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A geometric construction of the Conway potential function

David Cimasoni

Abstract. We give a geometric construction of the multivariable Conway potential function for
colored links. In the case of a single color, it is Kauffman's definition of the Conway polynomial
in terms of a Seifert matrix.
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1. Introduction

A colored link is an oriented link L L\ U • • • U LM in S3 together with a surjective
map a assigning to each component Li a color a(i) G {!,...,n\. Two colored
links (L, a) and (Z/, a') are isotopic if there exists an ambient isotopy from L to
L' preserving the color and orientation of each component.

Given a colored link (L,a) with exterior X, we have HiX ®f=1 Ztj, where

ti,... £M denote the oriented meridians of L. The Hurewicz morphism -n\X —>

HiX composed with ®f=1 Ztj —? @™=1 Ztj, tj i—> tCT(j), determines a regular

Zn-covering X"7 —> X. The homology of Xa is endowed with a natural structure
of module over An Z^ijt^f1,..., tn,tn1]. The An-module HiX"7 is called the
Alexander module of (L,a): it is an invariant of the colored link. The first
elementary ideal of this module is principal; a generator is called the multivariable
Alexander polynomial of (L,a). It is denoted by A£(£i,... ,£„). Note that AJ is

only defined modulo the units of An, that is, up to multiplication by it','1 • • -t1^.
If n 1, A£(£) is nothing but the Alexander polynomial of the unordered

oriented link L, as defined by James Alexander [1]. On the other hand, if n /x and
<t id, A£(ti,..., tfj) is denoted by A^(ti,..., tM): it is the Alexander polynomial
of the ordered oriented link L, defined by Ralph Fox [5]. Note that in general,

where stands for the equality modulo the units of An.
In 1970, John Conway [2] introduced a new invariant of links called the poten-
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tial junction. Given a colored link (L, <r), its potential function is a well-defined
rational function VL{t\,... ,£„) which satisfies

if n= 1;

if n > 1.

Thus, this invariant is just the Alexander polynomial without the ambiguity
concerning multiplication by units of An. This might seem a minor improvement.
However, the potential function has a very remarkable new property: it can be

computed directly from a link diagram using skein relations. For example, suppose
that (L+, o") (L_, o") and (Lo, cfq) are given by colored diagrams related by a single
change as below, where i stands for the color of the components.

Then, their potential functions satisfy the equality

Similarly, if L++, L and Loo differ by the following local operation,
i j % j % j

then we have the equality

Thus, Conway pointed out a preferred representative of the Alexander polynomial,

and gave a very easy method for computing it. Unfortunately, his paper
contains neither a precise définition of the potential function, nor a proof of its
unicity. Quoting Conway: "We have not found a satisfactory explanation of these

identities.(...) It seems plain that much work remains to be done in the field."
As a particular case of his potential function, Conway defined what he called

the reduced polynomial Di,(t) of a non-ordered link L by

where a is the coloring map with a single color. This invariant was later called
the Conway polynomial of L; we will use this terminology. Following from the
properties of the general potential function, we have:

(i) Dl is an invariant of the non-ordered oriented link L;
(ii) Do{t) 1, where O stands for the trivial knot;
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(iii) DL+(t) -DL_(t) (t-t~1) -DLo(t), where L+,L- and Lo are related by
a single crossing change as below.

L+ L_ Lo

But again, the paper [2] contains no proof of the consistency of this system of
axioms: there is no explicit model for Dl. On the other hand, it is very easy to
check that if such a model exists, it is unique.

In 1981, Louis Kauffman [7] found a very simple geometric construction of the
Conway polynomial Di,(t), namely

where A is any Seifert matrix of the link L and AT is the transpose of A. This
result gave the requested model for Dl, it also provided the 'explanation' of the
first skein relation.

Finally, in 1983, Richard Hartley [6] gave a définition of the multivariable
potential function V£. Quoting his introduction: "Kauffman showed how to define
what may be called the reduced potential function of a link in terms of a Seifert
matrix. This reduced potential function is an L-polynomial in one variable. However,

the potential function is essentially a function of several variables, and I can
see no way of generalising Kauffman's method to obtain the full potential function.
Quite a different approach is therefore indicated." Indeed, Hartley's définition is

obtained by normalizing the Alexander matrix given by the Wirtmger presentation
via Fox free differential calculus: it is an algebraic construction, whose relation to
Kauffman's model is not obvious at all.

