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Formes différentielles abéliennes, bornes de Castelnuovo et
géométrie des tissus

Alain Hénaut

Abstract. A d-web W(d) is given by d complex analytic foliations of codimension 7 in ((CN, 0)
such that the leaves are in general position. We are interested in the geometry of such config-
urations. A complex (A®,d) of C-vector spaces is defined in which A" corresponds to functions
and AP to p-forms of the web W(d) for 1 < p < n. If N = kn with k > 2, it is proved that
rp := dim ¢ AP is a finite analytic invariant of W(d) with an optimal upper bound 75 (d, k,n) for
0 < p < n. These bounds generalize the Castelnuovo’s ones for genus of curves in P* with degree
d. Some characterization of the the space HO(Vn,w"}n) of abelian differentials to an algebraic

variety V;, in prtk—1 of pure dimension n with degree d is given. Moreover, using duality and
Abel’s theorem, we investigate how for suitable V,, the natural complex (HO(Vn,w{,n), d) and

the abelian relation complex (A®,§) of the linear web associated to V,, in (CF”,0) are related.
Mathematics Subject Classification (2000). Primary 53A60; Secondary 14C21, 32L30.

Keywords. Web geometry, Analytic algebraic geometry, Abelian differentials.

1. Introduction et résultats principaux

Un d-tissu W(d) de codimension n de (CV,0) est défini par d feuilletages analy-
tiques complexes de codimension n de (CV,0) en position générale. On s’intéresse
a la géométrie de telles configurations. Les travaux fondateurs sur ce sujet sont
dus & W. Blaschke, G. Thomsen et G. Bol et datent des années 30 (¢f. par exemple
[B-B], [B], [C2], [Hé4]). Outre ces derniers, il faut citer les travaux de S. S. Chern
et P. A. Griffiths (¢f. [C1], [G1], [G2], [C-G1] et [C-G2]) dans le sillage desquels se
situe le présent article, et ceux de M. A. Akivis et V. V. Goldberg (¢f. par exemple
[AK], [Go]). On peut également consulter [Bea] pour diverses propriétés de base
des tissus et [W] pour des développements plus récents.

A partir de la donnée des différentes familles de feuilles d’un d-tissu W(d)
de codimension n de (CV,0), on construira dans le prochain paragraphe des C-
espaces vectoriels AP pour 0 < p < n et la différentielle extérieure usuelle donnera
un compleze (A®,8). On verra que les éléments de A? peuvent étre considérés
comme les “fonctions” du tissu W(d) et que pour 1 < p < n les éléments de AP, &
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savoir les relations abéliennes de degré p de W(d), en sont les “p-formes”.

En codimension 1, par exemple, les feuilles de W(d) sont les germes d’ensembles
de niveau définis par d germes de fonctions analytiques F; € O := C{zy,...,zn}
tels que F;(0) = 0 et les seules relations abéliennes sont celles de degré 1. Les

d

éléments de Al sont les d-uplets (g;(F})) vérifiant la relation Y g;(F;) dF; = 0
i=1

olt les g; € C{z} et les éléments de A" sont les d-uplets (a;(F;)) tels que I'on ait

> a;(F;) = cste avec des a; € C{z}. De méme, en codimension 2 les feuilles de
i=1

W(d) sont les germes d’ensembles de niveau définis par d couples (F; , I,) avec
des F; € O tels que F; (0) = 0. Les relations abéliennes de degré 1 correspon-
dent aux éléments de A! qui sont les 2d-uplets (hi(Fil, Fis s kil By FQ)) vérifiant
F,) dF;, =0 avec des h; et k; dans C{z1, 20} ; celles

12

d
> hi(Fiy, Fiy) dFy + ki(F;
i=1

de degré 2 s’identifient aux éléments de A% qui sont les d-uplets (9:(Fy,, Fiy,)) tels

d
que Y gi(Fy, Fy,) dE;, A dFy, = 0 ol les g; € C{zy, 22} ; enfin les éléments de
i=1

d
A° sont les d-uplets (ozi(Fil, Fzz)) qui vérifient > oy (Fy,, Iy,) = cste avec des
=i
a; € C{z1, 22}
En général les AP ne sont pas de dimension finie. Cependant si N = kn avec
k > 2 on démontrera, en utilisant notamment I’hypothese de position générale des
différents feuilletages, le résultat suivant :

Théoréme 1. Soit W(d, k,n) un d-tissu de codimension n de (C*",0); on a un
complexe (A®, ) formé de C-espaces vectoriels de dimension finie avec les majo-
rations optimales suivantes pour 0 <p <n :

rp = dime AP < 7,(d, k,n) .

Chaque entier r,, défini ci-dessus est un invariant analytique du tissu W(d, k, n)
appelé le p-rang de ce tissu. On verra dans le paragraphe qui suit que les bornes
optimales explicites m,(d, k, n) sont des nombres de Castelnuovo généralisés. Par
exemple en codimension 1, on a

mi(d,k, 1) ={d—k}+{d—2k+1}+{d—3k+2} +---

avec la convention que la somme ci-dessus ne fait intervenir que des termes posi-
tifs. Cet entier, sur lequel on reviendra dans le paragraphe 4, est le nombre de
Castelnuovo associé au genre des courbes algébriques gauches (¢f. par exemple
[G-H]).

En degré 0 la majoration précédente est obtenue a I’aide de résultats de base de
I’analyse algébrique (i.e. la théorie algébrique des systemes différentiels linéaires
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ou théorie des D-modules). Ce qui généralise approche de [Hé2] (cas des tissus
de codimension 1 de (CF,0), c’est-a-dire des W(d, k,1)). En degré pot 1 <p <n
on introduit, pour démontrer ces majorations, des variantes de la méthode de
Poincaré—Blaschke et I'on retrouve en particulier la majoration de Chern et Grif-
fiths (c’est-a-dire le cas p = n ci-dessus, ¢f. [C-G2]).

Les majorations précédentes seront utilisées dans le paragraphe 4. On montrera,
également dans ce paragraphe, que les bornes précédentes sont atteintes pour des
tissus de (k — 1)n-plans associés & certains arrangements de n-plans de P He—1,

On sait que les tissus W(d, k, n) dont le n-rang est maximal (i.e. r, =7, (d, k,n))
possedent des propriétés géométriques particulieres permettant parfois des classi-
fications partielles (cf. par exemple [B-B], [C-G1], [C-G2], [Go], [Li], [Hé1], [Hé3])
et sur lesquelles on reviendra. On donnera également dans les paragraphes 2 et 4
quelques propriétés des tissus W(d, k, n) relativement aux autres rangs. On se doit
de noter, cependant, que la caractérisation pour 0 < p < n des tissus W(d, k, n)
de p-rang maximal est un probleme largement ouvert.

Soit (X, Ox) un espace analytique complexe réduit de dimension pure n ; pour
0 < p < n on désigne par Q% le faisceau O x-cohérent des p-formes différentielles
sur X. Dans un plongement local de X dans (Z, Oy) lisse, on a Q& = QF /(dZx A
Q21 T Qb)) ot Ox = Oy /Tx .

Soit S le lieu singulier de X, on note j : X — S — X l’injection naturelle.
Dans [Bal], D. Barlet a montré qu’il existe pour tout 0 < p < n un sous-fai-
sceau wi de 7,7*Q% qui s’identifie & Q5 aux points lisses de X, est Ox-cohérent
et sans-torsion ; de plus, les w% sont stables par la différentielle extérieure d et
par produit extérieur par les Qf%.. Plusieurs caractérisations des sections locales de
Wi (cf. également [Bal]) en termes d’extension holomorphe de traces relatives &
des germes de morphismes finis ou bien en terme de courant J-fermé en seront
rappelées au paragraphe 3 (cf. également [Bj] et [H-P]). L’une d’entre elles, par
exemple, est qu’une section locale de wf. est une p-forme différentielle méromorphe
sur X, a poles contenus dans S et qui se prolonge a X tout entier comme courant

0-fermé. 11 faut signaler, en particulier que I’on a les identifications suivantes :
W = Exth 1(Ox, Q1) et wh = Homo, (O F,wk)

pour 0 < p < nsi Z est de dimension n+ k — 1.

Pour 0 < p < n, le faisceau wk- contient, en général strictement, le faisceau
L5 1ui aussi Ox-cohérent des p-formes méromorphes sur X, & poles contenus dans
S et dont 'image inverse par une désingularisation de X est holomorphe. On
rappelle que ces faisceaux L5 de p-formes, dites également de type L2 en vertu
de leurs propriétés (c¢f. par exemple [G1], [Bal]), ne dépendent pas du choix de la
désingularisation.

De plus, la propriété suivante des w$ sera déterminante dans 1’étude entreprise ;
on verra en effet, dans le paragraphe 4, comment I’annulation de certaines traces
donnent des relations abéliennes de tissus naturels. Soit 7 : X — Y un mor-
phisme propre et surjectif ol Y est lisse, connexe et également de dimension n ; le
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morphisme 7 est génériquement fini et sur toute trivialisation simplement connexe
il existe d branches locales p; sur Y relevant 7. Alors pour tout 0 < p < n et toute

d
w € HY(X,wk), la p-forme Trace,(w) := 21 pf(w) aprés recollement naturel, se

k3
prolonge d’une maniére unique en un élément de H O(K ag ).

