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Rigid resolutions and big Betti numbers

Aldo Conca, Jirgen Herzog and Takayuki Hibi

Abstract. The Betti-numbers of a graded ideal I in a polynomial ring and the Betti-numbers
of its generic initial ideal Gin(I) are compared. In characteristic zero it is shown that if these
Betti-numbers coincide in some homological degree, then they coincide in all higher homological
degrees. We also compare the Betti-numbers of componentwise linear ideals which are contained
in each other and have the same Hilbert polynomial.
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Introduction

Let K be a field of characteristic 0 and S = K|z, ..., zy] the polynomial ring over
K with graded maximal ideal m = (1, ...,z,). Denote by 3;(M) = Tor? (K, M)
the ith Betti number of a finitely generated graded module M and by Gin([) the
generic initial ideal of a graded ideal I with respect to the reverse lexicographical
order.

In this paper we answer (positively) a question raised by the first author in [8].
We prove that if a graded ideal I C S has §;(I) = 3;(Gin({)) for some i, then
Be(I) = Br(Gin(I)) for all k > i, see Corollary 2.4. For ¢ = 0, this theorem was
first proved by Aramova, Herzog and Hibi [2]. More generally, we show that the
same statement holds if Gin([) is replaced by either any generic initial ideal of I
or by the lex-segment ideal associated with 1.

Given a finitely generated graded S-module M, a generic sequence of linear
forms w1, ...,y, and an integer p, 1 < p < n, we define the generic annihilator
number o, (M) of M to be dimg ((y1, ..., ¥p—1)M a1 yp/ (Y1, .-, yp—1)M and the
generic Koszul homology H;(y1, ..., yp; M) to be the ith-homology of the Koszul
complex over M with respect to yq,...,¥yp.

In the first section of this paper we show that there is an upper bound for the
Betti numbers of M in terms of the generic annihilator numbers of M. We show in
Theorem 1.5, that among other equivalent conditions, this upper bound is achieved
for all ¢ if and only if mH;(y1,...,yp; M) =0foralli >0andp=1,...,n.
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The above mentioned Corollary 2.4 is a consequence of the more general Theo-
rem 2.3, proved in Section 2, which says that if the ith Betti number of M achieves
the upper bound given by the generic annihilator numbers, then the upper bound
is also achieved for jth Betti numbers with j > ¢. For the proof of this theorem the
following interesting annihilation property of Koszul homology is required: sup-
pose that for a generic sequence y = y1, ..., y, of linear forms and some 7 one has
mH;(y1,...,yp; M) =0 for all p then mHy(y1,...,yp; M) =0 for all >4 and for
all p.

In the last section of the paper we show that if two componentwise linear
ideals I € J C S have the same Hilbert polynomial then 3;(J) < g;(I) for all
i, see Theorem 3.2. This theorem was inspired by a question of Eisenbud and
Huneke: suppose char(K) = 0 and I is a graded m-primary ideal in S with I C m?¢
for some d. Is it then true that the number of generators of Gin([) is greater than
or equal to the number of generators of m?? As an application of Theorem 3.2 we
show in Corollary 3.4 that this is indeed the case. Moreover, we show that Gin([)
and m? have the same number of generators if and only if I + (y) = m¢ + (y) for
a generic linear form y, see 3.4.

Not all results in this paper require that K is a field of characteristic 0. How-
ever in those results which refer to generic initial ideals we need this hypothesis,
otherwise they are false.

We would like to thank MSRI in Berkeley for its hospitality while part of the
research for this paper was carried out. The results and the examples presented
in this paper have been inspired and suggested by computations performed by the
computer algebra system CoCoA [7]. We would also like to thank Giulio Caviglia
for useful discussions regarding 3.6.

1. An upper bound for Betti numbers

Let K be an arbitrary field, unless otherwise stated, S = K[z, ..., zy] the polyno-
mial ring in n variables over K with each degz; = 1, m = (z1,...,z,) the graded
maximal ideal and M a finitely generated graded S-module.

The S-modules Torf (K, M) are finitely generated graded K-vector spaces. The
numbers

B;(M) = dimg Tor} (K, M)

are called the Betti numbers of M. They are invariant under base field extensions,
so that, without any restrictions, we may assume that the base field is infinite.
We will consider also the graded Betti number 3;; defined as the dimension of the
degree j component of Tor? (K, M).

