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Non-existence of homogeneous Einstein metrics

Christoph Béhm

Abstract. We show that there exist infinitely many simply connected compact prime homo-
geneous spaces G/H with infinite second homotopy group which do not admit G-invariant
Einstein metrics.

Mathematics Subject Classification (2000). 53C25, 53C30.
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A Riemannian metric g on a closed manifold is called Einstein if it satisfies Einstein’s
equation ric, = A - g. Even though there exist many interesting classes of Einstein
metrics, e.g. Kéhler—Einstein metrics [Yau], [Tia], metrics with small holonomy
group [Jo], Sasakian—FEinstein metrics [BoGa] and homogencous Einstein metrics
[Heb], [BWZ], general existence and non-existence results are hard to obtain (for
many more details and references see, e.g. [Bes], [LW]). For instance, in dimensions
greater or equal than five no obstructions to the existence of Einstein metrics are
known (cf. [LeB] for the four-dimensional case).

In this paper we examine the Einstein equation for G-invariant metrics on compact
homogeneous spaces G/H. On such spaces the Einstein constant A of a G-invariant
Einstein metric is non-negative (Bochner’s theorem [Bo]) and zero if and only if the
metric is flat [AIKi]. If the Einstein constant is positive, then the fundamental group
of G/H is finite by the theorem of Bonnet—Myers.

In what follows letus assume that G/ H is asimply connected homogeneous spaces
with G connected simply connected and semisimple. The homogencous space G/H
is called a prime homogeneous space, if the normalizer Ng(H) of H in G and H
have the same rank and if G/H is not a product of homogeneous spaces. An arbitrary
simply connected homogeneous space is either a product of prime homogeneous
spaces or the total space of a principal torus bundle over such a product. In both
cases, the factors of this product are called the prime factors of G/H.

Theorem ([B62]). Let G/H be a compact simply connected homogeneous space
with G connected simply connected and semisimple. If there exists a Beld IF such that
the reduced homology with coefacients in F of the simplicial complexes of all prime
factors of G/ H does not vanish, then G/H admits a G-invariant Einstein metric.
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The simplicial complex of a compact homogeneous space G/H is defined by
certain subgroups K with H C K C G (cf. [B62]). This theorem shows that
purely Lie-theoretical properties of the prime factors of a compact homogeneous
space guarantee the existence of a homogeneous Einstein metric. Conversely, we
have the following result:

Theorem A. There existinBnitely many simply connected prime homogeneous spaces
G,/ Hy, with inBnite second homotopy group, such that compact simply connected
homogeneous spaces G/H, G connected simply connected and semisimple, do not
admit G-invariant Einstein metrics, if G,/ Hp is a prime factor of G/H and if G/H
is Gp/Hp-generic.

A homogeneous space G/ H is called G,/ H)-generic for a prime factor G, /H,
of G/H, if the irreducible summands of the isotropy representation of H,, are acted
on irreducibly by H. Obviously, this condition is satisfied for the homogencous space
G/H = G,/Hp; but, as we will see below, in general this assumption is necessary.
Notice furthermore that it follows from the long homotopy sequence of the fibration
H, - G, - G,/H, that prime homogeneous spaces G, /H, have finite second
homotopy group if and only if the isotropy group H, is semisimple.

The spaces G,/ H), = Spin(n) x Spin(n)/A Spin(n — 2) - (Spin(2) x Spin(2)),
n > 8, provide concrete examples for prime homogeneous spaces Theorem A can
be applied to (where Spin(n) denotes the double cover of SO(n)). The simplest
examples of homogenecous spaces with such a prime factor are given by G/H =
Spin(n) x Spin(n)/A Spin(n —2) - Ay 4 Spin(2), where k, ¢ are coprime integers and
A4 Spin(2) is embedded in Spin(2) x Spin(2) with slope determined by (k, ¢). The
S'-bundle G/H over G, /H, is G, / H,-genericif (k, ¢) # £(1, 1), (0, £1), (1, 0),
and consequently such S'-bundles do not admit G-invariant Einstein metrics by The-
orem A.

For (k, p) = £(1, 1) the homogeneous space G/H does admit a G-invariant
Einstein metric by the Graph Theorem [BWZ]. This shows the existence of singular
torus bundles G/H over prime homogeneous spaces, which carry G-invariant Ein-
stein metrics, even when generic torus bundles do not. The reason for this is that
for singular torus bundles the dimension of the space MY of G-invariant metrics on
G/ H is strictly larger than that for generic torus bundles.

From Theorem A we deduce also the following

Corollary. For any m € N there exists a simply connected compact non-product
homogeneous space G/H with dim MC > m, which does not admit G-invariant
Einstein metrics.

For all previously known non-product homogeneous spaces G/H not admitting
G-invariant Einstein metrics we have dim MY® < 4 [WZ2], [Wa], [PaSa], [BK],
[DiKe].
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To give the reader a feeling for the Einstein equation for homogeneous metrics,
let us consider compact homogeneous spaces G/H whose isotropy representation
m can be decomposed into pairwise inequivalent irreducible summands m;, 1 <
i < £. In this special case, any G-invariant metric is given by Zle xi Q|m; where
X1, ..., x¢ > 0and Q denotes a fixed bi-invariant background metric. The metric is
then Einstein with Einstein constant A if and only if

b; 1 . X 1 oy X .
e~ 3g 2 UK vy T4 2 i — =k 1%izd

Jk=1
where b; > 0 and [ijk] > 0 are structure constants of G/H and d; = dim m; [WZ2],
[PaSa]. In order to show non-existence of homogeneous Einstein metrics one has to
prove that these algebraic equations have no positive real solutions. Let us mention
that no homogeneous space is known where these equations do not admit complex
solutions.

Next, we describe a conceptual approach to the non-existence problem of homo-
geneous Finstein metrics. For a compact homogeneous space G/H let p1, ..., by,
denote the isotypical summands of the isotropy representation m = p1 @ - - - @ pe,
of the isotropy group H. Each isotypical summand sums up the irreducible sum-
mands of m which are equivalent. By Schur’s Lemma, the traceless Ricci tensor of a
G-mvariant metric on G/ H respects this splitting. This tensor 1s precisely the nega-
tive gradient vector of the Hilbert action [Hi] with respect to the natural L? metric.
Since on closed manifolds the Hilbert action characterizes Einstein metrics variation-
ally, a compact homogeneous space G/H cannot carry G-invariant Einstein metrics,
if the restriction of the traceless Ricci tensor to an isotypical summand is negative
(positive) definite for all G-mvariant metrics.

