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Noether’s problem for dihedral 2-groups

Huah Chu, Shou-Jen Hu and Ming-chang Kang

Abstract. Let K be any field and G be a finite group. Let G act on the rational function field
K(xzy4 : g € G) by K-automorphisms defined by g - xp = 245 for any g, h € G. Denote by K(G)
the fixed field K (x4 : g € G). Noether’s problem asks whether K(G) is rational (= purely
transcendental) over K. We shall prove that K(G) is rational over K if G is the dihedral group
(resp. quasi-dihedral group, modular group) of order 16. Our result will imply the existence of
the generic Galois extension and the existence of the generic polynomial of the corresponding
group.

Mathematics Subject Classification (2000). Primary 12F12, 13A50, 11R32, 14E08.

Keywords. Rationality, Noether’s problem, generic Galois extension, generic polynomials, di-
hedral groups.

¢1. Introduction

Let K be any field and G be a finite group. Let G act on the rational function
field K(z4 : g € G) by K-automorphisms such that g -z, = x4, for any g, h € G.
Denote by K(G) the fixed field K(z,: g€ G)¢ = {f € K(zy: g€ Q) :0 - f =
ffor anyo € G}. Noether’s problem asks whether K(G) is rational (=purely
transcendental) over K.

Noether’s problem is related to the inverse Galois problem, which asks whether
there is a Galois extension L over K such that Gal(L/K) ~ G if the field K and the
finite group G are prescribed. In fact, if K is an infinite field and K(G) is rational
over K, then there exists a generic Galois G-extension over the field K [Sal, The-
orem 5.1]; see Proposition 2.2 for a generalization. A generic Galois G-extension is
some universal object of G-extensions such that we can apply Hilbert irreducibility
theorem; see [Sal; Me] for more details. When K is a Hilbertian field, i.e. Hilbert
irreducibility theorem is valid for irreducible polynomials f € KJzq,- - ,zy], the
existence of a generic Galois G-extension over K will guarantee the existence of
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a Galois extension field L over K with Gal(L/K) ~ G. In particular, if K is an
algebraic number field, then the validity of Noether’s problem for the pair (K, G)
will imply the validity of the inverse Galois problem for the pair (K, G). However,
the converse is not true in general: there is a generic Galois G-extension over Q if
G is a cyclic group of odd order [Sal, Theorem 2.1], while Q(G) is not rational over
Q when G is a cyclic group of order 47 or 113 [Sw]. On the other hand, Saltman
shows that, if G is the cyclic group of order 8, then there cannot be a generic
Galois G-extension over Q [Sal, Theorem 5.11] while the answer of the inverse
Galois problem for (Q, G) is affirmative, e.g. the subfield L in Q(e%m/ 32) such
that L is a cyclic extension of degree 8 over Q.

Yet another notion due to DeMeyer, Smith, Ledet and Kemper: a generic
polynomial for G-extensions over K. It is known that the existence of a generic
Galois G-extension over K is equivalent to that of a generic polynomial for G-
extensions over K [Me; Sm; Le2; Ke]. Thus Noether’s problem plays the same
role in this situation.

Now we consider the case G = D,,, the dihedral group of order 2n. Saltman
shows that if K is an infinite field, charK 4 n and n is odd, then there exists a
generic Galois D,,-extension over K [Sal, Theorem 3.5]; unfortunately the answer
to Noether’s problem in this case is rather incomplete, see [Ka]. Not much is
known about the existence of a generic Galois D,,-extension over K if char K # 2
and n is a power of 2. Black obtained several results in this direction [BI]. She
showed that a generic Galois Dg-extension (resp. Dy-extension) over K did exist
if K was an infinite field with char K # 2. On the other hand, Ledet exhibited
the generic polynomial for G-extensions over K if K is an infinite field with char
K # 2 and G is the dihedral group (resp. the quasi-dihedral group, the modular
group) of order 16 [Lel]. (The definitions of all these groups will be explained
at the beginning of Section 3.) What we will prove in this paper is that K(G)
is rational over K when K is any field and G is any one of the above groups.
See Theorems 3.1, 3.2 and 3.3. In some sense our results help to show why the
constructions of Black and Ledet have to exist. It is amusing to compare these
results with [Sal, Theorem 5.11] which shows that Q(G) is never rational if G is
any abelian group whose exponent is divisible by 8, while our results show that
this phenomenon is not true for non-abelian groups. A final remark: Grébner
proves that K(G) is rational if G is the quaternion group [Gr]. We will present a
proof of Grébner’s result, which may be easier than Grobner’s original proof and
will prelude the idea of the proof of Theorem 3.1.