We want to relate the Betti numbers of M to another sequence of numbers,
a1 (M), ag(M), - -, which we call the generic annihilator numbers of M.

The property of a linear form to have a minimal finite length annihilator with
respect to a module is a Zariski-open non-empty condition on the space of linear
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forms. We call a linear form with this property generic (with respect to the
module). To avoid endless repetitions we tacitly assume that modules to which
generic refers are clear from the context.

Let y = y1, ..., yn be generic linear forms. Then

Ap= (Y1, Yo 1)M 00 4/ (1, - s Up1)M
is a module of finite length. We set
Ozp(M) = dimK Ap.

Generic annihilators and generic annihilator numbers were first considered in a
paper by Trung [18] in the context of local cohomology, and were subsequently used
in other contexts, for example in [1] and [19]. We denote by H;(p, M) the Koszul
homology H;(y1, ..., yp; M) of the partial sequence y1, ..., yp, and set h;(p, M) =
dimg H;(p, M). If there is no danger of confusion, we simply write 3;, a;, H;(p)
and h;(p) for B;(M), o;(M), Hi(p, M) and h;(p, M) respectively.

Attached with y there are long exact sequences

C—— Hilp—1) Z% Hy(p—1) —— Hi(p) —— Hia(p—1)
S —— Ho(p—1) 22 Ho(p—1) —— Ho(p) —— 0.

Here ¢; p—1: Hi(p — 1) — H;(p — 1) is the map given by multiplication with +y,.
Note that A, is the Kernel of the map g ,—1. We conclude that

hi(p) = hi(p — 1) + ap — dimg Imepy 1 (1)
for all p and
hi(p) = hilp — 1)+ hi—1(p — 1) —dimg Im; 1 —dimg Imep;_1 -1 (2)
for all p and ¢ > 1. With the notation introduced we have:

Proposition 1.1. Given integers 1 < i < p we define the set
Aip=1(a,b) eN?:1<b<p—1and max(i —p+b,1) <a<i}.
We have

(a) hi(p) < Z?;i“ (*ay foralli > 1 and p > 1.

(b) For given+ > 1 and p > 1 the following conditions are equivalent:

(i) hi(p) = Z?:ﬁl (D).
(i) @ap =0 for all (a,b) € A; p.
(ili) mH,(b) =0 for all (a,b) € A, ,.

Proof. By induction on p and using equations (1) and (2) one proves that

p—itl ;
p—1J p—b\ ..
hi(p) = Z (z _ 1)aj — Z (z _ a> dimg Im @q p.

g=1 (a,b)EA; p
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Then (a) and the equivalence of (i) and (ii) in (b) follow immediately. For the
equivalence of (ii) and (iii) we notice that a generic linear form annihilates H,(b)
if and only if mH,(b) = 0. O

By taking p = n we obtain:
Corollary 1.2. (a) 8; < Y0 it ("N for all i > 1.

= F=1 i—1
(b) For a given i the following conditions are equivalent:

(i) 8= Z;Zf“ (?:f)aj;
(il) mH,(b) =0 for all (a,b) € A; 5.

(¢) The following conditions are equivalent:

@) B =0 (" h)ay foralli > 1,
(ii) mH,(b) =0 for all b and for all a > 1.

We now want to discuss when condition (¢)(ii) is satisfied. We first note that
it implies that 41, ..., ¥y, is a proper sequence in the sense of [13].

Definition 1.3. Let R be an arbitrary commutative ring, and M and R-module.
A sequence v, ..., y, of elements of R is called a proper M-sequence,
if ypp1 Hi(p;M)=0foralli>1landp=0,...,7r—1.

In [16] Kiihl proved the following remarkable fact: The sequence y1,...,y, is a
proper R-sequence if and only if

ypp1Hi(p,R) =0 for p=0,...,r—1

Let I be a graded ideal of S, then we write I for the ideal generated by all
homogeneous polynomials of degree j belonging to I.

A homogeneous ideal I C S is called componentwise linear [14] if Ij; has a
linear resolution for all j.

For a monomial u € S we set

m(u) = max{i: z;|u}.