The next two theorems, Theorem B and Theorem C, provide Lie-theoretical prop-
erties of such homogeneous spaces:

Theorem B. Let G/H be a compact homogeneous space with Dnite fundamental
group. If for all G-invariant metrics on G/H the restriction of the traceless Ricci
tensor to an isotypical summand of the isotropy representation of H is negative den-
nite, then there exists a compact intermediate Lie group K such that G/K is isotropy
irreducible, dim G/K > 1 and K/H is a virtual product of isotropy irreducible
spaces.

A compact homogeneous space G/K is called isotropy irreducible, if the isotropy
representation of K is irreducible. We say that a homogeneous space K/H splits
virtually, if this is true on Lie algebra level, that is if 1K = € = & & ¥ and
T\H = h = b1 @ hy with h; < €. From the classification of isotropy irreducible
spaces [Wo], [WZ3] it follows that homogeneous spaces obeying the obstruction in
Theorem B are very special. For instance, if both G and H are connected, then we
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have dim M < 4. Notice that the isotypical summand mentioned in Theorem B is
the orthogonal complement of €in g = 71G.

Let us also mention that the homogeneous spaces described in Theorem B have
been used to construct simply connected cohomogeneity one manifolds, which do not
admit cohomogeneity one Einstein metrics [B61] but Riemannian metrics of positive
Ricci curvature [GrZi].

The space G/H = SU(m + k)/ S(SO(m) U(1) SOk) U(1)), m + k > 4 and
m, k > 2, is a concrete example for Theorem B due to M. Wang. Non-existence for
k > m? +2 has been established in [WZ2]. In this case we have K = S(U(m) U(k)),
hence K/ H is the product of two isotropy irreducible spaces.

Theorem C. Let G/H be a compact homogeneous space with Onite fundamental
group. If for all G-invariant metrics on G/H the restriction of the traceless Ricci
tensor to an isotypical summand of the isotropy representation is positive deRnite,
then there exists a compact intermediate Lie group K such that K /H is isotropy
irreducible, dim K/H > 1 and all G-invariant metrics on G/H are submersion
metrics.

A G-mvariant metric on a homogeneous space G/H is a submersion metric
with respect to a submersion 7: G/H — G/K; gH +— gK if it is given by a
K -invariant metric on the fibre K/H and a G-invariant metric on the base G/K.
Since in the above situation K /H is isotropy irreducible, the K -invariant metric on
K/H is uniquely determined up to scaling. Notice that the isotypical summand
mentioned in Theorem C is the orthogonal complement of h in €.

The space G/H = Spin(n) x Spin(n)/A Spin(n — k) - (Spin(k) x Spin(k)),
n > k*4+k+2and k > 2, is a concrete example for Theorem C. In this case we
have K = (Spin(n — k) Spin(k)) x (Spin(n — k) Spin(k)). For n = k? + k + 2 there
exists precisely one G-invariant Einstein metric, whereas for n < k2 4k +2 we have
at least two non-isometric G-invariant Einstein metrics.

The non-existence criterion described in Theorem C can be generalized as follows:
For asubset I, of {1, 2, ..., £,} we consider the restriction of the Ricci tensor to the
subspace ®;cr, i of m and the tracefree part of this symmetric bilinear form. If the
restriction of the latter bilinear form to an isotypical summand p;,, ip € Iy, is positive
definite for all G-invariant metrics on G/H, then G/H does not admit G-invariant
Einstein metrics. The following examples indicates already that these more general
obstructions cover many further homogeneous spaces:

Example. Let G/H = SU(m~+n1+- - -+ng)/ S(SO(m) U(1) xU(ny) x- - - xU(ng)),
where m,ny,...,np > 1. fm > (Zle n,-)2 + 2, then G/H does not admit G-
mvariant Einstein metrics.

Note that dim M¢ = Lk(k 4+ 1) + 1, that G is simple and that the subgroup K
mentioned in Theorem C equals S(U(m) x U(nq) x - - - x U(ng)). Whenever n; = 1,
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for at least one i, we obtain new examples of prime homogeneous spaces for which
Theorem A is true.

The above obstructions turn out to be extremely flexible. They allow us to prove
glueing theorems for prime homogeneous spaces Theorem A can be applied to. Sup-
pose that G/ H does not admit G-invariant Einstein metrics by means of one of these
obstructions. Pick any homogenecous space (? / H > such that there exists a simple (or
abelian) Lie group L with H = H’L and H = LH’. Then, under certain purely
Lie-theoretical assumption on G/ H (made precise in Theorem 4.7) the compact ho-
mogeneous space G/H = G x G/(H'- AL - H') does not admit G-invariant Einstein
metrics. For instance we have:

Proposition. Let G/H = SU(m +n1+ - - +nx)/ S(SO(m) U(l) x U(ng) x -+ x
U SU(ng)), where m,ny, ... ong = 1ony = 1Long = 2,m > (X5 m)?
Furthermore let G/(SU(n)H') be a prime homogeneous space. Then Theorem A
holds true for the prime homogeneous space G,/H, = G x G /(S(SO(m) U(1) x
U(ny) x -~ x UD) - ASU(ny) - H').

Finally, we explain how the previously known non-existence examples [WZ2],
[Wa], [PaSa], [BK], [DiKe] fit into the above framework. Non-existence of homoge-
neous Einstein metrics has been described for the first time in [WZ2]. For most of
these examples the isotropy representation can be decomposed into two irreducible
isotypical summands; if in addition G is simple such spaces have been classified re-
cently [DiKe]. Under this assumption, the Einstein equation can be solved explicitly
and the non-existence criteria given in Theorem B and Theorem C are equivalent and
also necessary.

In [WZ2] also compact homogeneous spaces have been examined whose isotropy
representation can be decomposed into three irreducible isotypical summands. The
subgroup structure of these spaces is as described in Theorem B. However, the
non-existence criterion in [WZ2] is not that given in Theorem B but one of the
above mentioned generalizations. By means of Theorem C the homogeneous spaces
G/H = E7 x E7/Sp(1)A Spin(12) Sp(1) and G/H = Eg x Eg/Sp(1)AE7 Sp(1)
do not admit G-invariant Einstein metrics [Wa]. For the remaining two known non-
existence examples [PaSa], [BK] non-existence does not follow from the above de-
scribed obstructions.

