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Formes différentielles abéliennes, bornes de Castelnuovo et
géométrie des tissus

Alain Hénaut

Abstract. A d-web W(d) is given by d complex analytic foliations of codimension n in (0^,0)
such that the leaves are in general position. We are interested in the geometry of such
configurations. A complex (A', S) of C-vector spaces is defined in which A0 corresponds to functions
and Ap to p-forms of the web W(d) for 1 < p < n. If N kn with k > 2, it is proved that
rp := dim j-> Ap is a finite analytic invariant of W(d) with an optimal upper bound TTp(d, k,n) for
0 < p < n. These bounds generalize the Castelnuovo's ones for genus of curves in F with degree
d. Some characterization of the the space H°(Vn,ojy of abelian differentials to an algebraic

variety Vn in pn+fc—! of pure dimension n with degree d is given. Moreover, using duality and

Abel's theorem, we investigate how for suitable Vn the natural complex (H°(V„,cüy ),d) and

the abelian relation complex (A',S) of the linear web associated to Vn in (Cfcn,0) are related.

Mathematics Subject Classification (2000). Primary 53A60; Secondary 14C21, 32L30.

Keywords. Web geometry, Analytic algebraic geometry, Abelian differentials.

1. Introduction et résultats principaux

Un d-tissu W(d) de codimension n de (C^O) est défini par d feuilletages analytiques

complexes de codimension n de (Cw, 0) en position générale. On s'intéresse
à la géométrie de telles configurations. Les travaux fondateurs sur ce sujet sont
dus à W. Blaschke, G. Thomsen et G. Bol et datent des années 30 (cf. par exemple
[B-B], [B], [C2], [Hé4]). Outre ces derniers, il faut citer les travaux de S. S. Chern
et P. A. Griffiths (cf. [Cl], [Gl], [G2], [C-Gl] et [C-G2]) dans le sillage desquels se

situe le présent article, et ceux de M. A. Akivis et V. V. Goldberg (cf. par exemple
[Ak], [Go]). On peut également consulter [Bea] pour diverses propriétés de base

des tissus et [W] pour des développements plus récents.
A partir de la donnée des différentes familles de feuilles d'un d-tissu W(d)

de codimension n de (C^O), on construira dans le prochain paragraphe des C-

espaces vectoriels Ap pour 0 < p < n et la différentielle extérieure usuelle donnera
un complexe (A*, S). On verra que les éléments de *4° peuvent être considérés

comme les "fonctions" du tissu W(d) et que pour 1 < p < n les éléments de Ap, à
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savoir les relations abéliennes de degrép de W(d), en sont les "p-formes".
En codimension 1, par exemple, les feuilles de W(d) sont les germes d'ensembles

de niveau définis par d germes de fonctions analytiques Fi G O := C{xi,..., x^}
tels que Ft(0) 0 et les seules relations abéliennes sont celles de degré 1. Les

d

éléments de A1 sont les d-uplets (gi(Fi)) vérifiant la relation Yl 9i(Fi) dFt 0

i=\
où les gi G C{z} et les éléments de *4° sont les d-uplets (aj(Fj)) tels que l'on ait

d

Y cnl(Fl) este avec des a-% G C{z}. De même, en codimension 2 les feuilles de
i=\
W(d) sont les germes d'ensembles de niveau définis par d couples (FH,Fl2) avec
des Fim G O tels que Fim(0) 0. Les relations abéliennes de degré 1 correspondent

aux éléments de A1 qui sont les 2d-uplets (ht(Fn, Ft2), kt(FH, Ft2)) vérifiant
d

J2 K(Fll,Fl2)dFll+kl(Fn,Fl2)dFl2 =0 avec des ht et kt dansC{zi,z2} ; celles
i=\
de degré 2 s'identifient aux éléments de A2 qui sont les d-uplets (gl{F%1, Ft2)) tels

d

que Y 9i(Fi1> Fi2) dFn A dFl2 0 où les g-% G C{z\, Z2} ; enfin les éléments de
i=\

d
A® sont les d-uplets (at{Fn,Fn)) qui vérifient Y aî(Fî1, Fi2) cs^e avec des

i=\
aîeC{zl,z2}.

En général les Ap ne sont pas de dimension finie. Cependant si N kn avec
k > 2 on démontrera, en utilisant notamment l'hypothèse de position générale des

différents feuilletages, le résultat suivant :

Théorème 1. Soit W(d,k,n) un d-tissu de codimension n de (Cfcn,0); on a un
complexe (A*, ô) formé de C-espaces vectoriels de dimension finie avec les

majorations optimales suivantes pour 0 < p < n :

rp := dime Av < ftp{d, k, n).

Chaque entier rp défini ci-dessus est un invariant analytique du tissu W(d, k, n)
appelé le p-rang de ce tissu. On verra dans le paragraphe qui suit que les bornes
optimales explicites Tvp(d,k,n) sont des nombres de Castelnuovo généralisés. Par
exemple en codimension 1, on a

7ri(d, k, l) {d - k} + {d - 2k + 1} + {d - 3k + 2} + • • •

avec la convention que la somme ci-dessus ne fait intervenir que des termes positifs.

Cet entier, sur lequel on reviendra dans le paragraphe 4, est le nombre de

Castelnuovo associé au genre des courbes algébriques gauches (cf. par exemple
[G-H]).

En degré 0 la majoration précédente est obtenue à l'aide de résultats de base de

l'analyse algébrique (i.e. la théorie algébrique des systèmes différentiels linéaires
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ou théorie des P-modules). Ce qui généralise l'approche de [Hé2] (cas des tissus
de codimension 1 de (Cfc, 0), c'est-à-dire des W(d, k, 1)). En degré p où 1 < p < n
on introduit, pour démontrer ces majorations, des variantes de la méthode de

Poincaré-Blaschke et l'on retrouve en particulier la majoration de Chern et Griffiths

(c'est-à-dire le cas p n ci-dessus, cf. [C-G2]).
Les majorations précédentes seront utilisées dans le paragraphe 4. On montrera,

également dans ce paragraphe, que les bornes précédentes sont atteintes pour des

tissus de (k — l)n-plans associés à certains arrangements de n-plans de pn+fc^1.

On sait que les tissus W(d, k,n) dont le n-rangest maximal [i.e. rn Trn(d, k,n))
possèdent des propriétés géométriques particulières permettant parfois des
classifications partielles (cf. par exemple [B-B], [C-Gl], [C-G2], [Go], [Li], [Hél], [Hé3])
et sur lesquelles on reviendra. On donnera également dans les paragraphes 2 et 4

quelques propriétés des tissus W(d, k, n) relativement aux autres rangs. On se doit
de noter, cependant, que la caractérisation pour 0 < p < n des tissus W(d, k, n)
de p-rang maximal est un problème largement ouvert.

Soit (X, Ox un espace analytique complexe réduit de dimension pure n ; pour
0 < p < n on désigne par Qx le faisceau Ox-cohérent des p-formes différentielles
sur X. Dans un plongement local de X dans (Z, Oz) lisse, on a Qx Qpz/(dXx A

Qpz-\lxQpz) où Ox Oz/lx ¦

Soit S le lieu singulier de X, on note j : X — S —> X l'injection naturelle.
Dans [Bal], D. Barlet a montré qu'il existe pour tout 0 < p < n un sous-fai-
sceau lvx de j*j*flx qui s'identifie à Qx aux points lisses de X, est Ox-cohérent
et sans-torsion ; de plus, les ivx sont stables par la différentielle extérieure d et

par produit extérieur par les Q'x. Plusieurs caractérisations des sections locales de

lvx (cf. également [Bal]) en termes d'extension holomorphe de traces relatives à

des germes de morphismes finis ou bien en terme de courant 3 -fermé en seront
rappelées au paragraphe 3 (cf. également [Bj] et [H-P]). L'une d'entre elles, par
exemple, est qu'une section locale de lvx est une p-forme différentielle méromorphe
sur X, à pôles contenus dans S et qui se prolonge à X tout entier comme courant
9-fermé. Il faut signaler, en particulier que l'on a les identifications suivantes :

cüx=£xtkOz1(Ox,nnz+k-1) et ojpx=Uom0x(^nxP^x)

pour 0 < p < n si Z est de dimension n + k — 1.

