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EZ-structures and topological applications

F. T. Farrell* and J.-F. Lafont

Abstract. In this paper, we introduce the notion of an EZ-structure on a group, an equivariant
version of the Z-structures introduced by Bestvina [4]. Examples of groups having an EZ-
structure include (1) torsion free 3-hyperbolic groups, and (2) torsion free CAT (0)-groups.

Our first theorem shows that any group having an EZ-structure has an action by homeomor-
phisms on some (D", A), where # is sufficiently large, and A is a closed subset of 3" = $7~ 1,
The action has the property that it is proper and cocompact on D* — A, and thatif K C D" — A
is compact, that diam (g K) tends to zero as g — 0o0. We call this property (xa).

Our second theorem uses techniques of Farrell-Hsiang [8] to show that the Novikov con-
jecture holds for any torsion-free discrete group satisfying condition () (giving a new proof
that torsion-free §-hyperbolic and CAT (0) groups satisfy the Novikov conjecture).

Our third theorem gives another application of our main result. We show how, in the case
of a torsion-free é-hyperbolic group I', we can obtain a lower bound for the homotopy groups
7w, (P (BI)), where £ (-) is the stable topological pseudo-isotopy functor.

1. Introduction

Let I be a discrete group. Bestvina [4] defined the notion of a Z-structure on I" as a
pair (X, Z) of spaces satisfying the following four axioms:

« X is a Euclidean retract (ER); i.e. it is locally contractible, contractible and has
finite (covering) dimension.

« ZisaZ-setin X;i.e. Z is a closed subset of X with the property that, for every
open set U C X, the inclusion U — Z < U is a homotopy equivalence.

+ X — Z admits a free, properly discontinuous, cocompact action by the group I'.

« The collection of translates of a compact set in X — Z forms a null sequence in
X i.e. for every open cover U of X, all but finitely many translates are U small.

Let us now introduce an equivariant version of a Z-structure:

Definition 1.1. We say that (X, Z) is an EZ-structure (equivariant Z-structure) on I
provided that (X, Z) is a Z-structure, and in addition, the I action on X — Z extends
to an action on X.

*This research was supported in part by the National Science Foundation.
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Examples of groups with an EZ-structure include torsion-free §-hyperbolic groups
[3] and CAT (0)-groups [4]. We note that a special case of a Z-structure on I is the
situation where X is a disk D", and Z = 9D" = "1

Definition 1.2. We say that I" satisfies condition (%) provided that there is an EZ-
structure of the form (D", S*~1).

Farrell-Hsiang introduced this special case in [8] (see also [9], [12], [13]). Their
motivation for the development of condition () was that it provided an abstract setting
under which the Novikov conjecture could be verified for the group I'. Observe that
there are groups with an EZ-structure that do not satisfy condition (x); for example,
the free group on 2-generators. We now introduce a condition (%) for torsion-free
groups, generalizing condition (). (For non torsion-free groups see Definition 3.1
below)

Definition 1.3. We say that I" satisfies condition (xA) provided that there is an EZ-
structure of the form (D", A), where A is a closed subset of 9D" = 71

We are now ready to state the first two theorems of this paper:

Theorem 1.1. Let I" be a discrete group, and assume that I" has an EZ-structure.
Then 1" satistes condition (% ).

Theorem 1.2. Let " be a torsion-free discrete group satisfying condition (). Then
the Novikov conjecture holds for the group T.

The proofs of these theorems will be provided in Section 2 and Section 3 respec-
tively. We note that the second theorem is not new, as Carlsson—Pederson [6] have
already proven that groups with an EZ-structure satisfy this form of the Novikov con-
jecture. Nevertheless, the proof provided here is conceptually quite different from
their argument (see Ferry—Weinberger [14] and Hu [16] for related results on the
Novikov conjecture).

Now let us further restrict to groups which are torsion-free 8-hyperbolic. For such
agroup I', Theorem 1.1 above ensures that the group satisfies condition (). In fact,
5-hyperbolicity ensures that the I"-action on the pair (D", A) has several additional
properties. In Section 4, we will use these propertics to show the following theorem:

Theorem 1.3. Let I' be a torsion-free §-hyperbolic group. Then for each integer
n > 0, the group homomorphism:

P 7ubs): P 7u(P(BS)) —> m,u(P(BT))

SeM SeM

is monic.
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In the theorem above, M is a maximal collection of maximal infinite cyclic sub-
groups of I", with no two elements in M being conjugate, & (-) is the stable topological
pseudo-isotopy functor, and ¢5: P (BS) — P (BI") is the functorially defined con-
tinuous map induced by S < I' (see Hatcher [15]). We refer the reader to Section 4
for a more complete discussion of this result.

Before starting with the proofs, we make a few comments concerning the results
in this paper.

Remark 1. A natural question to ask is which finitely generated groups have an EZ-
structure? A version of this question was already posed by Bestvina [3], where he
asks whether every group I" with a finite BI" has a Z-structure. It is interesting to
construct groups which are neither 8-hyperbolic, nor CAT(0) groups, but do have an
EZ-structure. Bestvina gives some important examples of such groups in [3]. Do
torsion free subgroups of finite index in SL,(Z) have an EZ-structure?