We shall organize this paper as follows. We will recall some preliminaries
and discuss the general situation of the rationality problem of K(D,,) in Section 2;
the rationality problem of K(D,) together with Grébner’s Theorem will be proved
also. Section 3 contains the main results of this paper; we shall solve the rationality
problem of three certain groups of order 16. The rationality problem of other
groups of order 16 will be discussed in a separate paper.
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Notations and terminologies. A field extension L over K is rational if L is
purely transcendental over K; L is called stably rational over K if there ex-
ist elements yq,---,yy which are algebraically independent over L such that
L(y1,- -+ ,yn) is rational over K. The dihedral group of order 2n is defined as
<a7 Tio"=72=1 107"l = a_1>7 which is denoted by D,. The quaternion
group of order 8 is defined as <U7 70t =14=102=72 101 1= a*1>. Recall
the definition K(G) at the beginning of this section: K(G) = K(z, : g € G)°.
The representation space of the regular representation of G over K is denoted by
W = @4eqK - 2(g) where G acts on W by g - x(h) = z(gh) for any g, h € G.
Finally, if L1 and Lo are extension fields of a field K such that G acts on L1 and
Lo by K-automorphisms, we will say that L is G-isomorphic to Lo over K if there
is an isomorphism ¢ : L1 — Lo from Ly onto Ly over K with ¢(o -u) = o - p(u)
for any o € G, any w € L.

§2. Generalities

We recall a variant of Hilbertsatz 90 which has been used by many people under
different disguises.

Theorem 2.1 ([HK2, Theorem 1|). Let L be a field and G be a finite group acting
on L(zy, -+ ,xn), the rational function field of m wvariables over L. Suppose that
(i) for any o € G, o(L) C L;
(i) the restriction of the action of G to L is faithful;
(iii) for any o € G,

o(zy) 1

a(a;m) T,

where A(o) € GLyn(L) and B(o) is an m x 1 matriz over L. Then L(zy1, -+ ,2m)
is G-isomorphic to L(z1, -+, 2y) with 0(2;) = 2z; for any o € G, any 1 < i < m.
In particular, L(z1, - ,2m)% = LY (21, -+ ,2m), i.e. L{x1, - ,2m)% is rational
over LY.

Proposition 2.2. Let K be any infinite field and G be a finite group. Let p :
G — GL(V) be a faithful representation of G where V is some finite-dimensional
vector space over K. If the fized field K(V)% is stably rational over K, then there
erists a generic Galois G-extension over K.

Remark. Proposition 2.2 is a “cheap” special case of Saltman’s Theorem about
retract rational extensions [Sa2; Sa3, Theorem 2; Bl, Remark of Theorem 1.1]; it
is weaker than Saltman’s Theorem, but its proof is easier.
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Proof. Let W be the representation space of the regular representation of G. Thus
K(G) = K(W)®. Consider the action of G on K(V @ W). By Theorem 2.1
K(V @ W)Y is rational over K (V)% and K(W)%. Since K (V)¢ is stably rational,
it follows that K (G) = K (W) is also stably rational. Hence there exists a positive
integer m such that K (W) (wy,--- ,wy) is rational over K where N = (m —1)n.
(Remember that n = |G|.)

Consider the diagonal action of G on W™ =W @ W @ --- & W (m copies of
W). By Theorem 2.1 K(W™)% = K(W)%(y,--- ,yx) is rational over K.

