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EZ-structures and topological applications

F. T. Farrell* and J.-F. Lafont

Abstract. In this paper, we introduce the notion of an EZ-structure on a group, an equivariant
version of the Z-structures introduced by Bestvina [4]. Examples of groups having an EZ-
structure include (1) torsion free 5-hyperbolic groups, and (2) torsion free CAT(0)-groups.

Our first theorem shows that any group having an EZ-structure has an action by homeomor-
phisms on some (D", A), where n is sufficiently large, and A is a closed subset of 9D" S"^1.
The action has the property that it is proper and cocompact on D" — A, and that if K C D" — A
is compact, that Aism(gK) tends to zero as g -> oo. We call this property (*a)-

Our second theorem uses techniques of Farrell-Hsiang [8] to show that the Novikov
conjecture holds for any torsion-free discrete group satisfying condition (*a) (giving a new proof
that torsion-free 5-hyperbolic and CAT(O) groups satisfy the Novikov conjecture).

Our third theorem gives another application of our main result. We show how, in the case

of a torsion-free S -hyperbolic group F, we can obtain a lower bound for the homotopy groups
nn (J3(5F)), where 3>(•) is the stable topological pseudo-isotopy functor.

1. Introduction

Let F be a discrete group. Bestvina [4] defined the notion of a Z-structure on F as a

pair (X, Z) of spaces satisfying the following four axioms:

• X is a Euclidean retract (ER); i.e. it is locally contractible, contractible and has

finite (covering) dimension.

• Z is a Z-set in X; i.e. Z is a closed subset of X with the property that, for every

open set U C X, the inclusion U — Z <-^>* U is a homotopy equivalence.
• X — Z admits a free, properly discontinuous, cocompact action by the group F.

• The collection of translates of a compact set in X — Z forms a null sequence in

X; i.e. for every open cover U of X, all but finitely many translates are U small.

Let us now introduce an equivariant version of a Z-structure:

Definition 1.1. We say that (X, Z) is an EZ-structure (equivariant Z-structure) on F

provided that (X, Z) is a Z-structure, and in addition, the F action on X — Z extends

to an action on X.

*This research was supported in part by the National Science Foundation.
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Examples ofgroups with an EZ-structure include torsion-free S -hyperbolic groups
[3] and CAT(0)-groups [4]. We note that a special case of a Z-structure on F is the

situation where X is a disk W, and Z dW Sn~1:

Definition 1.2. We say that F satisfies condition (*) provided that there is an EZ-
structure of the form (W, S"1"1).

Farrell-Hsiang introduced this special case in [8] (see also [9], [12], [13]). Their
motivation for the development of condition (*) was that it provided an abstract setting
under which the Novikov conjecture could be verified for the group F. Observe that
there are groups with an EZ-structure that do not satisfy condition (*); for example,
the free group on 2-generators. We now introduce a condition (*a) for torsion-free

groups, generalizing condition (*). (For non torsion-free groups see Definition 3.1

below)

Definition 1.3. We say that F satisfies condition (*a) provided that there is an EZ-
structure of the form (W, A), where A is a closed subset of dW Sn~l

We are now ready to state the first two theorems of this paper:

Theorem 1.1. Let F be a discrete group, and assume that F has an EZ-structure.
Then F satisQes condition (*a).

Theorem 1.2. Let F be a torsion-free discrete group satisfying condition (*a). Then
the Novikov conjecture holds for the group F.

The proofs of these theorems will be provided in Section 2 and Section 3 respectively.

We note that the second theorem is not new, as Carlsson-Pederson [6] have

already proven that groups with an EZ-structure satisfy this form of the Novikov
conjecture. Nevertheless, the proof provided here is conceptually quite different from
their argument (see Ferry-Weinberger [14] and Hu [16] for related results on the

Novikov conjecture).
Now let us further restrict to groups which are torsion-free 8-hyperbolic. For such

a group F, Theorem 1.1 above ensures that the group satisfies condition (*a). In fact,
(5-hyperbolicity ensures that the F-action on the pair (ID", A) has several additional
properties. In Section 4, we will use these properties to show the following theorem:

Theorem 1.3. Let V be a torsion-free 8-hyperbolic group. Then for each integer
n > 0, the group homomorphism:

SeM SeM

is monic.
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In the theorem above, M is a maximal collection of maximal infinite cyclic
subgroups of F, with no two elements in M being conjugate, P (¦) is the stable topological
pseudo-isotopy functor, and 4>s '¦ P(BS) —>¦ P(BF) is the functorially defined
continuous map induced by S < F (see Hatcher [15]). We refer the reader to Section 4

for a more complete discussion of this result.
Before starting with the proofs, we make a few comments concerning the results

in this paper.

Remark 1. A natural question to ask is which finitely generated groups have an EZ-
structure? A version of this question was already posed by Bestvina [3], where he

asks whether every group F with a finite B F has a Z-structure. It is interesting to
construct groups which are neither 8-hyperbolic, nor CAT(O) groups, but do have an

EZ-structure. Bestvina gives some important examples of such groups in [3]. Do
torsion free subgroups of finite index in SLn(Z) have an EZ-structure?