In this paper, we give a geometric construction of the multivariable potential
function which generalizes Kauffman's définition. It gives the relation between

Hartley and Kauffman's models of the Conway polynomial, and provides an
'explanation' of Conway's skein formulas. It should be pointed out that the fundamental
idea of this construction, that is, the use of 'C-complexes' for the computation of
Alexander invariants of links, is due to Daryl Cooper [3, 4].

2. The potential function of a colored link

Let us denote by Vl the potential function of an ordered oriented link L as defined

by Hartley [6]; this corresponds to the case of a colored link (L, a) with n /x and

a id. The potential function VJ of an arbitrary colored link is given by

The aim of this section is to present a geometric construction of V"L. This requires
the use of C-complexes as defined by Cooper [3, 4].
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Definition. A C-complex for a colored link (L,a) is a union F F\ U • • • U Fn
of compact oriented PL-embedded surfaces in S3 which satisfies the following
properties:

(i) F is connected;
(ii) for all {, dFt is equal to the sublink of L of color {;

(iii) for all i =f= j, Ft C\ Fo is either empty, or a disjoint union of clasps (see

Figure 1);
(iv) for all i,j, k pairwise distinct, FtC\ Fo C\ Fk is empty.

Fig. 1. A positive clasp, and a negative clasp.

C-complexes are a natural generalization of Seifert surfaces; indeed, if n 1,

a C-complex for (L,a) is simply a Seifert surface for L. Now, we need to define
the Seifert forms associated to a C-complex. Let us fix a C-complex F and a map
e: {1,... ,n} —> {±1}. A 1-cycle x in F is called a loop if it has the following
behaviour near a clasp (whenever it crosses one).

x

Given any element in HiF, it is possible to represent it by a loop; therefore,
we can define a bilinear form ae : Yi\F x Yi\F —> Z by

where £k denotes the linking number, x is a loop, and xe is obtained by pushing x
off F in the e(i)—normal direction off Fi for all i 1,..., n. In the neighborhood
of a clasp in Ft D F3, a loop x can be pushed off F in four different ways, which
correspond to the four possible values of (e(i),e(j)). This is illustrated by the
following cross-section of a clasp in Ft(~) Fo.

- +
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Of course, if n 1, a~ is the usual Seifert form. Let us fix a basis of
denote by AF the matrix of ae. Note that for all e,

CMH

^F and

We are now in position to state our main result.

Theorem. The Conway potential function of a colored link (L, a) is given by

n

Vl(tu ...,*„) sgn (F) n (U - t;y(.F\F^-i ^ (_^} ^

where F is any C-complex for [L,a), and where

- sgn (F) is equal to the product of the signs of all the clasps in F (see Figure

1);

— Ap ~^2e e(l) • • • e(n) • t^ • • -t„ ¦ AF, the sum being on the 2™ maps

e: {l,...,n}

Example 1. If n 1, F is a Seifert surface for the link L and AF is nothing but
a usual Seifert matrix A. Since At, AT we have

giving Kauffman's construction of the Conway polynomial

DL(t) {t-1-1) ¦ Vl(t) det {-tA + t-

Example 2. If n 2, let us denote by x, y the variables and by F F,x U Fy a

C-complex for (L,a). Let us also note A~p~ A and A^+ B. We then have
the formula

V£(x, y) sgn (F)(x - x"1)*^-1^ - y-1)*^)-1 x

x det (—xyAT + xy lBT + x lyB — x~1y~1A)

Compare Cooper [4, Corollary 2.2].

Example 3. Consider the link L L\ U Li U Ls with x x y
colors <r(l) <t(2) x and <r(3) y given by the
following diagram. We have two different ways to compute
the potential function V£(x, y) using our construction. ~—y—- ^--— —y
The first one is to consider a C-complex for the colored 1 2
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link (L,a), and to compute V£(x, y) directly; the second one is to calculate

Vi(ti,t21*3) using a C-complex for the ordered link L, and to use the equality

WL{x,y) Vi(i,i,î/). Here are C-complexes F Fx U Fy for (L,a) and
F' Fi U F2 U F3 for the ordered link L.

Fi F2 F3

In the obvious basis of H4F, we have A^~ Aj,+ — 1); therefore, the
theorem gives

Vl(x, y) (x- x-1)0 ¦ (y - y'1)-1 ¦ (xy - x^y - xy'1 + x^y'1) x - aT1.