Soit Vj, une variété algébrique réduite de P*+#~1 de dimension pure n, non
dégénérée (i.e. non contenue dans un hyperplan de P*t*~1) non nécessairement
irréductible, éventuellement singuliere et de degré d. Au voisinage d’un point
générique P¥~1(0) de la grassmannienne G(k — 1,P"+*~1) des (k — 1)-plans
de P"t*=1 on peut construire un d-tissu Ly, (d, k,n) de codimension n de
(G(k—1,PrtE=1) PE=1(0)) = (C*",0) dont les feuilles correspondent aux variétés

de Schubert o,,,(,y des (k — 1)-plans de P**~1 passant par p;(x) ou

d
PEl(z)nV, = Zpi (z) en tant que O-cycles de V,
i=1

a la seule condition que les d points d’intersection p;(0) de V;, et P*~1(0) soient
en position générale dans P¥=1(0). Un tel (k — 1)-plan générique existe toujours si
k = 2, de méme pour k > 3 si par exemple V), est irréductible, en particulier si V,,
est lisse et connexe.

Si cette condition de position générale est vérifiée, on dira que Ly, (d, k,n) est
“le” tissu algébrique associé a V,, C P"T*~1 Dans ce cas et par construction, le d-
tissu Ly, (d, k, n) est linéaire (i.e. toutes ses feuilles sont des (k—1)n-plans de C*?,
non nécessairement paralleles). Par exemple, pour une courbe algébrique réduite
Vi € P2 de degré d, les feuilles de Ly, (d,2,1) sont, par dualité, essentiellement les
tangentes & la courbe duale de V; dans G(1,P?) = P2.

Soit 0 < p < n, d’apres ce qui précede les C-espaces vectoriels H O(Vn,wf}n)
sont de dimension finie et forment un complexe (H%(V;,, wy. ), d) qu’on appelera
le com{)lexe des formes différentielles abéliennes de la variété algébrique V,, C
Pkl

Tout élément w € HO(V,,, wy, ) vérifie

cste si p=0
0 si 1<p<n

d
Trace(w) .= »_ pf(w) = {

i=1
ce qui généralise le théoréme d’annulation classique d’Abel (¢f. [A] et [G1]) et jus-
tifie la terminologie adoptée. Toujours dans le paragraphe 3, on verra notamment
que la relation (x) ci-dessus caractérise les formes rationnelles sur V,,, réguliéres
si V,, est non singuliere ou bien dont le lieu polaire est contenu dans le lieu sin-
gulier de V,,, et qui sont dans H O(Vn7 w{'}n) et ce, que V,, définisse ou non le tissu

Ly (d, k,n).

Si la variété algébrique V,, C P*+*—1 définit le tissu Ly, (d, k, n), on montrera
dans le paragraphe 4 que la relation (x) ci-dessus permet de construire pour tout
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w € HO(Vmw{}n) un élément de AP = AP(Ly, (d, k,n)) et détermine ainsi une
application C-linéaire A? : HO(V,,, w"}n) — AP. On établira alors essentiellement
le résultat suivant :

Théoréme 2. Sous les conditions précédentes, on a un morphisme injectif de
complexes

A* (HY(Vy,0f, ), d) — (A°,0)

qui est bijectif en degré marimal p = n. En particulier, on a les majorations
optimales suivantes pour 0 < p <n :

hPO(V,,) = dime HO(V,,,wl, ) < mp(d, k,m) .

Pour p = n, on retrouve ainsi les majorations de Castelnuovo—Harris (¢f. pour
n =1, [Cal, [G-H] et pour n > 1, [H], [C-G2]). Ce qui suggere d’étudier, a0 < p <n
fixé, la nature géométrique des variétés algébriques V,,  P*T+—1 dont les hva(Vn)
sont maximaux. De méme, en regard des singularités de V,,, la description du
complexe (H%(Vy,,wy, ),d) semble digne d’intérét.

Les résultats obtenus sur le complexe des relations abéliennes ainsi que les
méthodes utilisées engendrent de nombreux problemes naturels en géométrie des
tissus, méme si la codimension des feuilles ne divise pas la dimension de 1’espace
ambiant. Outre Papproche des tissus singuliers déja mentionnée dans [Hé2], on
peut citer au moins I'étude géométrique des configurations des normales du tissu
W(d, k,n) en fonction des différents rangs et les questions générales d’algébrisation
des tissus, notamment les problemes de type Abel-inverse pour les d-tissus
W(d, k,n) grassmanniens. Par ailleurs ’étude du complexe des relations abéliennes
des tissus exceptionnels (i.e. des tissus £(d, k,n) qui ont des rangs r, de tissus
algébriques, mais ne sont pas pour autant algébrisables (¢f. [Hé4])) devrait con-
tribuer & leur description.

2. Généralités sur les tissus ; complexe des relations abéliennes
et majoration des rangs

Apres quelques précisions quant aux définitions d'un (germe de) tissu de (CV,0),
on introduit les différents éléments de son complexe des relations abéliennes et 1’on
en donne quelques propriétés.

Un d-tissu W(d) de codimension n de (CV,0) est défini par d feuilletages
analytiques complexes de codimension n de (CV,0) en position générale. Plus
précisément, si O := C{zy,... ,zy} désigne I'anneau des séries entiéres conver-
gentes & N variables, le tissu W(d) est donné par d familles de feuilles de codimen-
sion n, indexées par i et en position générale ; ce sont les germes non singuliers
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d’ensembles de niveau définis par

F; (x) = cste

F; (x): cste

ol z=(z1,...,zn) et F; € OQavec F; (0)=0.
Pour 1 < i < d et z voisin de 0 € C¥, les “normales” Q;(z) = /"\ dr;, (z)
en x définissent d points de la grassmannienne G(n — 1,PN~1) des (Try;:—l 1)-plans
de PV que lon peut regarder, via le plongement de Pliicker, dans ]P’(J:)*l ; ces

normales ne dépendent que du tissu W(d) et non du choix des F; . En effet, si 'on
procede & un changement d’équations des feuilles, la i-ieme feuille du tissu W(d)
est également définie par

Yiq (Fil (z),...,F; (z)) = cste

Yin (Fiy (), . .. ;Fin (x)) = cste

O(Yigs -5
ol les v, € C{z} = C{z,..., z,} vérifient M(O) £0.
21500 3%0)

L’hypothése de position générale est la suivante : pour tout z voisin de 0 € CV
et tout l-uplet (Q;(1y(2), . .., Qy(x)) de normales du tissu W(d) ot 1 <1< d, la
dimension du sous-espace vectoriel de T (C") engendré par I'intersection (resp.
la somme) des éléments de cet [-uplet est minimale (resp. maximale).

En particulier, si N = kn avec k > 2 (ce qui sera essentiellement le cas dans ce
qui suit) la position générale se traduit par

Qy(O) A+ AQy(0) #0 pour tout 1 <i(l) <---<i(j)<d ou j<k.

La notion de relation abélienne, introduite ci-dessous, joue un roéle central dans
ce travail ; elle fournit les principaux invariants d’un d-tissu W(d) de codimension
n de (CV,0). Pour 1 <p <m, 1 <i<d et tout multi-indice I; = {i,,,... by }
de longueur | I; |= p, toujours strictement croissant et choisi dans {i1,... i},

P

on pose dIy, = /\ dEmj~ Suivant de prés une idée de P. A. Griffiths (¢f. [G2]),

i=1
on définit le C-espace vectoriel

AP = {(O‘Ii(Fm 5t 5 B 1<i<d, |Li|=p € 0G)4 telles que

ar, €C{z} =Clar, ...z} et Y a[i(El,...7En)dF]i—0}
1<i<d, |I;]=p
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ou la structure de C-espace vectoriel est naturellement donnée par addition et
multiplication sur chaque composante ; il est constitué de ce que ’on appelle les
relations abéliennes de degré p du tissu W(d).

Pour p = n, ce sont les relations abéliennes de degré maximal n du tissu W(d),

a savoir les d-uplets (gl(F117 o). 9a(Fay, 7Fdn)) € 04 qui vérifient
d
>oai(Fiy, ..., F ) = 0 ot g; € C{z} ; ces derniéres ont été les plus étudiées
i=1

(¢f. par exemple [B-B], [C1], [C-G1], [C-G2], [Hé2]).
Par définition, la différentielle extérieure induit un complere de C-espaces vec-
toriels, noté (A*,d) ot AP =0 pour p > n. On va prolonger ce dernier en p = 0.
Pour 1 <4 < d, soit (X;,,) une famille de (N — n) champs de vecteurs dans
(CN,0) qui donne la i-itme famille de feuilles du tissu W(d). On considere le
systeme différentiel linéaire suivant :

X; (f)=0 pour 1<i<d et 1<m<N-—n
R(d)
(fi+ - +fa)=0 pour 1<k<N

3]
ou 9y = 5p. Pour 1 <k < N et I'on désigne par A% := Sol R(d) le C-espace
k

vectoriel des solutions (f1,... , f4) € 0% de ce systéme.

En codimension 1 Panalogue du systeme R(d) dans le cadre C°° correspond
aux équations de la résonance qui interviennent en optique géométrique (cf. par
exemple [J-M-R]).

La différentielle usuelle induit une application C-linéaire § : A° — Al. En
effet, tout élément f; € O et vérifiant X;,_(f;) = 0pour 1 < m < N—ns’écrit d’une
maniere unique f; = oy (Fy,, ... , F;,) avec oy € C{z} ; de plus, pour (f1,..., fa) €
A® et par définition de AL, on a

aai 66%
6(f17"'7fd) = <a—21(Fll7 7F7;n)7... 7£(Fi17“~ 7En)> EAl.

On dira que le complexe (A®,d) ainsi prolongé en p = 0 est le complexe des
relations abéliennes du tissu W(d). D’apreés ce qui précede, on a

d
AV = {(%‘(Fz’17-~~ ,Fin)) e 0% oy e C{z} et Zo‘i(Fil"“ LB ) = cste}
i=1

ol1, comme pour les coefficients des relations abéliennes de degré p du tissu W(d),
chaque oy (F,, ... , I}, ) est constante sur la feuille indexée par i. Ainsi, les éléments
du C-espace vectoriel A? peuvent étre considérés comme les “fonctions” du d-tissu
W(d) de codimension n de (CV,0) et pour 1 < p < n les éléments de AP en sont
alors les “p-formes”.
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On a une suite exacte de C-espaces vectoriels 0 — C% —s A° Al 2 42
Il suffit en effet d’utiliser I’hypothese de position générale et le lemme usuel de
Poincaré pour les formes différentielles construites & partir des dz; sur C{z}. Par
conséquent les groupes de cohomologie du complexe (A®,d) s’identifient & C? en
degré 0 et sont nuls en degré 1.

