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Outer automorphism groups of some ergodic equivalence
relations

Alex Furman*

Abstract. Let R a be countable ergodic equivalence relation of type Hi on a standard

probability space (X, /I,). The group Out R of outer automorphisms of R consists of all invertible

Borel measure preserving maps of the space which map R-classes to R-classes modulo those

which preserve almost every R-class. We analyze the group Out R for relations R generated by
actions of higher rank lattices, providing general conditions on finiteness and triviality of Out R

and explicitly computing Out R for the standard actions. The method is based on Zimmer's

superrigidity for measurable cocycles, Ratner's theorem and Gromov's Measure Equivalence
construction.

Mathematics Subject Classification (2000). 37A20, 28D15, 22E40, 22F50, 46L40.

Keywords. Ergodic equivalence relations, higher rank Lie group, lattices, outer automorphisms.

1. Introduction and statement of the main results

Let {X, <S) be a standard Borel space with anon-atomic probability Lebesgue measure
and let R be a countable measurable relation of type II i on (X, 33, /z), i.e. measurable,

countable, ergodic and measure preserving equivalence relation R c X x X. For
the abstract definition of this notion the reader is referred to the fundamental work of
Feldman and Moore [1], which in particular demonstrates that any such equivalence
relation can be presented as the orbit relation

Rxr {(x, y)&XxX\r-x r-y}
of an ergodic, measure preserving action of some countable group F on the space
(X, 33, n). In most of the examples in this paper equivalence relations are defined

by ergodic measure-preserving actions of concrete countable groups F, namely
irreducible lattices in semi-simple connected higher rank real Lie groups.

* Supported in part by NSF grants DMS-0049069 and DMS-0094245.
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In the purely measure-theoretical context of this paper all objects are considered
modulo sets of zero /z-measure, denoted (mod 0). Following this convention the

measure space automorphism group Aut(X, yu.) is the group of all invertible Borel

maps T : X --* X with T*/j, [i, where two such maps which agree on a set of
full \.i-measure are identified. In a similar fashion two equivalence relations R, R' on
(X, n) are identified if there exists a subset fçï with fi(X') 1 on which the

restrictions of R and R' coincide.
Given an equivalence relation R on {X, yu.) consider the group of relation

automorphisms

Aut R {T g Aut(X, yu.) | T x T(R) R}

and the subgroup Inn R of inner automorphisms, also known as the full group of R,

consisting of such T G Aut(X, yu.) that (x, Tx) G R for /x-a.e. x G X. The full group
Inn R is normal in Aut R and the outer automorphism group Out R is defined as the

quotient

1 —> Inn R —> Aut R -U- Out R —> 1.

Elements of Out R represent measurable ways to permute R-classes on (X, /x). The

full group Inn R is always very large (see Lemma 2.1). For the unique amenable

equivalence relation Ram of type II i the outer automorphism group Out Ram is also

enormous. The purpose of this paper is to analyze Out Rx,r for orbit relations Rx,r
generated by m.p. ergodic actions of higher rank lattices, in particular presenting

many natural examples of relations R with trivial Out R. Such examples were first
constructed by S. Gefter in [6], [7] (Theorem 1.5 below).

Prior to stating the results let us define two special subgroups in Out R, in the

case where R is the orbit relation Rx,r generated by some measure-preserving
action {X, \.i, F) of some countable group F. In such a situation consider the group
Aut(X, F) of action automorphisms of the system (X, [i, F)

Aut(X, F) := {T g Aut(X, m) I T(y ¦ x) y ¦ T(x) for all y G F}.

This is the centralizer of F in Aut(X, yu.). For a group automorphism r G Aut F

define

AutT(X, F) :={T g Aut(X,/i) | T(y ¦ x) yr -T(x)}

and let Aut*(X, F) be the union of AutT(X, F) over r g Aut F. (If the F-action
is faithful Aut*(X, F) is the normalizer of F in Aut(X, ß)). We shall denote by
A(X, F) and A*(X, F) the images of the groups Aut(X, F) and Aut*(X, F) under

the factor map Aut Rx,r —> Out Rx,r- Observe that the e-image in Out Rx,r of the

coset AutT(X, F) depends only on the outer class [r] g Out F and therefore can be

denoted by A^(X, F). The group A(X, F) is normal in A* (X, F and the factor group
A*(X, F)/A(X, F) is (a factor of) a subgroup of Out F. In general, the subgroups
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F) ç A*(X, F) of Out Rx,r depend on the specific presentation of the relation
R as the orbit relation Rx,r of an action (X, [i, F).

In this paper we are mostly interested in ergodic m.p. actions ofhigher rank lattices
and will be using the following terminology and notations:

• For locally compact, secondly countable group G a left-invariant Haar measure
will be denoted by mo- If F c G is a discrete group so that G/ F carries a finite
G-invariant measure we say that F forms a lattice in G and will denote byme/r
the unique G-invariant probability measure on G/ F.

• The term semi-simple Lie group will mean semi-simple, connected, center-free,
real Lie group G \\Gi without non-trivial compact factors, unless stated

otherwise. A lattice F in a semi-simple Lie group G \\Gi is irreducible if
F does not contain a finite index subgroup V which splits as a direct product
of lattices in subfactors. By higher rank lattice hereafter we shall mean an

irreducible lattice in a semi-simple Lie group G with rkR(G) > 2.

• A measure-preserving action {X, \.i, F) of a lattice F in a semi-simple Lie group
G X\Gi is irreducible if the action of every simple factor G; in the induced
G-action on (G xp X, mo/r x M) is ergodic. Clearly, if G is simple then any
lattice F c G is irreducible and any ergodic F-action is irreducible.

• For an arbitrary group F a m.p. action (Xq, /xo, F) is a (F-equivariant) quotient
of another m.p. action (X, [i, F) if there exists a measurable map n : X --* Xq
with 7r*/z yu-o and n(y ¦ x) y ¦ n(x) for /x-a.e. x e X and all y G F.

• A measure-preserving action {X, \.i, F) of an arbitrary group F is called aperiodic
if every finite atomic quotient of (X, [i, F) is trivial; equivalently if every finite
index subgroup F'cF acts ergodically on {X, yu.).

Remarks, (a) Every mixing ergodic action (X, [i, F) of an irreducible lattice F in a

semi-simple Lie group G is irreducible and aperiodic.

(b) By the result of Stuck and Zimmer [14] any ergodic non-atomic m.p. action
of an irreducible lattice F in a semi-simple Lie group G with property (T) is free
(mod 0). Recall that a higher rank semi-simple G has property (T) iff it does not have

simple factors locally isomorphic to SO(«, 1) or SU(«, 1).

(c) For any free, ergodic action (X, [i, F) of an irreducible lattice F in a semi-

simple Lie group G the map

Aut(X, F) -^ A(X, F)

is an isomorphism and the homomorphism

A*(x,r)/A(x,r) ^
is an embedding (Lemma 2.3 below).
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(d) It follows from the Strong Rigidity (Mostow, Prasad, Margulis) that for an

irreducible lattice FcG^ SL2 (K) the automorphism group Aut F is isom orphie to
the normalizer ArAutG(F) of F in Aut G 2 Ad G G. Since F* := ArAutG(F) 2 F
is a closed subgroup properly contained in Aut G, it forms a lattice in Aut G, and

Out F F*/ F is always finite.

Thus for an irreducible aperiodic free m.p. action of a higher rank lattice F the

analysis of Out Rx,r reduces to the analysis of the quotient Out Rx,r/A*(X, F) and

the subgroup A*(X, F) which, up to atmostfinite index, is isomorphic to Aut(X, F).

Theorem 1.1. Let G be a semi-simple, connected, center-free, real Lie group without

non-trivial compact factors and with rkR(G) > 2. Let F c G be an irreducible
lattice and (X, [i,Y)bea measure preserving, ergodic, irreducible, aperiodic, essentially

free F -action. Assume that (X, \.i, F) does not admit measurable F' -equivariant
quotients of the form (G/ V, mG/r>> T) where F" c G is a lattice isomorphic to F

and F acts by y : g F" i->- ygF'. Then

OutRx.r A*(X, F)

while A*(X, F) Aut(X, F)/F.

More generally, we have:

Theorem 1.2. Let F c G be a higher rank lattice as in Theorem 1.1 and (X, /x, F)
be any measure preserving, ergodic, irreducible, aperiodic, essentially free F-action.

If A*(X, F) has unite index n > 1 in Out Rx,r ^zen (X, [i, F) Aa5 an equivariant
measurable quotient

n-\
it: {X,,x) —? (G'l-1/r"-1>mG»-./r,-i) ]~[(G/r'mG/r)

i=i

wnere rte T-action on (Gn~l/T""1, mGn-\/rn-\) is given by

for some weed automorphisms r, e Aut G, I < i < n.

IfA*(X, F) n<25 inanité index in Out Rx,r ^en (X, [i, F) na5 an inanité product
equivariant quotient space

it:

with a diagonal V-action on y : (x;)^ h^ (y^x;)^ for some axed sequence
Aut G, i 1,2,....
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Of course, Theorem 1.1 is just a particular case of 1.2 (contrapositive formulation
for n 1) since a r-twisted F-action y : gF i->- yx gT on (G/ F, mc/r) is measurably

isomorphic to the untwisted F-action y : gV \-> ygV where V r~1(F).
For an dxd matrix A let/ (A) := J2i l°g+ |^i(^)l,wherelog+x =max{0,logx}

and Xi (A) denote the eigenvalues of A. Given a semi-simple group G and d g N
consider all linear representations p: G —* GL^ (C) (there are finitely many equivalence
classes for any d) and let

„, ¦ r X(p(g))
Wcid) := max ml

dimp=dgeG /(Ad(g))

Corollary 1.3. Le? F c G and (X, [i, F) be as in Theorem 1.2. Denote by h(X, y)
the Kolmogorov-Sinai entropy of the single measure-preserving transformation y of
(X, /j.). Then

[Out Rx,r : A*(X, F)] < 1 + inf A(*' y)
(1.1)

y er x(Ad(y))
ïs a compact manifold with a C1 -action of a higher rank lattice F c G which

preserves a probability measure [i on X so that (X, [i, F) is a free (mod 0) action
which is ergodic, irreducible and aperiodic, then

[Out Rx,r : A*(X, F)] < 1 + WG(dim(X)). (1.2)

The function Wg satisues Wc(d) < d2 /8.

Remark. Theorem 1.9 below shows that the inequality (1.1) is sharp. However
the estimate (1.2) is probably not optimal, with a more plausible one being 1 +
dim(X)/dimLie(G).
Remark. As we shall see below, groups Out Rx, r and A {X, F can be very large when
considered as abstract groups, but in all cases below the quotient Out Rx,r/A*(X, F)
is either finite or countable. This might be a general property of actions ofhigher rank
lattices. In fact, this property is known for essentially free ergodic actions (X, F) of
groups F with Kazhdan's property (T). For such groups (and in a slightly more general
situation) Gefter and Golodets introduced a natural topology on Out Rx, r with respect
to which Out Rx,r is a Polish (i.e. complete separable) group and A(X, F) is an open
subgroup (see [8], Theorem 2.3, and references throughout Section 2).

