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An infinite family of non-concordant knots having the same
Seifert form

Taehee Kim

Abstract. By arecent result of Livingston, it is known that if a knot has a prime power branched
cyclic cover that is not ahomology sphere, then there is an infinite family of non-concordant knots
having the same Seifert form as the knot. In this paper, we extend this result to the full extent.
We show that if the knot has nontrivial Alexander polynomial, then there exists an infinite family
of non-concordant knots having the same Seifert form as the knot. As a corollary, no nontrivial
Alexander polynomial determines a unique knot concordance class. We use Cochran—Orr—
Teichner’s recent result on the knot concordance group and Cheeger—Gromov’s von Neumann
p-invariants with their universal bound for a 3-manifold.

Mathematics Subject Classification (2000). Primary 57M25; Secondary 57N70.
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1. Introduction

We work in the topologically locally flat category. A knot is an embedding of a circle
mto the 3-sphere. A knotis called slice if it bounds a (locally flat) 2-disk in the 4-ball.
Fortwo knots K; and K5, K is said to be concordant to K, if K1# — K, is slice. Here
the symbol # denotes the connected sum operation and —K denotes the mirror image
of K with reversed orientation. This is an equivalence relation. The equivalence
classes (which are called the concordance classes) form an abelian group under
the connected sum operation. The group is called the (classical) knot concordance
group and denoted by C. In C, the identity is the class of slice knots. Levine [L]
constructed an epimorphism ¢: € — G where G denotes the algebraic concordance
group of Seifert forms modulo a certain equivalence relation. The homomorphism ¢
maps the concordance class represented by a knot to the algebraic concordance class
represented by Seifert forms of the knot. Jiang [J] showed that the kernel of ¢ is
mfinitely generated. This implies that for each algebraic concordance class there are
mfinitely many (mutually) non-concordant knots whose Seifert forms represent that
algebraic concordance class. Buteach algebraic concordance class is also represented
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by infinitely many distinct Seifert forms, and a question arises whether or not for a
given Seifert form there are non-concordant knots having rhat Seifert form. In fact,
Jiang’s examples have distinct Seifert forms, hence his result does not give an answer
to this question. Recently Livingston [Li] made progress and gave a partial answer
under a condition on the Alexander polynomials.

Theorem ([Li, Theoreml.1]). If a knot K has Seifert form Vi and its Alexander
polynomial Ak (t) has an irreducible factor that is not a cyclotomic polynomial ¢,
with n divisible by three distinct primes, then there is an innite family {K;} of non-
concordant knots such that each K; has Seifert form Vi.

In the above theorem the technical condition on the Alexander polynomial is
necessary since the theorem was proven by using Casson—Gordon invariants. (For
Casson—Gordon invariants, refer to [CG].) More precisely, Casson—Gordon invariants
are defined via characters on the first homology of prime power branched cyclic covers
of knots and if every prime power branched cyclic cover of the knot has the trivial
first homology then all Casson—Gordon invariants vanish. The following theorem
due to Livingston shows that a knot has a prime power branched cyclic cover with
nontrivial first homology under the given condition on the Alexander polynomial. In
the theorem, A (¢) denotes the Alexander polynomial of a knot K.

Theorem ([Li, Theorem1.2]). All prime power branched cyclic covers of a knot K
are homology spheres if and only if all nontrivial irreducible factors of Ak (t) are
cyclotomic polynomials ¢, (t) with n divisible by three distinct primes. All Bnite
branched cyclic covers of K are homology spheres if and only if Ax (t) = 1.

In addition to these results the author [K] proved that for each n divisible by three
distinct primes there exist infinitely many non-concordant knots K; with Ak, (t) =
(¢pn(1))? which have the same Seifert form. (In fact, in [K] the author showed that
the knots K; are linearly independent in the knot concordance group.)

In this paper we extend the above results to the full extent. The main theorem is
as follows.

Theorem 1.1 (Main Theorem). If a knot K has Seifert form Vg and its Alexander
polynomial is not 1, then there is an inQnite family {K;} of non-concordant knots such
that each K; has Seifert form Vi.

In fact, in the course of the proof of the main theorem, we show a stronger result
that for i # j, the knots K;# — K ; are not (1.5)-solvable. (For the definition of (1.5)-
solvable knots, see Section 2.) Also we note that if the rational Alexander module
of the knot K has a unique self-annihilating submodule with respect to the rational
Blanchfield pairing, then using rationally universal solvable representations of the
fundamental group of zero surgery on a knot in the 3-sphere as used in [K], one can
construct the above knots K; such that they are not only mutually non-concordant
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but also linearly independent in the knot concordance group. A proof for this is not
given in this paper, but one can casily prove this using arguments in [COT2, K].