On the other hand, F' is contractible, giving

yL{tiMM) (h-tl1)0 ¦ (h-t^1)1 ¦ (t3 -t-1)0 t2 -t-1,
and we get the same result V£(x, y) Vl(x, x, y) x — x 1.

3. Proof of the theorem

Let us recall very briefly Kauffman's argument [7]: given an oriented link L, he

sets Ql(£) det (-tA + t 1AT), where A is any Seifert surface for L. The first
step is to check that Q^ is an isotopy invariant of L. This is achieved using a

well known result: two Seifert surfaces for ambient isotopic links can be obtained
from each other by a finite number of ambient isotopies and handle attachments.
We are left with the easy proof that Ql is unchanged by attaching a handle to F.
Then, Kauffman proves that Ql satisfies the equality

aL+(t) -nL_(t) (t -t-1) -nLo(t),

where L+, L_ and Lq are related by a single crossing change as described in the
introduction. This relation, along with the value of Q for the trivial knot,
determines Q for any link. Since this relation was among the formulas announced by
Conway for his polynomial D, and since Q and D have the same value on the
trivial knot, they are the same invariant.

We will follow the same procedure for the general case. First, we define QJ
to be the right-hand side of the equality in the theorem. To show that QJ is a

well-defined isotopy invariant of colored links, we will generalize Cooper's Isotopy
Lemma [4, Lemma 3.2]. A theorem of Murakami [9] states that the potential
function V£ is determined by several skein relations. Therefore, we will just need

to check that Çî% satisfies these properties in order to have Q V.*

*We should also mention that Turaev [11] gave another characterization of Conway's multi-
variable potential function. One could also use his set of axioms to prove that Çli, is indeed the
potential function.



130 D. Cimasoni CMH

A', i N-

Fig. 2. Push in Fi along an arc a.

Fig. 3. Add a ribbon intersection, and push along an arc to convert it into two clasps.

As a preliminary, let us define three transformations of C-complexes; the first
two were introduced by Cooper. Given a C-complex F and an arc a : [0,1] —> Fi
with arl(dF) {0}, a push in Ft along a is an embedding pa : F —> F defined as

follows: choose A/i, Mi two closed regular neighborhoods of a. in Fi meeting dF
regularly such that A/i C int A/2 and A/2 n (dF\dFi) is empty. Then, pa restricted
to F \ int.A/2 is the identity, and pa maps A/2 homeomorphically onto A/2 \ int A/i,
as in Figure 2. Note that it is not allowed to push a boundary component through
another one.

One can also transform a C-complex by adding a mhhon intersection, as

described in the left part of Figure 3. The result is no longer a C-complex, but it
can be transformed into one by pushing in Fi along an arc through the ribbon
intersection: this converts the ribbon intersection into a pair of clasps (see the right
part of Figure 3). The lower part of this figure shows the same transformations as

the upper part, with the Seifert surface Fi represented as a disc.

Finally, the transformation illustrated in Figure 4 is called to pass through a

clasp. Again, the lower part of this figure depicts the same transformation, with
a disc representing the surface Fk- Note that these three transformations move
the link L only up to an ambient isotopy. Therefore, they can be understood as

keeping L dF fixed.
We are now ready to start the proof of the theorem. Let (L, a) be a colored

link in S3.

Lemma 1. Let i*\, Fn be a collection of Seifert surfaces for the colored link
(L,a) (i.e. for all 1, 8Ft is equal to the sublink of L of color i). Then, each Fi
can be isotoped keeping its boundary fixed to give a C-complex for (L, a).
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Fig. 4. Pass through a clasp.

Fig. 5. The three types of intersections FZC\ Fj\ a clasp, a ribbon and a circle.

Proof. Although it is an easy generalization of Cooper's [4, Lemma 3.1], it is worth
giving the proof in some details. Let F\,..., Fn be a collection of Seifert surfaces

for (L,a). By isotopies, it may be assumed that they intersect transversally;
therefore:

- for all i ^ j, Fi D F3 is a finite union of intervals (clasps or ribbons) and
circles (see Figure 5);

- for all i,j, k pairwise distinct, FiDFjDFk is a finite number of points (called
triple points);

- every quadruple intersection is empty.