In specific cases, in particular in the standard examples of algebraic lattice
actions, it is possible to compute the groups Out Rx,r explicitly as we shall do in
Theorems 1.4-1.9 below. In Theorems 1.4-1.8 the systems (X, F) do not have G/ V as

measurable quotients and therefore by Theorem 1.1 we have Out Rx,r A*(X, F)
Aut*(X.F)/ F. The latter groups are of algebraic nature, but their explicit descriptions

are cumbersome. Thus for readers convenience we have also presented the

groups Aut(X, F), which have a more transparent appearance and have at most finite
(< |Out F|) index in A*(X, F).
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Theorem 1.4. Let G be a simple, connected real Lie group with unite center and

rkR(G) > 2 and p: G <-^ SLjv(R) be an embedding such that p(G) does not
have non-trivial weed vectors and assume that G has a lattice Y c G such that

p(T) ç SLjv(Z). Then the natural V-action on the torus TN RN/ZN is ergodic,
aperiodic and the orbit relation Rjn r satisQes

:lN<r A*(TW,F)

A(TW, D Aut(Tw, D CGhN(m(p(G)) n

In particular, for n > 2 the SLn(Z)-action onTn gives an ergodic relation Rt",sl„(Z)
which has no outer automorphisms ifn is even, and a single outer automorphism given

byx\->—xifn is odd.

Note that in the above theorem we allowed finite non-trivial centers to accommodate

the standard example of F SL„(Z) acting on the torus T" for even n > 2.

To state the following results we recall the notion of afhne transformations of a

homogeneous space (these are needed only for the precise description of Out Rx,r),
however the spirit of the results is captured by the finite index subgroup A(X,F)
which does not require this notion.

Definition. Let A be a subgroup of a group //, and let N := f]fieH h~lAh denote

the maximal subgroup of A which is normal in //. Given an automorphism a of
H/N with a(A/N) A/N and t G H/N denote by aaJ the map

affj(: A A i-> ta(h)A

of H/A. Such maps will be called afhne, and we shall denote by Aff(///A) the

group of all affine maps of H/A.
Replacing H by H/N and A by A/N one does not change the homogeneous

space: H/A (H/N)/(A/N). Thus hereafter we shall assume that N is

trivial. Under this assumption the map (a, t) i->- aa,t defines an epimorphism
NAutH(A) x H —> Aff(///A) (which contains {(Ad A, A) | A G A} in its kernel)

and which maps H {Id} x H isomorphically onto its image in Aff(///A).
This copy of// in Aff(///A) has index bounded by |Out H\.

We shall be interested in situations where some group (a higher rank lattice)
F is embedded in //, p : F —>¦ //, and acts on the homogeneous space H/A by
left translations. Then the normalizer Nas(h/a)(p(^)) m AS(H/A) of this action
consists of those affine maps aa,t for which a G Aut H and t G H satisfy

ct(A)=A and a(p(T)) t~l p(T)t.

In any case this group contains Nh(p(T)) as a subgroup of an index bounded by
|Out//|.



Vol. 80 (2005) Outer automorphism groups of some ergodic equivalence relations 163

Theorem 1.5 (cf. Gefter [7]). Let V be a higher rank lattice which admits a dense

embedding p: F --* K into a compact connected Lie group K. Then for every closed

subgroup {e} ç L c K the F-action on (K/L, mk/l) is ergodic, irreducible and

aperiodic and the orbit relation Rk/l,t satisoes

OutR(^/L,r) A*(K/L, V) 9É NAffiK/L)(p(r))/p(r)
A(K/L, D Aat(K/L, T) NK{L)/L.

In particular, if the compact group K has no outer automorphisms which normalize
L or if Y has no outer automorphisms, then

OutRK/L,r NK(L)/L.

Remark. A variant of Theorem 1.5 was proved by S. Gefter in [7]. This gave the

first example of type II i equivalence relations without outer automorphisms (see also

Corollary 1.8, Theorem 1.10 and the remarks that follow below). Indeed, by a well
known arithmetic construction (cf. [17], 5.2.12) certain lattices F c G := SO(p, q)
admit dense embeddings into the compact group K := SO(ra) where n p + q.
Take p > q > 2 to ensure rkR(G) > 2 and let L SO(n — 1) be the stabilizer of a

point in K SO(ra) action on the sphere Sn l. Then Nk(L) L and since SO(ra)
has no outer automorphisms, AS(K/L) Nk(L), which shows that Out R(k/l,f)
is trivial.

In Theorem 1.5 the compact group K is taken to be connected to guarantee
aperiodicity of the action. Higher rank lattices can also be densely embedded in
other compact groups, namely profinite ones. Such embeddings give rise to ergodic
actions which strongly violate aperiodicity condition - they are inverse limits of finite
quotients. A typical example is the standard embedding

r := PSL„(Z) -A K := PSL„(ZP).

It was observed in [7] (Remark 2.8) that in this case OutRj^r contains a group
isomorphic to PSLn(Qp), in such a way that

k{K, T) K PSL„(Zp) c PSL„(Qp) ç Out R^,r

so that k(K,T) has infinite index in Out R/^r- We claim that the last inclusion is

essentially an equality. More generally, the following result holds:

Theorem 1.6. Consider the natural dense embedding ofT= PSL„(Z), n > 3, in
the proDnite group K ]""[?=i PSL„(ZÄ) where {p\, pr} is a unite set ofdistinct
primes. Then Out R^,r is a Z/2 extension of

H
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with the transpose map (k\, ,kr) *--* (k[, k'r) of K giving rise to the Z/2
extension.

Another family of standard examples is described by the following

Theorem 1.7. Let F c G be a higher rank lattice as in Theorem 1.1, H be a
connected Lie group, A c H be a closed subgroup so that H/A carries an H-invariant
probability measure mjj/A, and assume that H does not admit surjective homo-

morphisms a : H —* G with er (A) ç F. Suppose that there exists a homomor-

phism p: G —> H such that each of the simple factors G\ of G acts ergodically on

(H/A, niH/A)- Then for the T-action on (H/A, mu/a) one has

A*(///A, F) 9É iVAff(///A)(p(r))/p(F)
A(H/A, F) Aut(///A, F) CAff(///A)(p(F)).

Corollary 1.8. Let F c G be a higher rank lattice as in Theorem 1.1, H be a
connected semi-simple Lie group with trivial center, p : G <-^ H be an embedding and
let A a H be an irreducible lattice. Assume that either p is a proper embedding, i.e.

G ^ H, or that p : G —* H is an isomorphism but A is not abstractly isomorphic to a

subgroup ofunite index in F. Then the T-action on (H/A, mh/a) by left translations
is ergodic, irreducible and aperiodic (in fact mixing) and the orbit relation R#/A,r
has

a*(///a, F) 9é NAS{H/A)(p(r))/p(r).

This group contains the centralizer Ch(p(G)) as a normal subgroup of unite index

dividing |Out A| ¦ |Out T\.

Remark. Corollary 1.8 also allows to construct ergodic equivalence relations without

outer automorphisms. Indeed if a simple Lie group G ^ SL2(K) has no outer
automorphisms, then maximal lattices F in G have trivial Out F as well. Choosing
two non-commensurable maximal lattices F, A in such a G one obtains an equivalence

relation Rg/a,t without outer automorphisms. Similarly, one can find proper
embeddings G c H where G and H are simple higher rank Lie groups with Out G,

Out//, Ch(G) all being trivial. Then for any choice of maximal lattices F c G,

Ac//, the F-action on H/A gives R#/A,r without outer automorphisms.

All the examples discussed so far had the property that the original system (X, [i, F)
did not admit measurable F-equivariant quotients of the form (G/T', mc/v', T); and

therefore Theorem 1.1 allowed to conclude that

Out Rx,r A*(X, F) Aut*(X, F)/ F.

The following result analyzes what happens if this assumption is not satisfied.
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Theorem 1.9. Let F c G be a higher rank lattice as in Theorem 1.1 and let F-act on
(G/ F, niG/v) by left translations. Then for the corresponding orbit relation Rg/ r,r

[OutRG/r,r :A*(G/F,F)]=2
A(G/r, r) Aut(G/r, v) {1}

A*(G/r, r) Outr
OutR(G/r,r) (Z/2Z) x OutF.

More generally, for any n e N the diagonal left Y-action on the product space
(Gn/rn, mGn/rn) satisues

[OutR(G»/r»,r) : A*(G"/r", T)] n + \

A(G7rn,r)=Aut(G7rn,r) sn

A*(G"/r",r) sn x Outr
Out R(G«/r«,r) S«+i x Out F

where Sn denotes the permutation group on {I, ,n).
For the diagonal V-action on the innnite product {X, yu.) (G/ F, ma/r) the

index [Out R(x,r) : A*(X, F)] w innnite countable

A(X, F) Aut(X, F) 5"oo

A*(X,r) 5"oo xOutF
OutR(x,r) 5"co+i xOutF

denotes thefull permutation group on Z, anrf ^oo+i the permutation group
ofL U {/?£} to suggest that the embedding A*(X, F) c Out Rx,r corresponds to the

natural embedding S^ c »S'oo+i direct product with Out F.

Let R be an ergodic Ili-relation on a probability space {X, /x), and £ c X be a

measurable subset with fx{E) > 0. The restriction Rg:=Rn(£x £) of R to E is

a Ili-ergodic relation with respect to the normalized measure \.ie '¦= ß(E)~l ¦ \x\e-
Since Inn R acts transitively on subsets of the same size (Lemma 2.1) for any F c X
with ij.(F) ij.(E) the relation Rp on (F, fxp) is isomorphic to Re on (E, he)-
Hence given a II i-relation R, for every 0 < t < 1 there is a well defined, up to
isomorphism, ergodic II i -relation R( obtained from R by restriction to a subset of
measure t. (Realizing {X, yu.) as the unit interval [0, 1] one may think of Rt as the

restriction of R to the sub-interval [0, t]).
If R has an additional property that Rt ^ R^ for all 0 < t ^ s < 1, one says

that R has a trivial fundamental group. Orbit relations R Rx,r generated by
free, ergodic, irreducible m.p. actions of higher rank lattices F always have trivial
fundamental groups (cf. Gefter and Golodec [8]). Recent work [5] of Gaboriau gives
other classes of such relations.
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Regardless whether the fundamental group of R is trivial or not, all restricted
relations R( obtained from a given ergodic II i-relation R have the same outer
automorphism group: Out R( Out R (see Lemma 2.2). Hence

Theorem 1.10. Let F c G and (X, \i, F) be as in Theorem 1.2. ForO < t < 1 let Rt

denote the {isomorphism class of) equivalence relation obtained from R := Rx,r by

a restriction to a subset Et C X ofmeasure [i{Et) t. Then {R(}o<t<i is a family of
mutually non-isomorphic ergodic equivalence relations oftype II i with the same outer
automorphism group Out R( OutR^.r- In particular, there exist uncountably many
mutually non-isomorphic ergodic relations with trivial outer automorphism groups.