Now we can identify K(W™) = K(x!(;) : 1 <4< m,g € @) and remember
that K (W™)% is rational over K. Imitate Saltman’s proof of [Sal, Theorem 5.1].
All we need to do is to define a G-equivariant map ¢ : K[xg,f) 1 <i<m,o €
G] — L (in the notations of [Sal, Theorem 5.1]), i.e. we should find elements

a1, , 0 € L and define 4,0(:59) = 0 - a; under the condition that ¢ evaluated
at the cp(x((f))’s is a unit. Note that we should prove a “multi-variable” version of
[Sal, Lemma 5.2]. But this is not difficult and is omitted. O

Theorem 2.3 ([HK1, (2.7) Lemmal). Let K be any field, a,b € K — {0} and
o: K(z,y) — K(z,y) be a K-automorphism defined by o(z) = a/x, o(y) = b/y.
Then K(z,y)<?” = K(u,v) where

a b
xr— — y—g

_ x _
“= ab’ N ab
TG — — g — —
xy Ty

Moreover, z + (aj/z) = (=bu® + av® + 1)/v, y + (b/y) = (bu® — av? + 1)/u,
ay + (ab/(zy)) = (~bu® — av® + 1)/ (uv).

Theorem 2.4 ([AHK, Theorem 3.1]). Let G be any group whose order may be
finite or infinite. Suppose that G acts on L(z), the rational function field of one
variable over a field L. Assume that, for any o € G, o(L) C L and o(z) =
ay -x+b, for some ay, by € L with ay #0. Then L(z)¢ = LY or L°(f(z)) where
f(z) € L[z] is of positive degree.

Theorem 2.5 (Kuniyoshi [Ku;Mi]). Let K be a field with char K = p > 0 and
G be a p-group. Then K (V)9 is rational over K for any representation p: G —

GL(V) where V is a finite-dimension vector space over K.

Proof. Since char K = p > 0 and |G| = p™, any representation of G can be
triangulated. Apply [HK1, (2.2) Theorem]. O

Let G=D, = <a,7’ coh=72=1 ror 1= a’1>.

Proposition 2.6. Let char K =0 or char K { n and let ¢ be a primitive n-th root
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of unity. If ¢+ ¢! € K, then K(D,) is rational over K. In particular, K(Dy)
is rational over K.

Remark. Compare with [Bl, Proposition 2.1 and Theorem 3.3].
Proof. Define V =@ | K -x; and let D, act on V' by

O L] X o= Ty 2,
T x> Xy forl<i<n-—1,

Ly > Ty

Let W = @4ep, K - z(g) be the space of regular representation of D,. Note
that V' is a subrepresentation of W, because we may define Wy = @7 | K -z} where
z; = z(0%) + 2(o'r). Then z; — z for 1 < i < n provides an equivariant map
from V onto Wj.

By Theorem 2.1 K(W) is D,,-isomorphic to K (V)(Z1,Z2, -+ , &) with A(Z;) =
z; for any A € D,,. Hence K(D,,) = K(W)P» = K(V)P (21,22, -+ ,Z). Thus it
suffices to show that K (V)P is rational over K.

Define y; = >4 ¢ Vg, for 0 <i<n—1.

Since ¢ + ¢! € K, it follows that [K(¢) : K] < 2.

Case l. (e K.

Note that K(z1, - ,2s) = K(yo, 91, sYn_1) and o(y;) = ¢y, 7(yi) =
¢ 2y, ;for0<i<n-—1.

Apply Theorem 2.1. We get

K(y07y17 e )ynfl)Dn - K(y]dynf].)Dn(ZL T 7277,72)

with o(2;) = 7(2;) = 2. Now K(y1,9,_1)"» = K(t,y1)"~ where t = y,,_1/y; and
o(yr) = ¢ lyy, o(t) = C3t, 7(y1) = ¢ %y, 7(t) = ¢*/t. Apply Theorem 2.4. It
suffices to show that K ()P is rational over K. However, it is clear that K(t)"~
is rational by Liiroth’s Theorem.

Case 2. ¢ ¢ K and Gal(K(¢)/K) = {id, p} where p(¢) = ¢ 1.

Extend the actions of o, 7, p to K(¢)(z1,---,2zy) by 0(¢) = 7(¢) = ¢, p(z;) =
x; for 1 <1 <n.