Pour 0 < p < n, le faisceau ivx contient, en général strictement, le faisceau

Cx lui aussi Ox-cohérent des p-formes méromorphes sur X, à pôles contenus dans
S et dont l'image inverse par une désingularisation de X est holomorphe. On
rappelle que ces faisceaux Cx de p-formes, dites également de type L2 en vertu
de leurs propriétés (cf. par exemple [Gl], [Bal]), ne dépendent pas du choix de la

désingularisation.
De plus, la propriété suivante des io*x sera déterminante dans l'étude entreprise

on verra en effet, dans le paragraphe 4, comment l'annulation de certaines traces
donnent des relations abéliennes de tissus naturels. Soit -k : X —> Y un mor-
phisme propre et surjectif où Y est lisse, connexe et également de dimension n ; le
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morphisme tt est génériquement fini et sur toute trivialisation simplement connexe
il existe d branches locales pi sur Y relevant tt. Alors pour tout 0 < p < n et toute

d

lu G H°(X,lopx), la p-forme Tracera;) := ^ pI(lo) après recollement naturel, se

i=\
prolonge d'une manière unique en un élément de H°(Y, Cly)-

Soit Vn une variété algébrique réduite de pn+fc^1 de dimension pure n, non
dégénérée (i.e. non contenue dans un hyperplan de f>n+k-1^ non nécessairement

irréductible, éventuellement singulière et de degré d. Au voisinage d'un point
générique Pfc^1(0) de la grassmannienne G(k — l,Pn+fc^1) des (k — l)-plans
de pn+fc^1) on peut construire un d-tissu Cvn(d,k,n) de codimension n de

(G(k-l,Vn+k~1),Vk~1(0)) (Cfcn,0) dont les feuilles correspondent aux variétés
de Schubert vpjx) des (k — l)-plans de pn+fc^1 passant par pi(x) où

d

Pfc"1(x) n Vn ^2pt(x) en tant que 0-cycles de Vn

à la seule condition que les d points d'intersection Pi(0) de Vn et Pfc^1(0) soient
en position générale dans Pfc^1(0). Un tel (k — l)-plan générique existe toujours si

k 2, de même pour k > 3 si par exemple Vn est irréductible, en particulier si Vn

est lisse et connexe.
Si cette condition de position générale est vérifiée, on dira que Cyn (d, k, n) est

"le" tissu algébrique associé à Vn C Pn+fc^1. Dans ce cas et par construction, le d-

tissu Cvn(d, k, n) est linéaire (i.e. toutes ses feuilles sont des (k — l)n-plans de Cfcn,

non nécessairement parallèles). Par exemple, pour une courbe algébrique réduite
V\ C P2 de degré d, les feuilles de Lyx (d, 2,1) sont, par dualité, essentiellement les

tangentes à la courbe duale de V\ dans G(1,P2) P2.

Soit 0 < p < n, d'après ce qui précède les C-espaces vectoriels H°(Vn,ujy
sont de dimension finie et forment un complexe (H°(Vn,ujVn),d) qu'on appelera
le complexe des formes différentielles abéliennes de la variété algébrique Vn C
mn-\-k— 1

Tout élément lu g H°(Vn,uJvJ vérifie

^-^ { este si p 0
Traced) :=^p*(u) {

n ^ ^
(*)

f 0 si 1 <p <n

ce qui généralise le théorème d'annulation classique d'Abel (cf. [A] et [Gl]) et
justifie la terminologie adoptée. Toujours dans le paragraphe 3, on verra notamment
que la relation (*) ci-dessus caractérise les formes rationnelles sur Vn, régulières
si Vn est non singulière ou bien dont le lieu polaire est contenu dans le lieu
singulier de Vn, et qui sont dans H°(Vn,ujy et ce, que Vn définisse ou non le tissu
Cvn(d, k, n).

Si la variété algébrique Vn C Pn+fc^1 définit le tissu Cyn(d,k,n), on montrera
dans le paragraphe 4 que la relation (*) ci-dessus permet de construire pour tout
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u! G H°(Vn,uiy un élément de Ap := Ap(Cvn(d,k,n)) et détermine ainsi une

application C-linéaire Ap : H°(Vn,uJv —> Ap. On établira alors essentiellement
le résultat suivant :

Théorème 2. Sous les conditions précédentes, on a un morphisme injectif de

complexes

A* :(H°(Vn,^J,d) -^ (A',S)

qui est bijectif en degré maximal p n. En particulier, on a les majorations
optimales suivantes pour 0 < p < n :

hp'°(Vn) := di0
Pour p n, on retrouve ainsi les majorations de Castelnuovo-Harris [cf. pour

n 1, [Ca], [G-H] et pour n > 1, [H], [C-G2]). Ce qui suggère d'étudier, à 0 < p < n
fixé, la nature géométrique des variétés algébriques Vn C Pn+fc^1 dont les hp<°(Vn)
sont maximaux. De même, en regard des singularités de Vn, la description du
complexe (H°(yn,u)v ),d) semble digne d'intérêt.

Les résultats obtenus sur le complexe des relations abéliennes ainsi que les

méthodes utilisées engendrent de nombreux problèmes naturels en géométrie des

tissus, même si la codimension des feuilles ne divise pas la dimension de l'espace
ambiant. Outre l'approche des tissus singuliers déjà mentionnée dans [Hé2], on
peut citer au moins l'étude géométrique des configurations des normales du tissu

W(d, k, n) en fonction des différents rangs et les questions générales d'algébrisation
des tissus, notamment les problèmes de type Abel-inverse pour les d-tissus

W(d, k, n) grassmanniens. Par ailleurs l'étude du complexe des relations abéliennes
des tissus exceptionnels (i.e. des tissus £(d,k,n) qui ont des rangs rp de tissus
algébriques, mais ne sont pas pour autant algébrisables (cf. [Hé4])) devrait
contribuer à leur description.

2. Généralités sur les tissus ; complexe des relations abéliennes
et majoration des rangs

Après quelques précisions quant aux définitions d'un (germe de) tissu de (€^,0),
on introduit les différents éléments de son complexe des relations abéliennes et l'on
en donne quelques propriétés.

Un d-tissu W(d) de codimension n de (CN,0) est défini par d feuilletages
analytiques complexes de codimension n de (0^,0) en position générale. Plus

précisément, si O := C{xi,... ,xn} désigne l'anneau des séries entières convergentes

à N variables, le tissu W(d) est donné par d familles de feuilles de codimension

n, indexées par i et en position générale ; ce sont les germes non singuliers
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d'ensembles de niveau définis par

Fh(x)=cste

Ftn (x) este

où x (xi,... ,xN) et Fîm G O avec Fîm(0) 0.
n

Pour 1 < « < d et x voisin de 0 G CN, les "normales" Qt(x) f\ dFim(x)

en x définissent d points de la grassmannienne G(n — l,¥N~l) des (n — l)-plans
de f>N~l que l'on peut regarder, via le plongement de Plùcker, dans PU/ ; ces

normales ne dépendent que du tissu W(d) et non du choix des Fim. En effet, si l'on
procède à un changement d'équations des feuilles, la i-ième feuille du tissu W(d)
est également définie par

%1(Fn(x),...,Ftn(x)) cste

lîn(Fh(x),... ,Fin(x))=cste

où les llm G C{z} C{Z1, ...,zn} vérifient d^ ' " '^ (0) ^ 0.
C^i,.. zn)

L'hypothèse de position générale est la suivante : pour tout x voisin de 0 G CN
et tout /-uplet (Q-/-j\(x),..., Q-/a(x)) de normales du tissu W(d) où 1 < / < d, la

dimension du sous-espace vectoriel de T*(CN) engendré par l'intersection (resp.
la somme) des éléments de cet /-uplet est minimale (resp. maximale).

En particulier, si N kn avec k > 2 (ce qui sera essentiellement le cas dans ce

qui suit) la position générale se traduit par

A ••• a^î(j)(°) 7^° pour tout 1 < «(1) < ••• < i(j) < d où j<k.
La notion de relation abélienne, introduite ci-dessous, joue un rôle central dans

ce travail ; elle fournit les principaux invariants d'un d-tissu W(d) de codimension

n de (<CN ,0). Pour 1 < p < n, 1 < i < d et tout multi-indice It {imi,... *mp}
de longueur \ Ii \= p, toujours strictement croissant et choisi dans {i\,... «„},

p

on pose dFj. A d,Flm Suivant de près une idée de P. A. Griffiths (cf. [G2]),

on définit le C-espace vectoriel

^ — \ \ah\cin ¦ ¦ ¦ ; fiJ ï<r<d \rA=r, fc ^ Lenes que

u... ,zn} et ^ ah(Fh,... Fîn) dFh 0

l<i<d, \h\=P
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où la structure de C-espace vectoriel est naturellement donnée par addition et

multiplication sur chaque composante ; il est constitué de ce que l'on appelle les

relations abéliennes de degré p du tissu W(d).
Pour p n, ce sont les relations abéliennes de degré maximal n du tissu W(d),

à savoir les d-uplets (giiF^,... F\n),... gd(Fd17 • • • Fdn)) G Od qui vérifient
d

Yl 9i(Fh, ¦ ¦ ¦ ,Fln)Ql 0 où gt G C{z} ; ces dernières ont été les plus étudiées
i=\
(cf. par exemple [B-B], [Cl], [C-Gl], [C-G2], [Hé2]).

Par définition, la différentielle extérieure induit un complexe de C-espaces
vectoriels, noté (A*, S) où Ap 0 pour p > n. On va prolonger ce dernier en p 0.

Pour 1 < i < d, soit (Xjm) une famille de (N — n) champs de vecteurs dans

(C^O) qui donne la i-ième famille de feuilles du tissu W(d). On considère le

système différentiel linéaire suivant :

{Xt
(ft) 0 pour \<i <d et 1 < m < N - n

dk(fi + --- + fd) O pour l<k<N

où dk -7:— pour 1 < k < N et l'on désigne par *4° := SollZ(d) le C-espace
oxk

vectoriel des solutions (/i,... fd) G Od de ce système.
En codimension 1 l'analogue du système lZ(d) dans le cadre C°° correspond

aux équations de la résonance qui interviennent en optique géométrique (cf. par
exemple [J-M-R]).

