyd—1mxya—1 + bxya—amyia—a + -+ bxyimxyr + by(my — 1).
In this case the weight of the edge 1s defined as
w(x,x +d) = (bxyg—1Mxqga—1+ - +bypimyyr +by(my — 1)) /byyq.

Note that if 4 > 2 and there exists an edge e(x, x 4+ d), then there exists an edge
e(x,x +d —1).

We call a directed path in I'y complete if it starts in 0 and ends in n. Let v be
a complete path in I, consisting of ¢ edges, v = (e(xo, x1), ..., e(x;—1, x¢)), where
xo = 0, and x; = n. The weight of v is defined to be the pair (/(y), w(y)), where
y) =t,and w(y) = 3i_; wxio1, x).
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Theorem 5.8. Let A = (b, b "', ..., b)), then
FO) =~ \/(}'(DZ(VHUJ(V) A SEW)y, (5.12)
¥

where the wedge is taken over all complete paths of T';..

Proof. We use induction on n. The base of the induction is # = 1. In this case Iy, 1s
a graph with only one edge ¢(0, 1), w(0, 1) = 0. Thus, there is only one complete
path. It has weight (1, 0), and F (A) >~ F(1).

Next, we prove the induction step. We break up the proof in three cases.

Case 1. 1(A) does not exist. By (5.11) we have

FR)=FA)AFG™, ... bM). (5.13)
On the other hand, 7 (1) does not exist if and only if b, > m,_1by—1 + - -+ m1b;.
We also know that » > 2. This implies that there is at most one edge of the type
e(x, n),namely e(n — 1, n). This edge exists if and only if m,_; = 1, in which case
w(n —1,n) =0.

If this edge does not exist then there are no complete paths in I', and, at the same
time ¥ (bZL_”]], ..., b['") is contractible by the previous observations. This agrees
with (5.12).

If, on the other hand, this edge does exist, then all complete paths ¥ must be of
the type ¥y = (7, e(n — 1, n)), where y is a complete path from 0 to n — 1. Also in
this case (5.13) agrees with (5.12).

Mip—1
n—1>"

Case 2. 1()) exists and my_1 > 2. In this case F (b
and

.., b{"") is contractible,

Mg—1

FO) = S'AF () AF (b by B

LM, (5.14)

where (by, by ?, bfﬁ;l, ..., by is as in (5.10).

Let & = (by, by %, bZﬂl, ..., b]""). We can describe the graph I'; : it is obtained
from Iy by

(1) removing all vertices indexed by {¢ + 1, ..., n — 1} and the incident edges;
(2) decreasing the weight of every existing edge e(x, n) by 1;
(3) keeping all the existing edges with the old weights on the set {0, ...,¢ — 1, g}.

This operation on I';, is well-defined, since there can be no edges in I', of the
type e(x, n), forx € {g +1,...,n — 1}, and since the weight of edges e(x, n), for
x € {0, ..., q} mustbe at least 1, as n, > 1. Furthermore, it is clear from the above
combinatorial description of I'; that the set of the complete paths of I'; is the same
as that of I"; , and that the weights of the edges in these paths are also the same except
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for the edge with the endpoint 7, whose weight has been decreased by 1. Thus, (5.14)
agrees with (5.12) in this case.

Case 3. 1()) exists and m,—1 = 1. This case is rather similar to the case 2, except
that there is an edge e(n — 1, n) of weight 0. Thus, I'; bookkeeps all the complete
paths of T'; , except for the ones which have this edge e(n — 1, n).

However, the first term of the right hand side of (5.10) bookkeeps the paths
(y,e(n—1, n)), justlike in the case 1. Since the set of all complete paths of I, is the
disjoint union of the sets of those paths which contain e(n — 1, n), and those which
do not, we again get that (5.10) provides the inductive step for (5.12). O

Examples. (1) Let A = (a,1"), for a > 2. Then T, is a graph on the vertex set
{0, 1, 2} having either one or two edges:

(a) it has in any case the edge ¢(0, 1), w(0,1) = 0;

(b) if a divides I, then it has the edge ¢(0, 2), in which case w(0,2) = [/a;

(¢) if a divides [ — 1, then it has the edge ¢(1, 2), in which case w(1,2) = (I — 1) /a.
Clearly Theorem 5.8 agrees with Theorem 4.2. Indeed, if ¢ & {0, 1} (where ¢ is taken
from the formulation of Theorem 4.2), then there are no complete paths in I';. If
€ = 0, then there is one path (0, 2) of weight (1, 1/a); and if ¢ = 1, then there is one
path ((0, 1), (1, 2)) of weight (2, (I — 1)/a). Thus, (5.12) and (4.1) are equivalent in
this case.

(2) Let A = (8,4, 23, 1°). Then the graph I'; is

2

Figure 1

It has 4 directed paths from 0 to 4 and, by Theorem 5.8, we have
FR) 2 (FAPASHVEFEDASHVFDOASH VFMT ASYH,

in particular =X ~ §5 v §8 v §10 v g1,
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6. Remarks on complexity of resonances

The main idea of all our previous computations was to find, for a given n-cut S,
apartition 7 € P(n) such thatspan(S\ (7 | S)) # S. Intuitively speaking, shrinking
the substratum corresponding to 7 S, where un() = 7, essentially reduces the set
of linear identities in S. It is easy to construct examples when such 7 does not exist,
e.g., Example 2.2 (4).