Note that

K(:I?h . 7:I:n)<¢7;r> _ {K(C)(ﬂﬂh . 7xn)<p>}<a,7—>
(xb e 7xn)<0’7—7p>

(y0> Tt yn71)<0-77-7p>

where o(y:) = (i, T(45) = ¢ ¥ yn—i, p(%i) = Yn—i. Since (0,7, p) = Dy x Zy
acts on K({)(y1,y,_1) faithfully, we may apply Theorem 2.1. Thus it suffices to
show that K(¢)(y1, yn_1)<7"*~ is rational over K.
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Define ¢ = y,,_1/y1. Then o(t) = (%, o(y1) = ¢ y1, 7(t) = ¢4/t, 7(y1) =
¢ 2tyy, p(t) = 1/t, p(y1) = ty1. By Theorem 2.4, if K(¢)(t)<77*> is rational over
K, sois K(¢)(t,y1)<™*> over K.

Define m = n, if n is an odd integer; m = n/2 if n is an even integer. Then
the restriction of ¢ to K(¢)(t) is of order m. Define v = ¢"™. It follows that
K(Q)(t)<7> = K({)(u) and 7(u) = 1/u, p(u) = 1/u. Now K({)(u)<""> =
K(O)(uw)<mr> ={K({)(uw)<7P>}<F> = K(u)<F” = K(u+(1/u)) is rational over K.

O

Theorem 2.7 (Grébner [Gr]). Let G be the quaternion group. Then K(G) is
rational over K for any field K.

Proof. Because of Theorem 2.5, we may assume that char K # 2. Recall the

notations at the end of Section 1. We write G = <CT7T ot =1t =1,0% =

7‘27 ror—1 = a3>.

Define V = @leK ~x; with ¢ : x1 — x9, £9 — —x1, T3 — —I4, T4 — T3,
T X X3, Ty Ty, T3 — —T1, Tq — —T2.

Note that V' is a faithful subrepresentation of the regular representation W =
®geal -z(g). In fact, we may take z1 = z(1)—z(0?), 2y =0 21, 23 = T-21, T4 =
70 -x1. Now apply Theorem 2.1. Thus it remains to prove that K (x1, z2,z3,24)%
is rational over K.

Define y1 = x1/24, y2 = 2/24, y3 = 23/24, Y4 = 4.

It is straightforward to check that

oyl = y2/y3, Y2 = —y1/y3, ¥3 — —1/y3, Y4 — y3y4,
Tyl = —y3/y2, y2 = —1/y2, y3 = y1/y2, ya — —y2y4.

If K(y1,y2,y3)<%7~ is rational over K, so is K(y1,y2,y3,y1) <" over K by
Theorem 2.4.
Define z1 = y1, 22 = y2/y1, 23 = y3. Then

021 2122/23, 29— —1/29, 23— —1/z23,

Tz —23/2129, 22> 1/23, 23— 1/2.

Define 2 = 21(1 + (22/23)). Then K(y1,y2,y3)<7" = K(21,22,23)<77 =
K(z,29,23)<7”. Now apply Theorem 2.3 with a = b= —1, i.e. define

a b
2 s
2 3
U = = —"
ab ’ ab
2223 — 2223 —
22723 22%23

It follows that K(z, 29,23)<7” = K(z,u,v).
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Now it is easy to check that
Tiur —v, v —u, 2 A2

where A = —2 — (22/23) — (23/22).
Since
—(22/23)—(23/22) = (22 + (=1/22))(23 + (=1/23)) — (2223 + 1/(2223))
= {(=bu?+av?+1)(bu® —av®+1) = (=bu® —av® + 1)}/ (uv)
= {bu® + av? — (bu? — av?)?}/(w)

by the last statement of Theorem 2.3 (here a = b = —1 in the present situation),
we find that

>
\

= 2 — {u? + 0% + (u® — 0%)?}/(uv)
= —(u-+ v)2{(u - 7))2 + 1}/ (uv).