By Freedman’s work if Ag (1) = 1 then K is topologically slice [F, FQ]. (Thatis,
the concordance class of K is the identity in C.) On the other hand, the main theorem
mmplies that if Ag(¢) is not 1 then there are infinitely many non-concordant knots
having the Alexander polynomial Ak (¢). Thus we have the following corollary.

Corollary 1.2. No nontrivial Alexander polynomial determines a unique concor-
dance class in the knot concordance group.

In the proof of the main theorem we construct the knots K; by performing satellite
construction on K. (This construction is also called genetic modincation n [COT2].)
This construction is briefly reviewed in the next section. To show that the K; are
mutually non-concordant we use Cochran—Orr—Teichner’s filtration of the knot con-
cordance group in [COT1] and von Neumann p-invariants defined by Cheeger and
Gromov [ChG], which were applied as knot concordance invariants first by Cochran,
Orr, and Teichner in [COT1]. In particular, we use the fact that there is a universal
bound for von Neumann p-invariants for a fixed 3-manifold. More precisely, for a
fixed 3-manifold M, there exists a constant c»s such that | /)1(“2) (M, )| < cpforevery
representation vr: 71 (M) — I' where I' is an arbitrary group [R, Theorem 3.1.1].
We remark that in [CT] Cochran and Teichner used this fact to show that Cochran—
Orr—Teichner’s filtration of the knot concordance group is highly nontrivial, that is,
F./F .5 1s nontrivial for all n > 2.

2. Preliminaries

Throughout this paper, we use the following convention. Unless mentioned otherwise,
mteger coefficients are to be understood for homology groups. The zero surgery on a
knot K in S® is denoted by Mg . We use the same notation for a simple closed curve
and the homology (and the homotopy) class represented by the curve. We denote
QIt, t~!], the Laurant polynomial ring with rational coefficients, by A.

In this section we briefly review the machinery that will be used in the proof of
the main theorem. In [COT1], Cochran, Orr, and Teichner established a filtration
of the knot concordance group {F,}, . 1N, indexed by half-integers where F, is the
subgroup of (n)-solvable knots. The definition of (n)-solvable knots (n € Ny) is as
follows. Recall that for a group G, G™ denotes the n™ derived group of G which is
defined as follows: Let G© = G, and inductively G™ =[G~V G—D7,

Definition 2.1. A knot K is called (n)-solvable if Mg bounds a spin 4-manifold W
such that the inclusion map Mx — W induces an isomorphism on the first homology
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and such that W admits an (n)-Lagrangian with (n)-duals. This means that the
intersection form and the self-intersection form on Hy (W Z[m (W) /71 (W)™)]),
which vanish on the (n)-Lagrangian, pair the (n)-Lagrangian and the (n)-duals non-
singularly and that their images together freely generate Hy(W). The 4-manifold W
is called an (n)-solution for K and we say K is (n)-solvable via W .

Similarly, we define (n.5)-solvable knots for n € Ny. (An (n.5)-solution W is
required to admit an (n + 1)-Lagrangian with (n)-duals.) For more details, refer to
[COT1, Definition 8.5 and Definition 8.7].

Cochran—Orr-Teichner showed that every slice knot is (n)-solvable for all n
[COT1, Remark 1.3.1]. They detect (n.5)-solvable knots, n € Ny, using von Neu-
mann p-invariants as follows.

Theorem 2.2 (JCOT1, Theorem 4.2]). Suppose that " is an (n)-solvable poly-
torsion-free-abelian group. Let ¢: m1(Mg) — 1" be a homomorphism. If K
is (n.5)-solvable via a 4-manifold W over which the coeflicient system ¢ extends,
then pP (Mg , ) = 0.

We explain the terminologies in the theorem. A group G is called (n)-solvable if
G+ = 1. A group G is defined to be poly-torsion-free-abelian (henceforth PTFA)
if it admits a normal series 1 = Gg <1 G1 < --- <1 G, = G such that the factors
G;41/G; are torsion-free abelian. For the von-Neumann p-invariant plgz)(M K, D),
refer to [COT1, Section 5] and [COT2, Section 2].

In fact, the target group I' which we will use for the proof of the main the-
orem is a quotient group G/ Gg") where Gﬁ") is the n™ rational derived group
of G defined by Harvey [H] as follows. Let Gﬁo) = G. Forn > 1, define
G" = [GE”_D, Gg”_l)]Pn_l where

P ={g e GV | gF e [GIV, G"7V] for some k € Z — {0}}.

The quotient G@/GEH'D is isomorphic to (GED/[G@, G@])/{Z — torsion} for
all i > 0 [H, Lemma 3.5]. Harvey showed the quotient G/ngH) is PTFA [H,
Corollary 3.6], and one easily sees that G/ GE”H) is (n)-solvable.