La différentielle usuelle induit une application C-linéaire S : A0 —> A1. En
effet, tout élément /j G O et vérifiant Xtm (ft) =0 pour 1 < m < N—n s'écrit d'une
manière unique fi a^F^,... Fin) avec 04 G C{z} ; de plus, pour (f\,..., fd) G

*4° et par définition de A1, on a

>z\ ozn

On dira que le complexe (A*, S) ainsi prolongé en p 0 est le complexe des

relations abéliennes du tissu W(d). D'après ce qui précède, on a

A0 Uat(Fn,... ,Fln)) eOd] a.eCiz} et ^a^,... Fîn) cstel

où, comme pour les coefficients des relations abéliennes de degré p du tissu W(d),
chaque at(Fn,... Fln) est constante sur la feuille indexée par i. Ainsi, les éléments
du C-espace vectoriel *4° peuvent être considérés comme les "fonctions" du d-tissu
W(d) de codimension n de (Cw, 0) et pour 1 < p < n les éléments de Ap en sont
alors les "p-formes".
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On a une suite exacte de C-espaces vectoriels 0 —> Cd —> A0 —> A1 —> A2.

Il suffit en effet d'utiliser l'hypothèse de position générale et le lemme usuel de

Poincaré pour les formes différentielles construites à partir des dzi sur C{z}. Par
conséquent les groupes de cohomologie du complexe (A*, S) s'identifient à Cd en
degré 0 et sont nuls en degré 1.

Soit V l'anneau nœthérien à gauche (et à droite) des opérateurs différentiels
linéaires à coefficients dans O. On note encore lZ(d) le V-module à gauche associé

au système différentiel linéaire du même nom (cf. par exemple [G-M] pour l'étude
de ces objets et la terminologie classique utilisée ci-dessous : symbole, variété
caractéristique, multiplicité, etc.).

Pour 1 < q < d et sur le modèle du système 72.(d) on a un système différentiel
linéaire TZ(q), construit à partir des champs de vecteurs donnant les q premières
familles de feuilles du tissu W(d), dont on note également TZ(q) le P-module à

gauche associé.

En utilisant le lemme dit du serpent, on peut verifier que l'on a pour 1 < q <
d — 1 une suite exacte de P-modules à gauche de type fini

(1)

î=l
où l'on désigne par

3-j (Xll,... XlN_n)

l'idéal à gauche de V engendré par les champs de vecteurs Xim pour 1 < m < N—n.
Cette suite exacte permet de passer de H(q) à lZ(q + 1 via un idéal à gauche

de V et par conséquent relie le d-tissu W(d) à ses tissus extraits. On va d'ailleurs
montrer, essentiellement par récurrence sur q, comment en tirer parti bien que
d'une manière générale la description explicite du P-module

à partir des champs de vecteurs Xim reste à faire.
On a toujours 72.(1) O V/(di,... djy) en tant que V-modules à gauche.

Cependant et en général, le P-module IZ(d) n'est pas holonome ; il suffit de prendre
par exemple d 2, N 3, n 2 avec X\ (d\) et X2 (c^), c'est-à-dire le

2-tissu de (C3, 0) défini par {x2 este, X3 este} et {x\ este, X3 este}.
Par contre si N kn, l'hypothèse de position générale va permettre de montrer

que IZ(d) est holonome, et même une connexion intégrable ou plate ; autrement
dit, on va démontrer que IZ(d) ~ Om(d) en tant que P-modules à gauche. De plus,
dans ce cas et par récurrence sur d on majorera m(d), c'est-à-dire ici la multiplicité
du 17-module IZ(d) notée mult72.(<i). Plus précisément, on obtiendra pour tout d-

tissu W(d,k,n) de codimension n de (Cfcn,0) un invariant analytique de ce tissu,
à savoir

r0 := dimc.40 mult TZ(d)
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puisque *4° s'identifie comme C-espace vectoriel à /Homx>(TZ(d),O). De plus, on
va établir également une majoration, en fait optimale, de vq.

La méthode présentée ci-dessous généralise le cas, traité en détail, des d-tissus

W(d,k,l) de codimension 1 de (Cfc,0)(c/. [Hé2]).
On suppose désormais que N kn où k > 2.

Si d 1 (resp. 2, resp. k), le théorème d'inversion locale montre que le

modèle local d'un tissu W(d, k, n) de codimension n de (C kn, 0) est donné par les

familles de (k — l)n-plans de Cfcn suivantes :

\x\ este,... xn este}

(resp. \x\ este, xn este} et este,.. X2n este}

resp. {xi este, ,xn este},..., {x(fc_1)n+1 este,... ,xkn este}) ;

ce qui signifie que l'étude des configurations possibles pour les W(d,k,n) est
intéressante dès que d > k + 1.

On pose O[Ç] := O [£i,..., £fcn]. Pour 1 < q < d, soit Ç{q) le O [^-module
gradué de présentation finie défini par la matrice des symboles associée au système
différentiel linéaire H(q), c'est-à-dire

\ la

ou '»m € O [^] est le symbole du champ de vecteurs
Pour 1 < i < d, on désigne par

l'idéal de O [£] engendré par les formes linéaires /jm pour 1 < m < (A; — l)n. Par
définition et pour 1 < i < d, la variété des zéros de Oj est la famille des n-plans de
Cfcn paramétrée par (Cfcn,0) qui sont, en fait, donnés par les normales f2j(x) du
d-tissu VV((i, A;, n) pour x voisin de 0 G Cfcn.

De nouveau grâce au lemme dit du serpent, la suite exacte (1) se laisse imiter
et l'on obtient pour 1 < q < d — 1 une suite exacte de O [^-modules gradués de

type fini
q

0 — O [£]/ (o,+i, H a») — G(q + 1) -^ Ê?(g) — 0. (2)
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De plus, on vérifie qu'il existe pour 1 < q < d un morphisme surjectif

de O [^-modules gradués de type fini où gr IZ(q) est le gradué associé au V-
module IZ(q), pour la graduation naturelle par le degré. On rappelle que pour
cette dernière, on a l'identification habituelle grT> O [£]. En particulier, <p(q) est

un isomorphisme si les champs de vecteurs Xim sont à coefficients constants pour
1 <i <q et 1 <m<(k- l)n.

Avec la convention déjà utilisée dans l'introduction, soit

^k^n) d+

v fn + l\ (n + /)(n + /-l)---nou I I := — • L expression ci-dessus se simplme pour

k 2 puisque l'on peut verifier que

En conservant l'ensemble des notations qui précèdent on a le résultat suivant :

Proposition 1. Soit W(d,k,n) un d-tissu de œdimension n de (Cfcn,0)7 alors

1Z(d) et 0multK(d) soni isomorphes en tant que T)-modules à gauche. En
particulier, la dimension du C-espace vectoriel *4 := SollZ(d) est finie et l'on a pour
1 < q<d-1

mult U(q + 1) mult TZ(q) + mult V/ [Xq+i, [ j £»-

De p/ws7 on a /a majoration optimale suivante :

i° mult 7£(d) < 7ro(d, A;, n).

Démonstration. Elle suit fidèlement les différentes étapes du cas n 1 (cf. [Hé2]

pour des détails). Par récurrence sur d, grâce à l'hypothèse de position générale et
la suite exacte (2) des G(q), on a

y/AnnÇ(d) (&,... ,Çkn)

puisque ^(1) O O[C]/(Clj--- jCfcn)- Par récurrence sur d, les morphisme
surjectifs <p(q), la suite exacte (1) des H(q) et ce qui précède montrent que la variété
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caractéristique de IZ(d) est la section nulle. Ce qui prouve que IZ(d) et
sont P-isomorphes. La suite exacte (1) des TZ(q) et ce qui précède donnent alors
la relation annoncée sur les multiplicités. On a les majorations suivantes :

multO [£]/(ag+i, P| eu) < dimc(o [£]/(a9+i, f] at) ®~ ^ ^ (n+ ^fc-^

î=i î=i

où l'on désigne par e le plus grand entier tel que e < La première
\_k — 1J k — 1

majoration s'obtient par platitude générique et semi-continuité, la seconde est une
conséquence de l'hypothèse de position générale. En effet, on peut supposer que
l'on a ag_|_i (£„+1, ¦ ¦ ¦ ¦> £fcn) et ainsi se restreindre à des idéaux de 0 [£i,... £„].
Puis, regrouper les normales i\ du tissu W(q + l,k,n) par paquets de (k — 1) en

complétant par les restes éventuels de la manière suivante :

' • • • ' ^e(fc-(fc-l)

e e+1

\q-l]où e ——- • La correspondance entre les idéaux Oj et les normales f2j jointe

à l'hypothèse de position générale imposent que chaque paquet numéroté 1, 2,..., e

et celui e + 1 contribuent effectivement à l'ensemble par l'idéal (£i,... £n)- Ce qui
donne, par produit de ces idéaux, la seconde majoration ci-dessus puisque

n + e

n

Par additivité des multiplicités et d'après la suite exacte (2) des Ç(q), on vérifie
alors par récurrence sur d et ce qui précède que l'on a la majoration

malt g (d) < iro(d, k,n).