Remark 2. It would also be of some interest to find applications of Theorem 1.1

to geometric group theory. Indeed, condition (*a) for torsion free groups yields
an action of the group on disks, which, aside from a "bad limit set" is properly
discontinuous, fixed point free, and cocompact. With the exception ofcocompactness,
this is reminiscent of the action of a Kleinian group on (the compactification) of
hyperbolic n-space. In some sense, Theorem 1.1 states that every torsion-free 8-

hyperbolic group has an action that mimics that of a Kleinian group. One feels that
this should have some strong geometric consequences.

Remark 3. One could also consider the possibility of strengthening condition (*a)
by also requiring the action of the group F on ID" to be smooth. Work of Benoist-
Foulon-Labourie [2] suggests that among 8 -hyperbolic groups, perhaps only uniform
lattices satisfy this extra property. In any event it would be interesting to determine
which (5-hyperbolic groups satisfy this smooth form of condition (*a).

2. EZ-structure implies condition (*a)

Let us fix a discrete group F with an EZ-structure (X, Z). In this section we will
provide a proof of Theorem 1.1. In order to do this, we will use the EZ-structure

(X, Z) to build a new EZ-structure of the form (ID", A), where A is a closed subset

of 9 ID" Sn~l. Let us start with a series of lemmas that will allow us to make the

structure of X — Z more suitable to our purposes.

Lemma 2.1 (Reduction to a complex). LetF be a group with an EZ-structure (X, Z).
Then there is an EZ-structure (K U Z, Z), where K is the universal cover ofa unite

simplicial complex.
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Proof. We first observe that the hypotheses for an EZ-structure imply that the group
F is the fundamental group of an aspherical compact ANR, namely (X — Z)/T. By a

result ofWest [24], any compact ANR is homotopy equivalent to a compact polyhedra
K. In particular K is a K(T, 1). A result of Bestvina (Lemma 1.4 in [4]) now implies
that (K U Z, Z) is an EZ-structure.

Our next step is to "fatten" K so that it is a manifold with boundary. In order
to do this, we embed (simplicially) K into a high dimensional (n > 5) copy of R",
and let W be a regular neighborhood of K. Note that W is a compact manifold with
boundary, and denote by r : W --* K a retraction of W onto K. Let the retraction

f : W —>¦ ^ be the F-equivariant lift of r.

Lemma 2.2 (Reduction to a manifold with boundary). The pair (W U Z, Z) (sa«
EZ-structure for F.

Proof. We follow the argument of Lemma 1.4 in Bestvina [4]. We start by taking the

diagonal embedding of W in (W U oo) x (K U Z). The first factor is the one point
compactification of W, while the map into the second factor is given by f : W —>¦

K ^-* KU Z. The topology onf UZ comes from taking the closure of the image of
this diagonal embedding. Lemma 1.3 in Bestvina [4] shows that this is a Z-structure.

Furthermore, by construction, the action of F on W extends to an action of F on
W U Z. Hence we have an EZ-structure.

An identical argument can be used to show the following:

Lemma 2.3 (Doubling across the boundary). Let (N U Z, Z) be an EZ-structure on
F, and assume that N is a manifold (with or without boundary). Denote by JS the

space (N x /)/ where we collapse each p x /, p g 9./V, to a point (so ifN has

no boundary, then JS N x /). Then (JS U Z, Z) is an EZ-structure on F.

Proof. We proceed as in the previous lemma, using the obvious F-equivariant map
p : M —> N '—> N U Z in the place of f. That is to say, we embed M into the space
(JS U oo) x(WUZ) using the inclusion map on the first factor, and the map p on the

second factor. M U Z is then the closure of the image of M under this map, with the

induced topology. Once again, Z lies as a Z-set, and the mapping is F-equivariant
by construction.

Note that the space JS defined in Lemma 2.3 is also a manifold with boundary,
and that the boundary 9 M of M is by construction just the double of ./V (the two
copies being ,/V x {0} and ./V x {1}).

We now return to the situation we are interested in. We have shown that we can
reduce to the case where the EZ-structure is of the form (W U Z, Z), where W is a

manifold with boundary. This allows us to apply the construction from the previous
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lemma to obtain a new EZ-structure (TV U Z, Z). Our next result shows that TV U Z
is in fact a topological manifold. Because we will be referring to this result later in
this section, we prove it in a slightly more general form.

Proposition 2.1. Let (N U Z, Z) be an EZ-structure on V, and assume that N is a

manifold {with or without boundary) of dimension > 5. Let {M U Z, Z) be the EZ-

structure denned in Lemma 2.3. Then the space M U Z is a manifold with boundary.

Proof Inorderto showthatthe space JSUZ is a compact manifold with we will use the

celebrated characterization ofhigh dimensional topological manifolds due to Edwards
and Quinn (for a pleasant general survey, we refer to Mio [20]). Recall that this
characterization provides a list of five necessary and sufficient conditions for a locally
compact high dimensional topological space to be a closed topological manifold. The

corresponding characterization for manifolds with boundary requires an additional
condition about the 'boundary'. We will verify each of these six conditions as a

separate claim.

Claim 1 (Finite dimensional). The space M U Z is unite dimensional.

Claim 2 (Locally contractible). The space JS U Z is locally contractible.