Our paper contains 5 sections. In Section 1 we describe obstructions to the
existence of homogeneous Einstein metrics. In Section 2 curvature computations are
carried out. In Section 3, resp. Section 4, we prove Theorem B, resp. Theorem C.
In Section 5 we present new examples of homogeneous spaces which do not admit
homogencous Einstein metrics, and we give the proof of Theorem A
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1. The Ricci tensor of a homogeneous metric

Let G/H be a connected compact homogeneous space such that G and H are com-
pact Lie groups not necessarily connected. Let @ denote an Ad(G)-invariant scalar
product on g. Choose m the Q-orthogonal complement to f) in g. As is well-known,
every G-invariant metric on G/H is uniquely determined by an Ad(H)-invariant
scalar product on m. Furthermore, for any G-invariant metric g on G/ H there exists
a decomposition

f=m & - dmy

of m into Ad(H )-irreducible summands, such that g is diagonal with respect to Q.
that is

g =x10lm L - L x¢Qlm, 1.1)

with x1, ..., x¢ > 0. Even though the decomposition f =m; & - -- & m, of misnot
determined uniquely in general, this is true for the decompositionm = p1 & - - - By,
of m into isotypical summands. Moreover, by Schur’s Lemma each G-invariant
metric g and also its Ricei tensor ricg respect this splitting.

Next, let us define the Ad(H )-equivariant, g-selfadjoint endomorphism Ric, by

ricg(-, ) = g(Ricg -, -).

Let I, denote any non-empty subset of {1,2,...,¢,} and let p;, = Dicr,pi. We
consider the restriction (Ric,)z, of Ricg to p7, as an endomorphism of py7,. Let
sc(g)1, = tr(Ricg )y, and let

sc(g)r,

((Rieg)s,)” = (Ricg)r, — g2 =v -

1dp,,

denote the tracefree part of (Ricg);,. We call (((Ricg) 1*)0)1'0 negative (positive)
definite, if the symmetric 2-form g((((Ricg)r,)%)i, -, -) on p;, is negative (positive)
definite.

Since G-invariant Einstein metrics on G/ H are characterized variationally as the
critical points of the Hilbert action restricted to the space of G-invariant metrics of
volume 1 (cf. [Bes]), we obtain the following obstructions to existence of G-invariant
Einstein metrics.

Lemma 1.2. Let G/H be a compact homogeneous space. Let I, C {1,2,...,0.},
|I| > 2 and iy € L. If for all G-invariant metrics g on G/H the endomorphism
(((Ricg) 1*)0)1'0 : i, — i, is negative ( positive) dennite, then G/H does not admit
G-invariant Einstein metrics.
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Next, we present a well-known formula for the Ricci tensor of a homogeneous
metric on a compact homogencous space. Let g € MC andlet f =m; @ --- ® my
be a decomposition of m, which diagonalizes g. Then by [WZ2], [PaSa] we have

(Ricg)mm (L.3)

/4 £
1b,, 1 ) Xk 1 . Xm )
== [jkm] 4+ — [jkm] —>~1d o
<2 Xy, 2dy, j%:jl fxmxj 4d,, j%:jl ijxk ™

where (Ricg)mm denotes the restriction of Ricg to my,, 1e. g((Ricg)mmX, X) =
ricg (X, X) for all X € m,,. Here,

—Blw,, =bnQlm, and d, =dimm,,

where B denotes the Killing form on g. The structure constants [ijk] s with respect
to the decomposition f are defined as follows:

[lijkl; = Qew: e8], ¢,)°

where the sum is taken over {¢y}, {¢g}, and {¢, }, Q-orthonormal bases for m;, m;
and my, respectively. Notice that [ij k] 1s invariant under permutation of i, j, k.
The only known relations among these structure constants have been described in
[WZ2]:
I
dib; = 2d;ci + Z Lijkly, 1<i<{. (1.4)
Jik=1

The nonnegative constants ¢; are given by Cu; o, = ¢i - idm; where

Cmi’Q|h = —Zadzi oadzi,

i

{zi} Q-orthonormal basis of fj, denotes the Casimir operator on m;.

2. The tracefree part of the Ricci tensor

In this section we will compute the diagonal part of the tracefree part of the Ricci
tensor of a homogeneous metric g on a compact homogencous space G/H and more
general the diagonal part of the endomorphisms (((Ricg)s,)%)i, @ Piy — Pio-

Let g € M be a G-invariant metric on G/H and let f = m; @ - - @ my be
a decomposition of m, which diagonalizes g. For I, C {1,2,..., £} let I be the
subsetof {1,2, ..., ¢} withm; = @iy my = pr,.
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In order to keep notation as simple as possible let us introduce the following
notations: We will write [ijk] instead of [ijk]; and ) j.x instead of Zﬁ wep- I
we write D ; ; 4, then we are summing over all indices i, j, k from 1 to ¢ with
i, j, k # m but the last one. Thus m is always fixed. If we write ), ;. then we
are summing over all indices i, j, k which are pairwise distinct.

Since by (1.3)

1
2

sc(g)r, =

AT e

iel zeI]k zeI]k

we obtain for m € [

(((2Ricg) 1)) mm @.1)
:(b_m(l_d_m>_i it
Fm dr Ay iel;ém &
1 X; .
TR 7Y +— [ijk1— lijik] >~1dm
2dn ; YiXj zEIXJ:k in zel,j,k L%k "

where d; = ), .; d;. We are going to extract x,, in this formula. The third and the
fourth term of (2.1) can be decomposed as follows:

LJ

= — Z[um] + Z[zmm]— + —2 Z[me]x, + — Z [ijm]x—]

i m itm Fm et jEm &
> lijml-
- XjXj
LJ

1

xm

—[mmm] —{-meum —{-ZZ imm] —I—xm Z L]m]—
i£m i i£m i£j#m Hixj

In order to treat the fifth term in (2.1) we observe:

> Lk = é[mmmw > [m]—+x—2[kkm]+ Y likkl—

X
iel#m Xi & k;ém iel#m k#i .

fm X imlt Y i)+ o Yl

M icl#m jEmicl#j i jetm
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+am Y liiml+ Y [”k LS G

il £m xf iel £k M dktm Y
1 ) 1 oy Xk
+— > likm]= 4 Z lijml—+ 3 lijkl——.
S i iel#j#m XD el jEkm Hi