Remarks, (a) In [3], Theorems D(l)-(2), it is shown that for an ergodic action

(X, [i, F) of a lattice F in a simple higher rank Lie group G, there is a countable set

Mx,r C K so that for t e (0, 1) \ Mx,r the relation R( cannot be generated by a free
(mod 0) action of any group. Therefore Theorem 1.10 provides a variety of examples

of such exotic relations without outer automorphisms.

(b) In a recent work [11] Monod and Shalom develop a new type of "higher rank"
superrigidity theorems for products ofhyperbolic-like groups. Using this new tool and

the methods of the current paper Monod and Shalom construct uncountably many non
weakly equivalent relations R of type Hi with trivial Out R (see [11], Theorem 1.12).

Organization of the paper. Section 2 contains some general facts about II i -relations.
In Section 3 we discuss the Measure Equivalence point ofview which provides a

convenient framework for the study of Out Rx,r/&*(X, F). Special features of higher
rank lattices, especially superrigidity for cocycles, are used in Section 4 in a construction

of F-equivariant standard quotients n : {X, /x) —>¦ (G/ F, mo/r) associated to

every [T] e Out Rx,r \ A*(X, F), which provide the proof of Theorem 1.1. In Section

5 we recall some ergodic-theoretic applications of Ratner's theorem for actions

on homogeneous spaces. These results are used in Section 6 to assemble the standard

quotients for the proof of Theorem 1.2, and in Sections 7 and 8 to compute the outer
automorphism groups for the standard examples. Section 9 contains the proof of
Theorem 1.6.

2. Generalities

Let R be an ergodic Hi relation on anon-atomic probability space {X, /x). For readers

convenience we include the proof of the following standard fact

Lemma 2.1. For every measurable E, F ç X with [jl{E) [i{F) > 0 there exists

T g Inn R so that n(TEhF) 0.
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Proof. By [1], Theorem 1, there exists an action (X, [i, F) of some countable group
F so that R Rxx- Such an action is necessarily measure-preserving and ergodic.
For any measurable subsets A, B ç X let c{A, B) := supy \.i{yA n B). Ergodicity
implies that c(A, B) > 0 whenever /x(A) > 0and/x(5) > 0. Let£o := E, Fo := F
and define by induction on n > 1 measurable sets Fn,Fn ç X and elements yn G F

as follows: given En, Fn choose yn so that

lAynEnnFn)>c(En,Fn)/2

andlet^+i := En\y~lFn, Fn+i := Fn\ynEn. SetEœ := C\En, Fœ := C\Fn. We

have n-iEoo) iJ,(Fœ) because ß(En) ß(Fn) for all finite n. In fact iJ.(Eœ)
ß(Foo) 0- Indeed, otherwise one would have c{En, Fn) > c := c(Eœ, F^) > 0

for all n, contrary to the choice of yn at the stage where [i{En \ En+\) < c/2. Hence

E'n:= En\ En+\ and F'n := Fn \ Fn+\ constitute measurable partitions of £ and F
respectively. Defining T{x) to be yn ¦ x if x e E'n and T{x) x for x £ E, we get
the desired T e Inn R.

Given an ergodic II i-relation R on {X, /x), and a positive measure subset £çX
we denote by Re the restricted relation R n (£ x £) on (E, he), where [ie

Lemma 2.2. For a measurable set E ç X with [jl{E) > 0

Out RE Out R.

Proof. First observe that any T G Aut Re can be extended to a T G Aut R. To see this
choose some measurable partition X EUX\U- ¦ UX^sothatO < /x(X,) < ß(E);
and choose measurable subsets E\ ç E with fi(Ei) n.(Xj). By Lemma 2.1 there

exist Si,Ri g InnR so that SI(XI) E} and /??(Xf) T(E;). Define T by

T(x) R~^ o T o S;(x) for x g X, and T(x) T(x) for x g E to get a desired

T G Aut R.

This extension procedure is well defined on the level of outer classes. In other

words if T, S g Aut R are some extensions of some T, S g Aut Re, then [T] [S] g
Out Re iff [T] [S] g Out R. Indeed for /x-a.e. x & X choose y G E so that x ~ y
and observe that

T(x)~T(y)=T(y) and S(y) S(y) ~ S(x).

Hence T{x) ~ 5(x) for /x-a.e. x g X iff T(y) ~ ^(y) for yu.£-a.e. y & E.
Thus there is a well defined injective map Out Rg —>¦ Out R, which is easily

seen to be a homomorphism of groups. To verify its surjectivity, note that given any
T G Aut R there is an S G Inn R with S{T{E)) E. Thus V := S o T maps £ to

itself, and [T] [T'] g Out R appears as an extension of [T'Ie] g Out Re-
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For the rest of the section we consider a free (mod 0) ergodic m.p. action (X, [i, F)
of some countable group F, denoting by Rx,r the corresponding orbit relation.

Lemma 2.3 (Gefter [7], Lemmas 2.6, 3.2). Let {X, \.i, F) be a free m.p. ergodic
action of a countable group F.

(a) If F has Inunite Conjugacy Classes then Aut(X, F) —> A(X, F) is an isomor¬

phism.
(b) If F has the property that any r g Aut F with yr y on a unite index subgroup

y e To ç F has to be the identity, then

Ker(Aut*(X, F) -U- A*(X, F)) {x h> y ¦ x}yer F.

In particular, the conclusions of(a) and (b) holdfor any free ergodic action (X, [i, F)
ofan irreducible lattice F in a semi-simple Lie group G ^ SL2(M).

Proof, (a) Any T G Aut(X, F) n Inn Rx,r has the form T : x —>¦ £x ¦ x for some
measurable x *--* §x g F and satisfies T(y ¦ x) y ¦ T(x). Hence

y^x ¦ x y ¦ T(x) T(y ¦ x) Çy.xy ¦ x

which gives §y.x y^xy~l because the action is assumed to be free (mod 0).

Thus the distribution §*/z of §x on F is conjugation invariant, and therefore is
uniform on unite conjugacy classes of F, i.e. supported on e. Hence T(x) x and

Ker(Aut(X, F) -^ A(X, F)) is trivial.
(b) Any T g AutT(X, F) n Inn Rx,r satisfies

T{x)=^x-x, T{yx)=yx-T{x)

which gives è,y.x yxè,xy~x. For è, g F let E^ := {x g X \ è,x §}. Then

y Ej: EyTÇy-i. Observe that for § /f eF one has ß(Ec n Eçi) 0 because

the action is free (mod 0). Hence choosing Ço £ F with ß(E^0) > 0 we have
x

§o (equivalently §o~VT£o y) for all y in a unite index subgroup

Fo ç F. It follows from the assumption that yx ^o/^q1 f°r a^ y G T, so that

T: x h^ §o -x.
Finally, for an irreducible lattice F c G ^l SL2(M) the ICC is a standard fact

(easy for the group G itself and follows for F using Borel's density theorem), while
the condition for (b) follows from the Strong Rigidity Theorem.

Given T G Aut Rx,r define a measurable map ctj : F x X --* F by

T(yx)=aT(y,x)-T(x). (2.1)
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Note that aj{y, x) is well defined (mod 0) due to the freeness assumption on the

action. Furthermore, one easily verifies the cocycle property

oit(Y2Yi,x) =aT(y2,Yi ¦x)aT(yi,x)

for all y\, Y2 G F and /x-a.e. x g X. The cocycle aj : T x X —* F will be called
the rearrangement cocycle associated to T G Aut Rx,r- Rearrangement cocycles (as

opposed to general ones) have the following special property: for /x-a.e. x g X the

correspondence y G F i->- ar(y, x) g F is a permutation of F elements.

Two (general) cocycles a, ß : F x X —>¦ F are said to be cohomologous in F if
there exists a measurable map x *--* §x g F, such that

for all y G F and /x-a.e. x g X. We denote by [a]r the equivalence class of
all measurable cocycles cohomologous (in F) to a. Note the very special cocycle

c\ : FxX-> F given by ci(y, x) y, and for a general r G Aut F letcT : FxX->
F stand for the cocycle cx(y,x) yr.

Proposition 2.4. Let T, S in AutR^.r be relation automorphisms, [T], [S] in
Out Rx,r the corresponding classes, and let aj,cts'- T x X --* F denote the

associated rearrangement cocycles. Then

(a) aToS(y,x) aT(as(y, x), S(x)).
(b) aT cx 4» T G Aut(X, F).
(c) aT =cr 4» T G AutT(X, F).
(d) [aT]r [cr]r 4» [T] g A[t](X, F).

Proof. For T, S € Aut Rx,r compute

¦ x) T(as(y, x) ¦ S(x)) aT(as(y, x), S(x)) ¦ T(S(x)).

This proves (a). Statements (b) and (c) follow from the definitions.
Proof of (d). Any [T] g A^(X, F) can be represented by T A o / where

A g AutT(X, F) and / G Inn Rr is given by/:ih> §x"1 ¦ x. Then for all y G F

and /x-a.e. x g X

T(y ¦ x) A(£-.iy ¦ x) (^.xy)T ¦ A(x)

foT.i) V£ ¦ A^"1 ¦ x) f "Vk ¦ T(x)

where fx (§X)T G F. Hence

«r(y,x) f-xyTfx (2.2)

and [orlr [cr]r-
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On the other hand, assuming that the rearrangement cocycle ctj associated with
T G Aut Rr satisfies (2.2) for some r g Aut F and a measurable x *--* Çx g F, set

£x (çx)r and consider the map A : X --* X, defined by A(x) := Çx ¦ T(x). We
have

My ¦ x) Çy.x ¦ T{y ¦ x) ÇyxÇ.ly^x ¦ T{x)

yx -{l;x-T{x))=yx -A{x).

The pushforward measure A*/z is absolutely continuous with respect to \.i (recall that
F is countable) and F-invariant. Ergodicity of the action implies that A*/z yu., so

that A is invertible. Thus A g AutT(X, F), while the map / := A"1 o T is a measure

space automorphism. Since

£x ¦ J(x) Çx ¦ A-l(T(x)) A~\U ¦ T(x)) x

the map J{x) Ç~l ¦ x is an inner automorphism.

3. Measure Equivalence point of view

The following notion of Measure Equivalence Coupling, introduced by Gromov in

[9], 0.5.E, and considered in [2] and [3] by the author, provides a very convenient

point of view on orbit relation automorphisms.

Definition. A Measure Equivalence Coupling of two (infinite) countable groups F
and A is an (infinite) Lebesgue measure space (Q,,m) with two commuting, free,

measure preserving actions of F and A such that each of the actions has a finite
measure fundamental domain.