Define p=u+v, z =u—v, y = 2zuv/(u+v). We can check that
TP —p, T, yl—>A/y

where A = —(22 + 1)(2? — p?).
Define ¢ = p?, q1 =y + (A/y), q2 = p{y — (A/y)}. We find that

K(z7 u7’U)<T> = K(p7 x? y)<T> = K(t7 x? Q17 q2)

with the relation
a7 — (a2/p)* = 44, (1)
because [K (¢, 2, q1,q2,p) : K(t,2,q1,q2)] <2, and K(t, 2,1, q2,p) = K(z, q1,9 —
(A/y),p) = K(p,z,y). (Note that the last equality holds because we can solve y
within the field K(z, ¢1,y — (A/y),p).)
Now we will simplify the relation (1). It becomes
tq% — q% = —4(3:2 + 1)(302 —t)t.
Dividing by ¢2 on both sides, we get
(1/8)gf = (2/1)* = —4(2® + D{(1/1)2* — 1}. (2)
From (2), it is obvious that ¢t € K(z, q1, g2/t). Thus
K(t,z,q1,92) = K(t, 2, q1, 2/t) = K(z, q1, ¢2/t)

is rational over K. O
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¢3. Main results

Without loss of generality we will assume that K is any field with charK # 2
throughout this section, because Theorem 2.5 will take care of the case char K = 2.

Let G = <a,7 cot=712=1 101l = aa>. If a = —1, then G is the dihedral
group; if a = 3, then G is the quasi-dihedral group; if a = 5, G is the modular
group [Lel]. In the quasi-dihedral group G, let v = o, v = o7, then G can be
defined as <u, v: ut =02 vuv 1l = u3>, which is the definition of this group given
in [Lel].

We will find a faithful subrepresentation of W = @ycqK - z(g), the regular
representation of G. Define

z; = x(o") + z(o'7) for0 <: < 7.

Then EBZ:OK - x; is a G-subspace of W and o(z;) = ;41 and 7(z;) = x4
for 0 < 4 < 7 where the index 7 + 1 or az is understood to be taken modulo 8.
By Theorem 2.1, in order to prove the rationality problem of K(G), it suffices to
consider the case of K(zg,z1,---,27)".

Theorem 3.1. [f G is the dihedral group, then K(G) is rational over K.

Proof. Define y; = z; — 44, Yiqa = x; + 2544 for 0 <4 < 3. Because of Theorem
2.1, it suffices to show that K(yo,vy1,v3,v4)<7"" is rational over K. Note that
giYyo— Y1 y2—= Y3 — —Yo, T LYo /Yo, Y1 Y3, Y2 o Y2, Y3~y

Let m = Gal(K(y/—1)/K). If /=1 € K, then = is the trivial group; if v/—1 ¢
K, then © = {(p) where p(v/—1) = —/—1. In the sequel, we shall take the following
convention: if we write the action of p, it is understood that v/—1 ¢ K; however,
if /—1 € K, the reader can just forget p even when we write the action of it.

We will extend the actions of o, 7, p to K(v/=1)(yo,%1,v2,y3) by requiring

o(v—1)=7(v/—1)=+v/—1 and p(y;) = y; for 0 <4 < 3. Note that

K(y0> e 7y3)<0',7'> - {K( \ —1)(y07 e 7y3)<p>}<0',7'>
= K(V-1)(yo, - ,y3)<77.
Define 21 = v —1y1+y3, 22 = vV—1ya—y0, 23 = —vV—1y1+ys, 24 = —vV—1y2—

4. Then
gz 2= V=121, 23 24—V =123,

T:z1— —V =123, 20+ 24, 23— V=121, 24 — 22,

pEL 23, 22 24, 23> 21, 24 22

4
Define uy = 22/21, ug = 24/23, uz = 2224, ug = z7. We get that

K(v—=1)(21, 22, 23724)<”2> = K(v—1)(u1,u2,u3,uy)
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and the actions of o, 7, p are given by
o u — V—1/uy, ug— ——1/ug, uz— uz/(ujug), uy — u%u4,
Ty =V —lug, ug — —/—luy, uz — u3, ug — uj/(uiusuy),
PIUL S UQ > UL, U U, Ug u%/(u%u%u@.
Define wi = ug+ (us/(uius)), wy = wjug, ws = u;+(1/ug), wg = u?u2u§2u4.
Then
01wy = wi, wy — 1/wy, w3 — vV —=1(wy + (1/wa) + 2) /w3, wy — —wy,
T 1wy s wy, wy s wa, w3 — \ —1(wg 4+ (1/w2) +2) /w3, wy — —1/wy,
pwy > wp, we — we, wy s (wa + (1/wa) + 2)/ws, wy — 1/wy
Thus the action of o7 is given by
oT twy — wy, wy > 1/wy, ws — ws, wy — 1/wy.
Define wy — (wg — (1/w2))(1 —’LU4)/(1 +w4). Then K(\/—_l)(’wl, w9, wg,w4) —
K (V=T)(w1, wg, w3, ws) and o(ws) = —(wz—(1/w2))? /w5, o7(ws) = ws, p(ws) =
wIiT.OW K(V/-1) (w1, wg, w3, ws)<7"> = K(v/—1)(w1,ws,ws,ws)<7°">. More-
over, K(\/—_l) (w1, wa, w3, ws)<77” = K(\/—_l)(w17w37 ws, wy + (1/w2)).
Define s = wq,t = wy + (1/w3), z = ws,y = /—1lws. Then
ois stttz Vol{t+2)/z, y— (2 —4)/y,
prs—s, t—t, z— (t+2)/z, y—y.