Proof. These follow from the fact that the pair (JS U Z, Z) is a Z-structure. Indeed,
the first condition for a Z-structure forces JS U Z to be an ER, and ER's are locally
contractible and finite dimensional.

Claim 3 (Homology manifold). The space JS U Z is a homology manifold with
boundary.

Proof. Let n be the dimension of the manifold N. We need to verify that the local

homology of every point is either that of an (n +1 -dimensional sphere (for "interior"
points) or that of a point (for "boundary" points). In order to do this, we first observe

that the local homology is easy to compute for points in ,N. Indeed, M is actually a

manifold with boundary, hence the local homology has the correct values.

Now let us focus on a point p that lies on Z c JSUZ. We claim that the (reduced)
local homology at p is trivial. So we need to show that //*( (JS UZ), (JSUZ)-p) 0.

But this is also an immediate consequence of the fact that Z is a Z-set in JS U Z.
Indeed, an equivalent formulation of the Z-set property states that there is a homotopy

/: (JS U Z) x / —>¦ JS U Z which satisfies the conditions:

• / maps JS x / into JS.

• Jo : {,N U Z) x {0} -? ,N U Z is the identity map.
• Jt: (JSUZ)x{t}-ï JSUZ maps into JS for all t > 0.
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In particular, the homotopy / gives a family of homotopic maps which respect
the pair ((JS U Z), (JS U Z) — p), hence they all induce the same maps on the

level of the homology groups H*((<M U Z), (JS U Z) — p). But the map induced

by /o is the identity map, while the map induced by J\ is the trivial map (since
J\ (JS U Z) c «A/" c («A/" U Z) — p). Hence we have that the identity map coincides

with the zero map, which immediately implies that H*((<M U Z), (JS U Z) — p) is

trivial. We conclude that M U Z is indeed a homology manifold with boundary.

Let us now recall the definition of the disjoint disk property. A topological space
X has the disjoint disk property provided that any pair of maps from ID2 into a space
X can be approximated, to an arbitrary degree of precision, by maps whose images

are disjoint.

Claim 4 (Disjoint disk property). The space M U Z has the disjoint disk property.

Proof. Note that, since M U Z is an ER, it is metrizable; we will use this metric to
measure the closeness of maps. Let /, g be arbitrary maps from ID2 into JS U Z, and

let e > 0 an arbitrary real number. We need to exhibit a pair of maps which are e

close to the maps we started with, and have disjoint image.
Observe that, since Z is a Z-set in the space JSUZ, there is a map // : JSUZ --* JS

with the property that H is an (e/2) -approximation of the identity map on M U Z.
Consider the compositions f := H o f and g' := H o g, and observe that the maps

/' and g' are (e/2)-approximations of/ and g respectively. Furthermore, /' and g'

map B2 into the subset JS, which we know is a manifold of dimension > 6.

But high dimensional manifolds automatically have the disjoint disk property,
so we can find (e/2)-approximations /", g" to the maps /', g' whose images are

disjoint. It is immediate from the triangle inequality that the /", g" satisfy our
desired properties. Hence the space M U Z has the disjoint disk property.

Claim 5 (Manifold point). The space M U Z has a manifold point.

Proof. By a manifold point, we mean a point with a neighborhood homeomorphic
to some R"+1. This is clear, since M is actually a topological (n + 1)-dimensional
manifold.

We now remind the reader of the characterization of high dimensional topological
manifolds due to Edwards-Quinn ([7], [22], [23]):

Theorem 2.1 (Characterization of topological manifolds). Let X be a locally compact

topological space, n > 5 an integer. Assume that X satisQes the following
properties:

• X has the local homology ofan n-dimensional manifold.
• X is locally contractible.
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• X has unite (covering) dimension.
• X satisoes the disjoint disk property.

Then there is a locally denned invariant I(X) g 8Z + 1 with the property that X is

a topological manifold ifand only ifl(X) 1.

The corresponding theorem for a manifold with boundary requires an additional
modification of the first condition. Namely, one needs to replace it with the following:

• every point p G X has either the local homology of an n-dimensional sphere, or
that of a point.

• the subset ofpoints having the local homology of a point, denoted by dh(X) (the

"homological" boundary), is a topological manifold of dimension n — 1.

Under these two conditions, the Edwards-Quinn result implies that the space X is a

topological manifold with boundary (and the set \ (X) is the boundary ofthe manifold
X) if and only if the locally defined invariant I(X) 1 (see Theorem 3.4.2 in Quinn
[21]).

As such, we have reduced our theorem to showing the following:

Claim 6. The set d% (M U Z) is a compact manifold ofdimension one lower than the

dimension of M.