We shall use left and right notations for the F and A actions

y : co i—>¦ y co, X: co \-> coX

in order to emphasize that the actions commute. For our current purposes we shall only
need selfME-couplings (Q, m) of F, i.e. Measure Equivalence Couplings of F with
itself. Given such a coupling (Q, m) let X, Y c Œ be some fundamental domains
for the right and the left F-actions on (Ç2, m) respectively. Define the associated

measurable maps

by requiring that for a.e. x G X (resp. y G Y) one has yx G XX(y, x) (resp.

yy £ P(}7> y)Y)- The left F-action on £2/F (resp. the right F-action on F\!T2),

always denoted by a dot "¦", can be identified with the measure preserving F-action
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on X with the finite Lebesgue measure nix m\x (resp. on Y with my m\x)
defined by

y -x yxX(y,x)~\ y ¦ y p(y,y)~lyy.
With respect to these left and right F-actions Xx and py become measurable left and

right cocycles respectively, namely satisfy:

KY\Y2,x) =Hy\, Yi ¦ x)X(y2,x), p{y,Y\Yi) p(y, Yi)p(y • Y\,Yi)-

We shall say that a self ME-coupling (Ç2, m) is ergodic if the F-action on {X, m\x)
is ergodic, which is equivalent to the ergodicity of the F x F-action on the infinite
space (Œ, m) (see [2], Lemma 2.2).

With the fundamental domain X c Œ for Q/F being fixed, all fundamental
domains X' c Œ for Ç2/ F are in one-to-one correspondence with measurable maps

i k ^ e F: given a fundamental domain X' one sets §x y, if xy G X', while
given a measurable x *--* §x g F one takes

X' := {xÇx | x g X}.

The left F-actions on X' and X are naturally identified via 9 : X —> X', 9 : x \-> x§x,
and the cocycles Xx : T x X —* F, Xx> : F x X' --* F are conjugate

)|?x. (3.1)

Similar statements hold for the right actions, their fundamental domains and the

associated cocycles.
If X c Œ is a fundamental domain for both left and right F-actions, we shall say

that X is a two-sided fundamental domain.

Lemma 3.1 (see [3], Theorem 3.3). Let (Q,,m) be an ergodic self ME-coupling
of some group F, and let X,Y c &. be right and left fundamental domains for
Q/ F and F\Q respectively. Then Q admits a two-sided fundamental domain Z iff
m(X) =m(Y).

Proof. Obviously all left fundamental domains have the same m-measure and the

same holds for right fundamental domains. Thus the existence of a two-sided
fundamental domain Z implies m(X) m(Z) m(Y). Now assume that m(X) m(Y).
It is well known that ergodic m.p. actions on finite or infinite Lebesgue spaces the full
group acts transitively on sets of the same measure (Lemma 2.1 for the finite measure
case). Using the ergodicity of the F x F-action on (Q, m) the condition m (X) m (Y)
implies that there exist measurable partitions X |J; X-hj, Y |J; 7, j, and

elements y[ G F and y'j G F, so that YtJ y{ 1X!>jyi'. Then

and |J Yl'YtJ

ij
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give the same set Z c Œ. Being formed by piecewise right F-translates ofX Q/F,
the set Z is a right fundamental domain for Q/ F; and at the same time being formed
by piecewise left F-translates of Y F\!3, the same set Z is a left fundamental
domain for F\Q.

Now consider a free m.p. action (X, [i, F) of some countable group F and let
Rx,r be the corresponding orbit relation. Given T g Aut Rx,r consider the infinite
measure space (Q ,m) :=(Ixr,/ix«r) with two commuting F-actions, as usual
written from the left and from the right:

yi(x,y) := (yi ¦x,aT(yi,x)y), (x, y)y2 := (x, yy2)

where aj : F x X —>¦ F is the rearrangement cocycle associated with T g Aut Rx,r-
The space (Q, m) with thus defined F x F-actions forms an ergodic self ME-coupling
of F, because X := X x {er} C Œ is a two-sided fundamental domain. The fact
that X is a right fundamental domain is obvious. To see that X is a left fundamental
domain recall that for a.e. x g X the map y \-> aj{y, x) is a bijection of F, so for
m-a.e. (x, y{) there is a unique y G F with ar(/» x) y^1 which gives

y(x, y\) (y ¦ x, aT{y, x)y\) e X X x {e}.

Also observe that

(y,x) ar(y,x). (3.2)

Lemma 3.2. Le? (Œ, m) (XxF, fxxmr)bea selfME-coupling corresponding to
T g AutRx,r- There is a one-to-one correspondence between two-sidedfundamental
domains X' c

7" G Aut Rx,r with [7"] [T] G Out Rx,r (3.3)

where X' {(x, §x) | x g X} corresponds toT' : x \-> Ç~l ¦ T{x). Moreover

Proof Suppose that I'cfl Ixrisa two-sided fundamental domain. The

fact that both X X x {e} and X' are right fundamental domains implies that X' is

of the form {(x,Çx) \ x G X) for some measurable § : X --* F. In order to verify
(3.3) for the map V : X -> X, V : x ^ ^~x ¦ T(x), it suffices to check that V is

one-to-one (mod 0), the relations between the cocycles aTi, k^,, k^ and ctj being
straightforward.

Assume that T'{x) T'(y) which means %~l ¦ T(x) Ç~l ¦ T(y). Then T(x)
and T(y) are on the same F-orbit in X, and so are x and y, i.e. y y ¦ x for some

y G F. Thus

1 i ¦ x) I?"V(/, ^) ¦ T(x)
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which means that §y.x aj(y, x)%x. In Q we have

y(x, Çx) (y ¦ x, aT(y, x)Çx) (y ¦ x, ÇY.X)

with both (x, %x) and (y -x, %y.x) in X'. Since X' is atwo-sided fundamental domain,
in particular a left fundamental domain, it follows that y e and x y. Hence

T is indeed a measure space automorphism of (X, yu.) and the rest of its properties
follow automatically. The fact that T as in (3.3) gives rise to a two-sided fundamental

domain X' is proved by back tracking the above argument.

Next consider an equivariant quotient map 4>: (Q,m) --* (Qo,mo) of selfME-
couplings of F, i.e. a measurable map $: ß^ßo such that

<î>*m mo and Q{yio>y2) Y\ ® {o>) Y2 ¦

Observe that the preimage X := 4> l(Xo) (resp. Y := 4> l(Yo)) of any right
fundamental domain Xo c ^o (resp. any left fundamental domain Yq c ^o) is a right
(resp. left) fundamental domain in Q. If X 4»"1 (Xo) we shall say that X c ß and

Xo C ^o are <£•-compatible. Note also that if (Œ, m) is an ergodic coupling then so

is (Qq, mo), and if (Q, m) admits a two-sided fundamental domain then

mo(Xo) m{X) m{Y) mo(Yo)

so that (Œo, mo) also admits a two-sided fundamental domain Zo, and taking Z :=
4»"1 (Zo) we obtain a two-sidedfundamental domain for (Œ, m) which is 4>-compat-
ible with Zo c ^o-

Observe that for ^-compatible right fundamental domains X c Œ and Xo C ^o
one has

Realizing the natural left F-action on (Q, m)/ F by the F-action

y : x h^ y ¦ x yxÀx(y, x)"1

on a ^-compatible fundamental domain I c ß, one obtains a F-equivariant quo-

tient map X —> Xo which is a concrete realization of the left F-equivariant map

(Q,m)/r --* (Ç2o,mo)/r defined by 4>. This discussion is summarized by the

following

Proposition 3.3. Let {X, \.i, F) be a free, ergodic, measure preserving action, T e

Aut Rx,r andlet(Q[T], m) be the corresponding selfME-coupling of V. Assume that
(Ç2[T], m) has an equivariant quotient ME-coupling 4> : (^[r]» m) -^ (^o. mo). Fix
a two sided fundamental domain Xo C Œo, denote by {Xo, Mo, F) the left Y-action
on (Xo, mo) (Œo, mo)IF, and let

n: (X,m,F)
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denote the Y'-equivariant quotient map induced by 4>. Then there exists a T e

Aut Rx,r with [T] [f] e Out Rx,r so that

cif(y,x) Xxo{y,7t(x)).

4. Superrigidity and standard quotients

In this section we specialize to actions of irreducible lattices F in higher rank semi-

simple Lie groups G.

Proposition 4.1 (see [2], Theorem 4.1). Let G be a semi-simple, connected, center-
free, real Lie group without non-trivial compact factors and with rkR(G) > 2. Let
Y c G be an irreducible lattice and (X, /z, F) be a measure preserving, ergodic,
irreducible, essentially free V-action. Given any T e Aut Rx,r let (Œ[r], m) be the

associated selfME-coupling as in Section 3. Then there exists a well deoned class

[r] g Out G so that given any representative r o/[r] there exists a measurable map
4> : Q[T] --* G deoned uniquely (mod 0) so that

^(ncoyi) Y\$(t»)Y2 (y\, n e n
and one of the following two alternatives holds:

(a) either <î>*m coincides with the Haar measure mo on G, normalized so that V

has covolume one, or
(b) 4>*m is an atomic measure of the form

f=l yer

where {gt}\ C G are such that {giT, g^F} is a single unite x(T)-orbit on
GIF. In particular, F has a subgroup Y\ of index k so that r(Fi) has index k
in giFgj"1, andx(Y) and Y are commensurable.

If the Y-action on (X, yu.) is aperiodic, then either (a) holds or in alternative (b) we
have k 1 which means that

(b;) 4>*m coincides with the counting measure mp' on Y' r(F) c G where

r(F) gYg~l for some g G G.

This proposition is essentially Theorem 4.1 in [2], the proof of which is based

on Zimmer's superrigidity for cocycles and Ratner's theorem. In [2] the statement
is formulated in a slightly different form and only for lattices in higher rank simple
Lie groups. Since we need some details of the proof to be used later, we include the

main arguments here.
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Proof. Fix a T G Aut Rx,r representing [T] and consider the rearrangement cocycle

ar : T x X —* F c G as a G-valued cocycle. This cocycle is Zariski dense in G

(this is a form of Borel's density theorem, see [17], p. 99, or [2], Lemma 4.2). Thus
the assumption that F is a higher rank lattice with an irreducible action on (X, yu.)

allows to apply Zimmer's superrigidity for measurable cocycles theorem [17] (in [2],
Theorem 4.1, we did not use irreducibility of the action and therefore had to restrict
the discussion to lattices in higher rank simple groups G). Hence there exists a Borel

map <fi: X —* G and a homomorphism r:F^G,so that

aT{y,x) =4>{y ¦x)-lYx4>(x) (4.1)

for y G F and /x-a.e. x G X. By Margulis' superrigidity r extends to a G-automor-
phism and we denote by r g Aut G this extension. Defining the map

by
<î>(x,y):=4>(x)y (4.2)

one verifies

x,aT(yi,x)yy2) 4>(Yi • x)aT(yi, x)yy2

y{<S>(x,y)y2.

Choose F c G a Borel fundamental domain for G/ F and let X' := <&

Hence X' c £2[t] is afundamental domain for Q[t]/ F so that m(X') 1. This
implies that the pushforward measure mq := <î>*monGhasmo(.F) 1 (in particular mo
is finite on compact sets) while the restriction itiqIf defines a regular Borel probability
measure yu-o on G/ F, which is invariant and ergodic for the left r (F)-action.