These observations lead us to introduce a formal notion of complexity of a reso-
nance.

Definition 6.1. 1) For S € R, the complexity of S is denoted ¢(S) and is defined by

c(S) = min{[TI| | IT < P(n), span(S \ (IT | 5)) # S}. 6.1)

2) We define the complexity of an n-resonance to be the complexity of one of its
representing cuts. Clearly, it does not depend on the choice of the representative.

Note. The number ¢(S) would not change if we required the partitions in IT to have
one block of size 2, and all other blocks of size 1.

The higher is the complexity of a resonance [S], the less it is likely that one can
succeed with analyzing its topological structure using the method of this paper. This
is because one would need to take a quotient by a union of ¢([S]) strata and it might
be difficult to get a hold on the topology of that union.

We finish by constructing for an arbitrary n € N, a resonance of complexity n.
Let Ay = (a1,...,as,b1,...,by) such that a;, b; € N, a; +b; = a;j + b;, for
i, j € [n], and all other linecar identitics among a;’s and b; s with coefficients +1, 0
are generated by such identities. In other words, the cut S associated to A is equal to
the set

n
{en ey € 21,0, 1% [ 3 %=,

(62)
x4y =0, Vi [n]].

It is not difficult to construct such A, directly:

1) Choose ay, .. ., a, such that the only linear identities with coefficients +1, 0
onthe setay, ai, as, az, ..., a,, a, are of the form a; = a;; in other words, there are
no linear identities with coefficients +£2, £1, 0 on the set ay, ..., a,. One example
is provided by the choice a; = 1, a =3, ..., a, =3""1.

2) Letb; = N + a;, fori € [n], where N 1is sufficiently large. As the proof of
Proposition 6.2 will show, it is enough to choose N > 2 3", A;. This bound is far
from sharp, but it is sufficient for our purposes.



222 D. N. Kozlov CMH

Proposition 6.2. Let S, be the n-cut associated to the ordered sequence of natural
numbers A, described above. Then c(S,) = n.

Proof. First, let us verify that the cut S, associated to X, is equal to the one described
i (6.2). Take (x1, ..., X5, Y1, -++> Yn) € Sy.
Assume first that ) ;_; v # 0. Then, (x1, ..., %, y1,...,y,) stands for the

identity
Zai+ZbJZZai+ij, (6.3)

iel jen iely jela

such that |J1| > |J2| + 1. This implies that N is equal to some linear combination of
a;’s with coefficients £2, +1, 0. This leads to contradiction, since N > 2y "_; A;.

Thus, weknowthat Y ;_; y; = 0. Cancelling N-|J1| outof (6.3) we get an identity
with coefficients +2, +1, 0 on the set ay, . . ., a,. By the choice of a; s, this identity
must be trivial, which amounts exactly to saying that x; + y; = 0, for i € [n].

Second, it is a trivial observation that ¢(S,) < n. Indeed, let n; € P(n)
be a partition with only one nonsingleton block (1,n + i), for i € [n]. Then
span(S, \ ({1, ..., 7} 4 Sp)) # S, since for any (xy, ..., %, Vi,..., V) €
Sy \ {1, .o, T} 4 Sy), we have x; = 0.

Finally, let us see that ¢(S,,) > n — 1. As we have remarked after Definition 6.1,
it is enough to consider the case when the partitions of IT have one block of size 2,
and the rest are singletons. Let us call the identity a; +b; = a; + b; the elementary
identity indexed (i, j).

From the definition of the closure operation |, it is clear that an elementary identity
mdexed (i, j) isnotin S, \ (IT | S,) if and only if the partition whose only non-
singleton block is (i, n 4+ j) belongs to I, or the partition whose only nonsingleton
block is (j, n + i) belongs to I1. That is because the only reason this identity would
not be in S, \ (IT | S,) would be that one of these two partitions is in IT | S,. But,
if such a partition is in IT | S, then it must be in IT: moves (2) of Definition 3.1
can never produce a partition whose only nonsingleton block has size 2, while the
moves (3) of Definition 3.1 may only interchange between partitions (i, n + j) and
(j, n + 1) in our specific situation. Thus, we can conclude that if |T1| < n — 1, then
at most n — 1 elementary identities are notin S, \ (IT | S,).

Next, we note that for any distinct i, j, k € [n], the clementary identities (i, j) and
(j, k) imply the elementary identity (i, k). Let us now think of elementary identities
as edges in a complete graph on n vertices, K,,. Then, any set M of elementary
identities corresponds to a graph G on n vertices, and the collection of the elementary
identitics which lie in the span M 1s encoded by the transitive closure of G. Itis awell
known combinatorial fact that K, is (n — 1)-connected, which means that removal of
at most n — 1 edges from it leaves a connected graph. Hence, if we remove at most
n — 1 edges from K, and then take the transitive closure, we get K, again. Thus, if
|TI| < n—1, all elementary identities lie in span (S, \ (IT | S,)). Since the elementary
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identities generate the whole S,,, we conclude that S, = span(S, \ (IT | S,)), hence
c(Sy) >n—1. g
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