Enfin, l'existence du morphisme surjectif <p(d) entraîne que

malt 1l(d) := malt grTZ(d) < maltg(d)

ce qui donne la majoration de l'énoncé. De plus cette dernière est optimale. En
effet, on verra dans le paragraphe 4 (cf. Proposition 4) qu'il existe des d-tissu
W(d, k, n) formés de (k—l)n-plans parallèles de C kn pour lesquels rç, ivo(d, k, n) ;

ces tissus correspondent à des cas particuliers où les champs de vecteurs Xim sont
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à coefficients constants pour 1 < î < d et 1 < m < n. Ce qui démontre la

proposition. D

L'entier ro := rgoW(d,k,n) défini ci-dessus est un invariant analytique du d-

tissu W(d,k,n) de codimension n de (Cfcn,0) qui, par construction du système
différentiel linéaire IZ(d), ne dépend pas du choix des Fim et que l'on appelle le

0-rang de ce tissu.

Remarque 1.

a) Pour les d-tissus W(d, k, 1) la majoration optimale précédente est un résultat
connu, via le théorème 1 qui suit (cf. [Cl] ou par exemple [Hé2]) puisque dans cette
situation on a une suite exacte de C-espaces vectoriels

b) De même que dans [Hé2], on notera que, d'après la démonstration de la

proposition 1, les normales Qi(x) pour x voisin de 0 G Cfcn d'un d-tissu W(d, k, n)
de 0-rang maximal ont des propriétés géométriques particulières relativement à

certains systèmes linéaires. En effet, dans ce cas on a pour 1 < q < d — 1

q

et ce, pour chaque x voisin de 0 G Cfcn (cf. également [C-G2] et [Li]).

Toujours sous l'hypothèse N kn, on va montrer que pour 1 < p < n les

C-espaces vectoriels AP formés par les relations abéliennes de degré p d'un tissu
W(d, k,n) sont de dimension finie et donner des bornes pour ces dimensions.

Avec la convention déjà utilisée et pour 1 < p < n, soit

n
7r„((i, k, n)

\P

{d- k(p+l) +p} + f/1^1)- {d- k(p + 2)

cette expression se simplifie pour k 2 puisque l'on peut vérifier que

n\ fd+n-p-V
\p

en particulier 7ri(<i, 2,1) —(d— l)(d — 2). On notera que

7ri(d, A;, 1) {d - k} + {d - 2k + 1} + {d - 3k + 2} +
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est le nombre usuel de Castelnuovo déjà évoqué dans l'introduction et sur lequel
on reviendra dans le paragraphe 4. De plus, on peut montrer que ces nombres de

Castelnuovo généralisés irp(d, k, n) et 7ro(d, k, n) sont liés par la formule suivante :

P=0

ce qui n'est pas une surprise d'après le résultat qui suit sur le complexe (A*, S).

Cette formule généralise la relation classique suivante (obtenue pour k 2) :

La proposition 1 se complète ainsi :

Théorème 1. Soit W(d,k,n) un d-tissu de codimension n de (Cfcn,0). Le
complexe (A*, S) des relations abéliennes du tissu V\?(d,k,n) est formé de C-espaces
vectoriels de dimension finie avec les majorations optimales suivantes pour 0 <
p < n :

< Trp(d, k, n).

Démonstration. D'après la proposition précédente on se restreint au cas où 1 <
p < n. On va introduire des variantes de la méthode de Poincaré-Blaschke (cf.
au moins [B-B] et [C-Gl]). Soit {a>h{Fn,... ,Fin)) ^.^ w=p ^.^ une famille

libre d'éléments de Ap ; on va montrer que rv < Kpld, k, n). On a d germes\Pj
d'applications

dont le rang est au plus n en posant abusivement

ZIt(x) (al(Fn,..., Fîn),..., a2(Fn,..., Finj).

Par définition ces germes sont liés, pour x voisin de 0 G Cfcn, par la relation
vectorielle

]T ZIt(x)dFIt(x)=0.
l<i<d,\h\=p

On considère la suite croissante de sous-espaces vectoriels de Cp engendrés par
les espaces osculateurs des germes définis par les Zj., c'est-à-dire

où \h\ p et timc{Zu{x)} N0{x)
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et plus brièvement

{Zh{x);dl{Zh){x)} CN^x\x) où, de plus l'on a \<l<kn,

{Zh{x) ; dl(ZIt)(x);dtdu(ZIt)(x)} CN^x\x), etc.

En utilisant l'hypothèse de position générale et par des dérivations successives

modulo {Z^(x)} (resp. modulo{Z^(x) ; di(Zj.)(x)}, etc.)

de la relation vectorielle précédente, on va verifier que la suite croissante des sous-

espaces osculateurs est stationnaire. Plus précisément, on va montrer que l'ordre
de ces sous-espaces s'épuise et que l'on a

N0(x) < JVi(x) < • • • < Na(x) Na+1(x) ¦¦¦

pour s s{p;d,k,n) convenable. D'après l'analycité et par semi-continuité,
on a CN°(x\x) CAr=(°)(0) pour x voisin de 0 G Ckn. Ce qui montre que
l'on a nécessairement <CN'(°)(0) Cp puisque par hypothèse la famille
{oPj- (F%1,... Fln)) est libre. Il suffit donc, pour conclure, de

montrer par définition des nombres de Castelnuovo généralisés Trp(d, k,n) que l'on
a pour v > 0, les majorations suivantes :

i=0

fn + j — 1\
En fait, comme on va le voir ci-dessous, les correspondent aux choix

V 3 J
minimaux nécessaires pour engendrer les dérivations à l'ordre j des sous-espaces
osculateurs. Simultanément, le passage de Nv{x) à A^_|_i(x) s'effectue par des

"sauts" de longueur (k — 1), rendus possibles grâce à l'hypothèse de position
générale via des mineurs (k — l)n x (k — l)n inversibles et ce, à concurrence de

s < : >. D'après l'hypothèse de position générale, on peut sup-
IL k~l J J

poser que les k premières familles de feuilles du tissu W(d, k, n) sont données par
les fonctions suivantes :

Fix xi,... Fïn xn ;... ; Fkl X(fc_1)n+1,... Fkn xkn

Pour p 1 et abusivement, quant aux notations précédentes, on a

{Zu } {Zi1 ;... ; ZId} {Z\1,... Z\n ;... ; Zdl,... Zdn }
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E ZndFn H h ZlndFln 0

Les kn relations entre les Zlm Zlm(Fn, • • • Flm), obtenues par la relation
vectorielle précédente, correspondent au système suivant :

0

+ Zdndn(FdJ 0

+ Zdndn+l(FdJ 0

Z{k+1)ldkn(F{k+1)l) Zdndkn(FdJ 0

qui montre que l'on a {Zh} {Z^k+i)v • • • ^(fc+i)„ ; • • • ; -^di, • • • ^d„} et donne

la majoration Nq{x) < n ¦ {d — k} Par dérivation modulo {Z^}, on a d'après ce

qui précède

{zIt-di{zh)} ll... A(z{k+1)n) ;... Ai(zdl), ¦ ¦ ¦ A
On peut supposer de plus, d'après l'hypothèse de position générale et ce qui précède

que pour { > k + 1, les (k — l)n champs de vecteurs Xim de (Cfcn, 0) définissant la
i-ième famille de feuilles du d-tissu W(d, k,n) sont de la forme suivante :

Par conséquent, on a

\Zh ;dl{ZI.)\ \ZI% ;... ; ö

;... ; ön(

puisque Xlm(Zlm) 0 pour 1 < i < d. De plus, on a supposé que

im Z\m{x\,... xn) ;
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ce qui montre, en appliquant d\ (resp. 82, ¦ ¦ ¦ ,dn), modulo{Z^} aux (k — l)n
dernières relations du système (0i) et grâce à l'hypothèse de position générale, via
un déterminant (k — l)n x (k — l)n inversible, que l'on a

dn(Z{2k)l),...,dn(Z{2k)J;... ;dn(Zdl),...,dn(Zdn)}.
Ce qui donne la majoration

Ni(x) <n-[{d-k} + n-{d-2k + l}].
Les dérivations précédentes effectuées dans le système (0i) et les formules de

Cramer conduisent à exactement n systèmes de (k — l)n équations reliant les

dl^fc+l)!);--- ,di(Z(fc+1)J;... ;dl(z(2k-l)1)^-- >dl(z(2k-l)J modulo{Z/.}

aux di(Z(2k-\-h)m) pour h > 0 et f < m < n, de même avec les dérivations

<92,... <9n. Or ^(fc+i)m (dpiz(k+j)m)) ° modulo{Z/j ; di(Zh)} pour 1 < m /x <
n et f < k + j < d, ce qui montre en appliquant pour f < j < k — 1 les champs
de vecteurs -X"(fc+j-)m aux systèmes précédents modulo{Z/. ;9;(Z/.)} et en
utilisant de nouveau l'hypothèse de position générale via des déterminants inversibles
convenables ainsi que la forme particulière des Xlm pour 1 > k + f que l'on a

{Zh ; 0,(Z/t) ; dtdu(Zh)} {Zh ; ö

-i}l), • • • ^(%fc_1}J ;... ; 92

• • • did2{Z{ik_l)n) ;... ;

Ce qui donne la majoration

Ce procédé se poursuit, puis s'épuise et donne ainsi la majoration annoncée pour
p 1. On remarquera que, de proche en proche, tous les champs de vecteurs Xlm
sont sollicités.