By Theorem 2.3, define

a b

r— — y—g

_ x — I
“= ab’ v ab
Ty — — Ty — —

Ty ry

where a = /—1(t +2), b = t> — 4, and we find that K(v/—1)(w1, w3, ws,ws +
(1/w2))<7> = K(vV=1)(s,t,2,9)<7” = K(V~1)(s,t,u, ).
If /=1 € K, then K(y/—1)(s,t,u,v) = K(s,t,u,v) is rational as we expect.
From now on, assume y/—1 ¢ K and p actually exists. We shall find the action
of p on w and v. Remember p(v/—1) = —/—1 and p(a) = —a, p(b) = b. Now

t+2 ar a
+ g o— —
P t+4 2 + abx bxr  ay’
z 7 (t+2)y y
b b
y—a y—z
plv) = t+2 abr =1 br ay
y+ — -
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Define w = (1 4+ +/—1)u/v. Then p(w) = w.
It is laborious, but not difficult, to verify that

a
R
_ B _ &
plu) = br  ay  bu? — av?’ )
y oz

Here is a cheating way to demonstrate the above identity. By Theorem 2.3, the
right-hand side of Identity (3) is equal to (y + (b/y) — (1/u)) L. It is really routine
to check that the left-hand side of Identity (3) is equal to (y + (b/y) — (1/u))~1.

In conclusion, we find p(u) = ¢/u where ¢ = w?/{(t? — 4)w? + 2(t + 2)}.

Define p = Au/w where A = (t*> — 4)w? + 2(¢t + 2). Then p(p) = A\/p.

Now K(v/—1)(s,t,u,v)<r> = K(v/—1)(s,t,w,p)<*>. We may show that
K(/=1)(s,t,w,p)<?> is rational over K(s,w) by applying [HK1, (2.4) Theo-
rem]. Here we provide a direct proof of it. Note that K(v/—1)(s,t,w,p)<°> =
K(s,t,w,p1,p2) where py = p+ (\/p), p2 = v/~1(p — (\/p)). Note that

P74 p3 = AN = 4(1? — Dw? + 8(t + 2).
Define r = ¢ + 2. Then t? — 4 = r(r — 4) and we get
P2+ p3 = dr(r — 4)w? + 8r.
Dividing by 72 on both sides, it turns out that

(p1/7) + (p2/r)? = dw? — 16(1/ryw? + &(1/r).
8(1/r)(1 = 2w2) = (p1/r)? + (pa/r)? — du?.

Thus r € K (w,p1/r,pa/7).
It follows that

K( \% _1)(87 t,u,v)<p> - K(s,t,w,phpg) - K(n s,w,pl/r,pg/r)
= K(s,w,p1/r,p2/7)
is rational over K. O

Theorem 3.2. [f G is the quasi-dihedral group, then K(G) is rational over K.

Proof. We shall show that K (zg, - -- ,z7)“ is rational over K where o : xg — 21 —
T LT T, T LXQ L0, T] T3, T2 T, Ty > X4, T T
The proof is almost the same as that in Theorem 3.1. We shall make the same
change of variables, but the action may not be the same as in the proof of Theorem
3.1. We shall indicate the main modifications.
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We shall define y;, 2;, ui, v;, w; by the same way as in Theorem 3.1. The
actions of o and p are the same. But we shall be careful about the action of 7.
Note that

T Y0 Y0, Y1 Y3, Y2 —Y2, Y3 — Yy,

21V —1lzs, 220 24, 23— —V =121, 24 — 29,

ul — —vV —lug, ug — vV —luy, ug — uz, ug — u%/(u%u%U4)7

v1 > 01,02 > v, 3 —V/—1va/v3, v —v1/(v3v),

Wy > W, W > W, w3k —y/ —1(21)2 + (1/21)2) + 2)/21)37 Wy — —1/w4.