By pushing along arcs, it is possible to remove every circle intersection as

follows. First, push along an arc on F\ through one of the outermost circles on
F\, avoiding the triple points: it will turn this circle intersection into a ribbon
intersection. This method allows to remove every circle intersection on F\. Use

the same procedure for F-2, ¦ ¦ ¦, Fn, turning every circle into a ribbon.
Now that all the intersections Ft D Fo are finite unions of intervals, it is easy

to remove all the triple points: pick an interval, number its possible triple points
starting at one end and finishing at the other, and remove them in this order using
the isotopy illustrated below.
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By pushing along arcs, it is possible to transform all the ribbon intersections
into pairs of clasps, as on the right part of Figure 3. We now have a union
F F\ U • • • U F'n which satisfies conditions (ii), (iii) and (iv) in the definition
of a C-complex. By adding ribbon intersections and pushing along arcs (as in
Figure 3), we can make F connected. D

Given F a C-complex for (L,a), let us define

n

QF(tu ...,*„) sgn (F) Yl (U - t7r)x(-FXFi)
1

det (-AF),

where sgn (F) is equal to the product of the signs of all the clasps in F, and where

Ap J2e e(l) ' ' ' e(n) ' t\ -tn ¦ Ap, the sum being on the 2™ different maps
e: {1,... n} —> {±1}. To prove that ftp does not depend on the choice of F, we
need two lemmas. The first one is well known (see e.g. [8, Theorem 8.2]).

Lemma 2. Two Seifert surfaces for a fixed link L can be transformed into each

other by a finite number of the following operations and their inverses:

— ambient isotopy keeping L fixed;

- addition of a handle. D

The second is a generalization of Cooper's Isotopy Lemma [4, Lemma 3.2],
which corresponds to the case /x n 2.

Lemma 3. Let F Fi U • • • U Fn and F' F[ U • • • U F'n be two C-complexes
for a fixed colored link (L, a). Suppose that, for all i, Ft is ambient isotopic to F-

keeping their boundary fixed. Then, F and F' can be transformed into each other
by a finite number of the following operations and their inverses:

(MO) ambient isotopy keeping L fixed;

(Ml) addition of a ribbon intersection, followed by a push along an arc through
this intersection;

(M2) pass through a clasp.
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Proof. By [3, Lemma 5.2], there are other ambient isotopies Ft ~ F- (rel dFt) such

that the surfaces F\,... ,Fn remain transverse throughout the isotopies except at
a finite number of critical points, each of which occurs at a different time. Let
us carry out these new isotopies one after the other: the result is an ambient
isotopy F ~ F' (rel L) with finitely many critical points. Each critical point
corresponds to a change in the singularity of F, that is, in the intersections Ft D F3

and Fi D F3 n F]~ (the isotopies may be chosen avoiding quadruple intersections).
We need to list all the possible transformations of these intersections, and convert
them into combinations of the operations stated in the lemma.

Recall that the connected components of Ft n F3 can be of the following three
types: a clasp, a ribbon, or a circle (see Figure 5). The first step is to show that
the isotopy may be chosen such that no circle intersection appears. The idea is

to transform the isotopy by pushing along wandering arcs: a push in Fi along a

wandering arc is an embedding pa: Ft x / —> Fi x / such that pa restricted to
Ft x {£} is a push along an arc a.t: I —> Fi. A circle intersection in Ft D F3 can
be avoided as follows: push in Ft along a wandering arc to the circle just before
its appearance, keep the arc breaking the circle during the whole 'lifetime' of the
circle, and remove the arc after the 'death' of the circle. Therefore, it may be
assumed that all the intersections Ft n F3 are clasps and ribbons.

Given any i ^ j, the number of clasps in FtC\F3 is equal modulo 2 to the linking
number £k(dFl,dF3). Therefore, the parity of this number must be preserved.
Considering critical points that are not triple points, we are left with the following
possible transformations, where * indicates the critical point.

Transformation Tl is the addition of a ribbon intersection, while T2 is a push
along an arc through a ribbon intersection. Clearly, T3 can be converted into
T2 + T4- T2, where -T2 denotes the inverse of T2. Finally, TA may be turned
into Tl and T2 via a push in Fi along a wandering arc.

