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Errata

P. Sankaran and V. Uma

In the article “Cohomology of toric bundles” by P. Sankaran and V. Uma published
in Volume 78/3 (2003), pp. 540-554 in the journal Commentarii Mathematici
Helvetici were errors. The corrections are as follows:

We correct here the errors in our paper [6] which we found recently much to
our embarrassment. The notations of [6] will be in force unless otherwise stated.

1. In Lemma 2.2(i) it was asserted that the elements z,, € 7 := Zg for every ue M
the proof of which was left out as an “easy exercise”. Upon re-examining our
proof we realized that it is not valid without further hypotheses! We circumvent
the problem by modifying the definition of 7 as follows so that Lemma 2.2(i) is
redundant:

Assume that r;,1 < i < n, are invertible elements in the centre of S. Let 7
be the (two-sided) ideal of the polynomial algebra S[zy,- - ,z4] generated by the
following two types of elements:

Ljy o Thges ISJPSCL (1)

whenever vj,,-- -, v;, do not span a cone of A; for each u := 37, ;. aiu; € M,

the element
wi= [ -z —r, J] @=—zy) @ (i)’
J,{u,v;)>0 Ji{u,v;) <0

where 7, = [],<,<, ri*. Define R(S,A) := S[zy,--- ,z4]/T.

With this definition of Z, Lemma 2.2(i) is a tautology. Remaining parts of
Lemma 2.2 (the proofs of which used part (i)) are now valid as given in [6].

Lemma 2.2 was used in Proposition 4.3(iii). But with the corrected definition
of R, it continues to hold because in 4.3(ii), we established the stronger condition
[T[L;]®v) = 1. This (together with 4.3(i)) ensures that z; — (1 — [L;]¥), 1 <
j < d, does yield a well-defined ring homomorphism R—K(X) (where r; = 1,
1<i<n).

Thanks to equations (7) and (8), p. 552 of [6], the proof of Theorem 1.2(iv) is
valid verbatim with this modified definition of .

2. In Theorem 1.2 (ii), we need, besides the new definition of R, that B be Haus-
dorff.
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Proof of Theorem 1.2(ii). We now give a proof that K*(F(X)) is a free K*(B)-
module of rank m, the number of n-dimensional cones in A where X = X(A).
With notations as in &4, [6] the restriction of [£(7)], 1 < i < m, to the fibre X
forms a Z-basis for K*(X). Since B is compact Hausdorff, it is locally compact and
normal. Therefore B can be covered by finitely many compact subsets Wy, --- Wy,
such that the bundle x|W, is trivial for 1 <r < k. Let Y be a closed subspace
of W,. Now using the Kiinneth theorem for K-theory, which is also valid for
general compact spaces (cf. [2]), we see that K* (7~ 1(Y)) is a free K*(Y)-module
with basis [£(7;)|7~1(Y)], 1 <4 < m. Applying Theorem 1.3, Ch. IV, [4], we
conclude that K*(FE(X)) is a free K(B)-module with basis [£(7;)], 1 < i < m.
In view of equations (7) and (8), p. 552, [6], setting 7, = 7*(£}), one has a
well-defined homomorphism R(K(B), A)—K(F(X)) of K(B) algebras defined
by z; — (1 — L;). Rest of the proof is exactly as given in p. 552, [6]. O

3. It was asserted after the proof of Lemma 4.2, [6], that flag varieties G/B
where G is semi simple and B a Borel subgroup and smooth Schubert varieties in
G/ B satisfy the hypotheses of Lemma 4.2. In fact it turns out that H*(G/B;Z)
is not generated by H?(G/B;Z) in general. This is related to the presence of
torsion in the integral cohomology of the classifying space BG. (See §4 of [3].)
However H*(SL(n,C)/B;Z) is generated as an algebra by H?(SL(n,C)/B;Z).
More importantly, the conclusion of Lemma 4.2 is valid for any G/B. This follows
from the surjectivity of the “a-construction” established by Atiyah-Hirzebruch
(Theorem 5.8, [1]) and Pittie [5].
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