Remark 2. It would also be of some interest to find applications of Theorem 1.1
to geometric group theory. Indeed, condition (k) for torsion free groups yields
an action of the group on disks, which, aside from a “bad limit set” is properly
discontinuous, fixed point free, and cocompact. With the exception of cocompactness,
this 1s reminiscent of the action of a Kleinian group on (the compactification) of
hyperbolic n-space. In some sense, Theorem 1.1 states that every torsion-free §-
hyperbolic group has an action that mimics that of a Kleinian group. One feels that
this should have some strong geometric consequences.

Remark 3. One could also consider the possibility of strengthening condition ()
by also requiring the action of the group I on D" to be smooth. Work of Benoist—
Foulon—Labourie [2] suggests that among §-hyperbolic groups, perhaps only uniform
lattices satisfy this extra property. In any event it would be interesting to determine
which §-hyperbolic groups satisfy this smooth form of condition (x4).

2. EZ-structure implies condition (%)

Let us fix a discrete group I' with an EZ-structure (X, Z). In this section we will
provide a proof of Theorem 1.1. In order to do this, we will use the EZ-structure
(X, Z) to build a new EZ-structure of the form (D", A), where A is a closed subset
of 3" = S"~1. Let us start with a series of lemmas that will allow us to make the
structure of X — Z more suitable to our purposes.

Lemma 2.1 (Reduction to a complex). LetI" be agroup withan EZ-structure (X, 2).
Then there is an EZ-structure (K U Z, 7)), where K is the universal cover of a bnite
simplicial complex.
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Proof. We first observe that the hypotheses for an EZ-structure imply that the group
I" is the fundamental group of an aspherical compact ANR, namely (X — Z)/T". By a
result of West [24], any compact ANR is homotopy equivalent to a compact polyhedra
K. Inparticular K 1sa K (T", 1). A result of Bestvina (Lemma 1.4 in [4]) now implies
that (K U Z, Z) is an EZ-structure. O

Our next step is to “fatten” K so that it is a manifold with boundary. In order
to do this, we embed (simplicially) K into a high dimensional (n > 5) copy of R",
and let W be a regular neighborhood of K. Note that W is a compact manifold with
boundary, and denote by r: W — K a retraction of W onto K. Let the retraction
7: W — K be the I'-equivariant lift of 7.

Lemma 2.2 (Reduction to a manifold with boundary). The pair (W U Z, Z) is an
EZ-structure for T.

Proof. We follow the argument of Lemma 1.4 in Bestvina [4]. We start by taking the
diagonal embedding of W in (W U c0) x (K U Z). The first factor is the one point
compactification of W, while the map into the second factor is given by 7: W —
K < K U Z. The topology on K U Z comes from taking the closure of the image of
this diagonal embedding. Lemma 1.3 in Bestvina [4] shows that this is a Z-structure.
Furthermore, by construction, the action of I" on W extends to an action of I' on
W U Z. Hence we have an EZ-structure. O

An identical argument can be used to show the following:

Lemma 2.3 (Doubling across the boundary). Let (N U Z, Z) be an EZ-structure on
I, and assume that N is a manifold (with or without boundary). Denote by N the
space (N x I)/ =, where we collapse each p x I, p € dN, to a point (so if N has
no boundary, then N = N x I). Then (N U Z, Z) is an EZ-structure on T".

Proof. We proceed as in the previous lemma, using the obvious I"'-equivariant map
p: N — N — NU Zin the place of 7. That is to say, we embed A into the space
(N Uoo) x (N U Z) using the inclusion map on the first factor, and the map p on the
second factor. & U Z is then the closure of the image of & under this map, with the
induced topology. Once again, Z lies as a Z-set, and the mapping is ["-equivariant
by construction. O

Note that the space N defined in Lemma 2.3 is also a manifold with boundary,
and that the boundary 0. of N is by construction just the double of N (the two
copies being N x {0} and N x {1}).

We now return to the situation we are interested in. We have shown that we can
reduce to the case where the EZ-structure is of the form (W U Z, Z), where W is a
manifold with boundary. This allows us to apply the construction from the previous
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lemma to obtain a new EZ-structure (W U Z, Z). Our next result shows that W U Z
is in fact a topological manifold. Because we will be referring to this result later in
this section, we prove it in a slightly more general form.

Proposition 2.1. Let (N U Z, Z) be an EZ-structure on I, and assume that N is a
manifold (with or without boundary) of dimension > 5. Let (N U Z, Z) be the EZ-
structure detined in Lemma 2.3. Then the space N U Z is a manifold with boundary.

Proof. Inorderto show that the space N UZ is acompact manifold with we will use the
celebrated characterization of high dimensional topological manifolds due to Edwards
and Quinn (for a pleasant general survey, we refer to Mio [20]). Recall that this
characterization provides a list of five necessary and sufficient conditions for a locally
compact high dimensional topological space to be a closed topological manifold. The
corresponding characterization for manifolds with boundary requires an additional
condition about the ‘boundary’. We will verify each of these six conditions as a
separate claim.

Claim 1 (Finite dimensional). The space N U Z is Bnite dimensional.

