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Errata

P. Sankaran and V. Uma

In the article "Cohomology of toric bundles" by P. Sankaran and V. Uma published
in Volume 78/3 (2003), pp. 540-554 in the journal Commentarii Mathematici
Helvetici were errors. The corrections are as follows:

We correct here the errors in our paper [6] which we found recently much to
our embarrassment. The notations of [6] will be in force unless otherwise stated.

1. In Lemma 2.2(i) it was asserted that the elements zu G T := Is for every w G M
the proof of which was left out as an "easy exercise". Upon re-examining our
proof we realized that it is not valid without further hypotheses! We circumvent
the problem by modifying the définition of I as follows so that Lemma 2.2(i) is

redundant:
Assume that rj, 1 < i < n, are invertible elements in the centre of S. Let I

be the (two-sided) ideal of the polynomial algebra S[x-\_, ¦ ¦ ¦ ,Xd] generated by the
following two types of elements:

xh---xjk, l<jP<d, (i)

whenever Vjx, • • • Vjk do not span a cone of A; for each u := 5^i<j<n a«w« € M,
the element

where ru T\i<t<nrt*- Define ^(S,A) := S[xu ¦ ¦ ¦ ,xd]/l.
With this définition of I, Lemma 2.2(i) is a tautology. Remaining parts of

Lemma 2.2 (the proofs of which used part (i)) are now valid as given in [6].
Lemma 2.2 was used in Proposition 4.3(iii). But with the corrected définition

of 1Z, it continues to hold because in 4.3(ii), we established the stronger condition
Yl[Lj]{u'V}) 1- This (together with 4.3(i)) ensures that x3 ^ (1 - [L0]w), 1 <

j < d, does yield a well-defined ring homomorphism 1Z—>K(X) (where rj 1,

1 < i <n).
Thanks to equations (7) and (8), p. 552 of [6], the proof of Theorem 1.2(iv) is

valid verbatim with this modified définition of 72..

2. In Theorem 1.2 (ii), we need, besides the new définition of 1Z, that B be Haus-
dorff.
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Proof of Theorem 1.2(11). We now give a proof that K*(E(X)) is a free K*(B)-
module of rank m, the number of n-dimensional cones in A where X X(A).
With notations as in §4, [6] the restriction of [£(tj)], 1 < i < m, to the fibre X
forms a Z-basis for K*(X). Since B is compact Hausdorff, it is locally compact and
normal. Therefore B can be covered by finitely many compact subsets W\, ¦ ¦ ¦ W]~

such that the bundle tt\Wt is trivial for 1 < r < k. Let y be a closed subspace
of Wr. Now using the Kiinneth theorem for if-theory, which is also valid for
general compact spaces (cf. [2]), we see that K*(tt^1(Y)) is a free K*(Y)-module
with basis ^(t^Itt"1^)], 1 < i < m. Applying Theorem 1.3, Ch. IV, [4], we
conclude that K*(E(X)) is a free K(B)-vnodn\e with basis [£(tj)], 1 < i < m.
In view of equations (7) and (8), p. 552, [6], setting rt tt*(^v), one has a

well-defined homomorphism TZ(K(B),A)—>K(E(X)) of K(B) algebras defined

by Xj i—> (1 — Cj). Rest of the proof is exactly as given in p. 552, [6]. D

3. It was asserted after the proof of Lemma 4.2, [6], that flag varieties G/B
where G is semi simple and B a Borel subgroup and smooth Schubert varieties in
G/B satisfy the hypotheses of Lemma 4.2. In fact it turns out that H*(G/B,Z)
is not generated by H2(G/B;Z) in general. This is related to the presence of
torsion in the integral cohomology of the classifying space BG. (See §4 of [3].)
However H*(SL(n,C)/B;Z) is generated as an algebra by H2(SL(n,C)/B;Z).
More importantly, the conclusion of Lemma 4.2 is valid for any G/B. This follows
from the surjectivity of the "«-construction" established by Atiyah-Hirzebruch
(Theorem 5.8, [1]) and Pittie [5].
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