Thus the action of o7 is given by:
oT w1 = wy, wy — 1 wy, ws — —ws3, wy— 1/ wy.

Define wj = (wa — (1/w2))ws; and we should redefine x = wj in the present
situation. Note that o(z) = —/—=1(t2 —4)(t +2)/z, p(z) = 12 —4)(t +2)/z. All
the others remain the same.

Thus we define u, v, w by the same way. But a = —/—1(t? —4)(t + 2) in the
present situation. Note that

a b
e .y
— x — sl
plu) = bz ay’ p(v) = 1 br  ay’
Y z Y z

Define w = (1 — v/—1)u/v. Then p(w) = w as before.

Now p(u) = ¢/u where ¢ = w?/{(t? —4)w?+2(t? —4)(t +2)}. Define p = Au/w
as before, but with A = (#2 — 4)w? + 2(t2 — 4)(t + 2).

It follows that the fixed field is K(s,t,w,p1,p2) = K(r, s,w,p1, p2) where r =
t — 2 and the relation becomes

Pr+ p3 = 4r(r + Aw? + 8r(r + 4)%.

We change the above relation as

(25) + (2m) —1(7) ot () ¢

Thus r € K(w/(r +4),p1/{r(r +4)},p2/{r(r +4)}). 0

Theorem 3.3. [f G is the modular group, then K(QG) is rational over K.

Proof. We shall prove that K (xq, - -- ,27)% is rational over K where o : zg +— 21 —
X7 X, T LT X, X1 > Ty, X2 T2, X3 X7, T4 > T4, T > T
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Note that 7 : yg — w0, y1 — —y1, Y2 — Y2, y3 — —y3. The situation is different
from the previous two cases, and we cannot copy the proof of them. Fortunately
the present situation turns out to be easier.

Define 2o =2, 21 = y1/40, 22 =¥2/y1, 23 =y3/y2. Then K(yo, - ,y3)
K(zg,- -+ ,23). Note that

<ot> _

o zg zo,z%7 21— 29— 23— —1/(212923),

T:20— 29, 21— —21, 22— —29, 23— —23.

By Theorem 2.1 it suffices to prove that K(z1,22,23)<%7~ is rational over K.
Define t = 2123, z = 21, y = 2. Then we get

oit— —1/t, z—y—t/z,

Tit—1t, z— —x, y— —y.

Note that o2(t) = t, 02(z) = t/x, 0?(y) = —1/ty. Hence define

a t b 1

p—— z—— y— - ert_

. T T . y Y
ab 17 ab 1

rYy — — Ty + — Ty — — Yy + —

Y Ty Ty xry

where a = ¢, b = —1/t. By Theorem 2.3, K(t, x7y)<"2> = K(t,u,v).
We find that 7(t) = ¢, 7(u) = —u, 7(v) = —v. The action of o is given by

1 t
Y+ E ——x
_ B
ow) = L, o0) = 75—
z ty z ty
Define w = w/v. Then o(w) = —1/w and 7(w) = w.
It is not difficult to check that
1
y+ 5 B i
t_y £ w2 s 2027
14 ty

Hence we find that o(u) = t/{u(w + (t?/w))}.

Note that K(t,u,w)<™ = K(t,u?,w).

Define z = u?(w + (t?/w))/t. Then o(z) = 1/z2.

In summary, we will consider K(t,u?,w)<?> = K(t,w,2)<?> with o(t) =
—1/t, o(w) = —1/w, o(2) =1/z.

Define p = (1—2)/(1+2). Then o(p) = —p. By Theorem 2.1, K (t,w, 2)<7> =
K(t,w,p)<?~ is rational provided that K (¢,w)<?~ is rational. However the ratio-
nality of K(t,w)<?> follows from Theorem 2.3. O
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