Claim 2 (Locally contractible). The space N U Z is locally contractible.

Proof. These follow from the fact that the pair (N U Z, Z) is a Z-structure. Indeed,
the first condition for a Z-structure forces & U Z to be an ER, and ER’s are locally
contractible and finite dimensional. O

Claim 3 (Homology manifold). The space N U Z is a homology manifold with
boundary.

Proof. Let n be the dimension of the manifold N. We need to verify that the local
homology of every point is either that of an (n + 1)-dimensional sphere (for “interior”
points) or that of a point (for “boundary” points). In order to do this, we first observe
that the local homology is easy to compute for points in & . Indeed, A is actually a
manifold with boundary, hence the local homology has the correct values.

Now let us focus on a point p thatlieson Z C & U Z. We claim that the (reduced)
local homology at p is trivial. So we need to show that H,((NUZ), (NUZ)—p) = 0.
But this is also an immediate consequence of the fact that Z is a Z-set in & U Z.
Indeed, an equivalent formulation of the Z-set property states that there 1s ahomotopy
J:(NUZ)x I — N UZ which satisfies the conditions:

« Jmaps N x [ into V.
o Jo: (NUZ) x {0} > N U Z is the identity map.
o Jii(NUZ) x{t} > N UZmapsinto N forall 1 > 0.
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In particular, the homotopy J gives a family of homotopic maps which respect
the pair (N U Z), (N U Z) — p), hence they all induce the same maps on the
level of the homology groups Hy((N U Z), (N U Z) — p). But the map induced
by Jy is the identity map, while the map induced by J; is the trivial map (since
JINUZ)C N C(NUZ)— p). Hence we have that the identity map coincides
with the zero map, which immediately implies that H,((N U Z), (N U Z) — p) is
trivial. We conclude that & U Z is indeed a homology manifold with boundary. O

Let us now recall the definition of the disjoint disk property. A topological space
X has the disjoint disk property provided that any pair of maps from ID? into a space
X can be approximated, to an arbitrary degree of precision, by maps whose images
are disjoint.

Claim 4 (Disjoint disk property). The space N U Z has the disjoint disk property.

Proof. Note that, since & U Z is an ER, it 1s metrizable; we will use this metric to
measure the closeness of maps. Let f, g be arbitrary maps from D? into & U Z, and
let € > 0 an arbitrary real number. We need to exhibit a pair of maps which are ¢
close to the maps we started with, and have disjoint image.

Observe that, since Z is aZ-set in the space N UZ, thereisamap H: NUZ — N
with the property that H is an (¢/2)-approximation of the identity map on N U Z.
Consider the compositions f’ := H o f and g’ := H o g, and observe that the maps
S/ and g’ are (¢/2)-approximations of f and g respectively. Furthermore, f” and g’
map D? into the subset ., which we know is a manifold of dimension > 6.

But high dimensional manifolds automatically have the disjoint disk property,
so we can find (¢/2)-approximations f”, g” to the maps f’, g’ whose images are
disjoint. It is immediate from the triangle inequality that the f”, g” satisfy our
desired properties. Hence the space & U Z has the disjoint disk property. a

Claim 5 (Manifold point). The space N U Z has a manifold point.

Proof. By a manifold point, we mean a point with a neighborhood homeomorphic
to some R"*+!. This is clear, since N is actually a topological (n + 1)-dimensional
manifold. -

We now remind the reader of the characterization of high dimensional topological
manifolds due to Edwards—Quinn ([7], [22], [23]):

Theorem 2.1 (Characterization of topological manifolds). Let X be a locally com-
pact topological space, n > 5 an integer. Assume that X satistes the following
properties:

+ X has the local homology of an n-dimensional manifold.

» X is locally contractible.
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+ X has onite (covering) dimension.
« X satisbes the disjoint disk property.

Then there is a locally demned invariant 1(X) € 8Z + 1 with the property that X is
a topological manifold if and only if 1 (X) = 1.

The corresponding theorem for a manifold with boundary requires an additional
modification of the first condition. Namely, one needs to replace it with the following:

+ every point p € X has either the local homology of an n-dimensional sphere, or
that of a point.

+ the subset of points having the local homology of a point, denoted by 35 (X) (the
“homological” boundary), is a topological manifold of dimension n — 1.

Under these two conditions, the Edwards—Quinn result implies that the space X is a
topological manifold with boundary (and the set 9, (X) 1s the boundary of the manifold
X) if and only if the locally defined invariant / (X) = 1 (see Theorem 3.4.2 in Quinn
[21]).

As such, we have reduced our theorem to showing the following;:

Claim 6. The set o, (N U Z) is a compact manifold of dimension one lower than the
dimension of N.

Proof. By the proof of claim 3, we know exactly what the set 05 (N U Z) 1s. Namely,
it consists of the set ./ U Z. Note that the set 3. is just the double of N across it’s
boundary. In particular, 95 (AN U Z) is obtained by taking two copies of N U Z, and
identifying the two copies of dN U Z.