Soit D I'anneau ncethérien a gauche (et & droite) des opérateurs différentiels
linéaires & coefficients dans O. On note encore R(d) le D-module & gauche associé
au systeme différentiel linéaire du méme nom (cf. par exemple [G-M] pour ’étude
de ces objets et la terminologie classique utilisée ci-dessous : symbole, variété
caractéristique, multiplicité, ete.).

Pour 1 < ¢ < d et sur le modele du systéme R(d) on a un systéme différentiel
linéaire R(g), construit & partir des champs de vecteurs donnant les ¢ premiéres
familles de feuilles du tissu W(d), dont on note également R(q) le D-module &
gauche associé.

En utilisant le lemme dit du serpent, on peut vérifier que I'on a pour 1 < ¢ <
d — 1 une suite exacte de D-modules a gauche de type fini

q
0 — D/(Xg11, [ Xi) — R(a+1) — R(@) —0 (1)
i=1
ol l'on désigne par
X = (X; » Xin_n)

I'idéal & gauche de D engendré par les champs de vecteurs X;, pour1 <m < N—n.

Cette suite exacte permet de passer de R(g) & R(g + 1), via un idéal & gauche
de D et par conséquent relie le d-tissu WW(d) & ses tissus extraits. On va d’ailleurs
montrer, essentiellement par récurrence sur ¢, comment en tirer parti bien que
d’une maniere générale la description explicite du D-module

D/ <3€q+17 ﬁ 3@)
i=1

a partir des champs de vecteurs X;  reste a faire.

On a toujours R(1) = O (=D/(dy,... ,0n) en tant que D-modules & gauche.
Cependant et en général, le D-module R(d) n’est pas holonome ; il suffit de prendre
par exemple d = 2, N = 3, n = 2 avec X1 = (91) et X3 = (93), c’est-a-dire le
2-tissu de (C2,0) défini par {zg = cste, 3 = cste} et {x] = cste, x3 = cste}.

Par contre si N = kn, ’hypotheése de position générale va permettre de montrer
que R(d) est holonome, et méme une connerion intégrable ou plate ; autrement
dit, on va démontrer que R(d) ~ O™ en tant que D-modules a gauche. De plus,
dans ce cas et par récurrence sur d on majorera m(d), ¢’est-a-dire ici la multiplicité
du D-module R(d) notée mult R(d). Plus précisément, on obtiendra pour tout d-
tissu W(d, k,n) de codimension n de (C*",0) un invariant analytique de ce tissu,
a savoir

IERRE

ro == dimeA® = mult R(d)
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puisque A° ’identifie comme C-espace vectoriel & Homp(R(d), ©). De plus, on
va établir également une majoration, en fait optimale, de rg.

La méthode présentée ci-dessous généralise le cas, traité en détail, des d-tissus
W(d, k,1) de codimension 1 de (C*,0)(cf. [Hé2]).

On suppose désormais que N = kn ou k > 2.

Sid=1 (resp. 2, ..., resp. k), le théoréme d’inversion locale montre que le
modele local d'un tissu W(d, k, n) de codimension n de (C*",0) est donné par les
familles de (k — 1)n-plans de C*” suivantes :

{z1 = cste, ... ,x, = cste}
(resp. {x1 = cste, ... ,z, = cste} et {x,41 = cste, ..., x9, = cste},
resp. {x1 = cste, ..., x, = cste},. .. 7{x(k71)n+1 = cste, ... , Ty, = cste});

ce qui signifie que I’étude des configurations possibles pour les W(d, k,n) est
intéressante des que d > k + 1.

On pose O[¢] = O[¢1, ..., &n]. Pour 1 < ¢ < d, soit G(g) le O [¢]-module
gradué de présentation finie défini par la matrice des symboles associée au systeme
différentiel linéaire R(q), c’est-a-dire

lll ll(k—l)n 51 e gkn
o . 0 - 0 g 0
l‘ll lq<k,1)n §1  Skn

ol ;€ O] est le symbole du champ de vecteurs X;_.
Pour 1 < < d, on désigne par

ai = (li17 e 7li(k—1)n)

I’idéal de O [¢] engendré par les formes linéaires I;, pour 1 < m < (k — 1)n. Par
définition et pour 1 < i < d, la variété des zéros de q; est la famille des n-plans de
Ckn paramétrée par (C* 0) qui sont, en fait, donnés par les normales Q;(z) du
d-tissu W(d, k,n) pour z voisin de 0 € C*”,

De nouveau grace au lemme dit du serpent, la suite exacte (1) se laisse imiter
et lon obtient pour 1 < ¢ < d — 1 une suite exacte de O [{]-modules gradués de

type fini
q

0—0 [5]/(aq+17 N cu) —G(g+1) — G(g) — 0. (2)
i=1
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De plus, on vérifie qu’il existe pour 1 < ¢ < d un morphisme surjectif

v(q) : G(q) — gr R(q)

de O [¢]-modules gradués de type fini ot gr R(gq) est le gradué associé au D-
module R(g), pour la graduation naturelle par le degré. On rappelle que pour
cette derniere, on a I'identification habituelle gr D = O [¢]. En particulier, ¢(q) est
un isomorphisme si les champs de vecteurs X;  sont a coeflicients constants pour
1<i<qgetl<m<(k—1)n.

Avec la convention déja utilisée dans l'introduction, soit

rold, b, n) = d+ (?) {d—k}+ ("; 1) Ad—2k 1)+ <"§2> {d—3k42) 1 -

- L’expression ci-dessus se simplifie pour

. (n+l (n+Dn+l-1)--n

ol =
[+1 ({4 1)!

k = 2 puisque 'on peut vérifier que

d+n—-1
WO(d727n)_< nil >+1

En conservant I’ensemble des notations qui précedent on a le résultat suivant :

Proposition 1. Soit W(d, k,n) un d-tissu de codimension n de (C*" 0), alors
R(d) et Omult R(d) gopy isomorphes en tant que D-modules & gauche. En parti-
culier, la dimension du C-espace vectoriel A° := Sol R(d) est finie et Uon a pour
1<g<d-1

q
mult R (g + 1) = mult R(q) + mult D/ (qu, N 36) .
i=1

De plus, on a la majoration optimale suivante :

ro = dime.AY = mult R(d) < mo(d, k,n) .

Démonstration. Elle suit fidelement les différentes étapes du cas n = 1 (¢f. [Hé2)
pour des détails). Par récurrence sur d, grace a ’hypothese de position générale et
la suite exacte (2) des G(g), on a

VA G(d) = (&1, .-, Ekn)

puisque G(1) = O(= O€]/(&1, ... ,&kn). Par récurrence sur d, les morphisme
surjectifs ¢(q), la suite exacte (1) des R(q) et ce qui précede montrent que la variété
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caractéristique de R(d) est la section nulle. Ce qui prouve que R(d) et @ MultR(d)
sont D-isomorphes. La suite exacte (1) des R(q) et ce qui précede donnent alors
la relation annoncée sur les multiplicités. On a les majorations suivantes :

mult O [¢]/ (ag 1, ﬁ ) < dime (0 €)/(ag41, [ ) 8:) 90 €) < <n+ [Z—_ﬂ)

n
=1 i=1

-1
ol I'on désigne par ¢ = le plus grand entier tel que e < % La premiere

a--
k-1
majoration s’obtient par platitude générique et semi-continuité, la seconde est une
conséquence de I'’hypotheése de position générale. En effet, on peut supposer que
l'on a agy1 = (§41,- - > &kn) et ainsi se restreindre a des idéaux de O [y, ... ,§,].
Puis, regrouper les normales €; du tissu W(¢ + 1, k, n) par paquets de (k — 1) en
complétant par les restes éventuels de la maniére suivante :

Q15 Q5o Q15 Qi oo, Qo) -+
—_—
1 2

Q<5*1)(k*1>+17 to 796(/6*1) ) Qe(kfl)qu; =6 7Qq

e et+1

-1
oll e = Z—J - La correspondance entre les idéaux a; et les normales €; jointe
a I’hypothese de position générale imposent que chaque paquet numéroté 1,2,....e
et celui e+ 1 contribuent effectivement a ’ensemble par 'idéal (&1, ... ,&,). Ce qui

donne, par produit de ces idéaux, la seconde majoration ci-dessus puisque

dime C €1, ... ,&nl/(E1, .. &)H = <n+€> |

n

Par additivité des multiplicités et d’apres la suite exacte (2) des G(g), on vérifie
alors par récurrence sur d et ce qui précede que 'on a la majoration

mult G(d) < mo(d, k,n).
Enfin, ’existence du morphisme surjectif ¢(d) entraine que
mult R(d) := mult gr R(d) < mult G(d)
ce qui donne la majoration de I’énoncé. De plus cette derniere est optimale. En
effet, on verra dans le paragraphe 4 (cf. Proposition 4) qu’il existe des d-tissu

W(d, k,n) formés de (k—1)n-plans paralléles de C ¥ pour lesquels ro = mo(d, k, n) ;
ces tissus correspondent & des cas particuliers ol les champs de vecteurs X;  sont
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a coefficients constants pour 1 < i < det 1 < m < n. Ce qui démontre la
proposition. [l

Lentier rg := rgoW(d, k,n) défini ci-dessus est un invariant analytique du d-
tissu W(d, k,n) de codimension n de (C*" 0) qui, par construction du systeme
différentiel linéaire R(d), ne dépend pas du choix des F;,_ et que lon appelle le
0-rang de ce tissu.