An application of Ratner's theorem (see [2], Lemma4.6, with an easy modification
needed to handle semi-simple rather simple Lie groups) implies that yu-o is either (i)
yu-o m gi y - the normalized Haar measure me/ r, or (ii) is an atomic measure.

In case (i) the map 4> defined in (4.2) clearly maps m on Q[t] to the Haar measure

mo as in Proposition 4.1 (a). The uniqueness statements in Proposition 4.1 follow
from [2], Theorem 4.1.

In case (ii) the atomic r (F)-invariant measure yu-o on G/ F has to be concentrated

on a single finite r(F)-orbit {giF, g^T) with equal weights l/k. Let Fi be the

stabilizer of giF g G/F. Then [F : Fi] k and r(Fi)giF giF i.e. r(Fi) has

indexé in giFgj"1.
The preimage Q\ 4>~1(giF) is Fi x F-invariant set which gives rise to a

measurable Fi-invariant subset X\ of X with [i{X\) l/k. If F-action on {X, /x)
is aperiodic, then necessarily k 1 and mo J2yer &gy an<^ r(^) g^g"1.
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Remark. The uniqueness of 4> [t] in particular implies that the rearrangement cocycle

or can be written in the form (4.1) with the measurable map 4>: X --* G being
uniquely defined (mod 0) as soon as a representative r g Aut G of [r] g Out G is

chosen. Hereafter this unique "straightening" map 4> will be denoted by 4>t,x-

Theorem 4.2 (Standard Quotients). Let G be a semi-simple, connected, center-free,
real Lie group without non-trivial compact factors and with rkvSG) > 2; Y c G

an irreducible lattice and (X, [i, Y) be a measure preserving, ergodic, irreducible,
essentially free Y-action. Then every [T] g Out Rx,r demies a unique class [r] g

Out G such that given any representative r g Aut G of [r] there is a measurable

map n : X —> G/Y, denned uniquely (mod 0) and satisfying

n(y -x) r(y) -n(x)

for [i-a.e. x g X and all y G Y. There are two alternatives.
Either the following equivalent conditions hold:

(al) the distribution of 4>t,x(x) on G is absolutely continuous with respect to the

Haar measure me,
(a2) 7r*/i. niGj r - the G-invariant probability measure on G/ Y,

(a3) there exists f G Aut Rx,r with [f] [T] andn(x) 4>ft(x)Y;
or the following equivalent conditions hold:

(bl) the distribution of4>T,r(x) on G is purely atomic,

(b2) 7r*/i. k~l Ya sg;r where {glY,..., gkY} is a unite x{Y)-orbit on G/ Y, Y

contains a subgroup Y\ of index k so that r{Y\) is a subgroup of index k in
g\Yg^1; and X\ it l{{g\Y}) is a Y\-ergodic components of (X, yu.) with

p(Xi) \/k;
(b3) there exists f g Aut Rx,r with [f] [T] and

(j)^, t(x) gi for [1-a.e.x g X\ c X.

If Y-action on (X, /x) is aperiodic then conditions (al)-(a3) above are equivalent to

(a4) [T] i A*(X, Y),

while their alternatives (bl)-(b3) are equivalent to

(b4) [T] G A*(X, r);
moreover in (b2)-(b3) one has k 1 and these conditions take the following form:

(b2;) n^/j, 8gr where g G G satisoes t(F) gYg~l;
(b3') there exists f g Aut Rx,r with [f] [T] and

4>f x{x) g for \i-a.e. x g X.



Vol. 80 (2005) Outer automorphism groups of some ergodic equivalence relations 177

Proof. Consider the self ME-coupling (Q[t], m) with the corresponding outer class

[r] g Out G. Given a choice r g Aut G of [r] let

$: Q.[T] -> G

be the t(F) x F-equivariant map as in Proposition 4.1. Then 4> uniquely defines a

measurable map

tt: (X,M,r) (^[r],m)/r^G/r, n(yx) yr -nix).

Let us show that the alternatives (a) and (b) in Proposition 4.1 yield mutually exclusive
conditions (al)-(a3) and (bl)-(b3) respectively.

In case (a) where <£>*m ma, (al)-(a3) follow from Proposition 3.3 and the

construction (4.2) of $.
Case (b): $*m k~l Y!ï=\ Jlyer <W where {giF, gjT} is a single t(F)-

orbit onG/r. Condition (bl) is clearly satisfied. Let

H {y e r | yTgfr gl-n and xt Tr-^te-r}).

where 7r : X —>¦ {giT, g^F} is the F-equivariant map above. Then conjugate

groups F, have index HnF, and F permutes the disjoint sets X, (andso/x(X,) l/k)
while each X\ is F,-invariant for i I, ,k. Moreover F, acts ergodically on Xi
because Rxt,rt Rx,r H (X; x X;). This proves (b2).

The set Xq {gi, ¦ ¦ ¦, gk) forms a fundamental domain for the r(F) x F-action

on G. The corresponding cocycle Xx0 satisfies

^xoirugi) g\lYlg\ (yi e Fi).

Applying Proposition 3.3 we obtain T G Aut Rx,r with [T] [T] g Out Rx,r and

af(y,x)=XXo(y,n(x))=g-lYXgi (4.3)

for all y G Fi and a.e. x g Xx ^({giF}) ^({gi}). We deduce that

4>f,x(x) gi for x G Xi, proving (b3).

If the F-action (X, yu.) is aperiodic, one has k 1 so that (b2), (b3) take the form
of (b2'); (b3'). Condition (b3) follows from (4.3) and Proposition 2.4 (c). The latter
also explains why (b4) is incompatible with (al)-(a3).

Proof of Theorem 1.1. Fort g Aut GtheF-actiononG/r~1(F) is isomorphic to the

r-twisted F-actionon G/F, both with the Haar measure. Since {X, \.i, F) is assumed

not to have these actions among its measurable quotients, any T G AutR^.r fails
condition (a2) in Theorem 4.2, while satisfies the alternatives (bl-4), which means

that|T] G A*(X, F). D
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5. Some applications of Ratner's Theorem

In this section we recall some applications of Ratner's Theorem (see [12] and references

therein). Note that in these results there are no restrictions on the rank of the

semi-simple group G. In fact the results remain true whenever G is a connected Lie

group generated by Ad -unipotent elements and F c G is a closed subgroup so that

GIF carries a G-invariant probability measure.

Theorem 5.1 (cf. Ratner, [12], Theorem E2). Let F be an irreducible lattice in a

semi-simple connected real Lie group G, A and A' be lattices in some connected

Lie groups H and H', p: G —* H and p' : G —* H' be continuous homomorphisms
such that the F-actions

y : IiA *--* p(y)hA, y : h'A' *--* p'(y)h'A'

on {H/A,mH/h) and {H'/A', niH'/A') are ergodic. Assume that there exists a
measurable T-equivariant quotient map

n: (H/A,mH/A) —? (H'/A',mH//A/).

Then there exists at e H' and a surjective continuous homomorphism a : H —> H'
such that

(i) a (A) is a unite index subgroup ofA',

(ii) nQiA) ta{h)A' fora.e. h e H,

(iii) a op(y) tp'{y)t~x for y G F.

Ifit is one-to-one then a : H —> H'is an isomorphism and a{A) A'. In particular,
for the above V-action on (H/A, m h/a)

mH/A, F) NmH/A)(ß(T)).

In [15] Witte considers amore general question of a classification of all measurable

equivariant quotients (H/A, mh/a) —? (Y, v) showing that (Y, v) has an algebraic
description (slightly more general than H'/A' as above). However Theorem 5.1

suffices for our purposes. It is deduced from the more general Theorem 5.2 below
by considering the measure v on H/A x H'/A' obtained by the lift oîniH/A to the

graph of n: H/A -> H'/A'.

Theorem 5.2 (cf. Ratner [12], Theorem E3). Let F c G, A c H, A' c H',
p: G —> H and p' : G —> H' be as in Theorem 5.1. Let v be a probability measure

on H/A x H'/A' which projects onto m h/a andmHi/Ai, and is invariant and ergodic
for the diagonal V-action

y: (hA,h'A') ^ (p(y)hA, p'(y)h'A').
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Then there exist closed normal subgroups N < H, N' < H', an element t g H'/N'
and a continuous isomorphism o\ from H\ := H/N to H[ := H'/N', so that

(i) Ai := AN c Hi and A[ := AW c H[ are lattices;
(ii) there are unite index subgroups A\ ç Ai, A[ ç A[ so that cri(Ai) Aj,-

(iii) ai op(y) tp'(y)t l for y G F;
(iv) the measure v is N x N'-invariant and its projection v\ to H\/K\ x H[/A[

can be obtained from the lift nif ofm^/Ai to the graph ofHi/Ai —> H^/A^
where f(tiAi) t&i(h) A2, byvi p^nif where p is a unite-to-one projection

(H1/A1) x (H[/A[) -^ (H1/A1) x (H[/A[).

Theorem E3 in [ 12] and its corollary E2 were proved by M. Ratner as an application
of the main theorem ([12], Theorem 1). In all these results the acting group is assumed

to be generated by Ad -unipotent elements. In order to deduce the results for actions

of lattices F c G, needed for our purposes, one uses the suspension construction

replacing the F-invariant measure v on H/A x H'/A' by the G-invariant measure v

on G xr H/A x H'/A' and applying Ratner's classification of invariant measures

([12], Theorem 1) to the action of the semi-simple group G which is generated by
Ad-unipotents. The reader is referred to the paper [13] of Shah (Corollary 1.4) or
Witte ([15], proof of Corollary 5.8) for the precise argument.

6. Proofs of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2. Let F c G and (X, \.i, F) be as in Theorem 1.2, and let n :=
[OutRx.r : A*(X, F)] e {1,2, 00}. If n 1 there is nothing to prove. If
1 < n < 00 set To Id and choose representatives 7} G Aut Rx,r, \ < i < n, for
the cosets A*(X, F)\Out Rx,r- In other words choose 7} so that for 0 < i ^ j < n

we have

Since [Tt] £ A*(X, F) for 1 < i < n, by Theorem 4.2 (a) there are x\ G Aut G and

measurable maps ni: X —> G/T satisfying

(m)*ß mG/r, m(y •*) yXl -ti\{x).

It remains to prove that the map

n-\

1



180 A. Furman CMH

takes ß onto the product measure mGn-\/ r«-i YY;=i mG/r- We shall prove by
induction on unite k in the range 1 < k < n that the map tt^(jc) := (tti(jc), tt^(x))
satisfies

(J) (6.1)

(Note that this is sufficient even if n oo because the infinite product measure
is determined by its values on finite cylinder sets). The case k 1 is covered by
Theorem 4.2 (a2). Assuming (6.1) for k — 1 we apply Theorem 5.2 to

H:=Gk~l A:=Yk-1 p := n x ¦ ¦ ¦ x rk_i
#' := G A' := T p' := rfe

and the probability measure v := tt^/x on ///A x H'/A' Gk/Tk. By the

induction hypothesis v projects onto nin/A in the first factor, and as [7^] ^ A*(X, F),
v projects onto mH//A/ in the second factor. If N H Gk~l then necessarily
N' H' G, so that

v mH/A x mHi/Ai mGk/rk

proving the induction step.