Let us now consider critical points that are triple points, and denote by Th the
move illustrated by the second arrow in Figure 4. Here is the 'movie' of T5, where
the asterisk denotes the critical points of 'birth' and 'death' of the triple point.
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7
Of course, there are other transformations involving triple points; let us show

that they can be converted into combinations of Tl, T2 and T5. By the beginning
of the proof, we just need to convert such a move into combinations of Th and of
transformations involving no triple points. Let us consider a transformation of a

C-complex F involving a triple point x G i*\ n Fi C\ F3, and let us focus on the
connected component S of the singularity of F containing x. By pushing along
wandering arcs, it may be assumed that the only critical points on S during the
whole 'lifetime' of x are the two critical points of 'birth' and 'death' of x. The idea
is now to list all the possible configurations of S (as in the middle of the 'movie' of
T5), and for every such S, to give all the different moves involving this S. Finally,
we get seven possible configurations of S, and a dozen of (essentially) different
moves. Then, it is an easy but tedious exercise to check that all these moves can
be converted into combinations of Th and of transformations that do not involve
triple points.

Hence, two C-complexes F and F' as in the statement of the lemma can be

transformed into each other by a finite number of the operations MO, Tl, T2, Tb
and their inverses. Since F and F' are C-complexes, the transformations must
start with Tl or — T2 and finish with T2 or —Tl. Now, every combination of
±T1, ±T2 and ±T5 starting with Tl or -T2 and finishing with T2 or -Tl can be

written as a combination of ±M1 ±(T1 + T2) and ±M2 ±(-T2 + T5 + T2).
This settles the proof. D

Lemma 4. Let F and F' be two C-complexes for isotopic colored links (L,a) and

(L',<t'). Then, Qp andQ.pt are equal.

Proof. Via an ambient isotopy (which does not change Qp), we can assume that
dF L L' dF'. By Lemma 2, Fi and F[ are related by ambient isotopies
(keeping dFt dF! fixed) and addition of handles. These handle additions are
performed along arcs a embedded in S3 \ Ff, such an arc is isotopic (in S3 \ Ft)
to an arc a' embedded in S3 \ F. In other words, a handle attachment on Fi
can be performed avoiding F\F^. Let us call M3 the addition of a handle on Fi
avoiding the rest of F. Now, for every ambient isotopy between Fi and F-, we can
apply Lemma 3. Therefore, we just need to check that Çlp remains unchanged if
F undergoes one of the moves Ml, M2 or M3.
(Ml) Let F' be a C-complex obtained from F via the move Ml. Clearly, Hi F' ~
Z/3 0 Z7 0 HiF, with ß and 7 as follows.

Among the new clasps created, one is positive and the other one is negative;
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F

F2 + (Ml) j :

F'

-* 7

therefore, sgn(F') —sgn(F). On the other hand,

'x(F\Ft) if* =1,2;X(F' \ F!)
X(F\Fi)-2 if

Since

ß

AeF, 7 S(-e) * * I with
0 * A'F/

it follows

-1 if e(l
0 else,

Therefore,

-sgn(F)^

(M2) Let F and F' be C-complexes as illustrated below.

(M2)

r/3
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Here, H^F and H^F' are canonically isomorphic, and sgn (Fr) sgn (F).
Furthermore,

(x(F\F1)-2 if i 1;

x(F>\F>)=lx(F\F2)+2 if* 2;

i if i > 2.

On the other hand, given any loop ß as above, we have the equalities

10 else, 10 else.

This implies that (ti - t^1)2 det(-AF>) (t2 - t^1)2 det(-AF>). Therefore,

QF,{tu...,tn) Sgn(F

sgn (F) [[(U - tr + )x^-)-i ^ ^ -^ det(-AF,)

(M3) Consider F' a C-complex obtained from F by attaching a handle on
This time, HiF' ~ ZJ © Z<r © HiF, with (5 and a as follows.

^^B ^^m (M3) jAbB mKê

Trivially, sgn (F') sgn (F), and

V * 1 x(-P\-fi) — 2 ifi>l.
Since

with ?r(e) <
v

0 else,

o
_

*irii>i(*i-*,r) °
Ioi(** — *< 1) * *

0 * -AF,

it

AF,

follows

5
1

1

V

Ö

0

tt(—e)
0

Tr(e)

*
*

0

*
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Hence, we have the equality

nF,(tu...,tn) sgniF

Conway potential function 137

sgn (F)U
l

QF(tu...,tn).
This concludes the proof. D

Therefore, Qp is an isotopy invariant of the colored link (L,a); let us denote
it by QaL.