Remarque 1.

a) Pour les d-tissus W(d, k, 1) la majoration optimale précédente est un résultat
connu, via le théoréme 1 qui suit (cf. [C1] ou par exemple [Hé2]) puisque dans cette
situation on a une suite exacte de C-espaces vectoriels

O—>(Cd—>AOi>A1—>O.

b) De méme que dans [Hé2], on notera que, d’aprés la démonstration de la
proposition 1, les normales ;(z) pour « voisin de 0 € C* d’un d-tissu W(d, k, n)
de 0-rang maximal ont des propriétés géométriques particulieres relativement a
certains systémes linéaires. En effet, dans ce cason apour 1 <¢g<d-—1

dime (0 €]/ (ags1, ﬁ &) ®o, cz) _ (n L3 [%—H)
i=1

n
et ce, pour chaque z voisin de 0 € CF (¢f. également [C-G2| et [Li]).

Toujours sous I'hypothése N = kn, on va montrer que pour 1 < p < n les
C-espaces vectoriels AP formés par les relations abéliennes de degré p d’un tissu
W(d, k,n) sont de dimension finie et donner des bornes pour ces dimensions.

Avec la convention déja utilisée et pour 1 < p < n, soit

sl ] (Z) . {(”81) {d—kp+p—1}

+<T) Ad—k(p+1)+p}+ (";1> Ad—k(p+2)+p+1}+--

)

cette expression se simplifie pour k = 2 puisque 'on peut vérifier que

n d+n—p-—1
7]—P(d727n)<p>'< nt1 >7

en particulier m(d,2,1) = %(d —1)(d — 2). On notera que

mld k1) ={d—k}+{d—2k+ 1} +{d—3k+ 2} +- -
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est le nombre usuel de Castelnuovo déja évoqué dans l'introduction et sur lequel
on reviendra dans le paragraphe 4. De plus, on peut montrer que ces nombres de
Castelnuovo généralisés m,(d, k,n) et mo(d, k,n) sont liés par la formule suivante :

d— Zn:(—l)pwp(cL k,n)=0
p=0

ce qui n’est pas une surprise d’apres le résultat qui suit sur le complexe (A*,9).
Cette formule généralise la relation classique suivante (obtenue pour k = 2) :

" n d+n—p—1
d—1= —1)F . .
2 (T)
La proposition 1 se complete ainsi :

Théoréme 1. Soit W(d, k,n) un d-tissu de codimension n de (C**,0). Le com-
pleze (A®,9) des relations abéliennes du tissu W(d, k,n) est formé de C-espaces
vectoriels de dimension finie avec les majorations optimales suivantes pour 0 <
p<n:

rp = dimc AP < 7, (d, k,n).

Démonstration. D’apres la proposition précédente on se restreint au cas ou 1 <
p < n. On va introduire des variantes de la méthode de Poincaré-Blaschke (cf.
au moins [B-BJ et [C-G1]). Soit (oF (F;,, ..., F;,)) 1<i<d, || =p, 1<;<r, UD€ famille
libre d’éléments de A7 ; on va montrer que r, < m,(d, k,n). On a ") germes
P
d’applications
Z[z' : ((Ckn70) — (Crpvzfi(o))

dont le rang est au plus n en posant abusivement

Zr(x) = (af, (B, ... B, .. o (B F)).

1709

Par définition ces germes sont liés, pour z voisin de 0 € CF”, par la relation
vectorielle

Z Zr,(x)dEr(xz) =0.

1<i<d, |I|=p

On considere la suite croissante de sous-espaces vectoriels de C"» engendrés par
les espaces osculateurs des germes définis par les Zy,, c’est-a-dire

{Z1,(2)} =CM@(z) on |Li|=p et dimc{Z(2)} = No()
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et plus brievement
{Z1.(2):0,(Z1,) (@)} = CM(z) o, depluslona 1<1I<kn,

{Z1,(2); (Z1,) (@) ;004 (Z1,) ()} = CM20) (2), ete.

En utilisant ’hypothese de position générale et par des dérivations successives
modulo {Z;,(z)} (resp. modulo {Z;, (x) ; 0;(Z1,)(x)}, etc.)

de la relation vectorielle précédente, on va vérifier que la suite croissante des sous-
espaces osculateurs est stationnaire. Plus précisément, on va montrer que 'ordre
de ces sous-espaces s’épuise et que l'on a

NO(:E) < Nl(x) <. < Ns(x) = Ns—f—l(x) R

pour s = s(p;d,k,n) convenable. D’aprés D'analycité et par semi-continuité,
on a CN:(@)(z) = CN+(0(0) pour z voisin de 0 € C**. Ce qui montre que
I'on a nécessairement CN:(0) (0) = C" puisque par hypothese la famille
(ai(Fi17 . ,Fin)) \<i<d, || =p, 1<<r, est libre. Il suffit done, pour conclure, de
montrer par définition des nombres de Castelnuovo généralisés m,(d, k, n) que I'on
a pour v > 0, les majorations suivantes :

Ny(z) < <n> i <n+j_1> Ad—klp+4)+p+s5—-1}.

r) = j

n+j7—1
J
minimaux nécessaires pour engendrer les dérivations a l'ordre j des sous-espaces
osculateurs. Simultanément, le passage de N,(z) & N,4(z) s’effectue par des
“sauts” de longueur (k — 1), rendus possibles grace a I’hypothése de position
générale via des mineurs (k — 1)n x (k — 1)n inversibles et ce, & concurrence de

. {{d—kpqtp—Z

En fait, comme on va le voir ci-dessous, les correspondent aux choix

k—1
poser que les k premieres familles de feuilles du tissu W(d, k, n) sont données par
les fonctions suivantes :

} } D’apres I'hypothese de position générale, on peut sup-

F11 = Ly v o w0 7F1n = Zp ... ;Fkl :$<k_1>n+17... 7Fkn:xkn~

Pour p =1 et abusivement, quant aux notations précédentes, on a

{Z[i}:{Z[l;... ;Z[d}:{Z117... ,Zln;... ;Zd17... 7Zdn}
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avec la relation vectorielle
d
> ZiydFy + -+ %, dF;, =0.
i=1

Les kn relations entre les Z; = Z; (F;,, -, Fi,, ), obtenues par la relation vec-
torielle précédente, correspondent au systeme suivant :

Zy, + Z(k+1>181(F(k+1)1) + o+ Zg,01(Fa,) =0
Z1, + Z<k+1>1an(F<k+l)l) + -+ Zy,0.(Fy,) =0
(01) Zyy + 1), Ont1(Fagny,) + 0+ Zg,0a(Fa,) = 0
an + Z(k+1>1akn(F(k+1>1) = mes o Zdnakn(Fdn) =0
qui montre que l'on a {Z;,} = {Z<k+1)17 mes § BTl 50 e § Bdpaso , 24, } et donne

la majoration Ng(z) < n-{d — k}. Par dérivation modulo {Z,}, on a d’apres ce
qui précede

{Z[i ;al(Z[i)} = {le ;81(Z(k+1)1), L 781(Z(k+1)n) 1T ;81(Zd1)7 5,8 % 78{(Zdn)} 8
On peut supposer de plus, d’apres I’hypothese de position générale et ce qui précede

que pour i > k+ 1, les (k — 1)n champs de vecteurs X;  de (C*” 0) définissant la
i-ieme famille de feuilles du d-tissu W(d, k,n) sont de la forme suivante :

Ot + A 11,101+ + Ay 41,000
(Xi.) :
akn + Ai,kn,lal EakEl o Ai,kn,nan .

Par conséquent, on a

{Z1;00Z1)} = {Z1;01(Zsy))s - 01 (Zgn), ) - 301(Zay ), -+, 01(Za,);

puisque X;, (Z;, ) =0 pour 1 < i < d. De plus, on a supposé que

Dy = L1, E1ps v+ 3B) 5 L% ™ L3, Bk Ly v e 5Bn) 5650 §
L, = ka(x(kfl)nJrl? -+ Thn)
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ce qui montre, en appliquant 9; (resp. 9s,...,dy,), modulo{Z.} aux (k — 1)n
dernieres relations du systeme (01 ) et grace a ’hypothese de position générale, via
un déterminant (k — 1)n x (k — 1)n inversible, que l'on a
{ZIi ) 8l(ZIz)} - {ZIz ;al(z(2k)1)7 By
N Z) i 1O Tar)s O ()

an(Z(Qk)1)7 N 7872(Z(2k)n) Yo ;an(Zd1)7 ce ﬁn(Zdn)} .

Ce qui donne la majoration
Ni(z)<n-[{d—k}+n -{d—2k+1}].

Les dérivations précédentes effectuées dans le systeme (01) et les formules de
Cramer conduisent & exactement n systemes de (k — 1)n équations reliant les

01(Z<k+1>1), ce 781(Z(k+1)n) Yoo ;81(Z(2k71>1), . 781(2(%71)”) modulo {Z[Z.}

aux 9 (Z(2p4n),,) pour h > 0 et 1 < m < n, de méme avec les dérivations
82y ..+ 3 On. Or X(qgy. (8M(Z(k+j)m)) = 0modulo{Zy, ;0/(Z,)} pour 1 <m, u <
netl <k+ 7 <d, ce qui montre en appliquant pour 1 < j < k — 1 les champs
de vecteurs X ;) . aux systémes précédents modulo{Zy, ;0,(Zy,)} et en util-
isant de nouveau I’hypothese de position générale via des déterminants inversibles
convenables ainsi que la forme particuliere des X; pour ¢ > k+ 1 que l'on a

1Zr1,;00(Z1,) 5 0:0u(Z1,) } = {Z1, ; 01(Z1,);

R (Zae1))r- R ZEr-1y)i- - 108 Zay)s - 0 Za,) s
N Z3p-1),)r- - »0102(Z3k-1),) - 10102(Zay ), .- ,0102(Za,) ;- 5

2 (Zezi-1),)r - 02 (Z(zp-1),) ;- 502(Zay), - ,02(Za, )} -

Ce qui donne la majoration

Na(z) <n- [(”;1> ~{d—k}+<?) .{d—zk+1}+<";l> ~{d—3k+2}]

Ce procédé se poursuit, puis s’épuise et donne ainsi la majoration annoncée pour
?

p = 1. On remarquera que, de proche en proche, tous les champs de vecteurs X;

sont sollicités.