The last term in (2.1) can be written as follows:

iel,jk
1
= —[mmm] + Z lll]— + Z[kkm] + — Z [imm]x;
Tm iel#m ti k#m X iel#m
llm] [iij]
+ > lkk +2 > > 5
i€l #k#m iel#m ];ém iel#j
%
+ ) [;km]—+2 Z [ikm] > lijkl——.
Joktm iel£kstm YmX " ieljEktm X%k
We obtain
(2 Ricg)l*)o)mm 2.2)
1 1 dy ) 1 ;
= d_l ; <g{ (l — a) Z[me]xi -3 . Z [me]x,-}
i#m iel#m
1 dy
—i—a{(a—l)dmbm——Zum]—i— ( +l)[mmm —}-Zkkm }
i k#m
1 dy . Xk . Xk Xi
+—11-=— Lkml=+ Y likm]{ = — =
Xm dp | xj Xi Xk
JFEk#Em iel#k#m
1 1 g X
— Z — [lll]— + Z lkk]_. + Z [le]—];
ielzm M lel;ém M ertm ki M el gktm %
.. Xk 1 R Xi 1 . X;
k — = kkl— — = k
+ Z K- =5 > Lk 5 Z iK1
iel£j£k#m iel#k#m k iel#j#k#m J
1/4d; 1 1/df ) 1
—— -1 —4+-{—-1 k
+xm{2(dm >Z[”m]x.2+2<dm > Z LJ m]x]'xk
z;ém i J#k#m

+ Z liim]— + Z [z]m];}>~idmm.
j

iel#m i iel#j#m
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In particular, this yields the following formula for the tracefree part of the Ricci tensor:

((2Rice))mm
L(A(Y_2\yy 1 1o .
= = (g (5 - a) Z[lmm]xi — Z x—i{dibi + E[l”] - Z[zkk]}
i#Fm i#£m k
1 1 . N
Xm \dm 2 - . X;
i Jktm
1 R ¢ 1 o x
+3 2 kg4 > k-
i£k#m X i jtktm XiXj
1/ n ) 1 '
toams | o+ 1) Y Likml—— ) -idu,,
2\ d, , .
Jk£m
where
n=dupa,. o =dimG/H.
From (1.4) we deduce the following identity:
1 1
dib; + E[iii] — Z[ikk] = 2d;c; + E[iii] + Z[ijk] > 0. 2.3)

k J#k

Equality holds if and only if m; is almost trivial, [iii] = 0 and [m;, m;] C m; for all
Jj=12,...,¢ We call an irreducible summand m; almost trivial, if [h, m;] = 0,
that 1s if m; 1s contained in the normalizer of § in g.

3. The negative definite case

In this section we will assume that (((Ricg)y, )0),-O is negative definite for all g € M.
As above, let f be a fixed decomposition of m and let the G-invariant metric g be
given as in (1.1). Under this assumption, if m,, C p;,, then (((Ricg)l*)o)mm < 0 for
all g € M©.

If we let tend x,, to +00 while keeping x; fixed for i # m, then considering the
last term x,,{. ..} in (2.2) yields

[ijm] =0 fori, j#m. (3.1)

Hence

[ZZU@@WL,’

i£m
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is an H -subalgebra, that is a proper Ad( H )-invariant subalgebra of g, which contains
b properly. Equation (2.2) simplifies to

(((2Ricg) 1,)")mm (3.2)
1 1 1 dr . dy
=% <g{<z — E) Z [imm]x; + (1 - a) Z[kmm]xk}
iel#m kel€
1 /d 1 1 1
+ —<—’ — 1) <dmbm - E[mmm]> -y —[dibi + 5 liii] - Z[ikk]]
Fm \m selZm k
1 Xk | N ¢
hg > liik]— + > [llk]x—z—z. X (kK] —
iel£kel£m I jel#mkel€ i iel#m kel k
1 . Xk .. Xk
+- > hjk—+ ) lijk]
2 . g XiXj . . XiXj
iel#jel#kel #£m iel#jel#m,kel€
oy Xk 1 X .
+ 3, BEH———z ¥ [uk]—’> - idm,,
) . xixj 2 . XXk
iel#m,jel€ #kel€ iel#m,jelC £kel€
where I€ = {1,...,¢0\I. Letk € I€. If we set xp = x,, and let xz tend to +00

while keeping x; constant for i # k, m, then we get

lijk] =0 fori,je I\{m}, kelI€ (3.3)
[ikk'] =0 forie I\{m}, k.K € IC, k £k (3.4)

Since by (3.1) [ijm] = O for i, j # m, (3.3) implies that

t=ho P m

iel\{m}

is an H-subalgebra. Wehave ¢ < [and € = [ifand only if I, ={1,2, ..., ¢,}.
Let now wy = )’CC—Z for k # m. By (3.3) and (3.4), equation (3.2) simplifies to

(2 Ricg)l* )O)mm * X

1 1 4y . dy
= d_1 : ((E — E) Z [imm]w; + (1 — d_) Z [kmm wy

icl#m M7 keI

+ (ﬂ _ 1) (dmbm _ %[mmm]) -y %[dibi + %[iii] — Xk:[ikk]}

dm icl#m '
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1 U
ol 2 MG Xl
iel£kel#m i jel#m kel€ k
fY i) e,
_ wiw;
iel#£jel#kel#m

Let i € I\{m} and let w; tend to zero while keeping wy constant for k # i. We get
[ijkl=0 fori, j, ke I\{m}, i,j #k. (3.5)
Hence equation (3.2) simplifies further to

(((2 Ricg)l* )O)mm *Xm

_1 1 dy ) o L "
_;((5—@) 37 limmlw; — Y o (d,bz+ liii] Z[zkk])

iel#m iel#m
1
+ (a — 1) E[mmm] — Z [kmm]wk}
kel€
1 :
-3 Z [kk]w> idw,, -
iel #m kel€ k

Recall that an H -subalgebra € is called toral if € is an abelian extension of f, otherwise
non-toral. From (3.5) we deduce that there exists a unique decomposition € = 3'(€) ®

_1 & @rof &, where & are non-toral H-subalgebras, and a unique decomposition
h = Pi_; hi @ v of h, where h; < &, such that the Q-orthogonal complement q;
of b; in & is an isotypical summand of the Ad(H )-module & = 3'(8) ® P._, q; (cf.
[WZ2, Theorem 2.1]).

For an H-subalgebra £ of g let now H (&) denote the smallest subgroup of G with
Lic algebra £ containing H. Then it follows that H () / H splits virtually into a product
of isotropy irreducible spaces

H®/H =T" x HH(Ei)/Hi, (3.6)
i=1

and we obtain the following inclusions of intermediate Lie groups:
H<H®<HI <G,

where G/H ([) is virtually isotropy irreducible and H (8)/H is a virtual product of
isotropy irreducible spaces.