We now claim that 9N U Z is a Z-set in the space N U Z. In order to show this
we need to exhibitamap f.: NU Z — N U Z that is e-close to the identity, and has
Jfe(NUZ) C N —3N. Note that since Z is a Z-set in N U Z, there is a map g that
is (€/2)-close to the identity, and maps N U Z into N. Next, observe that since N
itself 1s a manifold with boundary, dN is a Z-set in N, which implies the existence
ofamap h: N — N — 0N which is (¢/2)-close to the identity. Composing the two
maps and using the triangle inequality gives us our desired claim.

So we see that 9, (N U Z) 1s obtained by doubling a Z-compactification N U Z
of an open manifold Int(N) along it’s Z-boundary N U Z. By a result of Ancel—
Guilbault (Theorem 9 in [1]), this is automatically a manifold. The dimension claim
comes from the fact that 95, (V& U Z) contains 9./, hence must be a manifold of the
same dimension as 0./, which is one less than the dimension of A . O

The Edwards—Quinn result now applies, completing our proof of Proposition 2.1.0

Let us summarize what we have so far: if I has an EZ-structure, we have shown
that there 1s an EZ-structure (W U Z, Z) with the additional property that W U Z is
a topological manifold, and Z is a closed subset in the boundary of the topological
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manifold. We now want to further improve the EZ-structure so that the space is in
fact a topological disk. In order to do this, we iterate our procedure once more and
define the space W = (‘W x I)/ =, where again the equivalence relation is given by
collapsing p x I, p € 3'W to a point. By Lemma 2.3, the pair (W U Z, Z) is again
an EZ-structure for I', and by Proposition 2.1, WU Z is a topological manifold with
boundary. We claim that W U Z is in fact a topological disk.

Proposition 2.2. The space W U Z is a disk.

Proof. We begin by showing that the space (W U Z) 1s simply connected. Notice
that 3(W U Z) is the double of the compact manifold with boundary ‘W U Z along its
boundary 3 WU Z. Furthermore each of the spaces WU Z is contractible. Seifert—Van
Kampen now yields that the double 8 (WU Z) must be simply connected. Furthermore,
observe that the space W U Z is contractible.

Finally we note that any compact contractible manifold of dimension > 6 with
simply connected boundary must be homeomorphic to a disk. This is a well known
consequence of the h-cobordism theorem. A proof in the smooth category can be
found in Chapter 9, Proposition A, of Milnor’s book [19]. The same proof holds
verbatim, replacing the use of Smale’s smooth h-cobordism theorem with the topo-
logical h-cobordism theorem of Kirby—Sicbenmann’s [18]. This concludes our proof
of the proposition. O

We have shown how given an arbitrary EZ-structure on a discrete group I', we
can construct an EZ-structure of the form (D", A), where A is a closed subset of
oD" = §"~!. In particular, we see that any group which has an EZ-structure auto-
matically satisfies condition ().

3. Condition (%) implies the Novikov conjecture

We start this section by giving a reformulation of condition (xA) which is closer to
the formulation given by Farrell-Hsiang:

Definition 3.1. We say that a group I satisfies condition (%) if for some integer
n there is an action of I on (D", A), A a closed subset of "1 = D" with the
following two properties:

+ I' acts properly discontinuously and cocompactly on D" — A,
«» for each compact subset K of D" — A, and each ¢ > 0, there exists a § =
3(K,€) > Osuchthat forecach y e I', if d(y K, A) < 8, then diam(y K) < ¢.

Observe that condition (xa) generalizes condition (%) formulated in Farrell-
Hsiang [8] (the reader is also referred to [9] and the survey papers [12], [13]). The
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only difference between the two conditions is that condition (x) also required the
set A to be 8" = S~ and I' to be torsion-free. Furthermore, for torsion-free
groups, it is easy to see that condition (xa) corresponds exactly to the existence of
an EZ-structure of the form (D", A), where A is a closed subset of $"~1.

Note that, by the theorem proved in the previous section, any group which has an
EZ-structure automatically satisfies condition (). In particular, the following two
families of groups satisfy condition (x4):

« torsion-free §-hyperbolic groups.
+ torsion-free CAT(0)-groups.

Before starting the proof of Theorem 1.2, we first state the following useful lemma:

Lemma 3.1. Let (D™, A) be a I'-space satisfying the properties given in condition
(xA). Then there is a second I'-space (D", A) also satisfying (), and a contin-
uous T-equivariant surjection D" x I — D" mapping A x I to A and mapping
(D" — A) x I homeomorphically to D"+ — A,

Proof. Let X = (D™ x I)/ =, where the equivalence relation collapses each line
segment x x I, x € A, to a point. Let ¢»: D™ x I — X be the quotient map, and
give X the I"-space structure such that ¢ is I'-equivariant. Clearly, ¢|mm_a)xs is a
homeomorphism onto X — A.

Projection onto the first factor of D™ x [ induces a I'-equivariant map
W: X — A — D", The topology on X = (X — A) U A induced, using WV, by the
construction in Lemma 2.2 coincides with the one described above, as both topologies
are compact and Hausdorff. Hence (X, A) is an EZ-structure on I".