On peut verifier que cette méthode s'adapte pour 2 < p < n ; la relation vecto-
fkn\rielle entre les {Zi.} pour | /j \ p donne un système (0p) de f J équations. Les

coefficients de ces dernières ne sont pas tous simultanément nuls ; en effet ce sont
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des mineurs d'une matrice convenable et les relations quadratiques classiques de
Plùcker (cf. par exemple [K-L]) jointes à l'hypothèse de position générale permettent

de poursuivre les calculs par dérivation dans le système (0p), comme ci-dessus.

Enfin, les majorations obtenues sont optimales. En effet, on verra grâce à la proposition

4 qu'il existe des d-tissus W(d, k,n) formés de (k — l)n-plans parallèles de
Cfcn tels que rp irp(d, k, n) pour 0 < p < n. Ce qui démontre le théorème. D

Pour 0 < p < n on vérifie, notamment à l'aide des précisions données au
début de ce paragraphe, que chaque entier rp := rgpW(d, k, n) défini ci-dessus est

un invariant analytique du d-tissu W(d,k,n) de codimension n de (Cfcn,0) qui
ne dépend pas du choix des F-lm et que l'on appelle le p-rang de ce tissu. Par
définition des nombres de Castelnuovo généralisés -np(d,k,n), on notera que les

majorations du théorème 1 montrent que pour l<p<nonarp 0 dès que

Remarque 2.
a) Les majorations obtenues ci-dessus pour 0 < p < n sont probablement vraies

dans le cadre C°° où les méthodes précédentes, convenablement adaptées, doivent
pouvoir s'appliquer ; c'est en particulier le cas pour les tissus W(d, k, 1) d'après
un travail non publié de R. L. Bryant.

b) Pour p n, la majoration établie ci-dessus est due à S. S. Chern et P. A.
Griffiths (cf. [C-G2]). Pour cette majoration, les auteurs utilisent (cf. également [C-

Gl], pour des détails dans le cas n 1) la méthode de Poincaré-Blaschke avec des

changements de variables successifs, alors qu'ici l'on a préféré systématiquement
"dériver" les systèmes (0p).

c) L'existence de tissus W(d, k, 1) de 1-rang maximal est un résultat de S.S.
Chern (cf. [Cl]). Plus généralement, l'existence de tissus W(d, k,n) de n-rang
maximal sera une conséquence des résultats du paragraphe 4 et du travail de J. Harris
sur les variétés dites de Castelnuovo (cf. [H]). On verra dans la proposition 4 que
les exemples proposés de tissus W(d, k, n) de p-rang maximal pour 0 < p < n sont
liés à la géométrie d'arrangements particuliers de n-plans de pn+fc^1. Cependant,
la caractérisation pour 0 < p < n des tissus W(d, k, n) de p-rang maximal est un
problème très largement ouvert, même dans le cas où p n, et qui généralise des

questions déjà proposées par S. S. Chern dans [C2].

Les résultats précédents seront appliqués dans le paragraphe 4 ; on verra notamment

qu'ils jouent un rôle déterminant dans les questions générales à1 algébnsation
des tissus. Cependant pour terminer ce paragraphe, voici déjà une utilisation des

rangs.
Le 1-rang caractérise les (k + l)-tissus de codimension n de (Cfcn,0) qui sont

parallélisahles. En effet, on vérifie comme pour les tissus W(3, 2, n) (cf. [Hé4]) que
l'on a la proposition suivante :
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Proposition 2. SoitW(k + l,k,n) un (k + 1)-tissu de codimension n de (Cfcn,0)7
les conditions suivantes sont équivalentes :

i) rg\W(k + l,k,n) n (i.e. le 1-rang de W(k + l,k,n) est maximal) ;
ii) W(k+1, k, n) est parallélisable, c'est-à-dire à un isomorphisme analytique de

(Cfcn,0) près, le (k + 1)-tissu W(k + l,k,n) est défini par les familles de (k - l)n-
plans de C kn suivantes :

{x\ este,... ,xn este} {z(fc_i)n+i este,. xkn este}

et {x\ + xn+i H h Z(fc_i)n+i este,... ,xn+ x2n H h xkn este}

3. Rappels et compléments sur les p-formes différentielles
abéliennes d'une variété algébrique projective

Soit Vn une variété algébrique réduite de pn+fc^1 de dimension pure n, non
nécessairement irréductible, éventuellement singulière et de degré d. On s'intéresse,
dans ce paragraphe et le suivant, aux éléments du complexe

(H°(Vn,cü'vJ,d)

où les ujy sont les faisceaux de Barlet de Vn et d la différentielle usuelle. Ce
complexe est formé de C-espaces vectoriels de dimension finie ; on l'appelera le

complexe des formes différentielles abéliennes de la variété algébrique Vn C Pn+fc^1.
On va en donner quelques propriétés, des exemples et notamment justifier la
terminologie adoptée.

Auparavant, et avec les notations déjà utilisées dans l'introduction, on fait
quelques rappels sur les propriétés caractéristiques des sections locales des

faisceaux de Barlet io*x où (X,öx) est un espace analytique complexe réduit de

dimension pure n (cf. essentiellement [Bal]). On suppose désormais que X est
localement un revêtement ramifié de U contenu dans Z=£/xCfc~1etde degré
d, où U est un polydisque ouvert de C™ ; on note par tyq : X —> U le morphisme
propre, fini et surjectif induit par la première projection. Une telle situation locale
existe toujours pour le germe (X, x) en vertu du théorème de paramétrisation
locale, mais l'on ne suppose pas nécessairement que 7ro"1(O) {x} si 0 G U. Si S

est le lieu singulier de X, on a X — 7t0 (Rvq) Ç X — S où R7TQ Ç U est le lieu de

ramification de tyq. D'après ce qui précède, pour 0 < p < n et toute section locale
lu G j*j*Çlx ou 3 '¦ X — S —s- X est l'injection naturelle, on obtient une p-forme
holomorphe sur U — R^01 après recollement naturel, en posant

î=l
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où les & sont d branches locales sur Y relevant ttç, et obtenues par trivialisation. De

plus, si u (uaß) est une application C-linéaire voisine de 0 G £(Cn+fc^1, Cn), on
peut également définir comme précédemment, une p-forme holomorphe Trace^^o;)
en dehors du lieu de ramification de ttu tyq + u.

Soient ui — une »-forme différentielle méromorphe sur X où v G Qpy et g est
g

nulle sur S sans être un diviseur de 0 dans Ox, et (fi une (n — p, n)-forme C°° à

support compact dans Z. Un résultat dû à M. Herrera et D. Lieberman (cf. [H-L])
montre que l'application

f
(p i—s- lim / u> A (p

V
définit un courant, dit valeur principale associée à ui -, qui ne dépend que

9
de uj et X, et que l'on notera ui A [X] comme dans [H-P] ; ce courant n'est pas
nécessairement d -fermé. Par contre, on sait que lap-forme v définit, par intégration
sur X — S, un courant

(fi i—> / v A (fi
IX-S

qui est toujours 8-fermé, d'après la formule de Stokes.
Les résultats suivants rappellent en partie ceux déjà cités dans l'introduction

et sont complétés par différentes caractérisations des sections locales des ivx (cf.
[Bal] pour l'essentiel, [Ba3] en complément et également [Bj]):

Théorème (Barlet). Avec les notations qui précèdent, soit 0 < p < n. Il existe

un sous-faisceau ivx de j*j*Qx qui s'identifie à Qx aux points lisses de X, est

Ox-cohérent et sans-torsion ; de plus, les lux sont stables par la différentielle
extérieure d et par produit extérieur par les £lx- En outre, pour une section locale

uj G j*j*&x> ^es conditions suivantes sont équivalentes :

i) u> G u>x ;
ii) Trace7,-0(w A lu) admet un prolongement holomorphe unique pour toute q-

forme v G Qqx et tout 0 < q < n — p ;
iii) Trace^^o;) admet un prolongement holomorphe unique pour toute u

(ua,ß) voisine de 0 G £(Cn+k-l,Cn) ;
iv) u) est une p-forme différentielle méromorphe sur X, à pôles contenus dans

S et qui se prolonge à X tout entier comme courant 8 -fermé.
v

v) u! — où v G Clx et g est nulle sur S (g 1 si S $) sans être un diviseur

de 0 dans Ox, et le courant valeur principale lu A [X] est 8 -fermé.