Next, we examine the case when p;, is not irreducible. Suppose that there exists
m’ € I with m # m/, such that m,, and m,,’ are equivalent. Performing the above
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computation for m/, by (3.6) we get [m,,, m,,] C m,, ® h, hence [imm] = 0 for
i # m. Therefore, G/H splits virtually as G/H = G1/H; x Gy/H, where G /H;
and @2/ H, correspond to my, and @;,m;, respectively. By carrying out the same
computation for m,, we finally obtain [p;,, @f*:l’i#iopi] = 0. Therefore G/H splits
virtually as G/H = G /H x G/ Hy where G/ Hy and G,/ H, correspond to p;, and
EBf*:U £ioPis respectively. Note that G1/H; splits virtually into a product of isotropy
irreducible spaces. It follows that virtually G;/H; = T* for k > 2 (cf. [WZ2,
Theorem 2.1]).

Proposition 3.7. Let G/H be acompact homogeneous space. Letl, C {1,2,...,¢,}
and iy € 1. Suppose that (((Ricg) 1*)0),~0 is negative dennite for all G-invariant met-
rics g on G/H. If p;, is not irreducible, then virtually G/H = T* x Gy /H, for
k > 2. Furthermore, if p;, is irreducible and Y ® p;, is a toral H-subalgebra, the
same is true for k > 1.

In the remaining part of this section we will assume |7;(G/H)| < o0. In this
case it follows from the above proposition that p;, is irreducible and that b & p;, is
not a toral subalgebra of g. Therefore, the Lie subgroup L = H([) is compact with

dim G/L > 1. Since incase I, = {1,2, ..., £,} we have &€ = [, we obtain the proof
of Theorem B.
Next, we will focus on the case I, = {1, 2, ..., £,}. Since then I€ = #, equation

(3.2) simplifies further to

(((2Ricg) 1) Ymm - Xm - 1

_ [mmm]
—(”_dm)’(bm_ 2d,, )

= (= D imw? + diby — L] — fimm]
Zwi a2 immlw; i b; 2uz imm] ;.

By the above discussion, [iii] and [imm], 1 <i < £, are the only non-zero structure
constants with respect to the decomposition f, fixed in the very beginning.

Finally, we will investigate which of these structure constants can vanish. Since
|71(G/H)| < 0o, wehave dy,b,, — %[mmm] > 0 (cf. [Bo2, Corollary 4.17]). If there
exists i 7 m with [imm] = 0, then G/H splits virtually. Therefore, we may assume
in the following [imm] > 0 for all i. We have d;b; — %[iii] —[imm]=0fori #m
if and only if h & ny is a toral H-subalgebra.

Let 1o denote the set of indices i € {1, 2, ..., £}\{m}, such that d;b; — %[iii] —
[imm]is positive. If [0 ={1,2, ..., £}\{m}, then the assumption (((2 Ricg)I*)O),-0
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being negative definite for all g € MY is equivalent to the following inequality:

l<bm 3 [mmm])
2 2d,,

[iii] [imm] 1 1
<> (d'b' _—_[mm]>’n—dm ’(2(n—dm) +E)

i#m

(€Y

It follows as in the proof of [WZ2, Theorem 2.1], that this inequality does not depend
on the choice of the decomposition f. If Iy is a proper subset of {1,2, ..., £}\{m},
then the above assumption is equivalent to the fact, that an inequality 1s satisfied
obtained from (3.8) be replacing < by < and summing over i € I.g. Again this
mequality does not depend on the choice of the decomposition f.

Remark 3.9. It would be very interesting to understand inequality (3.8) from a qual-
itative point of view. Notice that for £ = m = 2 inequality (3.8) is nothing by (5.1).

4. The positive definite case

In this section we will assume that (((Ricg)y, )O)i0 is positive definite for all g € MC.
As above, let f be a fixed decomposition of m which diagonalizes g (cf. (1.1)). Under
this assumption, if m,, C p;,, then (((Ricg)h)o)mm > 0 forall g € M°.

If we let tend x,, to 0 while keeping x; fixed for i # m, then considering the first
term é{. ..}in (2.2) yields [imm] = 0 for i # m. Hence

£= b D my,
is an H-subalgebra. Moreover, we claim
[jkm] =0 forj # k. @.1)

To see this, we consider the third term i{. ..}1n (2.2). We have

> [ka]—+ D (] e
(-2 (2-1)

Jktm iel £k#m Ak
d b . X X X
=LY Gem =+ Y Gk )+ Y lim) =
dm X Xi Xk . - Xy
jeI€+#kel€ iel#m,kel€ icl#£jel#m

D DR/ I B S 1 RO S (P R

X X . n X
jelIC £kelC J iel#m kel€ ' iel#jel#m 4
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First of all, [jkm] = O for j, k € 1€, j # k, since if we let x; tend to +o0, while
keeping x; fixed for j € I, j # k, and if we set x; = xi for i € I\{m}, the above
term gets as negative as we wish. Now, if we let x,, tend to zero, then we obtain a
contradiction. Next, [ikm] = 0 fori € I\{m} and k € I€, since if we let tend x; to
zero while keeping x; fixed the above term gets again as negative as we wish. Finally
we obtain (4.1).

Let wy = j—i for k # m. By (4.1), equation (2.2) simplifies to

((2Ric) 1)) mm - Xm - di (4.2)
d 1
— (é - 1) (dmbm 5 lmmm] — Zk:[kkm]>
_ Z {db —l——[uz Z[zkk} (d’ +1) Z [iim]l
m ; w2
xel;ém iel#m i
. w
_<__1) Z[kkm]——i— > Lkl s 2 5 Z k]
keI€ iel#k#m ;e[;ék;ém k
.. 1 ..
+ > [le]w.w. -5 2 lijkl——.
S Al iel# ] £ktm F

Forall j, k € 1€ wesetw; = wg. Let w; be fixed foralli € I'\{m} but large enough.
Now let wy tend to zero. We get

lijk] =0 forie I\{m}, j.keI€. 4.3)
Hence, by (4.1) and (4.3) [ = hh & m,,, ® ;¢ My is an H-subalgebra.
By (4.3) equation (4.2) simplifies to

<<<4Ricg>1*>°>mm-xm~d1=2(j—’—1><dmbm ~lmmm] Z[um])

n

2} {db 4o [iii]—Z[ikk]}+ U 3 im] s

lEI;ém kel iel#m i
_] .. Wi
+. Z [”]]w2+, Z [”k]wiwj
iel#jel#m ! iel#jel#kel#m

dy 1

+<d——1) D lkkml— +2 Y [”k]ﬁ
" kelC k iel#m, kel€ i

s @ Wi
2 k
4 > lijkl B

iel£jel#m kelC

and we obtain the following counterpart to Proposition 3.7.
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Proposition 4.4. Let G/H be acompact homogeneous space. Let I, C {1,2, ..., 0.}
and i € 1. Suppose that (((Ricg) 1*)0)1-0 is positive dennite for all G-invariant met-
rics g on G/H. If p;, is not irreducible, then virtually G/H = T* x Go/H, for
k > 2. Furthermore, if pi, is irreducible and Yy @ p;, is a toral H-subalgebra, the
same is true for k > 1.