On peut vérifier que cette méthode s’adapte pour 2 < p < n ; la relation vecto-
k

rielle entre les {Z;,} pour | I; | = p donne un systeme (0,) de n) équations. Les
P

coefficients de ces dernieres ne sont pas tous simultanément nuls ; en effet ce sont
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des mineurs d’une matrice convenable et les relations quadratiques classiques de
Pliicker (¢f. par exemple [K-L]) jointes & ’hypothese de position générale permet-
tent de poursuivre les calculs par dérivation dans le systeme (0,,), comme ci-dessus.
Enfin, les majorations obtenues sont optimales. En effet, on verra grace a la propo-
sition 4 qu'il existe des d-tissus W(d, k,n) formés de (k — 1)n-plans paralleles de
C* tels que rp, = mp(d, k,n) pour 0 < p < n. Ce qui démontre le théoreme. O

Pour 0 < p < n on vérifie, notamment a l'aide des précisions données au
début de ce paragraphe, que chaque entier r, = rg,W(d, k, n) défini ci-dessus est
un invariant analytique du d-tissu W(d, k,n) de codimension n de (C*¥* 0) qui
ne dépend pas du choix des F; et que 'on appelle le p-rang de ce tissu. Par
définition des nombres de Castelnuovo généralisés mp(d, k, n), on notera que les
majorations du théoreme 1 montrent que pour 1 < p < n on ar, = 0 deés que
1<d<(k=1)p+1.

Remarque 2.

a) Les majorations obtenues ci-dessus pour 0 < p < n sont probablement vraies
dans le cadre C*° ol les méthodes précédentes, convenablement adaptées, doivent
pouvoir s’appliquer ; ¢’est en particulier le cas pour les tissus W(d, k, 1) d’apres
un travail non publié de R. L. Bryant.

b) Pour p = n, la majoration établie ci-dessus est due & S. S. Chern et P. A.
Griffiths (¢f. [C-G2]). Pour cette majoration, les auteurs utilisent (c¢f. également [C-
G1], pour des détails dans le cas » = 1) la méthode de Poincaré—Blaschke avec des
changements de variables successifs, alors qu’ici 'on a préféré systématiquement
“dériver” les systemes (0p).

¢) L’existence de tissus W(d, k,1) de 1-rang maximal est un résultat de S.S.
Chern (¢f. [C1]). Plus généralement, 'existence de tissus W(d, k,n) de n-rang ma-
ximal sera une conséquence des résultats du paragraphe 4 et du travail de J. Harris
sur les variétés dites de Castelnuovo (cf. [H]). On verra dans la proposition 4 que
les exemples proposés de tissus W(d, k,n) de p-rang maximal pour 0 < p < n sont
liés & la géométrie d’arrangements particuliers de n-plans de P %1 Cependant,
la caractérisation pour 0 < p < n des tissus W(d, k, n) de p-rang maximal est un
probleme tres largement ouvert, méme dans le cas oll p = n, et qui généralise des
questions déja proposées par S.S. Chern dans [C2].

Les résultats précédents seront appliqués dans le paragraphe 4 ; on verra notam-
ment qu’ils jouent un réle déterminant dans les questions générales d’algébrisation
des tissus. Cependant pour terminer ce paragraphe, voici déja une utilisation des
rangs.

Le l-rang caractérise les (k + 1)-tissus de codimension n de (C*" 0) qui sont
parallélisables. En effet, on vérifie comme pour les tissus W(3,2,n) (cf. [Hé4]) que
I’on a la proposition suivante :
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Proposition 2. Soit W(k+1,k,n) un (k+1)-tissu de codimension n de (C*7,0),
les conditions suivantes sont équivalentes :

i) rggW(k+ 1,k,n) =n (i.e. le 1-rang de W(k + 1,k,n) est mazimal) ;

ii) W(k+1,k,n) est parallélisable, ¢’est-a-dire & un isomorphisme analytique de
(CFn,0) pres, le (k+1)-tissu W(k+1,k,n) est défini par les familles de (k—1)n-

plans de C*" suivantes :
{z1 =cste,... ,z, =cste}, ..., {T(r_1)np1 = cSte, ... ,Thn = cste}

et {z1 + Tnt1 0+ Tp_1)ng1 = cste, ... T+ Top + -+ Ty = cste}.

3. Rappels et compléments sur les p-formes différentielles
abéliennes d’une variété algébrique projective

Soit V,, une variété algébrique réduite de P"t*~1 de dimension pure n, non né-
cessairement irréductible, éventuellement singuliere et de degré d. On s’intéresse,
dans ce paragraphe et le suivant, aux éléments du complexe

(H°(Vy, w¥, ), d)

ol les wy, sont les faisceaux de Barlet de V), et d la différentielle usuelle. Ce com-
plexe est formé de C-espaces vectoriels de dimension finie ; on I'appelera le com-
plexe des formes différentielles abéliennes de la variété algebrlque T, ¢ Pl
On va en donner quelques propriétés, des exemples et notamment justifier la ter-
minologie adoptée.

Auparavant, et avec les notations déja utilisées dans l'introduction, on fait
quelques rappels sur les propriétés caractéristiques des sections locales des fai-
sceaux de Barlet w% ol (X,Ox) est un espace analytique complexe réduit de
dimension pure n (cf. essentiellement [Bal]). On suppose désormais que X est
localement un revétement ramifié de U contenu dans Z = U x C*1 et de degré
d, ou U est un polydisque ouvert de C" ; on note par mg : X — U le morphisme
propre, fini et surjectif induit par la premiére projection. Une telle situation locale
existe toujours pour le germe (X,z) en vertu du théoreme de paramétrisation
locale, mais I'on ne suppose pas nécessairement que 7, Yoy={z}si0oelU.Si s
est le lieu singulier de X, on a X — w()’l(Rﬂo) CX —Sol R, CU est le lieu de
ramification de mg. D’apres ce qui précede, pour 0 < p < n et toute section locale
w € 7 g O ol 5 1 X — S — X est linjection naturelle, on obtient une p-forme
holomorphe sur U — R, apres recollement naturel, en posant

Tracer, (w Z &N (
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ol les &; sont d branches locales sur Y relevant 7y et obtenues par trivialisation. De
plus, si u = (un g) est une application C-linéaire voisine de 0 € £L(C wtk-l @), on
peut également définir comme précédemment, une p-forme holomorphe Trace,  (w)
en dehors du lieu de ramification de n, = 7y + w.

. v cers y ” «
Soient w = — une p-forme différentielle méromorphe sur X ot v € Q% et g est

nulle sur S sans étre un diviseur de 0 dans Ox, et ¢ une (n — p,n)-forme C™ &
support compact dans Z. Un résultat dt & M. Herrera et D. Lieberman (¢f. [H-1])
montre que ’application

@ — lim wAp
=0Jxn{lgl>e}

Lo . . RSN v : ’
définit un courant, dit valeur principale associée a w = —, qui ne dépend que

de w et X, et que I'on notera w A [X| comme dans [H-P] ; ce courant n’est pas
nécessairement 0 -fermé. Par contre, on sait que la p-forme v définit, par intégration
sur X — .5, un courant
p— VA
X-5

qui est toujours d-fermé, d’apres la formule de Stokes.

Les résultats suivants rappellent en partie ceux déja cités dans l'introduction
et sont complétés par différentes caractérisations des sections locales des w$ (¢f.
[Bal] pour essentiel, [Ba3] en complément et également [Bj]):

Théoréme (Barlet). Avec les notations qui précédent, soit 0 < p < n. Il existe
un sous-faisceau W de j,j*QY qui s’identifie a QX aux points lisses de X, est
Ox-cohérent et sans-torsion ; de plus, les w sont stables par la différentielle
extérieure d et par produit extérieur par les Q% . En outre, pour une section locale
w € o J* O, les conditions suivantes sont équivalentes :

i) wewk ;

ii) Tracer,(v A w) admet un prolongement holomorphe unique pour toute q-
forme v € Q% et tout0 <g<n—p;

iii) Tracer, (w) admet un prolongement holomorphe unique pour toute u =
(ua,8) voisine de 0 € L(C™HE—L C™) ;

iv) w est une p-forme différentielle méromorphe sur X, a poles contenus dans
S et qui se prolonge & X tout entier comme courant O -fermé.

V) w= Loive QL et g est nulle sur S (g=1 s S =0) sans étre un diviseur
g _
de 0 dans Ox, et le courant valeur principale w A [X] est 0 -fermé.
De plus, le résultat suivant (cf. [Bal]) sera également utile : Soient fi,... , fim

des fonctions analytiques sur 7, nulles sur X et qui donnent génériquement sur X
des équations réduites de X dans Z. Alors les produits extérieurs induisent pour
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0 < p < n, une suite exacte de faisceaur Ox-cohérents :

0 Wb LS gl Ok, QB L ndfo), @D eatly,} (Ox, Q)
i=1

ot c = cZ € &Et%_Zl(OX?QZ_l) est la classe fondamentale de X dans Z (cf.
[Ba2]). Cette suite exacte donne en particulier l%identification suivante :

wh = Exth W Ox, QpH 1),

La description des sections globales H O(Vmw{'}n) des faisceaux de Barlet pour
les variétés algébriques réduites V,, ¢ P*T*~1 de dimension pure n, c’est-a-dire
I'espace des p-formes différentielles abéliennes de V,,, est une question naturelle,
notamment en regard des éventuelles singularités de V,, ; on examine ci-dessous
quelques cas particuliers.