To construct the knots K; in the main theorem we use satellite construction (or
genetic modincation) explained as follows. Let K be a knot and 1 be an unknot
in S3 which is disjoint from K. Let J be another knot. Take the union of the
exterior of 77 in S3 and the exterior of J in S? along the common boundary (which
is homeomorphic to a torus) such that a meridian of 7 is identified with a longitude
of J and a longitude of n with a meridian of J. The resulting ambient manifold is
homeomorphic to S3. The image of K under this construction is denoted by K (17, J)
and we say K(n, J) is obtained by performing satellite construction on K via 7
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and J. If we let D be an embedded disk in S® bounded by 7, then this construction
is equivalent to tying all the strands of K transversally passing through D into J.
For more details, refer to [COT2]. This construction can be generalized to the case
when we have atrivial link {5y, . .., n,} which is disjoint from K and auxiliary knots
{J1, ..., Ju} by iterating the above process. In this case the resulting knot is denoted

by K({n1, ...} {1, -0 Jud).

3. Proof of Theorem 1.1

Let F be a Seifert surface of a knot K with Ag (1) # 1 and Vg an associated Seifert
form. The Seifert surface F can be thought of as a disk with 2g bands where g is the
genus of . Let ", 1 < n < 2g, be a trivial link in S® which is disjoint from F such
that the n™ component 1" links the n™ band of F once and does not link the other
bands. It is known that n*, 1 < n < 2g, generate the rational Alexander module
Hi(Mg; A). (For example, see [Ro].)

By [R, Theorem 3.1.1], there exists a constant ¢ such that |p§2)(MK#_K, ¢)| =
for every representation ¢: w1 (Mgy—_x) — ' where I' is an arbitrary group. Let
J1 be a knot with vanishing Arf mvariant such that ,0%2)(]1) > ¢. Here pg)(ll)
denotes the von Neumann p-invariant pg) (Mj,, ¢) where ¢: w1 (M;) — Z is the

abelianization. Note that pg)(ll) is equal to the integral of the Levine—Tristram
signatures of Ji, integrated over the circle normalized to length one [COT2, Propo-
sition 5.1]. Inductively, we define J;11 to be a knot with vanishing Arf invariant
such that pg)(liﬂ) >c+2g- ,0%2) (J;). These J; can be easily found by taking the
connected sum of suitably many even copies of a left-handed trefoil. Foreachi € N,
let J/' be acopy of J; for 1 <n <2g. Thatis, J/' = J;,1 <n <2g.

Now let K; = K({n',...,n®}L {J}, ..., Jl.zg}), the knot resulting from satellite
construction. Since 1", 1 < n < 2g, lic in the complement of F in S3, K; have the
same Scifert form Vg as K. We prove K; are mutually non-concordant.

Fixiand j (i < j),and suppose that K; and K ; are concordant. Thatis, K;# — K ;
is slice. Observe that

_ — 2 2
Kit—K; = (K#=K)(n's P, P8 G T8 =) =T,

Here 7" denote the mirror images of ", 1 <n < 2g.

Let M = Mgy-g and M' = Mg,4—k,;. We construct a cobordism C between
M and M’ as follows. Choose a (0)-solution W; for J;. (Since J; has vanishing Arf
mvariant, it 1s (0)-solvable. See [COT1, Remark 1.3.2].) By doing surgery along
7 (W), we may assume tat 771 (W;) = Z. Similarly, we choose a (0)-solution
Vj for —J;. Let W' = W; and V;‘ = V;forl <n <2g Take M x [0, 1] and

the disjoint union ( % W1 (]_[ii 1 V}'). To form C, for each 7 identify the
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solid torus S' x D2 in §W!" = (S \ N(J") U S! x D? (where N(J}') denotes an
open tubular neighborhood of J/" in $3) with a tubular neighborhood of 7" x {1}
in M x {1} such that a meridian of J is identified with a longitude of n" and a
longitude of J/* with a meridian of 7", and identify the solid torus S! x D? in
CAEES (s3 \N(—JJ’?))USI x D? with a tubular neighborhood of 7 x {1} in M x {1}
similarly. One sees that 9_C = M and 3. C = M’. Moreover one sces that C is
spin.

Since K;# — K is slice, K;# — K 1s (1.5)-solvable by [COT1, Remark 1.3.1].
Let W’ be a (1.5)-solution for K;# — K;. In particular, dW’ = M’. Let W be the
union of C and W’ along their common boundary M’. Hence W is a 4-manifold with
W =M.

Lemma 3.1. The 4-manifold W, which is constructed as above, is a (1)-solution for
K# — K.