De plus, le résultat suivant (cf. [Bal]) sera également utile : Soient /i,... fm
des fonctions analytiques sur Z, nulles sur X et qui donnent génériquement sur X
des équations réduites de X dans Z. Alors les produits extérieurs induisent pour
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0 < p < n, une suite exacte de faisceaux Ox-cohérents :

£xtko-1(Ox,Qp+k-1) ^H
1=1

oi c c| Ê ExtVQz (Ox,£l'z~ es^ la classe fondamentale de X dans Z (cf.
[Ba2]). Cette suite exacte donne en particulier l'identification suivante :

[Ux,ujx =txtOz [Ux,ilz

La description des sections globales H°(Vn,ujy des faisceaux de Barlet pour
les variétés algébriques réduites Vn C Pn+fc^1 de dimension pure n, c'est-à-dire
l'espace des p-formes différentielles abéliennes de Vn, est une question naturelle,
notamment en regard des éventuelles singularités de Vn ; on examine ci-dessous

quelques cas particuliers.

Exemples. 1) Soit Vn C Pn+1 une hypersurface algébrique réduite de degré d et
d'équation affine

/(s) :=/(si,... ,sn,sn+i) =0 avec dn+1(f)^O.

D'après ce qui précède et localement, w G Uy si et seulement si l'on a

lu A — - où 'ip r(s)dsi A--- A dsn+ï G 0™+^

dsi A • • • A dsn
soit w r(s) —— ou r G Oy ; de plus, pour obtenir des sections

àn+l(f)
globales de Wy-n, l'élément r sera nécessairement un polynôme de C [s] :=
C[si,... sn_|_i] dont le degré devra vérifier la majoration suivante : degr <
deg / — n — 2 d — n — 2. En effet, via les différents changements de cartes du

I n / 1 «2 «n+l\ i / in f V1 v

type (si, S2, ¦ ¦ ¦ Sn+l) '—^ —; —; • • • ; la (n + l)-iorme — doit rester a
Vsi si si / /

pôles umquement sur V^. Ce qui impose la majoration ci-dessus sur les degrés.
Autrement dit, l'espace H°(Vn,ujVn) des n-formes différentielles abéliennes de

Vn C Pn+1 est engendré sur C par

ds\ A ¦ ¦ ¦ A dsn „
r(s) —— ou r G <L [s\ et degr < a — n — 2.

Ce qui montre que l'on a dimcH (Vn,ujVn) I On notera que l'espace

des sections globales de ojv "ignore" les éventuelles singularités de Vn ; de plus,
cet espace est exactement constitué des n-formes rationnelles sur Vn appelées de
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première espèce relativement aux droites de Pn+1 par P.A. Griffiths dans [Gl] et
sur lesquelles on reviendra.

2) Si dans la situation de l'exemple précédent, on suppose que n 1 alors
V\ C P2 est une courbe algébrique réduite de degré d et l'on a

où reC[s] et degr < deg/- 3} ;

c'est-à-dire que l'on retrouve l'espace des 1-formes du théorème d'annulation

classique d'Abel (cf. [A] et [Gl]) dont la dimension est — (d — l)(d — 2) où d deg/.
De plus et localement, lu g ujv si et seulement si l'on a

lu— — où 'ip ads\ + ßd,S2 G Cl^2 est telle que 'ip A df G (/). Op2

0(s)
soit w avec l'existence d'un couple (a, ß) G Oy vérifiant la relation

02U) 1

ad2(f)-ßd1(f)=0 modulo (/).
Naturellement les constantes appartiennent toujours à H°(Vi,uiv ; pour obtenir
d'autres sections globales de cuVi, la relation précédente doit être vérifiée pour
(a, ß) G C [s]

2 et en outre les changements de cartes utilisés auparavant imposent
que l'on ait

deg a (resp. deg/3) < deg/ — 1 si as\+ßs2 0

ou
deg a (resp. deg/3) < deg/ — 2 sinon.

Ainsi dans tous les cas, on a la majoration suivante : dimc-n (Vi, ujVi) < I I + 1

où d deg/. De plus, les bornes précédentes sont optimales ; prendre par exemple

8-l.
3) Si dans la situation de l'exemple initial, on suppose que n 2 alors V2 C

est une surface algébrique réduite de degré d et l'on a

où reC[s] et degr < deg/ -4

dont la dimension est -(d — l)(d — 2)(d — 3) où d deg/. De plus et localement,

G u!v si et seulement si l'on a

uj— — où ip adsi + ßds2 + "fds3 G Op3 est telle que tpAdf e (f).il23
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soit lu avec l'existence d'un triplet (a, ß, 7) G O^> vérifiant les trois
ds(f) 2

relations

7öi(/)-aö3(/)=0 } modulo (/).

Comme auparavant, outre les constantes les sections globales de ujv correspondent
à l'existence de triplets (a, ß, 7) G C [s]

3 vérifiant les relations précédentes et
assujettis, via les changements de cartes déjà utilisés, à des conditions supplémentaires
portant sur les degrés. Ce qui permet, en particulier, de montrer que l'on a la

majoration suivante : dimcH0 (V2, toy2) < + 1 où d deg/. Enfin localement,

lj G ljv si et seulement si l'on a

df V 2

/ / f

est telle que rip A d/ G (/).O33 soit w avec l'existence d'un

triplet (ri, r2, r3) G Ov vérifiant la relation

n 0i(/) + r2 92(/) + r3 93(/) 0 modulo (/).
Ce qui permet, tout comme auparavant, de montrer que l'on a la majoration

suivante : dimc-n (V2, Wy-2) < 2 • I I où d deg/. De plus, toutes les bornes

précédentes sont optimales ; prendre par exemple /(si,s2,s3) S3 — 1. On
retrouve également que l'on a H°(V2, cuv 0 si V2 C P3 est une surface algébrique
lisse. En effet dans ce cas, tout élément de H°(V2,uiv est d-fermé d'après un
résultat de W. V. D. Hodge ; il suffit alors d'utiliser la relation entre les ri imposée
ci-dessus et les contraintes de degrés jointes à la propriété que les dérivées partielles
de l'homogénéisée de / forment une suite régulière de C [Xo, X\, X2, X3].

Soit Vn C Pn+fc^1 une variété algébrique réduite de dimension pure n, non
nécessairement irréductible, éventuellement singulière et de degré d. Un (k — 1)-
plan générique Pfc^1(0) G G(k — 1, pn+fc^1) coupe transversalement Vn en d points
lisses distincts pi(0). Dans un système convenable de coordonnées, on a d branches
locales

ïh (Fi Fi £1 (Fi Fi £1 (Fi Fi

sur G(k - l,Fn+k-1) où

d

Pfc^ (x) n Vn ^Jpi(x) en tant que 0-cycles de Vn ;

i=\
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avec précisément des sous-espaces linéaires ¥k~l(x) de pn+fc^1 définis par

{si
xi+ti.xn+i-\ H *fc-l-£(&_!)„_!_!

:

Sn Xn+t\.X2„-\ htfc-1-Xfcn

où pour 1 < m < n et implicitement à partir des éléments £j1;... £,ik_1 de C{z}
on a

Soit lu G H°(Vn, uiy où 0 < p < n, d'après l'une des propriétés des p-faisceaux
de Barlet énoncée dans l'introduction, on a

este si p 0

0 si 1 < p < n

En effet, d'une part la p-forme Trace(u;) définie ci-dessus admet un prolongement
holomorphe à G(k — l,Pn+fc^1) tout entier puisque le morphisme d'incidence
induit par la première projection Iyn —> G(k — l,¥n+k~l) est propre, surjectif
et génériquement fini de degré d avec par définition pour branches locales, les

applications x i—s- (x,pi(x)). D'autre part, on sait que l'on a

: si p 0

i si 1 < p < kn

Par ailleurs, on sait également qu'à toute p-forme rationnelle lu sur Vn où
0 < p < n, on peut associer une p-forme rationnelle sur G(k — 1, pn+fc^1)) toujours

d
notée Trace(u;), et qui y vérifie la relation Trace(u;) Yl P*(u) (cf. par exemple

i=\
[Gl]).