Proof. By the proofof claim3, we know exactly whatthe set 9ft(«A/"UZ) is. Namely,
it consists of the set d M U Z. Note that the set d M is just the double of JV across it's
boundary. In particular, dh(M U Z) is obtained by taking two copies of N U Z, and

identifying the two copies of dN U Z.
We now claim that dN U Z is a Z-set in the space N U Z. In order to show this

we need to exhibit a map ff: N VJ Z —> N VJZ that is e-close to the identity, and has

/f(iVUZ) c N - dN. Note that since Z is a Z-set in JV U Z, there is a map g that
is (e/2)-close to the identity, and maps JVUZ into N. Next, observe that since JV

itself is a manifold with boundary, dN is a Z-set in N, which implies the existence

of a map h: N —> N — dN which is (e/2)-close to the identity. Composing the two

maps and using the triangle inequality gives us our desired claim.
So we see that duiM U Z) is obtained by doubling a Z-compactification N U Z

of an open manifold Int(iV) along it's Z-boundary dN U Z. By a result of Ancel-
Guilbault (Theorem 9 in [1]), this is automatically a manifold. The dimension claim

comes from the fact that 9j,(«^ U Z) contains d JS, hence must be a manifold of the

same dimension as d,M, which is one less than the dimension of <N.

The Edwards-Quinn result now applies, completing our proofofProposition 2.1.

Let us summarize what we have so far: if V has an EZ-structure, we have shown

that there is an EZ-structure (TV U Z, Z) with the additional property that TV U Z is

a topological manifold, and Z is a closed subset in the boundary of the topological
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manifold. We now want to further improve the EZ-structure so that the space is in
fact a topological disk. In order to do this, we iterate our procedure once more and

define the space W (TV x /)/ where again the equivalence relation is given by
collapsing p x /, p e 9TV to a point. By Lemma 2.3, the pair (W U Z, Z) is again

an EZ-structure for F, and by Proposition 2.1, W U Z is a topological manifold with
boundary. We claim that W U Z is in fact a topological disk.

Proposition 2.2. The space W U Z is a disk.

Proof. We begin by showing that the space 9 (W U Z) is simply connected. Notice
that 3(W U Z) is the double of the compact manifold with boundary TV U Z along its

boundary 9 TV U Z. Furthermore each ofthe spaces TV U Z is contractible. Seifert-Van

Kampen now yields that the double 9 WU Z) must be simply connected. Furthermore,
observe that the space W U Z is contractible.

Finally we note that any compact contractible manifold of dimension > 6 with
simply connected boundary must be homeomorphic to a disk. This is a well known

consequence of the h-cobordism theorem. A proof in the smooth category can be

found in Chapter 9, Proposition A, of Milnor's book [19]. The same proof holds

verbatim, replacing the use of Smale's smooth h-cobordism theorem with the
topological h-cobordism theorem of Kirby-Siebenmann's [18]. This concludes our proof
of the proposition.

We have shown how given an arbitrary EZ-structure on a discrete group F, we
can construct an EZ-structure of the form (ID", A), where A is a closed subset of
dW Sn l. In particular, we see that any group which has an EZ-structure
automatically satisfies condition (*a).

3. Condition (*a) implies the Novikov conjecture

We start this section by giving a reformulation of condition (*a) which is closer to
the formulation given by Farrell-Hsiang:

Definition 3.1. We say that a group F satisfies condition (*a) if for some integer
n there is an action of F on (W, A), A a closed subset of Sn~l dW with the

following two properties:

• F acts properly discontinuously and cocompactly on ID" — A,
• for each compact subset KofW1 — A, and each e > 0, there exists a 8

8(K, e) > 0 such that for each y e F, i£d(yK, A) < 8, then diam(yK) < e.

Observe that condition (*a) generalizes condition (*) formulated in Farrell-
Hsiang [8] (the reader is also referred to [9] and the survey papers [12], [13]). The
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only difference between the two conditions is that condition (*) also required the

set A to be SB" Sn~l, and F to be torsion-free. Furthermore, for torsion-free

groups, it is easy to see that condition (*a) corresponds exactly to the existence of
an EZ-structure of the form (ID", A), where A is a closed subset of Sn~l.

Note that, by the theorem proved in the previous section, any group which has an

EZ-structure automatically satisfies condition (*a). In particular, the following two
families of groups satisfy condition (*a):

• torsion-free <5-hyperbolic groups.
• torsion-free CAT(0)-groups.

Before starting the proofofTheorem 1.2, we first state the following useful lemma:

Lemma 3.1. Let {W1, A) be a F -space satisfying the properties given in condition

(*a). Then there is a second V-space (Bm+1, A) also satisfying (*a), and a continuous

F'-equivariant surjection IDm x / —>¦ Bm+1 mapping A x / to A and mapping
(prn _ A) x / homeomorphically to 3m+l - A.

Proof. Let X (Bm x /)/ where the equivalence relation collapses each line

segment x x /, x e A, to a point. Let 4> '¦ D"1 x / —>¦ X be the quotient map, and

give X the F-space structure such that 4> is F-equivariant. Clearly, 0|(ii)>«-A)x/ is a

homeomorphism onto X — A.
Projection onto the first factor of IDm x / induces a F-equivariant map

* : X - A -> Bm. The topology on X (X - A) U A induced, using *, by the

construction in Lemma 2.2 coincides with the one described above, as both topologies

are compact and Hausdorff. Hence {X, A) is an EZ-structure on F.