It remains to show that X is homeomorphic to I+, For this we introduce
a second decomposition space ¥ = D™ x [0,2]/ ~, where ~ collapses each
line segment x x [0,1], x € A, to a point. Since ¥ and X are clearly home-
omorphic, it suffices to construct a homeomorphism from Y to D™ x [0,2]. To
do this, let ¢: D™ — [0, 1] be a continuous function such that ¢~1(0) = A.
Define f: D™ x [0,2] — D™ x [0,2]tobe f(x,1) = (x,t¢p(x))if 0 <t <1, and
S, ) =(x, 2—p Nt +2¢(x)—2)if 1 <t < 2. Observe that f is a surjection.

Since the point inverses of f give the decomposition ~ of D™ x [0, 2], f induces
the desired homeomorphism. ]

The condition () was introduced by Farrell-Hsiang in order to provide an abstract
setting in which Novikov’s Conjecture could be verified. But the proof given in their
paper carries over almost verbatim to the more general setting of condition (xa).
Namely the following is true:

Theorem 3.1. Let (D", A) be al'-space with the properties given in condition (% a).
Suppose that T is torsion-free, and let M™ denote the orbit space (D™ — A)/T.
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Observe that M™ is an aspherical compact manifold with boundary. Then the map
in the (simple) surgery exact sequence:

S5 (M" x ', 9) — [M™ x D", 8; G/ Top]
is identically zero whenn > 1 andn +m > 6.

Proof. Forthereader’s convenience, we recall the argument of [8] for the special case
where I satisfies condition (%), as exposited in the Trieste notes [13], emphasizing
the modifications needed for the more general setting of condition (x). So as not to
obscure the argument, we assume that » = 1 and M™ is triangulable. Notice that the
Lemma 3.1 formally reduces the general case n > 1 to the special case n = 1.

Let (D™*1, A) be the I'-space determined by applying Lemma 3.1 to the I"-space
(D™, A), and notice that M x D! = (D"*! — A)/TI". Define the space:

82”’1-‘,—1 — (]D)m+l _ A) X[ (]D)m _ Sm—l)

and let p: §2"+1 — M™ x D' be the bundle projection induced by the projection
to the orst factor (the fiber of this projection is I — $™~1). Then the following
diagram commutes:

SS(M™ x D!, 9) —= [M™ x D', 8; G/ Top]

ax :

8(8,0) [&, d; G/ Top]

where « is the obviously defined transfer map (see [13], pgs. 246-247). Since p is
a homotopy equivalence, p* is an isomorphism. Hence to prove the theorem, it is
sufficient to verify the following;:

Assertion. The map « is identically zero.

To verify this assertion, note first that an arbitrary element in 8°(M™ x D!, 3)
can be represented by a pair (f, i), where f: M™ — M™ is a self-homeomorphism
with f|aam = Idapm, and h: M™ x D! — M™ x D! is a homotopy of f to Id pm
relative 9 M™ . Define:

E¥ = (D" — A) xp (D™ — $" 1

and notice that by Lemma 3.1, we have that §2"+! = E?" x ].

Observe that, given such a pair ( f, /), there is a well defined Lift D" — A
D" — A, and that f|gn-1_, = Idgn-1_,. Now let /2 be the unique lift of & to
(D" — A) x I = D"+! — A with the property that / is a proper homotopy equivalence
(relative "~ — A) between Idp»_ 5 and the self-homeomorphism £
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Then k := & x Idpyn_ g1 determines a proper homotopy (relative 0 E):
k:&=ExI— ExI

between Idz and a self-homeomorphism g: E — E (which is also determined by
fx Idpm_gn—1). Note that (&, d) = 8(E x 1, 3),since & = E x I. Hence the pair
(g, k) represents the image of the pair (f, ) under the transfer map, i.e. (g, k) =
a(f, h). The assertion then claims that the pair (g, k) obtained in this manner is
always zero in 4(&, 3). In particular, the assertion would follow from the following:

Proposition 3.1. g is pseudo-isotopic to Idg (relative OE), via a pseudo-isotopy
which is properly homotopic to k (relative ).

We will now use the condition (%) to construct the pseudo-isotopy posited in
this proposition. Start by defining a new space E := D" x (D" — S”~1). Note that
the projection onto the second factor determines a fiber bundle projection ¢: E —
Int(M™) with fiber I (recall that Int(M™) = (D™ — S”~1)/T). Hence E is a
manifold containing E as an open dense subset, and 9E C JE.

Next observe that the second property of condition (%) implies that f extends
to a I'-equivariant homeomorphism f: I — D™ by setting f| gn-1 = Idgn1.
Consequently, f x Idpn_a determines a self-homeomorphism g: E — E which
extends g: £ — E and satisfies g| 0F = IdaE' We now proceed to construct a

pseudo-isotopy ¢: E x I — E x I satisfying:

* Pl =28
* Pl = IdEx{u
* d)'(ai)xl =Yamxr

Once this is done, then the restriction of ¢ to the subset E x I < E x I will be
the pseudo-isotopy posited in the proposition.

Observe that the three properties stated above define ¢ on the entire set 8(E x I).
We need to extend ¢ over Int(E x I). In order to do this, consider the fiber bundle
r: E x I — Int(M) with fiber D" x I, where r is the composition of the projection
onto the first factor of E x I followed by the map ¢: E — Int(M). Observe that
if o is an n-simplex in a triangulation of Int(M), then »~!(&) can be identified with
]D)n+m+1.