Proof. If p;, is not irreducible, then we conclude as above that p;, is an abelian
subalgebra of g. Consequently, we obtain from (1.4) and (4.1) dpbm + %[mmm] —
liiml = 2dpen + %[mmm] + Zi;ﬁj[ijm] = 0. Next, we set w; = x for

i € I\{m} and wy = x5 for k € I€ and let x tend to +00. Since by assumption
(((2Ricg)1,)")mm is positive and since by (4.3) d;b; + 2[iii ] — Y o likk] = 2d;c; +
%[iii] + Z#k[ijk] forall i € I\{m} we conclude ¢; = [iii] = Zj#k[ijk] = 0 for
i € I\{m}. Itfollows that €P; c;.,, ™ is an abelian subalgebra of g which commutes
with [ = b & my, & Py M. o

In the remaining part of this section we will assume |77;(G/H)| < oo. In this
case it follows from the above proposition that p;, is irreducible and that h @ p;, is
not a toral subalgebra of g. Therefore, the Lie subgroup K = H (h @ p;,) is compact
with dim K/H > 1. By (4.1) the Ad(H )-irreducible summands m;, i # m, are also
Ad(K)-invariant. Thus, all G-invariant metrics on G/H are Riemannian submersion
metrics with respect to the submersion 7 : G/H — G/K ; gK + gH with fibre
K /H. We obtain the proof of Theorem C.

Let us turn to compact homogeneous spaces where not only (4.3) is fulfilled but
[ijk]=0 foriel, j kelC. 4.5

Then both ) & ;. ;c mi and b & m,, are subalgebras of g. Under this assumption,
we do not only ask (((Ricg) 1*)0),-0 to be positive definite for all g € MY but require
in addition that the following inequality is fulfilled:

dp >< 1 .. )
0<2{— —1}dyb, + =[mmm] — [iim] 4.6)
(% =1)(ambn + 5 > (
2 1 d 1
-y f{dibi+5[iii]—2[ikk]}+(d—l—i-l) 3 liiml—
iel#m Wi kel ’" iel#£m Wi
Wi . Wy
+ > L=+ Y. lik——.
, - w3 , , w;w ;
iel#jel#m l iel#jel#kel#m

Notice that this inequality is only a slightly stronger assumption than requiring
(((Ricg)y, )%, to be positive definite.

Now we can state the glueing result for homogeneous spaces mentioned in the
itroduction.
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Theorem 4.7. Let G/H, G/H be compact homogeneous spaces with nife

Jundamental group. Suppose that there exists a simple Lie algebra | such that

'H=b=§dland T1H =14 =1 eBb/ LetG—GxGandletHdenote

a (possibly disconnected) subgroup of H x H with Lie algebra h =HOAlD h/ .

Letm = @f*:l p; denote the isotypical decomposition of the isotropy representation

mofH. Let I, C {1,2,..., L.} and iy € L. If

(1) (((Ricg)1,)%)i, is positive demnite and (4.6) is fulnlled for all g € M,

(2) fori € I, the Ad(H)-isotypical summands p; are Ad(H )-isotypical summands
of m,

(3) the Ad(H)-irreducible summands of P, 1, bi are Ad(ﬁ )-irreducible,

@ e @ie{l ¢0\1, Pi is a subalgebra of g and [pi,, 1] = 0,

then G / H does not admit G-invariant Einstein metrics.

.....

Proof. For the same choice of I, and iy C I, we have to prove that (4.1), (4.5) and
(4.6) are fulfilled for all G-invariant metrics g on G/H.
The isotropy representation th of H can be decomposed as follows:

2 :ﬁ@([@[@A[)GB(@Pi) (@p)

iel€ i€l

where i denotes the isotropy representation of [ and I A =l Ben eng Ba b By
(2), for i € I, the summands p; are still isotypical summands of 1.

Let f = D, ;¢ ™ ® D;e; nu be an arbitrary decomposition of m into Ad(H)-
irreducible summands, where 1€ = {1,2,..., )\l and @), ., m; = Dicy, Pi> ™
Ad(H)-irreducible for i € I (cf. (3)). As above let m,, € p;,.

First, we show []km] = 0for j # k. For j, k € I this is certainly true by (4.1).

In order to treat the other cases notice that [m, m] C g, [[® [S AL D[S AI] C f),
[@ielf pi @igf pil C b®@i61f pi by (4), [m, ®ielf pil =0, [[BISALmM] Cm
and [[ D[S Al @ielf pil C @ielf pi. Hence [jkm]; = Ofor j, k ¢ I. Finally,
if j ¢ I but k € I we obtain again [jkm]f = 0, since [@ielf pi,my] = 0,
[, my] = 0and [[® [ Al m,] = 0by (4). )

As a further consequence we obtain [ijk] = O fori € I and j, k € I¢. Since by
(2) and (3) the structure constants [ijk] 7 with i, j, k € I did not change we conclude
that (4.6) is still satisfied. O

Remark 4.8. The above theorem can also be proved for abelian subalgebras [ In
this case we require h = h’ @ o’ and h = & @ h’ where o’ and & denote the centers of
f and b/, respectively. Then we consider compact Lie subalgebras h = ' & Aa @ b’
of h @ ', where now Aa denotes any compact subalgebra of o’ @ &'
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5. New non-existence examples

In this section we describe many new compact homogeneous spaces G/ H with finite
fundamental group, which do not admit G-invariant Einstein metrics. Certain com-
binations of the Einstein equations are considered, which can be written as a sum of
squares in an obvious manner. This yields the desired non-existence examples.

Let G/H be a compact homogencous space with finite fundamental group. If
the isotropy representation m of the isotropy group H is irreducible, then by Schur’s
Lemma, up to scaling, there exists only one symmetric G-invariant bilinear form on
G/H. Consequently, cach G-mnvariant metric is Einstein.

If the isotropy representation m can be decomposed into two irreducible inequiv-
alent summands m and m;, then the Einstein equation is given as follows:

L(b_l_[lll]_[122]>_[112].ﬂ [122] x1 _
x\ 2 4d; 24, 2dy  x} 4dy X2

i(@_[zzz]_[nz])_[lzz].ﬂ 02y x
0\2 4d 2, 2y X} Ady 2T

For the definition of the (non-negative) structure constants [ijk] and by, by we refer
to Section 2. Recall that [ijk] is invariant under permutation of i, j, k.