La proposition suivante établit une caractérisation des éléments de H°(Vn, ljv
pour 0 < p < n ; elle généralise le théorème d'annulation classique d'Abel et son
extension due à P.A. Griffiths pour les n-formes des hypersurfaces réduites de Pn+!
(cf. [A] et [Gl]) tout en justifiant le choix de la terminologie adoptée :

Proposition 3. Soient 0 < p < n et Vn C Pn+fc^1 une variété algébrique
réduite de dimension pure n. Les éléments de H (Vn,uiv c'est-à-dire les p-
formes différentielles abéliennes de Vn C Pn+fc^1 sont les p-formes rationnelles
lu sur Vn, régulières si Vn est non singulière ou bien dont le lieu polaire est
contenu dans le lieu singulier de Vn, et qui vérifient

{ este si p 0
Trace (eu) l

[0 si \<p<n
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Démonstration. => : C'est une conséquence de ce qui précède, notamment du
théorème rappelé ci-dessus qui caractérise les sections locales des iov et du
théorème de Chow. <= : Soit lu une p-forme rationnelle sur Vn vérifiant les
conditions de la proposition. Si S désigne l'éventuel lieu singulier de Vn, alors cette
p-forme lu définit une section locale de j*j*Qy où j : Vn — S —s- Vn est l'injection
naturelle. Pour montrer que uj G H°(Vn, cuy il suffit d'établir, en utilisant de

nouveau le théorème de caractérisation des sections locales des iov que Trace^^o;)
admet un prolongement holomorphe unique pour toute u {uaß) voisine de

0G£(Cn+fc-1,Cn)oÙ7rM 7r0+Mavec7r0(si,... ,sn,ti,... ,tfc_i) (si,... sn)
dans le système de coordonnées utilisé auparavant. Dans ce but, on va montrer
que l'on peut évaluer Trace^^o;) à partir de Trace(u;) pour u {ua^) voisine de

0 G £(Cn+fc-1, C"). Par définition, on a

7T.-1
m (ai, ,an) {(si,... sn,ti,. ,tfc-l)

un,\si + unßS2 + • • • + (1 + un^n)sn an - urh h }

Grâce aux formules de Cramer il existe à u fixée et voisine de 0 G £(Cn+fc^1, Cn),
un germe de morphisme

Pu : (C™,0) -^ (G(k- l,Pn+fc-1,Pfc-1(pu(0)) (Ckn,Pu(0))

tel qu'aux notations abusives près et par définition des Pfc^1(x) on ait

en particulier, tt0 (<ti, ,an) Pfc^1(<ri,... <rn, 0,... 0). Grâce aux choix des

coordonnées, on avait déjà

Trace7ro(w)(si,... sn) Trace(w)(si,... ,sn,0,... ,0)

puisque pt(si,... ,sn,0,... ,0) pt(s; 0) (s ; ^n(s),... 6fc_i(s)) et la
construction précédente montre que l'on a plus généralement

pour u (uatß) voisine de 0 G £(Cn+fc^1, Cn). Ce qui d'après les hypothèses
permet d'assurer les prolongements nécessaires et démontre la proposition. D
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4. Des tissus algébriques aux majorations des dimensions des
ti- ' Ti (jJ~\r

On suppose désormais que Vn est une variété algébrique réduite de pn+fc^1 de

dimension pure n, non dégénérée (i.e. non contenue dans un hyperplan de Pn+fc^1),
non nécessairement irréductible, éventuellement singulière et de degré d.

Au voisinage d'un point générique Pfc^1(0) de la grassmannienne G(k—l,Pn+fe^1)
des (k — l)-plans de pn+fc^1) on peut constuire un d-tissu Cyn(d, k, n) de codimen-
sion n de (G(k - l,Vn+k~1),Vk~1(0)) (Cfcn,0) dont les feuilles correspondent
aux variétés de Schubert crpjx\ des (k — l)-plans de pn+fc^1 passant par pi(x) où

d

Pfc^1(x) n Vn 2_,Pi(x) en tant que 0-cycles de Vn

st les d points d'intersection Pi(0) de Vn et Pfc^1(0) sont en position générale dans
Pfc^1(0). En effet, dans ce cas et dans le système de coordonnées déjà utilisé, on a

ïh (Fi Fi £i (Fi Fi £i (Fi Ft

et les d feuilles du tissu Cvn(d,k,n) seront données par

{F%1 (x) este,.. Fln (x) este}

où l'on rappelle que l'on a pour 1 < m < n et x voisin de 0 G Cfcn

F (t) t -A-P (F (t\ F (t\\ t i -4-• • •

+ ^fc-i(-Fn(a;)'--- >FiAx))-x(k-l)n+m-

La position générale des normales Qt(x) de ce tissu Cyn (d, k, n) est assurée pour x
voisin de 0 G C kn puisque, par construction, elle provient de la position générale
dans Pfc"1(0) des points

Un tel (k - l)-plan générique Pfc"1(0) G G(k - l,Fn+k-1) existe toujours si

k 2, de même pour k > 3 si par exemple Vn est irréductible, en particulier si Vn
est lisse et connexe ; il suffit, par exemple, d'adapter l'argument donné dans [G-H]

pour le cas des courbes irréductibles et non dégénérées V\ de Pfc.

Si cette condition de position générale est vérifiée, on dira comme dans
l'introduction que Cyn (d, k, n) est le tissu algébrique associé à Vn C Pn+fc^1. On rappelle
dans ce cas et par construction que le d-tissu Cvn(d,k,n) est linéaire (i.e. toutes
ses feuilles sont des (k — l)n-plans de Cfcn, non nécessairement parallèles).
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On suppose désormais que la variété algébrique Vn C Pn+fc^1 définit le tissu
Cvn{d, k, n). Pour 0 < p < n, on note Ap := Ap(£vn{d, k, n)) le C-espace vectoriel
des relations abéliennes de degré p du tissu Cyn{d, k, n).

D'après les résultats de la fin du paragraphe précédent, on a une application
C-linéaire

donnée par Ap(uj) (a/.(i?j1,... Fin)) 1<-<d ,f, où lap-forme w G i/°(V^,Wy-
s'écrit lu Yl a/.(si,... sn) ds/^ au voisinage de ft-(O). En effet, par définition

\h\=P
et ce qui précède, on a

^-^ f este si p 0
TraceH= ]T «^,...,4)^,.=

l<î<d, |/i|=p v - J- -
Théorème 2. S'oms les conditions précédentes, on a un morphisme injectif de

complexes
A' : (H°(Vn,cü'vJ,d) -^ (A',ô)

qui est bijectif en degré p n. En particulier, le n-rang rn du tissu algébrique
CVn(d,k,n) associé à Vn C P"+fc-1 est égal à dimc H°(Vn, w£j et l'on a les

majorations optimales suivantes pour 0 < p < n :

hp'°(Vn) := dime H°(Vn, <J < rp := dimc Ap < np{d, k, n).

De plus, pour les hypersurfaces algébriques réduites Vn C Pn+ de degré d on a

hn'°(Vn)=rn Tvn(d,2,n)

Démonstration. Par définition du complexe (.A*, S) := [A*{Cyn{d, k, n)), 5) des
relations abéliennes du tissu algébrique Cyn{d, k, n) et ce qui précède, les Ap définies
ci-dessus induisent un morphisme de complexe A' : (HQ(Vn,u)y ),d) —> (A',ô).
Pour étudier les premières propriétés de ce dernier, on va transiter via le cas
des tissus algébriques Cvn(d,2,n) associés aux hypersurfaces Vn C Pn+1. Soit

¦k : pn+fc^1 —5. p™+l une projection générique adaptée, alors n{Vn) Vn est une
hypersurface réduite de Pn+! dont le degré est d et l'on peut verifier que l'on a le

diagramme commutatif suivant :

A'(CVn(d,k,n)) e—> A'(C~(d,2,n))
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où les notations précédentes sont conservées et le morphisme tt* est induit, via
le lemme de Dolbeault-Grothendieck, par l'image directe des courants. En effet,
on sait que celle-ci commute avec 5 et que pour tout lu g H°(Vn,u)y on a

7r*(w A \Vn\) 7r*(w) A [Vn]. De plus, dans le système de coordonnées déjà utilisé

avec Fim{x\,... ,X2n) Fîm(xl, ¦ ¦ ¦ jX2n,0,... ,0) pour 1 < m < n puisque l'on
peut supposer que localement tt(s\, sn,t\,... ,tfc-l) (sb • • • sn,t\) ; en
fait, on a

£(x\,... ,x2n) n Vn y jpi(x\1... ,X2n) en tant que O-cycles deVn
r=l

où d'une part £(x\,... ,X2n) est la droite de Pn+1 définie par

si xi+ti.xn+iI

(xi,... ,x2n)
I

S„ Xn+t\.X2n

et d'autre part pi (i^1;... ,Fin,£ll(Fll,... ,Fln)). En particulier, on a

Trace(7r*(w))(xi,... ,x2n) Trace(w)(xi,... x2n,0,... ,0).

Par définition, tt* est un morphisme injectif puisque la projection tt induit un
morphisme birationnel de Vn sur Vn. En outre, l'hypothèse de position générale
montre que l'application g est injective. D'après les contraintes de degrés (cf. les

exemples du §3), le morphisme A' est toujours injectif ; de plus, il est bijectif
en degré maximal n d'après les majorations générales du théorème 1 et puisque

dimciï (Vn, <jjn~ I (on peut également adapter l'argument de [Hél], cas

n 1). Ce qui montre, d'après les propriétés du diagramme commutatif ci-dessus,

que le morphisme de complexe A' est toujours injectif ; de plus et par construction,
ce dernier est bijectif en degré maximal n d'après la proposition 3. Ce qui donne les

majorations énoncées en utilisant les résultats du théorème 1 ; de plus, ces dernières
sont optimales, notamment grâce à des exemples d'arrangements particuliers de

n-plans de pn+fc^1 et la proposition qui suit. Ce qui démontre le théorème. D

Pour p n, on retrouve ainsi les majorations de Castelnuovo-Harris (cf. pour
n 1, [Ca], [G-H] et pour n > 1, [H], [C-G2]).