It remains to show that the other alternative, namely ./V < Gk~l and N' <G being

proper normal subgroups, cannot occur. By Theorem 5.2 (i) Ai FA^' c G/N'
forms a lattice in G/N' which is possible only if N' {e} because F c Gis
irreducible. Thus N < Gk~l is such that Gk~l/N G and F^"1^ forms a lattice in
Qk-\/N ^ q This means that for some j G {1,..., k - 1}

N {(gl, a_!) G Gk~l \gj=e}
gk-i)N) =a(gj)

where a G Aut G is such that for some t G G, ct otj (g) ttk{g)t l and ct (A) A'
for some finite index subgroups A, A' ç F. In this case the distribution vi of the

pairs (jtj(x), n/c(x)) on G/T x G/ F is a projection under the finite-to-one map

G/A x G/A' —> G/F xG/F

of the measure nif which is a lift ofmc/A to the graph of

By Theorem 4.2 (a3) there exist T) and î\ g Aut Rx,r with [T>] [T,], [7\] [Tk]
so that for i j,k the rearrangement cocycles

a\ := «f.. : F x X
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satisfy ctf,-(y,x) <$>\(y ¦ x)~lyXl4>i(x) with n;(x) 0,-(x)F. The structure of
the distribution vi of (ttj(x), tt^(x)) described above implies that the distribution of
(4>j(x)a) 1(f>k(x) on G is purely atomic. Let S := 7\ o t~l g AutR^.r and let
a' G Aut G and & 4>s,a' '¦ X -> G be such that

as(y,x) f{y -x) lY°'f(x).

Applying Proposition 2.4 (a) to 7\ S o T) we obtain that for all y G F and /x-a.e.

x gX

x) lytk(pk(x) akiy, x) as(aj(y, x), f>(x))

y,x) ¦ tj{x))-laj{y,x)a' ^{tj{x))

yx))~1(4>j(yx)-iy^ 4>j(x))a'f(fj(x))

(4>j(yx)a'f(tj(yx)))lya'oxl(4>j(x)a'f(tj(x))).

Replacing a' by a G Aut G (so that r^ a o r/) and changing i/r 0^ ff/ to 0^
accordingly, we deduce that

4>k{x)=4>](x)a4>s,o{Tj{x))

Since the distribution of (4>j(x)a) 1<pk(x) is purely atomic, it follows from Theorem

4.2 (b) that [S] g A*(X, V) and

[S] [fk o f-1] [^[T;]-1 G A*(X,

contrary to the choice of [7^]-s. Hence the induction step is verified and the proof of
Theorem 1.2 is completed.

Proof of Corollary 1.3. Suppose that [OutRx,r : A*(X, T)] > n > 1. Theorem 1.2

provides a F-equivariant quotient map

tt: (x./i.n -^ (G"-1/r"-1,fflG,-i/r,-i,r)
where in the righthand side F acts diagonally in each of the factors (G/ r,mc/r>rr')-
For diagonal actions the entropy is additive, so for every y G F one has

h(X,y)>/n-\
J2h(G/r,mG/r, yT0 {n - 1) ¦ x(Ady)

which gives (1.1).
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In the context of smooth actions of F on a compact d-manifold X another

application of superrigidity for cocycles allows to express the entropies h(X, [i, y) of
elements y G F via eigenvalues of d-dimensional G-representations. More precisely,
(see Furstenberg [4], Theorem 8.3, or Zimmer [17], 9.4.15) either h(X, [i, y) 0

for all y G F, or h(X, \.i, y) x(p(y)), Y <= I\ for some representation p: G —>

In particular one has

fh{X,ji,y) fx(p(y)) ,,_,.ml < max ml (6-2)
V /(Ad y) Aimp<d Y /(Ad/)

Let us point out that in the above cited references the F-action on X and the measure

[i were assumed to be C2-smooth, in order to apply Pesin's formula. However for
the inequality (6.2) one only needs the upper bound

h(X,ß,y)< max x(p(YÏ), /^Fdim p<d

which, being based on Margulis-Ruelle inequality, holds under C1-assumption on
the action and does not require any regularity assumptions on the measure \.i.

Using Borel's density theorem one may extend the inf in (6.2) from y G F to

g G G, obtaining the claimed estimate

[Out Rx,r : A*(X, F)] < 1 + WG{d).

For a given G the function Wq (d) can be computed explicitly in terms of the weights
of irreducible representations, but here let us confine the discussion to a general
estimate Wo(d) < d2/8, suggested to me by Dave Witte, whom I would like to
thank. For k > 2 let a^ denote the (unique irreducible representation a^ of SL2 (K)
in dimension^. If /«denotes the element diag(e, e~l) G SL2(K), then the eigenvalues
of ok(h) are {ek+1~2i \ i 1, k} so that

/(#))= ^ (fe + 1 - 20 < fc2/4-

i<k/2

Given a d-dimensional G-representation p choose a subgroup SL2(K) ~ Go C G,
and let g G G correspond to h g Go above. The restriction p\c0 of p to Go splits as

a direct sum of irreducible Go-representations a^ with ^d; d. Thus

At the same time / (Ad g (g)) > X (Ad sl2(R) W) 2, which gives

WG(d) < d2ß.
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7. Standard examples without G/ T quotients

In this section we prove 1.4-1.8 applying Theorem 1.1.

Proof of Theorem 1.4. Let us first verify the ergodicity and aperiodicity of the
Inaction on Tw. Let / G L2(TW) h> / g 12(ZN) denote the Fourier transform. For

A g SLjv(Z) one has / o A A1 f. Therefore if / G L2(TW) is an invariant vector
for a subgroup A c SLjv(Z) then / g £2(Z,N) is a A'-invariant vector, and / is

supported on finite A'-orbits on ZN. Thus if F fails to act ergodically on Tw, then

p (F)' has a non-trivial finite orbit on Zw, and for some finite index subgroup F" ç F

there is a non-trivial fixed vector for p(F')f in Zw c Rw. Since p: G —> SLjv(R)
is rational, Borel's density theorem implies that all of p(G)' c SL#(R) has a non-
trivial fixed vector, and since p(G) is totally reducible p (G) also has non-trivial fixed
vectors contrary to the assumption. Thus F acts ergodically on Tw, and since the

arguments apply to any finite index subgroup of F, this action is aperiodic.
The F-action on Tw can be assumed to be free. Indeed SLw(Z) acts freely

(mod 0) on Tw and so does p(F) F.
Next we claim that the system (Tw, F) does not have (AdG/F', AdF) as a

measurable quotient. In the case of F c SL„(Z) acting on T", n > 2, this is easily
seen from the entropy comparison: for y G SL„(Z) with eigenvalues k\, ,kn one
has

A(T", y) J2l°Z+ 1^1' Ä(AdG/r', y)

where F' is any lattice in Ad G PSL„(R). Since | det y | 1, i.e. Yl l°g l^i I 05

one has a strict inequality h(Tn, y) < h(Ad G/ F', y) as soon as y has at least one

eigenvalue off the unit circle. For the general case we resort to a more complicated
argument described below.

Now Theorem 1.1 (or rather its simple modification needed to handle finite center)
gives

Out FV>r A*(TW, F) Aut*(Tw, F)/ F.

Evidently any a e GLjv(Z) which normalizes p(F) gives rise to the map Ta

ct(x) of Tw which lies in Aut*(Tw, F).

Claim 7.1. The correspondence a —> Ta is an isomorphism

The correspondence a —>¦ Ta is clearly a monomorphism of groups. To show
its surjectivity consider a general T G AutT(Tw, F) and let v denote the lift of the

Lebesgue probability measure mTw on Tw to the graph of T. Thus v is a probability
measure on Tw x Tw (RN x RN)/(ZN x Zw) which is invariant and ergodic for
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the (p xpot)(F)-actiony : (x,y) *--* (p(y)(x), p(yr)(y)). Witte's Corollary 5.8 in

[15] (based on Ratner's theorem) allows to conclude that v is a homogeneous measure
for some closed subgroup

M ç (p x p o t)(r) x (MN x MN).

The connected component Mq of the identity of M can be viewed as a subgroup of
MwxIRw. ThefactthatvisaliftofmTwtoagraphofam.p.bijectionr: Tw -> Tw,
and the fact that IRW is connected while Zw is discrete, leads to the conclusion
that Mq c Kw x Mw projects onto M.N in both factors in a one-to-one fashion.
Hence Mq {(x, o(x)) | x g Mw} where ct g AutMw which preserves Zw, i.e.

a G GL#(Z), and T has the form: T(x) a (x) + f where t G Tw is such that

a o p(y)(x) + t p(yT)(a(x) + t).

The latter means that t is p(F)-fixed and ctp(/)ct~1 p(yx). An argument similar
to the one for aperiodicity of the action (based on the assumption that p{G) has no
non-trivial fixed vectors), implies that t has to be trivial, so that T is of the form Ta

where a G A^GLw(Z)(p(r)). The claim is proved.
It remains to show that Tw does not have Ad G/ V as a measurable F-equivariant

quotient. It follows from Witte's Corollary 5.8 ([15]) that measurable F-equivariant
quotients of Tw RN/ZN have the form ^T\IRW/A where ZN ç A ç RN is a

closed F-invariant subgroup and K is a closed subgroup of Aff (IRW/A) centralizing
F; moreover K is acting non-ergodically on IRW/A. The latter space can be identified
with a quotient torus T", n < N, on which F still acts by automorphisms, so that K
becomes a subgroup of GL„(Z) x T". We claim that the F-action on K\Tn cannot
be measurably isomorphic to the F-action on Ad G/ F' because the former cannot
be extended to a G-action. In fact the F-action on K\Tn cannot be extended to a

measurable action of the smaller group - the commensurator

A := CommG(F) {g g G \ [F : g^Tg n F] < ex)}

which is a dense subgroup in G (this follows from Margulis' arithmeticity results

[10]). Indeed, let g i->- Tg, g g à, denote a hypothetical extension of the F-action

on K\Tn to some measure-preserving A-action. For any g G A there are finite index
subgroups Fi, F2 ç F so that rg : y i->- gyg~l is an isomorphism Fi --* F2. Thus

Tg satisfies Tg(y ¦ x) xg{y) ¦ Tg(x) for a.e. x g K\Tn and all y G Fi. Arguing as

in the proof of Claim 7.1 one shows that such Tg has to have an "algebraic" form, i.e.

to be induced by a linear map p(g) G SL„(R) which has to preserve the lattice Z".
The fact that the embedding F —>¦ SL„ (Z) cannot be extended to the commensurator
A z> F gives the required contradiction.