It remains to show that X is homeomorphic to W+l. For this we introduce
a second decomposition space Y Bm x [0, 2]/ ~, where ~ collapses each

line segment x x [0, 1], x € A, to a point. Since Y and X are clearly
homeomorphic, it suffices to construct a homeomorphism from Y to 3m x [0, 2]. To

do this, let <fi: Hm ->¦ [0, 1] be a continuous function such that (f> 1(0) A.
Define f:3m x [0,2] -? 3m x [0, 2] to be f(x, t) (x,t<f>(x)) i£0 < t < 1, and

/(x, 0 (x, (2 -<t>(x))t + 2<t>(x) - 2) if 1 < t < 2. Observe that / is a surjection.
Since the point inverses of / give the decomposition ~ of 3m x [0, 2], / induces

the desired homeomorphism.

The condition (*) was introduced by Farrell-Hsiang in order to provide an abstract

setting in which Novikov's Conjecture could be verified. But the proof given in their

paper carries over almost verbatim to the more general setting of condition (*a).
Namely the following is true:

Theorem 3.1. Let (Bm, A) be a V-space with the properties given in condition (*a).
Suppose that F is torsion-free, and let Mm denote the orbit space (IDm — A)/F.
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Observe that Mm is an aspherical compact manifold with boundary. Then the map
in the (simple) surgery exact sequence:

Ss(Mm x B", d) —> [Mm x B", d; G/Top]

is identically zero when n > 1 and n + m > 6.

Proof. For the reader's convenience, we recall the argument of [8] for the special case

where F satisfies condition (*), as exposited in the Trieste notes [13], emphasizing
the modifications needed for the more general setting of condition (*a). So as not to
obscure the argument, we assume that n 1 and Mm is triangulable. Notice that the

Lemma 3.1 formally reduces the general case n > 1 to the special case n 1.

Let (Bm+1, A) be the F-space determined by applying Lemma 3.1 to the F-space
(Bm, A), and notice that Mm x B1 (Bm+1 - A)/ F. Define the space:

g2m+l

and let p : g2m+1 -^ Mm x B1 be the bundle projection induced by the projection
to the Drst factor (the fiber of this projection is IDm — S™"1). Then the following
diagram commutes:

Ss{Mm x B1, 9) s» [Mm xl',9; G/Top]

9) ^ [g, 9; G/Top]

where a is the obviously defined transfer map (see [13], pgs. 246-247). Since p is

a homotopy equivalence, p* is an isomorphism. Hence to prove the theorem, it is

sufficient to verify the following:

Assertion. The map a is identically zero.

To verify this assertion, note first that an arbitrary element in Ss(Mm xB',9)
can be represented by a pair (/, h), where / : Mm --* Mm is a self-homeomorphism
with f\dMm IdaMm, and h : Mm xB'-s- Mm x B1 is a homotopy of / to Wm™

relative dMm. Define:

E2m pyn _ A) Xr pyn _ ^-lj
and notice that by Lemma 3.1, we have that 82m+1 E2m x /.

Observe that, given such a pair (/, h), there is a well defined lift / : Bm — A —>¦

Bm — A, and that f\Sm-i_A ldSm-\_A. Now let h be the unique lift of h to

(Bm — A) x / Bm+1 — A with the property that h is a proper homotopy equivalence
(relative Sm~l — A) between Idro^-A and the self-homeomorphism /.
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Then k := h x ldBm_Sm--[ determines a proper homotopy (relative dE):

k: 8 E x / —> E x /
between Idg and a self-homeomorphism g: E —* E (which is also determined by

/ x ldBm_Sm-\). Note that S(8, 9) S(E x /, 9), since 8 E x I. Hence the pair
(g, £) represents the image of the pair (/, h) under the transfer map, i.e. (g, £)

a(/, A). The assertion then claims that the pair (g, £) obtained in this manner is

always zero in 4(g, 9). In particular, the assertion would follow from the following:

Proposition 3.1. g is pseudo-isotopic to Id# (relative dE), via a pseudo-isotopy
which is properly homotopic to k (relative 8).

We will now use the condition (*a) to construct the pseudo-isotopy posited in

this proposition. Start by defining anew space E := W™ xp (Bm — Sm~l). Note that

the projection onto the second factor determines a fiber bundle projection q: E —*

Int(Mm) with fiber W1 (recall that Int(Mm) (Bm - Sm-X)/T). Hence £ is a

manifold containing E as an open dense subset, and dE c dE.
Next observe that the second property of condition (*a) implies that / extends

to a F-equivariant homeomorphism /: 3m --* 3m by setting f\Sm-\ Id^m-i.

Consequently, / x Idro^-A determines a self-homeomorphism g: E —* E which
extends g: E —>¦ E and satisfies g\d^ Id9^. We now proceed to construct a

pseudo-isotopy 4>'-ExI—>ExI satisfying:

Once this is done, then the restriction of cf> to the subset E x / c E x / will be

the pseudo-isotopy posited in the proposition.
Observe that the three properties stated above define 4> on the entire set d(E x /).

We need to extend 4> over Int(,E x /). In order to do this, consider the fiber bundle

r:ExI—* Int(M) with fiber 3m x /, where r is the composition of the projection
onto the first factor of E x / followed by the map q: E —* Int(M). Observe that

if a is an n-simplex in a triangulation of Int(M), then r"1 (a) can be identified with

The construction of 4> proceeds by induction over the skeleta of Int(M) via a

standard obstruction theory argument. And the obstructions encountered in extending

cf from the (n — 1)-skeleton to the n-skeleton are precisely those of extending
a self-homeomorphism of Sn+m to a self-homeomorphism of Wl+m+l. But these

obstructions all vanish, because of the Alexander Trick. Recall that this trick asserts

that any self-homeomorphism x\ of Sn extends to a self-homeomorphism fj of ID""1"1.