Recall that a monomial ideal I C S is strongly stable if, for all monomials «
belonging to I and all for all variables =; which divide u, one has @;(u/xz;) € I for
all i < j. Moreover I is called stable if z;(u/xpm(y)) € I for all monomials v € I and
all i < m(w). The minimal free resolution of a stable ideal has been described by
Eliahou and Kervaire [12]. If a monomial ideal I C S is stable, then I is stable
for all j. It follows then from the result in [12] that I;; has a linear resolution
(independent of the characteristic of K). Hence a stable ideal is componentwise
linear.

Let Gin(/I) denote the generic initial ideal of I with respect to the reverse lexi-
cographical order induced by x1 > z2 > ... > x,. In general Gin([) is Borel-fixed,
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i.e. it is invariant under the action of the upper triangular invertible matrices, see
[10]. Any strongly stable ideal is Borel-fixed and the converse is true in charac-
teristic 0. In prime characteristic the combinatorial description of the Borel-fixed
ideals is more complicated, nevertheless one has:

Lemma 1.4. In arbitrary characteristic, if I is componentwise linear, then Gin([I)
is stable.

Proof. Since I;; has a linear resolution, it follows that regI,; = j. Here reg M
denotes the regularity of a graded S-module M. By the Bayer—Stillman theorem,
cf. [5] or [10] we have reg Gin(I;) = j, too. Now we apply a result of Eisenbud,
Reeves and Totaro [11, Proposition 10]. It says that regGin(/) is the largest
integer j such that £o;(Gin(/)) # 0 and Gin(I); generates a stable ideal. Hence we
conclude that Gin(/(;y); generates a stable ideal. Thus, since Gin(/); = Gin(I;);,
the assertion follows. (|

To state the next theorem we need one more definition: Let M be a graded
S-module and G the minimal graded free S-resolution of M. We set F;(G;) =
m7 ~¢G; for all 4 and j. Then (G, F) is a filtered complex whose associated graded
complex we denote by gr. (G). Note that gr. (G) can be be identified with the
complex of free modules which is obtained from G by replacing in the matrices
representing the differentials of G all entries of degree > 1 by 0. One calls gr, (G)
the linear part of G. The largest integer i for which H;(gr.,(G)) # 0 is said to be
the number where the linear part of G predominates. We denote it by lpd(M).
Note that lpd(M) = 0 is equivalent to the fact that gr (G) is an acyclic free
complex.

Theorem 1.5. Assume that char(K) = 0, and let I C S be a graded ideal. Set
R = S/I, and let y = y1,...,yn be a sequence of generic linear forms. The
following conditions are equivalent:

(a) R has mazimal Betti numbers, i.e.

n—i+1 5
n—j .
Bi(R) = ; (i_1>a](R) for all i>1;
(b) y is a proper R-sequence;
(c) I 4s componentwise linear;
(d) I (md Gln(I) have the same Beiti numbers;
(e) lpd(J

Proof. Let z be a generic linear form. Then zH;(p) = 0 if and only if mH;(p) =0
Thus the equivalence of (a) and (b) follows from 1.2 (¢). The equivalence of (b)
and (c) can be found in [8, Theorem 4.4]. The equivalence of (¢) and (d) is the
content of [2, Theorem 1.1], while the equivalence of (d) and (e) has been shown
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by Roémer in his dissertation [17, Theorem 3.2.8]. O

Notice that Theorem 1.5 applies in particular to the case when I is a stable
ideal. Here the generic annihilators «;(R) of R = S/I have an explicit interpreta-
tion. Given a monomial ideal I of S we write G(I) for the unique minimal system
of monomial generators of I. Let m;(I) denote the number of monomials v € G(I)

with m(u) = i, and set m<,;(I) = 3°%_; m;(I). If a monomial ideal I C S is stable,

hen
t sn= % ("= S w7 Q

weG(I) Jj=it1
for all 4, see [12]. By arguing directly or by comparing (3) with 1.2 (a) we see that

ai(R) =my_i1(I) for i=1,...,n.

Remark 1.6. Let (R, m) be a regular local ring, and M a finitely generated R
local. Assuming that the residue class field is infinite, regular system of parameters
Y1,...,Yn can be chosen such that A, = (y1,...,9p-1)M m yp/ (Y1, .., Yp—1)M
is of finite length. Denoting by «, the length of A, it is easy to see that the
conditions (a), (b) and (e) of Theorem 1.5 are equivalent in the local case, too.