Exemples. 1) Soit V,, C P+ une hypersurface algébrique réduite de degré d et
d’équation affine

f(s) = f(s1,.-. ,8ns8n41) =0 avec Opy1(f) #0.

D’apres ce qui précede et localement, w € wy, si et seulement si I'on a

a ¢
w/\T = 7 ot P =r(s)dsg A - ANdsy41 € Qg:;l“
dsy N---Nd
soit w = r(s)u ot 7 € Oy, ; de plus, pour obtenir des sections
8n+1(f)
globales de wy, , 1'élément r sera nécessairement un polynéme de Cls|] :=
Cls1,...,8n4+1] dont le degré devra vérifier la majoration suivante : degr <
degf—n—2=d—n—2. En effet, via les différents changements de cartes du
1
type (81,82, -+, Snt1) — (—, 8—2,... ,S"—+1> la (n + 1)-forme kd doit rester &
s1 81 s1 f

poles uniquement sur V,,. Ce qui impose la majoration ci-dessus sur les degrés.
Autrement dit, I'espace H O(Vn,w{}n) des n-formes différentielles abéliennes de

V,, € P"*1 est engendré sur C par

dsy A Adsy

r(s) Ony1(f)

ou reCls] et degr<d—mn-—2.
d—1
n+1
des sections globales de wy, “ignore” les éventuelles singularités de V;, ; de plus,
cet espace est exactement constitué des n-formes rationnelles sur V,, appelées de

Ce qui montre que l'on a dimCHO(Vn,wﬁn) = < ) . On notera que l'espace
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premicre espéce relativement auz droites de P"H par P.A. Griffiths dans [G1] et
sur lesquelles on reviendra.

2) Si dans la situation de Pexemple précédent, on suppose que n = 1 alors
V1 C P? est une courbe algébrique réduite de degré d et 1’on a

HO(Vhw‘l/l):{r(s)% ol 7€ Cls] et degrgdegf—ii};

c’est-a-dire que l'on retrouve I’espace des 1-formes du théoreme d’annulation clas-
1
sique d’Abel (¢f. [A] et [G1]) dont la dimension est §(d —1)(d—2) ot d =deg f.

De plus et localement, w € w% si et seulement si l'on a

d
wa = % ol ¢ = ads)+ Bdsy € Q]%,g est telle que Y Adf € (f).QH%Q .
. - ﬁ(s) . y 2 5 .
soit w = 55(7) avec I’existence d’un couple (o, ) € Oy, vérifiant la relation
2

ady(f)—p01(f) =0 modulo(f).

Naturellement les constantes appartiennent toujours & H O(Vh wg/l) ; pour obtenir
d’autres sections globales de w9,17 la relation précédente doit étre vérifiée pour

(o, B) € Cls] 2 et en outre les changements de cartes utilisés auparavant imposent
que 'on ait

dega(resp. deg ) < degf —1 si as;+8s3=0

ou
deg o (resp. deg 8) < deg f —2 sinon.

d
Ainsi dans tous les cas, on a la majoration suivante : dim¢H 0(V17 wg/l) < ( 2) +1

ol d = deg f. De plus, les bornes précédentes sont optimales ; prendre par exemple
f(s1,89) = 3‘21 —1.

3) Si dans la situation de I’exemple initial, on suppose que n = 2 alors Vo C P?
est une surface algébrique réduite de degré d et l’on a

HO(V27w‘2,2): {r(s)dsaL(fd)sz ot 7€ ClJs] et degrgdegf—él}
3

1
dont la dimension est E(d —1)(d—2)(d —3) o d = deg f. De plus et localement,

w e w% si et seulement si 'on a

dj
w%:% ol ¢Z@d$1+ﬁd82+7d83€9%3 est telle que ¢Adf€(f).9§,37
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3

soit w = avec l'existence d'un triplet («, 3, v) € Oy, vérifiant les trois

relations
ady(f)—Bor(f)=0
vy (f) —ad3(f) =0 3 modulo(f).
BO3(f)—v02(f)=0

Comme auparavant, outre les constantes les sections globales de w?@ correspondent

a Dexistence de triplets (o, 3, v) € C|[s]? vérifiant les relations précédentes et assu-
jettis, via les changements de cartes déja utilisés, a des conditions supplémentaires
portant sur les degrés. Ce qui permet, en particulier, de montrer que 1’on a la majo-
d+1

ration suivante : dimeHC(Va, w?@) < 3

) +1 ou d = deg f. Enfin localement,

wE w‘l/z si et seulement si 'on a

d
w/\—]CZE ol zﬁ:ngsl/\dsg—rgdsl/\d83+7”1d52/\d83EQE%S

o f

. r1dsy —rodsy
est telle que ¥ Adf € (f).Q3, soit w = —= ="~
g 25(1)

triplet (rq1, ro, 73) € (9‘?}2 vérifiant la relation

r101(f) +r202(f) +7395(f) =0 modulo(f).

Ce qui permet, tout comme auparavant, de montrer que 1’on a la majoration

avec l'existence d’un

suivante : dimcHO(VQ,w‘l/z) <2 ( 3 ou d = deg f. De plus, toutes les bornes

précédentes sont optimales ; prendre par exemple f(si,ss,s3) = sg — 1. On
retrouve également que I’'on a H O(Vg7 w‘l/z) = 0si Vo C P? est une surface algébrique
lisse. En effet dans ce cas, tout élément de H 0(V27w‘1/2) est d-fermé d’aprés un
résultat de W. V. D. Hodge ; il suffit alors d’utiliser la relation entre les r; imposée
ci-dessus et les contraintes de degrés jointes a la propriété que les dérivées partielles
de '’homogénéisée de f forment une suite réguliere de C[Xp, X1, X2, X3].

Soit V,, ¢ P*tE—l yne variété algébrique réduite de dimension pure n, non
nécessairement irréductible, éventuellement singuliere et de degré d. Un (k — 1)-
plan générique P*~1(0) € G(k—1,P*T*~1) coupe transversalement V;, en d points
lisses distincts p;(0). Dans un systéme convenable de coordonnées, on a d branches
locales

pl:(F’L]7 7Fin7£i1(E17"' 7Fin)7"' 7£ik_1(Fi17"' 7Fin))

sur G(k — 1,P" 1) on

d
]P’k“l(x) NV, = sz(iﬂ) en tant que O-cycles de 'V, ;
i=1
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avec précisément des sous-espaces linéaires IP”‘“*l(x) de PHE—1 définis par

81 = z1+l.xpp1+ o Hlp—1. Z(k—1)n+1
I[pkfl(z)
sp = Tptitrzomt ot to1.Tin
ol pour 1 < m < n et implicitement & partir des éléments &;,,...,&, , de C{z}

on a
F; (:C) :xm+£i1(ﬂ1(x)7“- 7Fin(x)>-xn+m F-mis

+ iy (El(x)7 “mie an(x)) L(k—1L)n+m -

Soit w € HO(Vn7 w{}n) ol 0 < p < n, d’apres I'une des propriétés des p-faisceaux
de Barlet énoncée dans 'introduction, on a

d C
Trace(w) = ZP:(W) = { ! . !

0 si 1§p§n'

En effet, d’une part la p-forme Trace(w) définie ci-dessus admet un prolongement
holomorphe & G(k — 1,IP7”+’“*1) tout entier puisque le morphisme d’incidence in-
duit par la premiere projection Iy, — G(k — 1,P"T#~1) est propre, surjectif
et génériquement fini de degré d avec par définition pour branches locales, les
applications = — (z, p;(x)). D’autre part, on sait que l'on a

C si p=0
0 _ n+k—1 ¥4 —
HY Gk -1,P ) Q1 prti-1y) { 0 s l<p<hn’

Par ailleurs, on sait également qu’a toute p-forme rationnelle w sur V,, ou
0 < p < n, on peut associer une p-forme rationnelle sur G(k —1, ]P’"Jrk*l), toujours

d
notée Trace(w), et qui y vérifie la relation Trace(w) = 3 p}f(w) (cf. par exemple
i=1

[G1]).

La proposition suivante établit une caractérisation des éléments de H O(Vn, w{}n)
pour 0 < p < n ; elle généralise le théoreme d’annulation classique d’Abel et son
extension due & P.A. Griffiths pour les n-formes des hypersurfaces réduites de P»+1
(¢f. [A] et [G1]) tout en justifiant le choix de la terminologie adoptée :

Proposition 3. Soient 0 < p < n et V,, C P""*=1 une variété algébrique
réduite de dimension pure n. Les éléments de HO(Vn,w%'}n), c’est-a-dire les p-
formes différentielles abéliennes de V,, € P"15=1 sont les p-formes rationnelles
w sur Vy,, réguliéres si V,, est non singuliére ou bien dont le lieu polaire est con-
tenu dans le lieu singulier de V,,, et qui vérifient

cste st p=0
0 si 1<p<n’

Trace(w) = {
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Démonstration. = : C’est une conséquence de ce qui précede, notamment du
théoreme rappelé ci-dessus qui caractérise les sections locales des wy, , et du
théoréeme de Chow. < : Soit w une p-forme rationnelle sur V,, vérifiant les con-
ditions de la proposition. Si S désigne 1’éventuel lieu singulier de V,,, alors cette
p-forme w définit une section locale de 7,j *Qf/n ou j:V,—5 — V, est I'injection
naturelle. Pour montrer que w € H O(Vn7 w{}n) il suffit d’établir, en utilisant de nou-
veau le théoreme de caractérisation des sections locales des wy, , que Tracer, (w)
admet un prolongement holomorphe unique pour toute u = (uqg) voisine de
0 e L(CrtE=1 ™) ot m, = mo+uavec (ST, ... »Snstl - s tpe1) = (S1,... > Sn)
dans le systeme de coordonnées utilisé auparavant. Dans ce but, on va montrer
que l'on peut évaluer Trace,, (w) & partir de Trace(w) pour u = (uq,g) voisine de
0 € £(CntE=1 C™). Par définition, on a

1 .