In fact, r)(tx) trj(x) where x G Sn and t G / is an explicit extension.
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Now the restriction tf/ := 4>\ey.i is the pseudo-isotopy from g to Idg asserted

in the proposition. A similar argument, which we omit, shows that tp is properly
homotopic to k relative 9. This concludes the proof.

4. Bounding 7tn(P(BT)) for ^-hyperbolic groups

In this section, we give an application of our main result to obtaining a lower bound
for the homotopy groups nn(JP(BY)) which holds for all torsion-free 8-hyperbolic

groups F. Here P (¦) is the stable topological pseudo-isotopy functor (see Hatcher
[15]). For this we need to first recall some basic facts about <5-hyperbolic groups.
Let F be a torsion free 8 -hyperbolic group (we exclude the case F Z). Then the

following are true:

Fact 1. If S is an inanité cyclic subgroup of F, then there is a maximal inanité cyclic
subgroup containing S. Furthermore this maximal subgroup is unique.

Fact 2. IfC is a maximal inanité cyclic subgroup of F, then its normalizer is C itself.

Fact 3. If S\ and S2 are a pair of maximal inanité cyclic subgroups of F, and

{Sf} c 9°°F are the corresponding pair ofpoints in the boundary at inanity, then

either Si S2 or {Sf}n{Sf} 0.

Fact 4. If S is a maximal inanité cyclic subgroup of F, then y ¦ S~ ^ S+ for all
y er.

We briefly explain why each of these facts holds. The existence part of Fact 1

follows from Proposition 3.16 in Bridson-Haefliger (pg. 465 in [5]), while uniqueness
follows from Fact 3. For a maximal infinite cyclic subgroup, the normalizer coincides
with the centralizer. If the element is not in the group itself, this would yield a pair of
commuting elements, giving a 1? in F, which is impossible, giving us Fact 2. Fact 3

follows from the proof of Theorem 3.20 in Bridson-Haefliger (pg. 467 in [5]). Fact 4

is an easy consequence of Facts 2 and 3.

Now fix a set M where the elements of M are maximal infinite cyclic subgroups
of F with each conjugacy class represented exactly once. For each S g M, let
4>s'- P(BS) —>¦ P(5F) be the functorially defined continuous map (see Hatcher

[15]). Note that BS Sl for each S g M. Theorem 1.3 that we are going to prove
in this section states that, for each integer n > 0, the group homomorphism

SeM SeM

is an injection.
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Note that no(!P(S1)) 7Li ®7Li © ¦ ¦ ¦, where there are countably infinite number
of Z^'s (see Igusa [17]). Furthermore, the Isomorphism Conjecture for P(BT)
formulated by Farrell-Jones [11] is equivalent to the assertion that the homeomorphisms
in Theorem 1.3 are all isomorphisms together with the assertion that the Whitehead

groups Wh(F x Z") vanish for all n.

Let us now proceed to prove Theorem 1.3. By Theorem 1.1, we know that we
have a sequence of EZ-structures {W1, 9 °° F defined for all sufficiently large m, such

that F acts on 3m by orientation preserving homeomorphisms, and (Bm+1, 9°°F)
(Bm, 9°°F) x / (i.e. is E>m x // where each interval x x /, with x g Sm~l, is

collapsed to a point). Furthermore, each S g M determines a pair of distinct points
S+, S~ G 9°°F. We start our argument by showing:

Claim 1. (Bm, {5'±}) is an EZ-structure for S.

Proof. To see this claim, we first note that a closed subset of a Z-set is still a Z-set,
hence the pair (Bm, S^ satisfies the first two conditions for an EZ-structure. To verify
the remaining properties, we first observe that an easy adaptation of an argument of
Bestvina (Proposition 1.18 in [4]) shows that in 3m, there exists a neighborhood base

{V;} of the point S+ which has the following properties:

(1) Vt+i C V; for every i,
(2) for every compact set Ici"1- {S±}, there exists a k such that gk(K) c V\,

(3) there exists a fixed j such that gJ\V{) V-l+\ for every i.

Here g denotes the generator of S whose positive powers tend to S+.

We now explain how proper discontinuity of the action follows. Note that, by
hyperbolicity of the F-action on 9°°F, S restricted to 9°°F — {S^} acts properly
discontinuously. Hence if proper discontinuity fails at p, then p is an element of
9°°F, and one can construct sequences x\ G W1 — 9°°F and n\ G Z such that

x\ --* S+, ni --* -1-cxD, and gni(xi) --* p. But this immediately contradicts the

existence of the family {V,} given above. Hence the action of S on W1 — {S^} is

properly discontinuous. Then the freeness of the S-action is also immediate, since

the F action (and hence the ^-action) on W1 — 9°°F is free, while the ^-action on
9°°F fixes precisely the two points S^. The null-sequence property follows from the

fact that the S-action is properly discontinuous on 3m — {S^}, and the fact that 3m
is the 2-point compactification of B>m — {S^}.