The proof of the above lemma is postponed. Let ' = 7(W)/m; (W)ﬁz). Note
that I" is a (1)-solvable PTFA group by [H, Corollary 3.6]. Let ¢: m1(W) — T be
the projection homomorphism. Note that M’, M s M- 7 and W’ are subspaces

of W, hence ¢ can be restricted to the corresponding fundamental groups. Let ¢
(respectively qﬁ?) denote ¢ restricted to 771 (M ) (respectively 71 (M_ thl)), l<n<
2g. By [COT2, Proposition 3.2],

2g 2g
PP M, ) = pP M bl + Y o1 (Myn, 1)+ 3 o2 (Mo, 7).

n=1 n=1

In the above equation, /’1(“2) (M, §lz, o)) = 0 by Theorem 2.2 since ¢y, (m)
extends over (1.5)-solution W’. Note that ¢/ factors through 771 (W) which is iso-
morphic to Z foreach n. If (™) = e, the identity element in I', then ,01(3) (Mfi”) =0.
If ¢(n") # e, then the image of ¢! is isomorphic to Z and pl(ﬂz)(MJin) = pg)(Ji”),
which is defined in the previous section, by [COT1, Proposition 5.13]. We obtain
similar results for pl@(M_]]r_z)‘ Now let ¢! = 0if (") = e and €' = 1 otherwise,

1 <n <2g. Define e;?, 1 < n < 2g,similarly. Then we have the following equation.

2g 2g
2 2 2
e (M) = el o (1) = D €hp (7).
n=1 n=1

We claim that €' # 0 for some n or € # 0 for some n. One sees that n"
together with 7, 1 < n < 2g, generate the rational Alexander module Hy (M; A).
(This 1s obvious since Hi(M; A) 1s isomorphic to Hi(Mg; A) & Hi(M_g; A).)
Since Ag(t) # 1, Hi(M; A) is not trivial. Hence K# — K has the (nontrivial)
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nonsingular rational Blachfield form B¢: Hi(M; A) x Hi(M; A) — Q(t)/A. Let
is: HH(M; A) — H;(W; A) be the homomorphism induced by the inclusion. Since
P = Ker(iy) is self-annihilating by [COT1, Theorem 4.4] (that is, P = P1) and
B? is nonsingular, i, is not a trivial homomorphism. Hence i.(n™) # 0 for some
nor i (n") # 0 for some n in H(W; A). Since W is a (1)-solution for K# — K,
Hy (W) = Z. This implies that (W) = 71, (W)™ Hence

m(W) Y/ (WP ©7 Q =y (W)W /my (W) @7, Q = Hy (W A).

The first isomorphism holds by [H, Lemma 3.5]. Thus ¢»(n") # e or ¢ (") # e for
some n in 771 (W) /my (W)ﬁz) which is a subgroup of I', and this proves the claim.
Now suppose e? # 0 for some n. By our choice of J; and J;,

2 2 2
PP (M, p) <2g - pP () — pP(Jj) < —c,

which is a contradiction. If e? = 0 for all n, then ¢! # 0 for some n by the above
claim. Then
2 2
PP (M, b) = pP(S) > e,

which is also a contradiction. Therefore, to complete the proof we only need to prove
Lemma 3.1 and a proof is given below.

Proof of Lemma 3.1. We follow a course of the proof for a more general case in
[CT]. Using Mayer-Vietoris sequence observe that

H(M) = Hi(C) = Hi (M) = Hi(W) = H(W)=Z.

Again using Mayer-Vietoris sequence one sees that

Hy(C) = (é Hy(W!)) @ (é Hy(V})) @ Hy(M)
n=1 n=1

and observe that Hy(W) = (Hy(C) & Hy(W')) /(py. q+)(Ha(M')) where p, and
g+ are induced by inclusions p: M’ — C and q: M’ — W/, respectively. Since
HY (W) - HY(M’) is an isomorphism, H3(W’, M) — H(M’) is an isomorphism
by duality. Thus the homomorphism g, : Hy(M’) — Hy(W’) is a trivial homomor-
phism. Observe that Hy(M) = Hy(M') = Z and they are generated by a capped-off
Seifert surface of K# — K and its image under satellite construction, respectively.
Moreover p.: Hy(M') — H,(C) maps the generator of H,(M’) to the generator of
Hy(M). Hence

Hy(W) = (é (W) @ (éHz(Vf)) ® Hy(W).
n=1 n=1
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Observe that 771 (W/)) maps into 771 (W) by the homomorphism induced by the
inclusion. Also 771(W/") and 7 (Vj”) map into 771 (W) by the homomorphisms in-
duced by the inclusions since 7" and 7" lic in 771 (W) and they generate 71 ( W) and
nl(VJﬂ) (which are isomorphic to Z), respectively. Now using naturality of equiv-
ariant intersection forms, one sees that (0)-Lagrangians and (0)-duals for W/ and
V;‘ and a (1)-Lagrangian and (1)-duals for W’ together form a (1)-Lagrangian and
(1)-duals for W. Finally, W’ has two possible spin structures, and a spin structure on
W’ can be chosen such that W is spin. This completes the proof. O
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