Ty, (017 % B 70n) - {(817 coe s Smytl, 7tk71)7
(1 +wupq)st +urasg+ -+ ul Sy =01 — Ul py1ts — - — Ul ppp—1tp—1
Up 181 +Up 282+ + (L + Unp)sn = On — Up g1t =+ — U npb—1t5—1} -

Grace aux formules de Cramer il existe , a u fixée et voisine de 0 € L((C’“Lk’l, cm),
un germe de morphisme

pu (C",0) — (G(k — LML P (p,(0)) = (CF, pu (0))
tel qu’aux notations abusives pres et par définition des ]P’k’l(x) on ait
7[-';1(0-17 %% 7O'n) - I[Dkil(p’u(a-L i v 7Un)) 7

en particulier, Wal(dl, o) =P Yoy 0,,0,...,0). Grace aux choix des
coordonnées, on avait déja

Traceq, (w)(s1, ..., sn) = Trace(w)(sy, ..., s»,0,...,0)

puisque p;(s1,...,8n,0,...,0) = pi(s;0) = (s;&,(s),...,&,_,(s)) et la con-
struction précédente montre que 1’on a plus généralement

Tracer, (w) = pf[Trace(w)]

pour u = (uy, ) voisine de 0 € L(C"H*~1 C"). Ce qui d’aprés les hypotheses
permet d’assurer les prolongements nécessaires et démontre la proposition. O
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4. Des tissus algébriques aux majorations des dimensions des
HO Vs, w,)

On suppose désormais que Vj, est une variété algébrique réduite de P*+5—1 de
dimension pure n, non dégénérée (i.e. non contenue dans un hyperplan de P»+-1),
non nécessairement irréductible, éventuellement singuliere et de degré d.

Au voisinage d'un point généricue P¥*1(0) de la grassmannienne G (k—1,P*+5-1)
des (k —1)-plans de P*T*~1 on peut constuire un d-tissu Ly, (d, k, n) de codimen-
sion n de (G(k — 1,P*He—1) PF=1(0)) = (C*",0) dont les feuilles correspondent
aux variétés de Schubert o, (,) des (k — 1)-plans de P TF=1 passant par p;(z) ol

d
PNV, = sz(x) en tant que O-cycles de V,
i=1

siles d points d’intersection p;(0) de V;, et PF=1(0) sont en position générale dans
]P’k‘l(O). En effet, dans ce cas et dans le systeme de coordonnées déja utilisé, on a

Pi = (Fi17"' 7Fin’£i1(ﬂlv"' 7Fin)7"' 7£7ik71(F7317"' 7Fin))
et les d feuilles du tissu Ly, (d, k, n) seront données par

{F;, (z) = cste, ..., F;,

(z) = cste}
ol I’on rappelle que ’on a pour 1 < m < n et z voisin de 0 € C*»

F; (:IZ) :xm+£ll(Fl1(x)7 7Fin(x))~xn+m+"'
+ iy (Fig(@)s o0 5 Fi(@) - 30 1ypom -

La position générale des normales €;(z) de ce tissu Ly, (d, k, n) est assurée pour x
voisin de 0 € C** puisque, par construction, elle provient de la position générale
dans P*~1(0) des points

p:(0)=(0,...,0,&,(0),...,&,_,(0)).

Un tel (k — 1)-plan générique P¥~1(0) € G(k — 1,P"t#1) existe toujours si
k = 2, de méme pour k > 3 si par exemple V,, est irréductible, en particulier si V,,
est lisse et connexe ; il suffit, par exemple, d’adapter 'argument donné dans [G-H]
pour le cas des courbes irréductibles et non dégénérées V| de P*.

Si cette condition de position générale est vérifiée, on dira comme dans l'intro-
duction que Ly, (d, k,n) est le tissu algébrique associé a V,, C P*1#~1_On rappelle
dans ce cas et par construction que le d-tissu Ly, (d, k,n) est linéaire (i.e. toutes
ses feuilles sont des (k — 1)n-plans de C¥”, non nécessairement paralleles).
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On suppose désormais que la variété algébrique V,, ¢ P*HA—1 définit le tissu
Ly, (d,k,n). Pour 0 <p <mn, onnote AP := AP(Ly, (d, k,n)) le C-espace vectoriel
des relations abéliennes de degré p du tissu Ly, (d, k, n).

D’apres les résultats de la fin du paragraphe précédent, on a une application
C-linéaire

AP HO(Vn,w{}n) — AP

donnée par AP(w) = (ay, (F; ol la p-forme w € HO(Vmw{}n)

v Fi)) iz 11—

gécrit w= Y. ar(s1,...,sn)dsy, au voisinage de p;(0). En effet, par définition
|Zs|=p

et ce qui précede, on a

cste st =0
Trace(w)= >  an(Fy,... 7Fin)dF[z.—{ ,
1<i<d, |Ii|=p

Théoreme 2. Sous les conditions précédentes, on a un morphisme injectif de
complezes

A*: (HO(Vn,w‘./n),CD - (‘A.76)
qui est bijectif en degré p = n. En particulier, le n-rang r, du tissu algébrique
Ly, (d,k,n) associé a V,, C PHr=1 est égal 4 dime HO(Vn,w{}n) et Uon a les
majorations optimales suivantes pour 0 < p <mn :

hPO (V) = dime HO(V,,, wl), ) < 7p = dime AP < my(d, by ).

De plus, pour les hypersurfaces algébriques réduites V,, C P11 de degré d on a

hn’O(Vn) =T = 7Tn(d7 27 n) = (Z;i) .

Démonstration. Par définition du complexe (A*, ) := (A*(Ly, (d, k, n)),0) des re-
lations abéliennes du tissu algébrique Ly, (d, k, n) et ce qui précede, les AP définies
ci-dessus induisent un morphisme de complexe A® : (HO(V,, wy ), d) — (A®,0).
Pour étudier les premieres propriétés de ce dernier, on va transiter wvia le cas
des tissus algébriques Ly, (d,2,n) associés aux hypersurfaces V,, C P+l Soit
7 Prth—l Pl yne projection générique adaptée, alors w(Vy) = f/; est une
hypersurface réduite de P*t! dont le degré est d et ’on peut vérifier que 1’on a le
diagramme commutatif suivant :

HO(Vo,wy,) —— HO(Vy,wl)

A.[ ;.[

ALy, (d, k,n)) . A (L (d,2,n))




Vol. 79 (2004) Géométrie des tissus 51

ou les notations précédentes sont conservées et le morphisme 7, est induit, via
le lemme de Dolbeault—Grothendieck, par I'image directe des courants. En effet,
on sait que celle-ci commute avec 0 et que pour tout w € H O(Vn,w"/n) on a

Te(w A [Vy]) = me(w) A [Vn] De plus, dans le systéme de coordonnées déja utilisé

on a B _
% ((af,,;(E17 s i 2 7En)>) - (O‘Iq;(Fi17 st o 7F’in)>
avec Em(xl,... sxon) = By (z1,...,29,,0,...,0) pour 1 < m < n puisque 'on
peut supposer que localement 7(s1,...,8n,%1,... ,¢x_1) = (81,...,8n,%1) ; €n
fait, on a
— d —
Uz, ... ,x9n) NV, = Zﬁi(ﬂﬂh ... ,x9,) en tant que O-cycles deV,,
1=l
ol d’une part £(zq, ... ,x2,) est la droite de P*t! définie par
s1 = z1+t1.Tp41
é(x]J e 7x2n)
Sp = Ty +11.72,
et d’autre part p; = (El, . 715%7 &1(151'17 e 7En)). En particulier, on a

Trace(m,(w))(z1,. .., z2,) = Trace(w)(zy, ... ,2,,0,...,0).

Par définition, 7, est un morphisme injectif puisque la projection 7 induit un
morphisme birationnel de V,, sur V,,. En outre, ’hypothése de position générale
montre que ’application p est injective. D’apres les contraintes de degrés (cf. les
exemples du §3), le morphisme A* est toujours injectif ; de plus, il est bijectif
en degré maximal n d’apres les majorations générales du théoreme 1 et puisque
dilrnCHO(f/;7 w% )= (i :r i) (on peut également adapter ’argument de [Hé1], cas
n = 1). Ce qui montre, d’apres les propriétés du diagramme commutatif ci-dessus,
que le morphisme de complexe A® est toujours injectif ; de plus et par construction,
ce dernier est bijectif en degré maximal n d’apres la proposition 3. Ce qui donne les
majorations énoncées en utilisant les résultats du théoreme 1 ; de plus, ces dernieres
sont optimales, notamment grace & des exemples d’arrangements particuliers de
n-plans de P11 et la proposition qui suit. Ce qui démontre le théoreme. (Il

Pour p = n, on retrouve ainsi les majorations de Castelnuovo—Harris (¢f. pour
n =1, [Cal, [G-H] et pour n > 1, [H], [C-G2]).