If [112], [221] > O, then  is a maximal subalgebra of g, hence by [WZ2] there
exists a positive real solution. Therefore, we may assume that h & my is the Lie
algebra of an intermediate Lie group K, that is [112] = 0. If [122] = 0 as well, then
there exists a positive real solution since |71 (G/H)| < o¢. Hence we may assume
that [112] = 0 and [122] > 0. As was already proved in [WZ2], in this case the
above system does not admit real solutions if and only if

[111]  [122] 1 1 1 122212
by — — 221 — + — — | by — . 5.1
<1 2d, d1>[ ]<2d1+d2>>4<2 2d2> G-
If G is simple and G/K and K/H are symmetric spaces, then b = b; = b and
[111] = [222] = 0, hence non-existence is guaranteed if and only if

b [122] 122 1 1 b?

( T4 )’[ ]’(E+£>>T

In [WZ2] many examples G /H of this kind have been described with G simple. This
work has been completed in the recent classification of all theses spaces [DiKe]. For
mstance the homogeneous space G/H = SU(m+n)/ S(SO(m) U(1) U(n)) does not
admit G-invariant Einstein metrics for m > n% 4+ 2. If m = n%?+2, then G/H admits

precisely one G-invariant Einstein metric, whereas for m < n? + 2 there are two
non-isometric G-invariant Einstein metrics.
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In order to describe further non-existence examples, we consider compact irre-
ducible symmetric spaces G /(Hj Hy), such that H; is simple and Hj is either simple
or 1-dimensional (cf. [Bes, Table 7.102]). We examine the homogeneous spaces

G/H =G x G/ (AH, - (Hy x Hy))

where the subgroup A Hj denotes the diagonal embedding of Hyin H; x H,.

The isotropy representation m of H consists of three pairwise inequivalent sum-
mandsgivenbym; = §1©(h1®h2)1.m2 = §2(h1®h2)2 andmy = (h1Bh1)SAh.
Wehaved; = dy = dimm; = dim G—dim H; —dim f; and d; = dim m3 = dim H.
It is easy to see that the only non-vanishing structure constants are [113] and [223].
By choosing an Ad(G)-invariant scalar product on g whose restriction to both sim-
ple factors agrees, we get b = by = by = b3 > 0 and [113] = [223]. A routine
computation using (1.3) shows that the Einstein equation is given as follows:

b 0B x o
2% 24y x} '
& BBl = _, (5.3)
2 2di X2 '

1 /b [113] [113] x3  [113] x3

—f = — e P A ket s R 54

X3 <2 d3 )+ 4d3 x12 + 4d3 X% ( )

In order to examine the non-existence criterion described in Theorem C let us com-
pute the restriction of the tracefree part of the Ricci tensor restricted to m3 (that 1s
we choose I, = {1,2,3} and iy = 3). Up to a factor we consider the equation
x3-(2(53.4) — (5.2) — (5.3)) = 0 given by

[113] . < 1 1 2[113]

2 2 b —
A () @rs-2a@rp+ (- 20 63

where o = % and B = % It follows that if

" 2[113] 113 1 1 b2 s
(-57) (G 5) - %

then the system (5.2), (5.3), (5.4) does not admit real solutions.

Example 5.7. The spaces G/H = SO(n) x SO(n)/A SO(n —k) - (SO(k) x SO(k))
do not admit G-invariant Einstein metrics for n > k> + k + 2 and k > 2.

Proof. We choose the Ad(G)-invariant scalar product Q(X, Y) = —% tr(X-Y)ong.
Then b = 2(n — 2) (see [WZ1, p. 583]). Furthermore dy = dy = k(n — k) and
d3 = 3(n —k)(n — k — 1). A computation shows [113] = kd3 and we obtain the
claim from (5.6). O
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It is not hard to see, that G/H admits G-invariant Einstein metrics if the obstruc-
tion (5.6) is violated; for n = k? + k + 2 there exists a unique G-invariant Einstein
metric and for n < k? + k + 2 there exist at least two non-isometric Einstein metrics.

In the next step we specialize to symmetric spaces G /(H SO(2)), where H is a
simple Lie group (cf. [Bes, Table 7.102]). For coprime integers p, g with (p, g) #
+(1, 1), we consider the homogeneous spaces

G/H =G x G/(AH -S0,,(2))

where SO ,(2) is embedded diagonally in SO(2) x SO(2) with slope determined by

(p.q).
Since p # g the isotropy representation m consists of four pairwise inequivalent

summands given by m; = g1 © (s0(2); @ ), My = §2 © (50(2)2 ® B), m3 =
(b@h) o Ahandmy = (50(2); Bs0(2),) Os0y, ¢(2). Wehaved; = dp =dimm; =
dim G —dim H — 1, d3 = dimm3 = dim H and dy = dimmy = 1. It is easy to
see that the only non-vamshmg structure constants are [113], [114], [223] and [224].
By choosing an Ad(G)-invariant scalar product on g whose restriction to both simple
factors agrees, we get b = by = by = by = by > 0 and [113] = [223]. Since the
Casimir constant c4 of the irreducible summand my equals zero, by (1.4) we obtain

b =by = [411]+ [422].

A computation shows that the Einstein equation is given as follows:

b [113] x3 [114] x4

PP s Plu P ki e 5.8
2xp 24y x} 241 xP e
b 113 224
__u.x_;_u.x_;:)» (5.9)
2)62 2d1 Xy 2d1 Xy
1 /b [113] [113] x3  [113] x3
—{=- p 2= 5.10
X3 (2 d3 ) + 4d3 x12 w 4d3 x% ( )
1 1
([114] +[224] - ) = (5.11)
4dy xl x2

We consider the equation —4x3 (‘12—1(5.8) - %1(5.9) +da(5.11) — (d1 +d4)(5.10)) =

given by

[113]
d3

4113
’<d1+d3+d4)'(a2+ﬁ2)—d1b~(a+ﬁ)+(d1+d4)’(21?— [d ]): ,
3

where again o = i—? and B = % It follows that if

2
(b B M) 13 (di + d3 + da)(dy + dg) b_ (5.12)
d3 dids 4
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then the system (3.8), (5.9), (5.10), (5.11) does not admit real solutions.

This non-existence criterion is obtained by combining two non-existence criteria
described in Lemma 1.2. In the above equation we consider a weighted sum of
((Ric(1,2,3))%)3 and ((Ric(3,41))3.