Le théorème 2 montre, par exemple, que Virrégularité q(S)
d'une surface algébrique irréductible S C Pfc+1, non dégénérée et de degré d vérifie
la majoration suivante : q(S) < iri(d, k, 2).
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Les majorations obtenues ci-dessus suggèrent naturellement d'étudier, à 0 <
p < n fixé, la nature géométrique des variétés algébriques Vn C pn+fc^1 dont les

hp'®{Vn) sont maximaux.
Par définition des nombres de Castelnuovo généralisés Trp(d,k,n), les

majorations du théorème 2 montrent que sous les hypothèses précédentes et pour
1 < p < n on a hp'°(Vn) 0 dès que 1 < d < (k — l)p + 1 ; de plus, comme dans

[C-G2], on peut "inverser" les formules donnant les irp(d, k,n) et ainsi obtenir, par
exemple, des minorations du degré des Vn C Pn+fc^1 ayant un hp<°(Vn) donné.

L'exemple du tissu algébrique qui suit permet, notamment, de montrer que les

bornes -np{d,k,n) obtenues précédemment sont optimales.
Soit C la courbe rationnelle normale de pfc-1 paramétrée par t i—> [l,t,..., tk~1].

On choisit d points distincts de C correspondants à des tj G C. On considère le d-

arrangement o(C, tj) de n-plans de pn+fc^1 définis, dans le système de coordonnées
affines déjà utilisé, par

t\ Tj

Cet arrangement définit un d-tissu linéaire VT^(d,k,n) := Cvn(d,k,n) de (Cfcn,0)
où Vn est le support du d-arrangement o(C,tj). En effet, des déterminants de

Vandermonde montrent que les pi(0) (0,... 0, tj, jT^1) sont d points de

Pfc^1(0) en position générale ; de plus, les familles de feuilles du tissu VTz(d,k,n)
sont des (k — l)n-plans de Cfcn parallèles d'équations

Fh{x) xi + Tt.xn+i + ¦¦¦ + T-fc 1.x(fc_1)n+1 este

Fîn(x) xn + Tt.X2„ + ••• + r-fc l.xkn este.

On identifie le d-arrangement o(C, tj) et son support, comme variété algébrique
réduite de pn+fc^1 de dimension pure n et de degré d. Pour 0 < p < n, on note
Ap := Ap{VTz {d, k, n)) le C-espace vectoriel des relations abéliennes de degré p du
tissu VT^(d,k,n) associé au d-arrangement o(C,tj).

Avec l'ensemble des notations précédentes, on a le résultat suivant :

Proposition 4. On a un morphisme bijectif de complexes

A' : (H°(a(C,ri),u;l{OiTi)),d) -^ (A',ô).

De plus, pour 0 < p < n le p-rang du tissu VTî(d,k,n) de (Cfcn,0) défini par
le d-arrangement tt(C, tj) de n-plans de pn+fc^l est maximal (i.e. dimc^4p
TTp(d,k,n)) et l'on a une suite exacte de C-espace vectoriels

0 -^ cd -^ A0 -^ A1 -^ • • • -^ ^"-1 -^ ./T -^ 0
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Démonstration. Comme dans la première partie de la démonstration du théorème
précédent, on peut transiter via le cas hypersurface à l'aide d'une projection
générique. Par conséquent, pour montrer que l'on a l'isomorphisme annoncé, il
suffit d'établir que A' est bijectif dans le cas où le d-arrangement o(C, tj) a pour
support l'hypersurface algébrique Vn C Pn+1 dont l'équation affine est

d

î=i

D'après la première partie du théorème précédent, on a un morphisme injectif

Or dans ce cas particulier on peut verifier explicitement à l'aide de la description
des H°(Vn, uiy largement esquissée dans les exemples du paragraphe 3 que l'on a

et

pour 1 < p < n. Ce qui prouve la première partie de la proposition d'après les

majorations du théorème 1 puisque les nombres précédents sont précisément les

bornes Trç,(d, 2, n) et 7rp(d, 2, n). On doit également vérifier que pour 0 < p < n, le

p-rang du tissu VTz(d, k, n) est -np{d, k, n). En degré p 0, il suffit d'établir d'après
les résultats du paragraphe 2 que l'on a l'égalité suivante pour 1 < q < d — 1 :

1

dime (O [£]/K+i, f| (k) ® H où „
n -\- e

où e

et avec ici

flî (Cn+l -Tî-Cb&n+l -Tf-Cl, • • • >£(fc-l)n+l ~ ^ -Cl 5 • • • 5

en effet, les champs de vecteurs associés au tissu VTî(d, k, n) sont à coefficients
constants. Pour vérifier l'égalité ci-dessus, on utilise le début de la résolution canonique
de Hubert

> O [£](") -^ O [£fn -^ (£i,... ,6„) — 0

Elle permet de décrire, de proche en proche, les éléments de (| ck modulo
î=l

qu'on peut supposer être l'idéal (^n+i,... Cfcn)- On se restreint ainsi à des idéaux



54 A. Hénaut CMH

de ö[£i,... £n] et l'on obtient alors le résultat, grâce à des déterminants de

Vandermonde construits à partir des tj et puisque

n -\- e

n

En degré p où 1 < p < n, on va exhiber Tvp(d,k,n) relations abéliennes
indépendantes de l'espace Ap. Pour p 1, on fait quelques remarques préliminaires
proches des arguments de la démonstration du théorème 1. Soit

(aii; ,a\n ;... ; adl, ,adn) G A1,

on a

avec pour 1 < m < n

F*m (x) =xm+ n. xn+m H h T-fc l. x(fc_1)n+m

d

Par définition ona J ai1dFi1 + • • • + alndFln 0, ce qui donne A;n relations
l

1

atm =0

où 1 < m < n. Si d > k, l'utilisation d'un déterminant de Vandermonde, d'ordre
k, construit à partir des tj montre que pour 1 < m < n la donnée des différentes
valeurs «(fc+i) (0),... cKdm(0) détermine de manière unique celles des a\m(0),

afcm(0). Par dérivation des relations ci-dessus, par rapport à des xj convenables,

on obtient

pour 1 < m < n et 1 < l < n. Si d > 2k — 1, l'utilisation d'un déterminant de

Vandermonde, d'ordre 2k — 1, construit à partir des tj montre que pour 1 < m < n
(2k) döid

et 1 < / < n la donnée des différentes valeurs —^— (0), • • • m (0) détermine
ozi dzi

da.\ ^a(2k-l)
de manière unique celles des m (0), • • • —^r — (0) et ainsi de suite, suivant

ozi ozi
la valeur de d relativement à k, pour les dérivées d'ordre supérieur. D'après les

majorations du théorème 1 et ce qui précède il suffit, pour obtenir une base du
C-espace vectoriel A1, de faire varier les coefficients du développement de Taylor
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des otim(zi,... zn) onl<i<detl<m<n selon la méthode suivante : on
choisit, en fonction de la valeur de d relativement k k, les constantes

0)'- ;adl(0),... ,adn(0)),

puis les dérivées partielles du premier ordre

pour 1 < / < n et ainsi de suite pour les ordres supérieurs, juqu'au total de

n ¦ TTi(d,k,n).

La même méthode s'applique pour 2 < p < n avec des déterminants de Van-
dermonde d'ordre plus élevé. De plus, d'après la construction précédente et par
définition de la différentielle ô on peut vérifier que les groupes de cohomologie du
complexe (A*, ô) sont nuls en degré p > 2 pour le tissu VT% (d, k, n). Ce qui prouve
la proposition d'après les résultats du paragraphe 2. D

On dit qu'un d-tissu W(d,k,n) de codimension n de (Cfcn,0) est algébrisable
si, à un isomorphisme analytique local de (Cfcn,0) près, ce tissu est algébrique ;

c'est-à-dire de la forme Cvn{d,k,n) où Vn est une variété algébrique convenable
de pn+fc-! (cf le début du présent paragraphe). La caracténsation des d-tissus

W(d, k, n) algébrisables est une question naturelle, largement ouverte, mais liée

d'après le théorème 2 à la nature des rangs du tissu W(d,k,n). Par exemple, un
d-tissu W(d, 2, n) algébrisable est nécessairement de n-rang maximal.

Il est probable que le complexe (A*, S) des relations abéliennes d'un tissu
W(d,k,n) soit sollicité pour répondre au problème de son algébrisation ; c'est
le cas, via le théorème de Lie-Darboux-Griffiths (cf. [Gl]), de nombreux résultats
connus d'algébrisation des tissus W(d,k,n) de n-rang maximal (cf. par exemple
[B-B], [C-G1], [Hél], [Hé3]). Ces derniers apparaissent comme des variations sur
un résultat de H. Pomcaré (cf. [P], cas n 1, k 2 ci-dessous) dont on rappelle
la généralisation particulière suivante (cf. [Hé4]) :

Proposition 5. Tout tissu W((k — l)n + k + 1, k, n) de n-rang maximal, à savoir
n + k, est algébrisable.
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