Le théoreme 2 montre, par exemple, que Uirrégularité q(S) = dimcHO(S, wl)
d’une surface algébrique irréductible S ¢ P+ non dégénérée et de degré d vérifie
la majoration suivante : ¢(5) < m1(d, k,2).
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Les majorations obtenues ci-dessus suggerent naturellement d’étudier, a 0 <
p < n fixé, la nature géométrique des variétés algébriques V,, ¢ P*H+~1 dont les
h20(V,)) sont maximaux.

Par définition des nombres de Castelnuovo généralisés mp,(d, k,n), les majo-
rations du théoreme 2 montrent que sous les hypotheéses précédentes et pour
l1<p<nonahPOV,)=0desquel <d<(k—1)p+1;de plus, comme dans
[C-G2], on peut “inverser” les formules donnant les 7,(d, k, n) et ainsi obtenir, par
exemple, des minorations du degré des V,, C P**~1 ayant un »#:°(V},) donné.

L’exemple du tissu algébrique qui suit permet, notamment, de montrer que les
bornes mp,(d, k, n) obtenues précédemment sont optimales.

Soit C la courbe rationnelle normale de P*~! paramétrée par ¢t — L B ey tk’l].
On choisit d points distincts de C correspondants a des 7; € C. On considere le d-
arrangement a(C,7;) de n-plans de P"1+~1 définis, dans le systéme de coordonnées
affines déja utilisé, par

th, = T

ther = T

2

Cet arrangement définit un d-tissu linéaire Py, (d, k,n) := Ly, (d, k,n) de (C**,0)
ou V,, est le support du d-arrangement a(C,7;). En effet, des déterminants de
Vandermonde montrent que les p;(0) = (0,...,0,7, ... ,Tfﬁl) sont d points de
P*~1(0) en position générale ; de plus, les familles de feuilles du tissu Py, (d, k, n)
sont des (k — 1)n-plans de C*" paralléles d’équations

Fi(z) = = + 7mzppr + -0 + Tikfl.x(kfl)wrl = cste

Fi(z) = zn + 7200 + -+ + Tikfl.xkn = cste.
On identifie le d-arrangement a(C, 7;) et son support, comme variété algébrique
réduite de P51 de dimension pure n et de degré d. Pour 0 < p < n, on note
AP := AP(P,,(d, k,n)) le C-espace vectoriel des relations abéliennes de degré p du
tissu P, (d, k, n) associé au d-arrangement a(C,7;).
Avec ’ensemble des notations précédentes, on a le résultat suivant :

Proposition 4. On a un morphisme bijectif de complezres
A* (HO(Q(C7 Ti)7 w;(c’n)ﬁd) — (A.’(S) .
De plus, pour 0 < p < n le p-rang du tissu Pr,(d,k,n) de (C¥",0) défini par

le d-arrangement a(C,7;) de n-plans de P*T*=1 est mazimal (i.e. dimc AP =
7p(d, k,m)) et Uon a une suite exacte de C-espace vectoriels

0—cCt—A Lt % g
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Démonstration. Comme dans la premiere partie de la démonstration du théoreme
précédent, on peut transiter via le cas hypersurface a l'aide d’une projection
générique. Par conséquent, pour montrer que l'on a l’isomorphisme annoncé, il
suffit d’établir que A® est bijectif dans le cas ol le d-arrangement a(C,7;) a pour
support I’hypersurface algébrique V,, € P*1 dont I’équation affine est

d

FGs1,-ysmot) = [t —m) =0.

i=1
D’apres la premiere partie du théoreme précédent, on a un morphisme injectif
A* HO(Vy,wh ) — A% (Ly, (d,2,m)) .

Or dans ce cas particulier on peut vérifier explicitement a 1’aide de la description
des H O(Vn, wi"}n) largement esquissée dans les exemples du paragraphe 3 que l'on a

dime HO(Vy,,w. )= (ﬁi‘ﬁ) +1 et dime HO(V;,, wh, )= (Z) . (de:;pl_l)

pour 1 < p < n. Ce qui prouve la premiére partie de la proposition d’apres les
majorations du théoreme 1 puisque les nombres précédents sont précisément les
bornes mg(d, 2,n) et m,(d,2,n). On doit également vérifier que pour 0 < p < n, le
p-rang du tissu Py, (d, k,n) est m,(d, k, n). En degré p = 0, il suffit d’établir d’apres
les résultats du paragraphe 2 que 'on a I’égalité suivante pour 1 < g <d—1:

dimc<(9 [€]/(ag41, [ ] @) ®o C) N (n+6> on e {u}

i n k—1
et avec ici
_ 2 E—1 & . .
0 = (Ent1 = 70-§,8n+1 — 75 €1+ 5 §h—Dng1 — T 6150
2 k—1 5
£2n_7—i~£n7£3n_7—i'£nw~7£kn_7—i 61)7

en effet, les champs de vecteurs associés au tissu P, (d, k, n) sont a coefficients con-
stants. Pour vérifier I’égalité ci-dessus, on utilise le début de la résolution canonique
de Hilbert

kn

0% S o — (@, ) — 0.

q

Elle permet de décrire, de proche en proche, les éléments de ﬂ a; modulo agyq
i=1

qu’on peut supposer étre I'idéal (£, 1, ..., &k ). On se restreint ainsi & des idéaux
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de O[¢q,...,&] et l'on obtient alors le résultat, grace & des déterminants de
Vandermonde construits a partir des 7; et puisque

dimCC[£17"' 75”7’]/(517"' 7£ﬂ)6+1 - <n+e> :

n

En degré p ot 1 < p < n, on va exhiber 7,(d, k, n) relations abéliennes indé-
pendantes de l'espace AP. Pour p = 1, on fait quelques remarques préliminaires
proches des arguments de la démonstration du théoreme 1. Soit

Cartpyeow g @1, jwss § Oy ees 50, ) e Al
on a
o :ozim(Fip... 7Fin)

avec pour 1 <m <n

Fi (JZ’) =Zm + T Tptm+ -+ Tik71~x(k—1)n+m :

d
Par définition on a )~ oy dFy + -+ oy, dF; =0, ce qui donne kn relations
i=1

1=

d d
Zaim :07ZTi~aim =0 ;zy: 72Tf71.aim =0
i=1 i=1 i

ou 1l <m < mn.Sid>k, 'utilisation d’'un déterminant de Vandermonde, d’ordre
k, construit a partir des 7; montre que pour 1 < m < n la donnée des différentes
valeurs a1y (0),...aq, (0) détermine de manitre unique celles des a1, (0),

.., ag,, (0). Par dérivation des relations ci-dessus, par rapport a des z; conven-
ables, on obtient

d

4. da o d 2k—1) Oa
i i k— i
mo_ E ;. m:07...7§ : g
—1 82[ 74:17— 82; 4:17_1 azl

pour 1 <m <netl <[l <n Sid>2k-—1,'utilisation d’'un déterminant de
Vandermonde, d’ordre 2k — 1, construit a partir des 7; montre que pour 1 < m <n

. - 0 (2k),, Boudyy
et 1 <[ < nladonnée des différentes valeurs T(O), g (0) détermine
z] Z]
0 Daygy,—
de maniere unique celles des glm 0),---, %(O) et ainsi de suite, suivant
2 2

la valeur de d relativement a k, pour les dérivées d’ordre supérieur. D’apres les
majorations du théoreme 1 et ce qui précede il suffit, pour obtenir une base du
C-espace vectoriel A!, de faire varier les coefficients du développement de Taylor
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des oy, (21,...,2n) 0 1 <4 < det 1 < m < n selon la méthode suivante : on
choisit, en fonction de la valeur de d relativement a k, les constantes

(@t1), (0 a1y, (0) 5 5 0ay (0), .., 04, (0)),

puis les dérivées partielles du premier ordre

Dcx(ak), S CON daq, dad,
<a—zl(077 azl 07"'78—2107'“7 821 (O))

pour 1 <1 < n et ainsi de suite pour les ordres supérieurs, juqu’au total de

n+1

n. {{d%ﬁ(?) ~{d—2k~+1}+< ) )-{d—3k+2}+~~} = m1(d, kyn) .

La méme méthode s’applique pour 2 < p < n avec des déterminants de Van-
dermonde d’ordre plus élevé. De plus, d’apres la construction précédente et par
définition de la différentielle § on peut vérifier que les groupes de cohomologie du
complexe (A®,d) sont nuls en degré p > 2 pour le tissu P, (d, k,n). Ce qui prouve
la proposition d’apres les résultats du paragraphe 2. (Il

On dit qu'un d-tissu W(d, k,n) de codimension n de (C*",0) est algébrisable
si, & un isomorphisme analytique local de (C*",0) pres, ce tissu est algébrique ;
c’est-a-dire de la forme Ly, (d, k,n) ou V,, est une variété algébrique convenable
de Prti-l (¢f. le début du présent paragraphe). La caractérisation des d-tissus
W(d, k,n) algébrisables est une question naturelle, largement ouverte, mais liée
d’apres le théoréme 2 & la nature des rangs du tissu W(d, k, n). Par exemple, un
d-tissu W(d, 2,n) algébrisable est nécessairement de n-rang maximal.

Il est probable que le complexe (A®,0) des relations abéliennes dun tissu
W(d, k,n) soit sollicité pour répondre au probleme de son algébrisation ; c’est
le cas, via le théoreme de Lie-Darboux-Griffiths (¢f. [G1]), de nombreux résultats
connus d’algébrisation des tissus W(d, k,n) de n-rang maximal (cf. par exemple
[B-B], [C-G1], [Hé1], [Hé3]). Ces derniers apparaissent comme des variations sur
un résultat de H. Poincaré (¢f. [P], cas n = 1, k = 2 ci-dessous) dont on rappelle
la généralisation particuliere suivante (cf. [Hé4]) :

Proposition 5. Tout tissu W((k—1)n+k+1,k,n) de n-rang mazimal, a savoir
n+k, est algébrisable.
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