Lemma 5. Qf V?.Lj Lj

Proof. Murakami's characterization theorem [9] states that VJ is determined
uniquely by the following six relations, where the letters i,j and k denote the
colors of the components.

™ 1

where (O,a) denotes the trivial knot with color {.

VL+ ~ VL_ — VTi — li ' VL0'

where L+, L_ and Lq differ by the following local operation.

(RE)

0,

where LUO denotes the disjoint union of L and a trivial knot.

vj++ + vL_ (Mj+*rV)-v£oo.
where L++, L and Loo differ by the following local operation.

i j % j % j

LA

(Mil)

(RIV)
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(RV)

where L' is obtained from L by the local operation given above.

i i

3/

L L>

- (tj - tf){tk

{tjh\ -t?^2)v-(7) o,

where L(l), L(2), L(3), L(4), L(5), L(6) and L(7) differ by the following local
operation.

k i j k i j k i j k

\

L(4) L(5) L(6) L(7)

By this theorem, we just need to show that Q£ satisfies the relations RI to

(RI) Since a 2-disc is a C-complex for the trivial knot, we have ^(tj) —^-rj.

(RII) Let F be a C-complex for Lo! C-complexes F+ and F_ for L+ and L_ are
obtained from F as follows.

/
Clearly, R1F+ ~ HiF_ ~ Za 0 HiF, and for all e,

* A\
1 0

0 0
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Therefore,

Af- \* af) =Ap+ + y
3

o

giving det(-AF_) det(-AF+) - JJ^ - tj1) det (-AF). Since sgn(F+)
sgn (F-) sgn (F) and

we get the equality

2(tt-t;1) (det (-AF+)-det (-
j

1)-sgn
3

2

(RIII) Choose F a C-complex for L. A C-complex F' for L U O is obtained
from F U D2 either by the move Ml (if O is the only component of its color) or
by connecting Fi and D2 with a handle (if O is of color {). In both cases, some
1-cycle x is created, such that £k(xe,y) 0 for all e and all y G HiF'. Therefore,

vanishes.

(RIV) If the colors i and j are equal, this relation follows easily from RII. Thus,
we can assume that i 1 and j 2. Given F a C-complex for Loo, C-complexes
F++ for L++ and F for L are obtained as follows.

F p p

This time, HiF++ ~ HiF__ ~ Z/3 0 HiF, and for all e, AF__
* *

; on

Therefore, det (-AF__) det (-AF+) - (tit2 +t^lt~^1) riî>2(t* ~*iT1) det (~
Since sgn (i?++) sgn (F) —sgn (F and

jFt) if* 1,2;
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we get the equality

_ sgn(JF)n^-V1)x(F++^F++)l)"1 (det (-AF++)-det (-AF__))
i

(ht2 + tr1^1) • sgn (F) Y[(U - (-1)«'-1 det (-AF)

(RV) Once again, if « j, this relation follows from RII. So, let us suppose
that i 1 and j 2. A C-complex F' for L' is obtained from a C-complex F
for L by adding a disc with a positive clasp. Prom the equalities HiF' Hi F,
sgn (F') sgn (F) and

it follows

sgn (F) Y[(U - t-i)x(n^)-i det (-AF)

(RVI) Let us suppose that i 1, j 2 and k 3. C-complexes F(i) for L({)
(« 1,..., 6) are obtained from a given C-complex F for L(7) as follows.

Clearly, HiF(l) ~ HiF(2) ~ HiF(3) ~ HiF(4) ~ Za 0 Zß 0 HiF, and

HiF(5) ~ Za 0 HiF, HiF(6) ~ Zß 0 HiF. By the equalities

sgn (F(*)) sgn (F) for all i,
and

(X(F\F)-l if* 1,2;

if* 3;

x(F\Fî)-2

X(F(2) \ F(2)i) K(F \ F,) - 1 if * 2, 3;

U)-2 if » > 3,

(i)-! if* 1,3;

X(F(3) \ F(3)t) lX(F\ F2) if i 2; X(F(4) \ F(4),
[x(F\Fl)-2 if{>3,
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EL KR
+ +

V ;'.