The construction of ¢ proceeds by induction over the skeleta of Int(M) via a
standard obstruction theory argument. And the obstructions encountered in extend-
g ¢ from the (n — 1)-skeleton to the n-skeleton are precisely those of extending
a self-homeomorphism of S**™ to a self-homeomorphism of D"+ But these
obstructions all vanish, because of the Alexander Trick. Recall that this trick asserts
that any self-homeomorphism 7 of S* extends to a self-homeomorphism 7 of D" *1.
In fact, 7(tx) = tn(x) where x € S™ and ¢ € I is an explicit extension.
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Now the restriction ¢ := ¢|g« is the pseudo-isotopy from g to Idg asserted
i the proposition. A similar argument, which we omit, shows that ¢ is properly
homotopic to & relative 3. This concludes the proof. O

4. Bounding 7, (£ (BT)) for §-hyperbolic groups

In this section, we give an application of our main result to obtaining a lower bound
for the homotopy groups 7,,(# (BI")) which holds for all torsion-free 8-hyperbolic
groups I'. Here £ (-) is the stable topological psecudo-isotopy functor (see Hatcher
[15]). For this we need to first recall some basic facts about §-hyperbolic groups.
Let I" be a torsion free §-hyperbolic group (we exclude the case I' = Z). Then the
following are true:

Fact 1. If S is an inmnite cyclic subgroup of T, then there is a maximal inBnite cyclic
subgroup containing S. Furthermore this maximal subgroup is unique.

Fact 2. If C is a maximal infnite cyclic subgroup of 1", then its normalizer is C itself.

Fact 3. If S1 and Sy are a pair of maximal inAnite cyclic subgroups of 1", and
{Sii} C 3°°T" are the corresponding pair of points in the boundary at inDnity, then
either $) = Sy or {SE} N {SE} = 0.

Fact 4. If S is a maximal inBnite cyclic subgroup of T, then y - S= # S¥ for all
yel.

We briefly explain why each of these facts holds. The existence part of Fact 1
follows from Proposition 3.16 in Bridson—Haefliger (pg. 465 in [5]), while uniqueness
follows from Fact 3. For amaximal infinite cyclic subgroup, the normalizer coincides
with the centralizer. If the element is not in the group itself, this would yield a pair of
commuting elements, giving a Z? in I", which is impossible, giving us Fact 2. Fact 3
follows from the proof of Theorem 3.20 in Bridson—Haefliger (pg. 467 in [5]). Fact 4
is an easy consequence of Facts 2 and 3.

Now fix a set M where the elements of M are maximal infinite cyclic subgroups
of I with each conjugacy class represented exactly once. For each S € M, let
¢s: P(BS) — P(BI) be the functorially defined continuous map (see Hatcher
[15]). Note that BS = S! for each S € M. Theorem 1.3 that we are going to prove
in this section states that, for cach integer n > 0, the group homomorphism

P 7u(bs): P 7u(P(BS)) —> mu(P(BT))

SeM SeM

is an injection.
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Note that 7 (P(S1)) & Zy &7, & - - -, where there are countably infinite number
of Zy’s (see Igusa [17]). Furthermore, the Isomorphism Conjecture for & (BI") for-
mulated by Farrell-Jones [11] is equivalent to the assertion that the homeomorphisms
in Theorem 1.3 are all isomorphisms together with the assertion that the Whitehead
groups Wh(I" x Z") vanish for all n.

Let us now proceed to prove Theorem 1.3. By Theorem 1.1, we know that we
have a sequence of EZ-structures (I, 9°°I"), defined for all sufficiently large m, such
that I" acts on )" by orientation preserving homeomorphisms, and (D”+1!, 3%°T") =
D™, 3°T) x I (i.e. is D™ x I/ = where each interval x x I, with x € S~ is
collapsed to a point). Furthermore, each S € M determines a pair of distinct points
St, 57 € 3°T". We start our argument by showing:

Claim 1. (D™, {S*)}) is an EZ-structure for S.

Proof. To see this claim, we first note that a closed subset of a Z-set is still a Z-set,
hence the pair (D", S¥*) satisfies the first two conditions for an EZ-structure. To verify
the remaining properties, we first observe that an easy adaptation of an argument of
Bestvina (Proposition 1.18 in [4]) shows that in D™ there exists a neighborhood base
{V;} of the point ST which has the following propertics:

(1) Vi1 C Vi forevery i,
(2) for every compact set K I — {S*}, there exists a k such that gF¥(K) c Vi,
(3) there exists a fixed j such that g/ (V;) = Vi1 for every i.

Here g denotes the generator of S whose positive powers tend to S+.

We now explain how proper discontinuity of the action follows. Note that, by
hyperbolicity of the I'-action on 3T, S restricted to 9T — {S*} acts properly
discontinuously. Hence if proper discontinuity fails at p, then p is an element of
9°°I", and one can construct sequences x; € D" — 9°°I" and n; € Z such that
xi — St, n; - 400, and g"(x;) — p. But this immediately contradicts the
existence of the family {V;} given above. Hence the action of S on I — {S*} is
properly discontinuous. Then the freeness of the S-action is also immediate, since
the I" action (and hence the S-action) on D™ — 9°°I" is free, while the S-action on
d°°T fixes precisely the two points S*. The null-sequence property follows from the
fact that the S-action is properly discontinuous on I — {S*}, and the fact that D"
is the 2-point compactification of D" — {S¥*}.