Finally, to see cocompactness, identify E)m - {5'±} with D"1"1 x R so that S+

corresponds to +oo. Since the 5-action is properly discontinuous, there exists an

integer n > 0 such that g11^"1'1 x {0}) c B"1"1 x (0, +oo). Let W be the region
between W1'1 x {0} and g11^"1'1 x {0}); i.e.

W gn{Wn~l x (-co,0]) ni"1"1 x [0, oo).
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W is clearly compact, and it is not difficult to see that Uiez[gin(W)] B"1"1 x R,
which establishes that S acts cocompactly on W" — {S^}.

We now have that the pair (Bm, S^ satisfies all the conditions for an EZ-structure,
concluding the proof of Claim 1.

We now continue the proof of Theorem 1.3. Note that

Arguing as in the paper by Farrell-Jones (see pgs. 462-467 in [10]), it suffices to

construct, for each sufficiently large integer m, a pair of continuous maps:

gs: P{Mf) —? P{Mm)

gS.

where Mm (Bm - 9°°r)/T, Mf (Bm - {51±})/51, and P(-) denotes the

(unstable) topological pseudo-isotopy space, and where the maps gs and gs satisfy the

following:

Assertion. gs o gs is homotopic to the identity, and gs °gs is homotopic to a constant

map whenever S ^ S'.

We first discuss the construction of the maps gs, gs, and will then discuss why the

pair of maps we constructed satisfy the assertion. Start by observing that both Mm
and M™ are compact m-dimensional manifolds with boundary (we will henceforth

suppress the superscript indicating dimension unless it is explicitly relevant to the

argument being presented). Now let p ps: Int(Ms) —>¦ Int(M) be the covering

space corresponding to the subgroup S c F 7Ti(Int(M)). Using the s-cobordism
theorem (and assuming m > 6), one easily constructs an isotopy 4>t 4>f '¦ Ms —>¦ Ms
such that 0o Ums, an(i P ° 4>\ '¦ Ms --* M is an embedding. To define gs, let

/ : Ms x / —>¦ Ms x / be a pseudo-isotopy (i.e. an element of P(Ms)). Recall that

/ is an automorphism (i.e. an onto homeomorphism) with the property that:

/Imsx{0}U(9Ms)x/ Id Imsx{0}U(9Ms)x/-

We can now define /* gs(f) £ P{M) by setting /*(x, t) to be:

• (x, t) if x g M — Image (/? o 0j)
• po01(/(x,f))ifx =po<f>1(ï)

where x g M and t G /. This gives us the map gs.
On the otherhand, to define g^(/), where/ G P(M),let/: (IDm -9°°r) x / ->

(jyn _ aoor) x / be the iift of / such that f(x, t) (x, 0 if either x G S™"1

9IDm or if f 0. Now / induces an automorphism / of (Bm+1, 9°°r), since

(Bm+1, a°°r) (Bm, 9°°r) x /. Note that / is T-equivariant and that /|9_rom+i
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Id9 jjm+i, where 9_Bm+1 is the image ofE>m x {0} U Sm~l x / under the quotient map

Bmx/ -> Bm+1. Since9°°r c 9_ID>m+1, /inducesanS-equivariantautomorphism
of r+1 - {51±} which then descends to an automorphism fs of (ID)m+1 - {51±})/51.

After "appropriately identifying"

Ms (©m+1 - {5±})/S

with M™ x /, g5(/) is defined by g5(/) /5.
To do this identification, first note that Ms is the quotient space of M™ x / where

each interval x x /, x e 9M™ is collapsed to a point. So M™ x {0} is canonically
identified with a codimension zero submanifold 9_ <Ms of 9 Ms. By equating 9 M™ x /
with a short collar of 9(9-^^) in d_Ms, an identification of Ms x / to <Ms can be

constructed such that the composition

P{MS) —? Axl\(Ms, 3-(Ms)) —? P(MS)

is homotopic to the identity (here the two maps above are the naturally defined continuous

maps; in fact, the second map is the homeomorphism induced by the identification
while the first is determined by the fact that Ms is a quotient space of Ms x /). This
is the "appropriate identification" mentioned above.

This gives us the two maps for which we claim the assertion holds. Before

continuing our proof, we note that, when m > 6, the spaces M™ are all homeomorphic
to S1 x Bm ~l. Indeed, this follows by the s-cobordism theorem, and the fact that S acts

via orientation preserving homeomorphisms on 3m — {S^}; thus the closed tubular
neighborhood of any embedded circle Sl in Int(M"), which induces a homotopy
equivalence, is homeomorphic to S1 x D"1"1.