F(4)

<4
,ï

F(2)

F(5)

F(3)

mÜ

F(6)

x(F\Ft) if* 1,2;

we need to check the following equation, where Tj denotes (tt — t^1) and T

det(-AF(1))
rT1 T^2

det(-
LÎ1 /

(f i ,-u (det(-AF{2)) x det(-AF(5))\
-(I3+I3 j Tf^f^ (il I2I3-III2 13 ^77^V J3 -t J3 -t /

V

Without loss of generality, it may be assumed that F has the following form near
the place of the skein relation.
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It is then easy to compute the matrices Af(j) :

—Ap(i\
waT3T

a
0

waT3T

a
0

0

aT3T u

a
0

ß
0

0

AF

ß

Txt2T3T vaT3
0 vß Ti T

waT3T u

a
0 vaT3T

wa T3 T AF

ß
0 0 VßTiT

WßTiT AF

The equality can then be checked by direct computation. This concludes Lemma 5,

and the theorem is proved. D
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4. Applications

In his fundamental paper [2], Conway states various properties of his potential
function. We show now that these properties follow immediately from our
construction.

Proposition 1. VJ^1, • • • ,O ("1)M V£(*i,...,*„).

Proof. By the theorem, we easily get V^t^1,... jt"1) (-l)"VL(ti,... ,tM), with

For i 1,..., n, let us denote by \n the number of components of L with color {.

Computing modulo 2, we have
n

v ^2x(F \Fi) + n- (rk HiF + 1)

n ^%

+ x(Fi) +x(Fi n (F \ Ft))) + n ¦ X(F)

Z)Z) t)) A* + 2 • #{clasps} M,

and the proposition is proved. D

Proposition 2. VaL{-tu -tn) (-1)" VJ(ti,... ,tn).

Proof. Exactly as Proposition 1. D

Proposition 3. Let (L,a) be a colored link with #<r^1(l) \i\y and let (L',a)
be the same link with the opposite orientation on the sublink of color 1. Then, we
have the equality

Proof If F Fi U • • • U Fn is a C-complex for L, a C-complex for L' is given
by F' (-Fi) UF2U-UF„. Since sgn (F1) (-l)#iclasPs °f F^} ¦ sgn (F)
(-l)x(Fin(F\F1)) sgn(i?) and AeF, A% with e'(l) -e(l) and e'(i) e(i) for
i > 1, we have

where

X(F) - x(F \ Fi) + x(Fi n (F \ Fi)) x(Fi) Mi-
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This settles the proof. D

Corollary 1. V°LL(h, ¦ ¦ ¦ ,tn) (-1)" VJ^1, • • • ,O- D

Corollary 2. V^L V£. D

Proposition 4. V^,ln —1)M+1V£7 where m(L) denotes the mirror image
of L.

Proof. The mirror image m(F) of a C-complex F for L provides a C-complex for
m(L). The sign of every clasp and of every linking number is changed, giving
^m(F) ~^f f°r aU e- Hence

Vm(L) (-
The equality *(F) ELi x(*i) - #{clasps of F} yields

#{clasps of F} + rk HiF rk HiF - X(F) + ^ x(Fi) M + 1,

and the proposition is proved. D

Let (Lr, a') and (L", <r") be two colored links; let us suppose that two components

L[ of L' and L" of L" have the same color a'(i) a"(j) a. Then, there is

a well-defined colored link given by the connected sum of L' and L" along L[ and

L'i; we will denote it by (L'#L",a'#a"). The following multiplicativity formula
was also stated by Conway. As far as I know, there is no published proof.

Proposition 5. V%\„ Vj', • Vj',', • (ta -1'1).

Proof. Given C-complexes F' for (L',ar) and F" for (L",a"), a C-complex for the
connected sum (L'#L", cr'#cr") is given by F F'#F". Clearly, AeF AeF,®AeF„
for all e, giving

n
Since sgn (F) sgn (F') • sgn (F") and

' \ F!) + X(F") - 1 VtVa,
" \ ^") " 1 V jV a,

we get the result. D
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For the sake of completeness, let us mention without proof two additional
properties of Conway's potential function. The first one is another skein relation
announced by Conway, that can be proved using our construction.

Proposition 6. V£l + V£2 V£3 + V£4, where Li, L2, £3 and L4 are identical
except within a ball where they are related as illustrated below.

D

The second one is the translation of the Torres formula [10, Theorem 3] from
the Alexander polynomial to the Conway potential function. This formula can be
recovered from our theorem, but the proof is a little tedious.

Proposition 7. VL(l,t2, •••, *M) (te212 ¦¦¦tf!
where in denotes the linking number £k(Li,Li D
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