Finally, to see cocompactness, identify I — {S*} with I”~! x R so that ST
corresponds to +00. Since the S-action is properly discontinuous, there exists an
integer n > 0 such that g" (M ~! x {0}) ¢ D" x (0, +c0). Let W be the region
between I~ x {0} and g" (D"~ x {0}); i.e.

W =g"D" ! x (—00,0)) ND" ! x [0, 00).
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W is clearly compact, and it is not difficult to see that U;cz[g" (W)] = D"~ 1 x R,
which establishes that S acts cocompactly on D" — {S*}.

We now have that the pair (D", S*) satisfies all the conditions for an EZ-structure,
concluding the proof of Claim 1. m]

We now continue the proof of Theorem 1.3. Note that
@ {SF) = D", (¥ x I.

Arguing as in the paper by Farrell-Jones (see pgs. 462—467 in [10]), it suffices to
construct, for each sufficiently large integer m, a pair of continuous maps:

gs: P(MZ) — P(M™)
g5 P(M™) — P(MY)

where M™ = (D™ — d*°T")/T", M¥ = (D™ — {S*})/S, and P(-) denotes the (un-
stable) topological pseudo-isotopy space, and where the maps gg and g satisfy the
following:

Assertion. g° o g is homotopic to the identity, and gS/ o g5 is homotopic to a constant
map whenever S # S,

We first discuss the construction of the maps gs, g°, and will then discuss why the
pair of maps we constructed satisfy the assertion. Start by observing that both M
and M¢' are compact m-dimensional manifolds with boundary (we will henceforth
suppress the superscript indicating dimension unless it is explicitly relevant to the
argument being presented). Now let p = pg: Int(Mg) — Int(M) be the covering
space corresponding to the subgroup S C I' = 71 (Int(M)). Using the s-cobordism
theorem (and assuming i > 6), one easily constructs an isotopy ¢; = ¢[S Mg — Mg
such that ¢ = Ids, and p o ¢1: Mg — M is an embedding. To define gy, let
f: Mg xI— Mg x I be apseudo-isotopy (i.c. an element of P(My)). Recall that
f 1s an automorphism (i.e. an onto homeomorphism) with the property that:

Flmsxiopuens)xr = 1d [pmgxopuams)<1-

We can now define f, = gs(f) € P(M) by setting f,(x, 1) to be:

o (x,t)if x € M —Image(p o ¢1)

s pohi(f(x, 1) ifx = podi(x)
where x € M and ¢ € I. This gives us the map gg.

On the other hand, to define ¢°( f), where f € P(M),let f: (D" —9®°T) x I —
(D" — 3°°T") x I be the lift of f such that f(x,7) = (x,1) if either x € "~ =
D" or if t = 0. Now f induces an automorphism f of (D"+1 3°°T"), since
D+, 9®T) = (", 9°T") x 1. Note that f is I"-equivariant and that f|, pn =
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Id, pm+1, where 3_ID"*+1 is the image of D™ x {0}U S~ x I under the quotient map
D" x I — D"+ Since 3T ¢ 9_I"*1, £ induces an S-equivariant automorphism
of I"+! — {S*} which then descends to an automorphism fg of (D"+! — {S*})/S.
After “appropriately identifying”

Ms = (D" — (sEh/s

with M x I, g5(f) is defined by g5(f) = fs.

To do this identification, first note that M is the quotient space of M ¢’ x I where
cach interval x x I, x € 9MY is collapsed to a point. So Mg x {0} is canonically
identified with a codimension zero submanifold _ Mg of d M 5. By equating I M x I
with a short collar of 0(9_My) in d_ Mg, an identification of Mg x I to Mg can be
constructed such that the composition

P(Ms) — Aut(Ms, 0_(Ms)) — P(My)

1s homotopic to the identity (here the two maps above are the naturally defined continu-
ous maps; in fact, the second map is the homeomorphism induced by the identification
while the first is determined by the fact that Mg is a quotient space of Mg x I). This
is the “appropriate identification” mentioned above.

This gives us the two maps for which we claim the assertion holds. Before
continuing our proof, we note that, whenm > 6, the spaces M’ are allhomeomorphic
to S' xID~1. Indeed, this follows by the s-cobordism theorem, and the fact that S acts
via orientation preserving homeomorphisms on D" — {S*}; thus the closed tubular
neighborhood of any embedded circle S! in Int(M '), which induces a homotopy
equivalence, is homeomorphic to ST x D",

Now the Assertion, made above, can be verified in the same way that properties
(1) and (11) in Lemma 2.1 of Farrell-Jones [10] were proven. We merely point out that
they follow directly from the following two claims which we proceed to formulate
and then to verify. Let T's denote the image of pys o ¢1S . Note that 7’5 1s a codimension
zero submanifold of Int(M%') and that T's is homeomorphic to S! x D"~!. Recall
that

ps: Int(Mg) — Int(M)
is the covering projection corresponding to S C I'. And that ¢515 Mg — Int(Mg) 1s
an embedding isotopic to Idpz. Recall that we assumed that I" is not cyclic.