Proof of Theorem 1.5. By Margulis' Normal Subgroup Theorem ([10], (4.10)) the

homomorphism p : F —>¦ K is actually an embedding (recall that G and hence F
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are assumed to be center free). Thus without loss of generality we can assume

that the proper subgroup L c K does not contain non-trivial normal factors of K
(otherwise dividing by these factors we still remain in the same setup). This means
that the /iT-action k\\ kL --* k\kL is free (mod 0) and so is the ergodic F-action

{KIL, niK/L, F). This F-action is aperiodic: being connected K admits no proper
closed subgroups of finite index, and therefore any subgroup Fi c F of finite index
has a dense image p(T\) in K and acts ergodically on (K, mg) as well as on its

quotient (K/L, ttik/l)- Furthermore, such an action is irreducible - see Zimmer
[16], Proposition 2.4. Clearly the discrete spectrum F-action on K/L cannot have

equivarient quotients of the form G/ F. Hence Theorem 1.1 gives

In Theorem 1.5 K/L is a homogeneous space (recall that being connected K has

to be a Lie group). However, Theorem 1.7 (or Ratner's theorem, in general) does

not apply to this situation because the acting group is not generated by Ad -unipotent
elements. Yet the following general result describing Aat*(K/L, F) can easily be

obtained by direct methods.

Proposition 7.2. Let K be a compact group, F c K a dense subgroup and L ç K
a closed subgroup. Then the left V-action on (K/L, ttik/l) is ergodic and

Aut(K/L,T) NK(L)/L

Remark. In the particular case of L {e} the first assertion, i.e. the isomorphism
Aut(K, F) K, is easy seen as follows. Any T G Aut(K, mg) can be written as

T(k) kt^1 where k i->- tk G K is a measurable map. Then T(y ¦ k) y ¦ T(k)
translates into an a.e. identity tv.k tk. Since F acts ergodically on (K, mg) the

map k *--* tk is a.e. a constant t G K, i.e. T(k) kt. The correspondence T G

Aat(K, F) *--* t G K is easily seen to be an isomorphism of groups.

Proof ofProposition 7.2. Given T G Autr (K/L, F) let v be the lift oîniK/L to the

graph of T on K/L x K/L, and let

R:={(kl,k2) &K xK | (Jki,Jk2)*v v}.

R ç K x K forms a closed (hence compact) group, containing {(y, yx) \ y G F}.
The projections p; (R) of R to K are closed and contain F. Hence R projects onto K
in both coordinates. We claim that

Ri := {k G K | (jfe, e) G R}, R2 := {k g K \ (e, k) G R}
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are closed normal subgroups in K. Indeed, for r\ g R\ and k e K there exists a

k2 G K so that (k, k2) G R, and

(jfc, k2yl{n, e)(k, k2) {k~lnk, e)&R

shows that k~lr\k G R\. Thus R\ < K and similarly R2 < K.
Since v disintegrates into Dirac measures with respect to itik/l under the

projections pi : (K/L) x (K/L) —>¦ ^T/L, the /?,-actions on /T/L should fix mk/l-^.g.
point of Ä"/L. This means that i?; ç L, and since L is assumed not to contain
non-trivial normal factors of K, Rj {e} for i 1,2. Hence i? has the form

for some bijection 6: K —* K which has to be a continuous isomorphism, because

R C K x K is a closed subgroup.

By definition of R for allk G K andm^/^-a.e. &iL, the point (kk\L, 6(k)T(k\L))
is on the graph of T, i.e. T(kk\L) 6(k)T(k\L). Thus T has the form T(kL)
6(k)tL where t G K is such that 0(L) tLt l. Such T can also be written as

T(kL) to(k)L where o(k) t 16(k)t, in which case a G A^Aut^(^)- Thus
T comes from an afiine map aO)t £ A££(K/L). We conclude that Aut*(Ä"/L, F)
coincides with Naïï(k/l)(T).

Finally, an affine map aa%t is in Aat(K/L, F) if for all y G F and a.e. kL

yta(k)L ta(yk)L ta(y)a(k)L.

In view of the standing assumption that L does not contain normal subgroups ofK this

means that cr(y) =t lytfory G F. Since F is dense in K we have a (k) t~lkt for
all k G K and ct(L) L means f G Nk(L). Hence affj( : kL h^ (tt l)ktL ktL
and f, f' G NK{L) give rise to the same map of Aff(K/L) iff t't~l g L. This gives
the desired identification

Aut(K/L, F) NK(L)/L. D

This completes the proof of Theorem 1.5.

Proof of Theorem 1.7. By Theorem 5.1 the system (H/A, mh/a, T) has a F-equi-
variant quotient map

tt: (H/A,mH/A) -^ (G/T',mG/rl)

only if there exists a surjective continuous homomorphism a : H —* G with er (A) ç
F' F and a o p(y) tyt~l for some f G G. An existence of such a

homomorphism ct was explicitly excluded by the assumption, so that Theorem 1.1 gives
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OutR///A,r A(H/A,T) Aut*(H/A, F)/F. To identify Aut*(H/A, F) we
invoke Theorem 5.1 again to conclude that

which presents A*(H/A, F) as the quotient of Nas(h/a)(p(^)) by the image of

r -A H <-^ AS(H/A). One also has Aut(i//A, F) ^
Proof of Corollary 1.8. If p : G —> H is an embedding (or isomorphism) of G into
another semi-simple real Lie group H (center free and without compact factors) and

A c H is an irreducible lattice, then the G-action on (H/A, mh/a) is free and

by Howe-Moore's theorem is not only ergodic but actually mixing. Hence also the

restriction of this action to F-action is free and mixing, and in particular irreducible
and aperiodic. The assumptions of the Corollary guarantee that there does not exits

an epimorphism a : H —* G with ct(A) ç F, so that Theorem 1.7 applies showing

OutRff/A,r A*(///A,F) =Aut*(///A,F)/F ]VAff(///A)(p(F))/p(r).

Recall that Aff(///A) contains H as a subgroup of finite index dividing |Out A|.
Hence, upon passing to a subgroup of index dividing | Out A |, the group Out Rh/a r
-^Aff(ff/A)(p(r))/p(F) can be reduced to Af#(p(F))/p(F), which contains the cen-
tralizer Ch (p(F)) Ch(p(G)) as a subgroup of index dividing |Out F|.

8. Proof of Theorem 1.9

Case (G/ T, T). Choose a two-sided fundamental domain X c G for F and define
the transformation / : X -* X by / : x h^ x~l F n X. Note that both X and X"1 are

two-sided, in particular right, fundamental domains and therefore / is a measurable

bijection of X. Moreover,

I(y -x) 7(yxÀ(y,x)"1) X(y,x)x~1F nX X(y,x) ¦ I{x)

which means that / G Aut R(g/ r,r) and the corresponding rearrangement cocycle aj
is X Xx : F x X -* F. Observe that

y ¦ x yxk(y,x)~l means that k(y, x) (y ¦ x)~lyx

(with the usual multiplication in G on the right hand side), so that the embedding
X --* G is precisely the "straightening map" 4> corresponding to the cocycle 07 Xx
and the trivial automorphism to : y h^ y; in other words 0/,To(x) x- From
Theorem 4.2 (al) we conclude that [/] ^ A*(G/ F, F) and therefore

[OutR(G/r,r) : A*(G/F, F)] > 2 (8.1)
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while Theorem 1.2 (or Corollary 1.3) show that this index is at most two proving an

equality in (8.1). Theorem 5.1 gives

Note that an affine map affj( G Aff(G/T) (aa>t : gF i->- fCT(g)FwhereCT g
and t G G) satisfies

yT

iffcr(y) t lx(y)t, in particular t G Ng(F). Thus

Aut*(G/r, r) NmG/n(T) NAatG(V),

with gT \-> grr, x G A^AutG(T) Aut F, giving all twisted action automorphisms.
Hence A*(G/ F, F) Aut F/ F Out F. Since this group commutes with [/], we
obtain

Out R(G/r,r) ^/2Z x Out (F)

as claimed.
Before turning to the systems (Gn/ F", F) for general finite n > 1, observe that

G/ F can be viewed as the factor of G2e := {{g, g~l) g G x G | g g G} modulo the

relation (g, g"1) ~ (gyi, yl 1g), yi G F. With this identification G/F (G^/ ~)
the left F-action on G/F corresponds to the quotient of the action y : (g, g"1) h^

> § V ') modulo ~, while the map / arises from the flip (g, g"1) i-^- (g"1, g).

Case (G"/ F", F), « € N. Given a general finite n consider the set

Gf1:={(g0,...,g„)GG^+1 \go---gn=e}

with the natural measure and an equivalence ~ defined by

(gO,gl, ...,gn-l,gn) ~ (gQY{1, Y\g\Y2l > ¦ ¦ ¦ > Yn-lSnYn

for yi, y„ g F. The map p : Gne+1 -> (G/ F)" G"/ F" given by

p: (go, ..,g„) i-> (goF, gogiF, ...,gogi ¦¦¦gn-iY)

factors through a bijection q : (G"+1/ ~) —>¦ G"/F". Note that the following F-
action on G"+1

y : (go, gl, • • • g„-l, gn) I"* (ygO, gl, • • • gn-l, gny"1)

descends to an action on (G"+1/ ~) which is isomorphic, via q, to the diagonal
F-actiononG"/F"

y : (giF, g„F) \-> (ygiF, yg„F).
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The cyclic permutation t of order (n + 1)

f: (go,gl, ¦ ¦¦,gn-l,gn) l-> (gl,g2, ¦¦¦,gn,go)

is easily seen to preserve the F-orbits on (G"+1/ ~) Gn/ Tn and thereby defines

a relation automorphism T g Aut RG«/r«,r with [Tn+1] g A(G"/ P\ T).
We would like to present T as an explicit transformation of (Gn/ Tn, niGn/ rn) as

follows. The cocycle kx'.T x X —> Y corresponding to the two-sided fundamental
domain X c G can be extended to a cocycle of G, i.e. à Àï:GxX->F still
defined by gx g Xk(g, x). The left G-action on X G/ F can thus be written as

g -x gxk(g,x)~l

where on the right hand side we use the usual multiplication in G. Using these

notations and viewing x g X c G both as points of the space X and as G-elements

one obtains an explicit form for T:

T: (xi, ..,xn) i-> (xf1 ¦x2,xf1 -x3, ...,x~l -x„,/(xi)).
Observe that

T(y ¦ (xi, ...,x„)) T(yxiX(y,xi) \ ,yxnk(y,xn)~l)

{k{y, xi)xl l ¦ X2, My, xi)xl l ¦ X3, k{y, x\) ¦ I{x\))
k{y,x{) ¦ T(xi, ...,xn).

Hence T G Aut R(g«/ rn,r) with the rearrangement cocycle being

«r(y, (^i, ¦¦¦,xn)) My,xi).