Now the Assertion, made above, can be verified in the same way that properties
(i) and (ii) in Lemma 2.1 of Farrell-Jones [10] were proven. We merely point out that

they follow directly from the following two claims which we proceed to formulate
and then to verify. Let Ts denote the image of ps ° 4>f- Note that Ts is a codimension

zero submanifold of Int(M") and that Ts is homeomorphic to S1 x D"1"1. Recall
that

Ps : int(Ms) —? Int(M)
is the covering projection corresponding to S c F\ And that 4>f : Ms --* Int(M^) is

an embedding isotopic to Id^- Recall that we assumed that F is not cyclic.
Now let {Ci} denote the connected components of p$l (Ts), and note that ps

l

JJj C\. Let C\ denote the closure of C, in Ms. It is an elementary observation that
each C\ is a codimension zero submanifold of Int(M^) as well as an open subset of
Ps~l(Ts)- Furthermore, observe that Image(0f) is a codimension zero submanifold
of Int(Ms) which is homeomorphic to S1 x W+l.

Claim 2. We can index the set {Ci} so that Co Image(<^) and Ci is homeomorphic
to ID)m when i ^ 0.
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Now let S' g M with S' ^ S, and denote by {C('} the connected components of
Ps'l(Ts) and by Ci the closure of Ci in Ms>. It is again elementary that each Ci is a

codimension zero submanifold of lnt(Ms/) as well as an open subset of p^iTs).

Claim 3. Each Ci is homeomorphic to W™.

We now proceed with the proofs of the two claims. The Facts 1,5-4,5 used in the

proofs below refer to the facts about <5-hyperbolic groups discussed at the beginning
of this section.

Proof of Claim 2. One easily sees that each p\ : C; --* Ts is a covering projection
where p\ ps\c;- Hence Image(0f) must be one of the components C\ since

p: Image(0f) —>¦ Ts is a homeomorphism. Thus we may index the components

starting with Co Image(0f). Therefore it remains to show that C, is homeomorphic
to E>m when i £ 0. To do this, define

• q : Bm - 9°°r —> M (Bm - 9°°F)/ F

• r =rs:Wn - {S±} -^ Ms (Bm - {S±})/S

to be the universal covering maps whose groups of deck transformations are F and S

respectively. Then we have the following commutative triangle of covering spaces:

Int(ID>m)

Note that q l(Ts) \J} Ö; where each D, is a connected component of q
l (Ts).

And let D, be the closure of D, in 3m. One easily sees the following ten points:

(1) Each Df is open in q~l(Ts).
(2) Each Di is a codimension zero submanifold of Int(ID)m).

(3) q\ : Df --* Ts is a universal covering space (where q\ q\D.) whose group of
deck transformations 51, consists of all y G F such that y (A") A-
Consequently, A is homeomorphic to ID™"1 x R.

(4) The components A are permuted transitively by F. Consequently, the groups
Si are all conjugate cyclic subgroups of F.

(5) At least one of the groups 51, is S. Hence all the 51, are maximal cyclic subgroups
of F. And we can rearrange the indexing so that Sq S.

(6) If the cardinality \S; H Sj\ > 1, then i j. This follows from points (4) and

(5) by using Fact 1,$ and Fact 2s.

(7) Let 4>t ¦¦ ©m - {5'±} -> ©m - {5'±} be the lift of the isotopy (f>t with respect
to the covering projection r such that 4>o Id. Then Ao Image(0i), and

consequently Ao Ao U {i11*1}, which forces Ao to be homeomorphic to 3m.
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(8) Because ofpoints (4) and (7), Ä A U {Sf} and is homeomorphic to ID>m. Also

because of point (6) and Fact 3,5, A c Bm — {S^} iff ^ 0, and consequently

Ä is also the: closure of A in 3m - {S*}.
(9) If y (A) n Di ^ 0, where y e I\ then y g 51,. This results from points (4),

(6), (8), along with Facts 3,5 and 4,5. Consequently, iff ^ 0, then r\ : A —>¦

r(A) ''(A) is a homeomorphism since 51, n So 1, because of point (6)
(Here r(A) denotes the closure of r(A) in

(10) There is a surjection of indexing sets i \--* a(i), with a(0) 0, such that

r\ : A —? C„(,) is a covering space (here r, denotes r|/).)- This follows from
the above commutative triangle in which p, q, and r are open maps.

It now follows immediately from points (8), (9), and (10), that C, is homeomorphic
to IDm when i ^ 0; thus completing the proof of Claim 2.

Proof of Claim 3. This proof closely parallels the one just given for Claim 2. Note
that the above points (l)-(9) continue to hold. And by replacing S by S' in the above

commutative triangle, the following analogue (10)' ofpoint (10) is similarly verified
using that ps>, q, and rs> are open maps: there is a surjection i *--* ß(i) of indexing
sets such that ri : A -^ Cßn\ ls a covering space where r'. rsi\Dt.

Then Fact 3,$ yields that:

{Sf} ç (Bm - d°°S') Domain(ry)

which together with point (8) shows that

A Domain(r^

Therefore point (9) yields that:

rs,\3i : A -^ rsl(Di) r^(A) C'm

is a homeomorphism. But A is homeomorphic to W1 by point (8), and ß is a

surjection by point (10)'. This concludes the proof of Claim 3.

Finally, we point out that, from these two claims, it is easy to show the Assertion.

Indeed, the pseudo-isotopies gs o gs(f) and gs o gs(f) are supported over |J; C\

and Uj Ci respectively. Because of claims 2 and 3, the Alexander trick can be used to

verify the Assertion. We refer the reader to Section 2 of Farrell-Jones [10] for more
details.
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