Example 5.13 (|BK]). Let n > 3 and let p, ¢ be coprime integers with (p, g) #
£(1, 1). Then the space G/H = SU(n) x SU(n)/(A SU(n —1) - U, 4(1)) does not
admit G-invariant Einstein metrics.

Proof. The embedding of H into G is given as follows: Consider the maximal sub-
group U(n —1) in SU(n). Then the semisimple part of H is embedded diagonally and
Up,4(1) is embedded into the center of U(n — 1) x U(n — 1) with slope determined
by (p, q).

We choose the Ad(G)-invariant scalar product Q(X,Y) = —% tr(X - Y) on g.
Then b = 4n (see [WZ1, p. 583]). Furthermore d1 = dy =2(n — 1), d3 = n(n — 2)
and d4 = 1. A computation shows [113] = 243 and the claim follows from (5.12). O

For n = 3 this example has been examined in [BK] as one of the 12-dimensional
homogencous spaces which do not admit homogeneous Einstein metrics. It is inter-
esting to note that for (p, g) = +(1, 1) G/H carries a G-invariant Einstein metric
by the Graph Theorem [BWZ]. In this case the irreducible summands m; and m; are
equivalent and therefore, the space of G-invariant metrics is 6-dimensional. Since
the above non-existence proof does not rely on the particular values of (p, ¢), we
conclude that this Einstein metric is not contained in the 4-dimensional family of
G-mvariant metrics described above.

Next, we describe a second non-existence criterion for real solutions of the system
(5.8),(5.9),(5.10), (5.11). Asin (5.5) we consider the equation x3 - (2(5.10) — (5.8) —
(5.9)) = 0, which up to a factor is nothing but ((RiC{1’2’3})0)3. We obtain

@~(i+i)~<a2+ﬁ2>—5(a+ﬂ>
2 dy  d3 2
2[113] [114] X3X4 [224] X3X4
+<b & >+ 2di 2 2 A
where as above ¢ = ’;—? and B = % Since [114], [224] > 0, [114] + [224] > 0 and
X1,....x4 > 0, for the homogencous space G x G/ (AH - (SO(2) x SO(2))) the
equations (5.8), (5.9), (5.10), (5.11) do not have real solutions, if the non-existence
criterion (5.6) is satisfied. Notice that this criterion in weaker than that described in
(5.12); for instance non-existence for Example 5.13 does not follow from (5.6).

O)

Example 5.14. Letn > 7and let p, g be coprime integers with (p, ¢) # (1, 1). Then
the compact homogeneous space G/H = SO(n) x SO(n)/ (A SO(n—2)-S0,,4(2))
does not admit G-invariant Einstein metrics.
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Proof. The embedding of H into G is as described in Example 5.13. As in Exam-
ple 5.7 we choose the Ad(G)-invariant scalar product Q(X, Y) = —% tr(X-Y)ong,
hence b = 2(n — 2). Furthermore dj = dy = 2(n — 2), d3 = %(n —2)(n —3) and
dy = 1. In the proof of Example 5.7 we saw [113] = [223] = 2d3. Non-existence of
G-mvariant Einstein metrics follows now from (5.6) for n > 8. For n = 8 we have
equality in (5.6), which still implies non-existence of G-invariant Einstein metrics on
G/H. For n = 7 we need to invoke (5.12) and the claim follows. O

Next, letus give the proof of Theorem A. Let G/ H be acompact simply connected
homogeneous space with a prime factor G, /H, = G x G/(AH - (SO(2) x SO(2))).
Then either

G/H=G,/H, xG/TH, or G/H=G xG x G/(AH-AT - Hy)

where G/T Hy is a product of prime homogencous spaces, T denotes the center of
TH, (on Lie algebra level), and AT is a proper subtorus of (SO(2) x SO(2)) x T.

In the first case G/H does not admit G-invariant Einstein metrics, since the
isotropy representation of G,/ H, does not contain trivial summands.

In the second case, under the genericity assumption the summands m;, m, and
mg3 of the isotropy representation of H, are still irreducible isotypical summands of
the isotropy representation m = m; @ my @ mz O @f:4 m; of H. Notice that the
decomposition EBf: 4m; of mS (m; @ my @ m3) may not be uniquely determined.
Still the Einstein equations, which correspond to (5.8), (5.9) and (5.10), are given by

£ .
b] [113] X3 [lll] Xi
N ' E L= 5.15
2X1 2d1 x% Z Zdl XZ ( )
i=4 1
£ .
b2 [223] X3 [221] Xi
L =2 5.16
2)62 2d1 x22 zZ: 2d1 x22 ( )
1 (b3 [113] [113] X3 [223] x3 _ (5.17)
x\2 ddy X2 4dy 2T '

By choosing an Ad(G)-invariant scalar product on g which extends that described in
the proof of Example 5.14, we conclude b = b; = by = b3. Furthermore, we still
have [113] = [223] = 2d3. As above we conclude, that if the non-existence criterion
(5.6) 1s fulfilled, then the Einstein equations for G/H do not admit real solutions.
This completes the proof of Theorem A.

Remark 5.18. Observe that the above non-existence criterion is nothing but asking
(((Ricg) 1)%)3: m3 — m3 to be positive for all G-invariant metrics g on G/H for
I, = {1, 2,3} and iy = 3. Notice that we also could have applied Theorem 4.7.
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Finally, we describe one more elaborate non-existence example G/ H .

Example5.19. Let G/H = SU(m + ny + - + ng)/ S(SOm) U(1) x U(n;) x
oo x Ung)), where m, ny, ...,np > 1. If m > (Zle ’li)2 + 2, then G/H does
not admit G-invariant Einstein metrics.

Proof. The isotropy representation m of H can be decomposed as follows:

m= P ln®¢@ui & Son—10)® P [un @i lp:

1<i<k 1<i<j<k

Alll =k+1+ %k(k — 1) summands of m are irreducible and pairwise inequivalent,
hence ¢ = ¢,. Let the first K + 1 summands be denoted by my, ..., mg, m,,, for
m=k+1 Wesetl,=1={1,...,k+ 1} and ip = m. Note that (4.1) and (4.5)
are satisfied. It remains to show that (4.6) is fulfilled as well.

We have d,y = $(m +2)(m — 1) and d; = 2mn; fori =1, ..., k. This time we
choose Q = —B thatis b; = 1 for all i. After rescaling the Killing form of G/H
a computation shows [iim] = dyn;/(m 4+ Y 5_ n;) fori = 1,..., k (cf. [WZ2],
Example 2). All the other structure constants [ijk] with i, j, k € I vanish. Now
another computation involving the first three term in (4.6) shows that (4.6) is fulfilled

form > (Zle ni)2—|—2. O
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