A similar computation shows that for 1 < k < n one has

aTk{y, (xi, ...,xn)) k(y,xk)

and therefore the corresponding "straightening" map is given by

It now follows from Theorem 4.2 (al) that Th £ A*(Gn/rn, V) fork 1,...,«. In
particular

[OutR(G»/r»,r) : A*(G"/r", T)] >n+l
which is, in fact, an equality due to the upper bound (n + 1 provided by Theorem 1.2

(or Corollary 1.3).
To identify A*(G"/ P\ T) we invoke the second part of Theorem 5.1 with # :=

G" and A := F" and note that affine maps of Gn/ Tn have the form
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where p G Sn is a permutation of {1, ...,«}, r, g A^AutG(T) Aut F and f; G G.

One easily checks that such a map normalizes the diagonal F-action iff ri ¦ ¦ ¦

xn x and t\ ¦ ¦ ¦ tn t where t g Ng(Y). Hence Aut*(G"/r", F) consists

of the maps

where p G Sn and r g Na\ag(T)). The obvious relation SPtT o 5^/^/ Sppi%xxi

gives Aut*(G"/ rn, T) Sn x NAai (F) and

A*(G"/rn,r) sn x (ivAut(r)/r) sn x Out(r).

Out R(G"/rn,r) is generated by [T] and A*(G"/ F", F), and the explicit form of T
and 5p T allows one to check that

OutR(G»/r»,r) Sn+l x Out(F)

as claimed.

Case (G^/F00, F). Finally, let us turn to the case of n oo, i.e. the diagonal
F-action on (X, Jl) := (G/F, mo/r) ¦ Choose a two-sided fundamental domain

X c G, so that X X^, andjet X XX- G x X -* T and I : X -* Xbeas before.

Consider the map T : X —* X defined by

T: (...,x_i,xo,xi, h^ ...xf1 ¦xo,/(xi),xf1 -x2,

so that for k £ 0

f (7-*Jc)r := jcjfx • jcr+jt i ^ l - *
\l(xk) i \-k

and observe that

Tk(yx)=X(y,xk)-Tk(x).
As before, for i: ^ 0 we have aTt(y, x) A.(y, x^) and 0rt r (x) x^ so that

[T]k <£A*(X,r).

Claim 8.1. Out Rt; p w generated by [T] and A*(X, F).

(Note that in previous cases similar statement followed immediately from the upper
bound provided by Corollary 1.3). Choose an S g Aut R^ \ A*(X, F) and let

7r:X^G/F, tx*]I mG/r, n(y ¦ x) yr ¦ it(x)

be the standard quotient map provided by Theorem 4.2.

Lemma 8.2. n(x) x\ for some k g Z and x g A^
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Proof. Denote by v the probability measure on (G/ F)z x (G/ T) obtained by the

lift of jl to the graph of n. Fix an r G N, let

H:=f\G A:=f\r
—r —r

and let p : G —> H be the projection on {—r,..., r}-coordinates. Denote by v^>

the p x Id-projection of v to H/A x G/ T. Then one can deduce from Theorem 5.2

that either

(i) vir) mH/A x m.G/v, or
(ii) there exists £ G {-r, ...,r}, r G A^AutG(r)sothatforanyi;i G Cc(///A x G/T)

I Fdvir) / F(xi, ...,xk, ...,xn,xxk)dmGjV{x\) ¦ ¦ ¦ dmG/r{xn).

As r --* oo case (i) cannot persist forever, because that would imply that v

Ji x niG/v which is impossible. On the other hand as soon as (ii) occurs, the index
k and r g A^AutG(r) do not change. This proves the lemma.

With the explicit form of n : X --* G/T provided by Lemma 8.2 we invoke
4.2 (a3) to conclude tha

and k £ 0 g Z so that

Theorem 4.2 (a3) to conclude that there exists S G Aut R^ „ with [S] [S], r g
A, 1

Recalling that also for Tk we have 4>Tk,x0^) xk one concludes that [S] [S] g

[Tk]A*(X, r)usingthesameargumentasintheproofofTheorem 1.2. This completes
the proof of Claim 8.1.

Any permutation p of Z and any r G A^AutG(r) give rise to the map SPtT G

AutT(X, D

On the other hand if S g Aut*(X, T) let v on X x X be the lift of \.i to the graph
of S and let vr be the projection of this measure to \\r_r G/T x \\r_r G/ T. Then

applying the Joining Theorem 5.2 to this unite dimensional situation successively for
r --* oo, one concludes that such S has to be of the form SP>T. Hence

A*(x,r) Soo x Outr.

Finally, the explicit form of [T] and [SP>T] allows to conclude that

Out R(X, F) ^oo+i x Out F
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where the symbols Sœ and Sœ+i can be interpreted as the inclusion ofthe permutation

group of Z in the permutation group of Z U {pt}.

9. Proof of Theorem 1.6

Throughout this section F PSL„(Z), G PSL„(R) and n > 3. Let 50

{/?i, /?r} be a given finite set of primes and consider the ergodic F-action on the

compact profinite group K Y\PeS0 PSLn(Zp). We denote H Y\PeS0 PSL„(Qp)
and A PSL„(Z[51(J~1]) c H. Then A is a dense countable subgroup of locally
compact totally disconnected group H and F An K.

Following Gefter [7] we first observe that Out Rx-,r contains H. Indeed restricting
the type IIoo relation Rtf, a to K we obtain atype Hi relation Rx-,r Rh,a^(K x K)
and

Out R^,r Out Rh,a 2 A(#, A) H

using the straight forward Iloo-type generalizations of Lemmas 2.2, 2.3(a) and the

remark following 7.2 respectively.
We need to find explicit representatives Th G AutRx-,r for h e //, so that

ä ^ [îj] is the above imbedding. Since K is open and A is dense in H, given any
h G H, there exist Ào G A and k^ & K so that A Xo^o- The maps

xh and Ïj'iik kQlxh (x G //)

are in Aut R#,a and [7^] [7^] G Out R#,a. Denoting the open compact subgroup
1 n K by K\, note that

C .fiT because fÄ'(jc) k^xkok) G (A.„ ^iA.o)^ C K.

Thus for x, y g Ä"i we have

(x, y) g R^,r R/ï. ^ f'
Therefore 7^|^j is a restriction of some T% g Aut Rk,t, with its outer class [Th] G

Out R^,r being uniquely defined by the initial h g H. Denoting Fi := ÀoFÀ^1 n F

a finite index subgroup of F which is dense in K\, we observe that the restriction of
the rearrangement cocycle ajh to Fi x K\ is

aTh{Yi,xi)=kolYiko (yi G Fi, a.e.xi G ^i). (9.1)

The automorphism y\ \-> k^yiko of the lattice Fi c G extends to an inner (given
by ko G G) automorphism of G, so in terms of the Standard Quotients Theorem 4.2

the class [r] g Out G associated to such [Th] G Out Rjç- r is always trivial. On
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the other hand the transpose map To : (k\, ,kr) *--* (k[, .,k'r) which is clearly
in AutR/^r defines the unique outer element [r] g Out G (take t(g) (gt)~l).
One easily checks that the group generated by [7b] and [Th], h g H, in Out Rk,f is

Z/2-extension of H.
We shall now prove that the latter group is all of OutR/^r- Take any [T] g

OutR/^r- Possibly composing with To we may assume that [r] g Out G Z/2
associated with [T] is trivial, and will show that such [T] is [T%\ for some h G H.
Applying the Standard Quotients Theorem we may take r to be the identity on G.

Since (K, F) cannot have (G/ F, mo/r, F) among its measurable quotients, we
deduce the following:

(1) There exists a finite F-orbit F {g\F, g^F} c G/ F, and a measurable

F-equivariant map n : K —* F with

n(yx) yn(x) (y G F, x G K).

(2) Let F, F n g,Tg"1, i 1, k - these are conjugate subgroups of index k
in F; the sets X\ n l({g;r}) c K are F,-invariant and ergodic measurable
subsets with /x(X,) \/k; if Ki is the closure of F, in K then X\
(mod 0) - cosets of Kf-s; as the latter are open and compact subsets of K we
obtain an open partition into disjoint sets which we still denote by X;. Up to
reordering we may assume that X\ contains the identity of K, i.e. X\ K\.

(3) There exists f G Aut R^r with [f] [T] g Out R^r so that

oif(Yi,xi) gj Vigi (n G Fi, xi G Xi).

Note that the last formula resembles (9.1). Property (l)meansthatgi
PSL„(

Claim 9.1. gl g A PSLn(Z[l/pi, l/pr]) ^
Proof. Let us expand the notations slightly: for an arbitrary finite set S of primes let

peS

and let ßs denote the normalized Haar measure on Kg. We shall denote by F^ the

closure of the index k subgroup Fi F n giFgj"1 c F in Ks. The Fi-ergodic

component X\ c K Ks0 is a coset of the open compact subgroup Fl ° of K and

by (2)

-
Let S\ be the set of primes appearing in the denominators of gi G PSL„(Q), i.e. Si
is the smallest set of primes (possibly empty) such that gi G
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It follows from the Strong Approximation Theorem that if S S'u 5"' is a disjoint
union of two finite sets of primes, then

rY rf x rf ç ks, x ks» ks,

and Vf KS" if and only if S'C\ Si 0. On the other hand if Si C S' then it is

easy to see that

Writing S S0D Si Sou S2 where S2 Si\ So we have

irf0) trf0) (rS2) irf) ±

So /i.s2(F^2) 1, that is F^2 KSl, which means that S2 0 and Si ç S"o as

claimed.

Having proved that gi G A, we recall that by (3) the original T G Aut R^,r can
be replaced by T with [T] [T] g Out R^,r so that

T(yixi) Si Y\S\T{xi) (9.2)

for all yi G Fi and /x-a.e. xi G Xi. We have also made sure that Xi Ki - the

closure of Fi F n giFgj"1 in Ä".

Claim 9.2. r(^) g^lkgm for some weed zi G K anda.e. k g Ki.

Proof. The map yi i->- gl Vi^i is an isomorphism between finite index subgroups

Pi —>¦ F[ := gl lVgi n F of F. It extends to an isomorphism Ki —>¦ K[ between

open compact subgroups of K, where K[ is the closure of F[ in K. (Note that

Ki=KH giKg-i and K[ g^KgiHK as subsets of//).
Let X[ T(Xi) c K. In view of (9.2), X[ is one of the Fj-ergodic components

of Xi, and therefore is a single K[-coset, X[ K[ y for some y G X[. Let/?: Ki --*
Ki be the composition of the following maps

Ki=Xi^ X[ -^K[^ Ki, R(k)

In view of (9.2) we have for all y G Fi and /x-a.e. k g Ki :

lg-1 YR(k).

Since Fi is dense in the compact group Ki, we have R(k) kko for some fixed
ko g Ki and a.e. k g Ki (see Proposition 7.2 and the following remark). This allows

us to compute

T{k) g11kkogiy gi1kgizi where zi (g^kog^y G K.
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Taking h gizi £ H we observe that the map Th e Aut Rk,v, discussed in the

first part of this section, agrees with T on a positive measure subset K\ c K, and

therefore (as in the proof of Lemma 2.2)

which completes the proof of the theorem.
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