Now let {C;} denote the connected components of pgl (Ts), and note that pgl =
[1; Ci. Let C; denote the closure of C; in M. It is an elementary observation that
cach C; 1s a codimension zero submanifold of Int(My) as well as an open subset of
pgl(TS). Furthermore, observe that Image(¢f ) 1s a codimension zero submanifold
of Int(My) which is homeomorphic to ST x D”+1.

Claim 2. We can index the set {C;} so that Cy = Image(gbé) and C; is homeomorphic
to D™ when i # 0.
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Now let " € M with S” £ S, and denote by {C]} the connected components of
pg,l(Ts) and by E{ the closure of C/ in M. It is again elementary that cach C7 is a
codimension zero submanifold of Int(Mg ) as well as an open subset of pg,l (Ts).

Claim 3. Each E{ is homeomorphic to D™.

We now proceed with the proofs of the two claims. The Facts 15—4s used in the
proofs below refer to the facts about 5-hyperbolic groups discussed at the beginning
of this section.

Proof of Claim 2. One casily sees that each p;: C; — Ty is a covering projection
where p; = pslc;. Hence Image(qﬁls ) must be one of the components C; since
p: Image(qﬁf ) — T is a homeomorphism. Thus we may index the components
starting with Cy = Image(¢ls ). Therefore it remains to show that C; is homeomorphic
to D" when i # 0. To do this, define

o g: D" —3°T — M = (D" —3*°T")/T"

o r=rg: D" — {SF) — Mg = (D" — {St})/S
to be the universal covering maps whose groups of deck transformations are I' and S
respectively. Then we have the following commutative triangle of covering spaces:

Int(D™) 4 Int(My)

A

Tnt(M)

Note that g~ (T) = [1; D; where each D; is a connected component of g Y (Ts).
And let D; be the closure of D; in . One easily sees the following ten points:

(1) Each D; is open in ¢~ (T).

(2) Each D; is a codimension zero submanifold of Int(ID™).

(3) gi: D; — Ts is a universal covering space (where g; = ¢|p,) whose group of
deck transformations S; consists of all ¥y € I" such that ¥ (D;) = D;. Conse-
quently, D; is homeomorphic to D”~! x R.

(4) The components D; are permuted transitively by I'. Consequently, the groups
S; are all conjugate cyclic subgroups of I

(5) Atleast one of the groups S; 1s S. Hence all the S; are maximal cyclic subgroups
of I'. And we can rearrange the indexing so that Sy = S.

(6) If the cardinality |S; N S;| > 1, theni = j. This follows from points (4) and
(5) by using Fact 15 and Fact 2;.

(7) Let ¢y: ™ — {SF} — D" — {S*} be the lift of the isotopy ¢; with respect
to the covering projection r such that ¢o = Id. Then Dy = Image(¢;), and
consequently Dy = Do U {S%}, which forces Dy to be homeomorphic to D",
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(8) Because of points (4)and (7), D; = D; U{Sii} and is homeomorphic to D", Also
because of point (6) and Fact 35, D; D" — {S*}if i # 0, and consequently
D; is also the closure of D; in D" — {S*}.

) Ify(D;)) N D; # @, where y € I', then y € S;. This results from points (4),
(6), (8), along with Facts 35 and 45. Consequently, if i £ 0, then r| B D; —

r(D;) = r(D;) is a homeomorphism since S; N Sy = 1, because of point (6)
(Here r(D;) denotes the closure of r(D;) in M).

(10) There is a surjection of indexing sets i +— «(i), with «(0) = 0, such that
ri: D; — Cy() 18 a covering space (here r; denotes 7|p,). This follows from
the above commutative triangle in which p, ¢, and r are open maps.

It now follows immediately from points (8), (9), and (10), that C; is homeomorphic
to D™ when i # 0; thus completing the proof of Claim 2. m]

Proof of Claim 3. This proof closely parallels the one just given for Claim 2. Note
that the above points (1)-(9) continue to hold. And by replacing S by S’ in the above
commutative triangle, the following analogue (10) of point (10) is similarly verified
using that pg/, ¢, and rg are open maps: there is a surjection i — £(i) of indexing
sets such that r/: D; — C//g(i) is a covering space where 7/ = ry[p,.

Then Fact 35 yields that:

{SF} € (D" — 9°S’) = Domain(rg)
which together with point (8) shows that
D; € Domain(rg/).
Therefore point (9) yields that:

rslp,: Di —> rs(Di) = rg(Di) =
is a homeomorphism. But D; is homeomorphic to I by point (8), and B is a
surjection by point (10). This concludes the proof of Claim 3. O

Finally, we point out that, from these two claims, it is easy to show the Assertion.
Indeed, the pseudo-isotopies g° o gs(f) and gS/ o gs(f) are supported over |, C;
and | J; C ! respectively. Because of claims 2 and 3, the Alexander trick can be used to
verify the Assertion. We refer the reader to Section 2 of Farrell-Jones [10] for more
details.
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