2. Rigidity of resolutions

In this section we will show that the tail of a resolution has a rigid behavior with
respect to big Betti numbers. For the proof of this result we need a lemma on the
vanishing of Koszul homology.

Let R be an arbitrary commutative ring and M an R-module. For a sequence
Yi,-..,Yr € Rand a subset A C {1,...,7}, we set y4 = {y;: j € A}, and for any
jeAweset A; = A\ {j}.

For all ¢ with 1 <4 <7 and j € A there is a canonical map

0j: Hiy1(ya; M) — Hi(ya,; M)

defined as follows: let [z] € H;11(ya; M) be the homology class of a cycle z €
Zi+1(ya; M). The cycle z can uniquely be written as z = z5 + z; A e;, where
20 € Kiy1(ya;; M) and 21 € Zi(ya,; M). We set 9;([2]) = [21]. Note that 9;
appears in the long exact sequence

9 i
o —— Hii(ya;; M) —— Hipi(ya; M) —2— Hi(ya;; M) —2— ...

Finally we let

0: Hypq(ya; M) — @Hi(ij§M)
jeEA

be the canonical map with 0([z]) = (9;([2]))jea.
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Lemma 2.1. Let i > 0 be an integer. Assume that for all A C {1,...,r} and all
s > max A with s <r one has ysH;(ya; M) = 0. Then for all AC {1,...,r} the
canonical map
0: Hip1(ya; M) — €D Hilya,; M)
jeA

8 njective.

Proof. We proceed by induction on |A|. Let k =max A and B = A\ {k}. We then

obtain a commutative diagram
)
Hiti(ygs M) —— Djca jur Hilys;; M)

d /|
9
Hit1(yai M) —— Djen o Hilya;; M) D Hi(ya,; M).

Here the vertical maps are the natural ones.

Let v € Hiy1(ya; M) and suppose that d(v) = 0. Then in particular d;,(v) = 0,
and hence there exists w € H;11(yp; M) such that g(w) = v. Since the diagram
is commutative we get f(d(w)) = 0.

By the induction hypothesis 9: H;+1(yp; M) — @jeA’#k H;(yg,; M) is injec-
tive, and our assumption implies that y, H;(yp,; M) = 0 for all j € A with j # k,
so that the map f is injective, too. It follows that w = 0, and hence v = g(w) = 0.

O

Corollary 2.2. Let I 2 (y1,...,yr) and assume that TH;(ya; M) = 0 for all
AC{l,...,r}. Then IH; 1(ya; M) =0 forall AC{L,...,7r}.

We remark that a related result can be deduced from the theorem of Kiihl
quoted in Section 1: Set J = (y1,...,¥,) and assume that for a given i one has
JHi(p;M)=0forp=1,...,r =1, then JH;y1(p;M)=0for =1,...,7r — 1.

Theorem 2.3. Let M be a graded S-module. Suppose 3;(M) :Z;:frl(’;:f) a; (M)
for some i. Then

n—k+1 s
Br(M) = z (Z_i)aj(M) forall k >i.
j=1

Proof. Clearly it is enough to prove the statement for k =i+ 1. Let y = y1,...,yn
be a sequence of generic linear forms and denote by H,(b) the associated Koszul
homology H,(b; M). By Proposition 1.1(b) we have to show that mH,(b) = 0 for
all (a,b) € A; , implies that mH,(b) =0 for all (a,b) € A;11,. But

AH‘L” \ Ai,n = {(Z =f= 17 b) b <n-— 1}
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Since (4,b) € A;, for all b and since any permutation of y is a again a generic
sequence, it follows that mH;(ya; M) = 0 for any subset A C {1,...,n}. Hence
by Corollary 2.2 we conclude that mH;1(y4; M) = 0 for all A and in particular
mH,;11(b) = 0, as desired. O

The following corollary generalizes a result of Aramova, Herzog and Hibi [2],
explicitly stated as Theorem 1.2 in [8].

Corollary 2.4. Assume char(K) =0, and let I C S be a graded ideal. Suppose
that 3;(1) = p;(Gin(I)) for some i. Then

Be(I) = Br(Gin(1)) for all k> i.
For the proof of this corollary we need
Lemma 2.5. Let I C S be graded ideal. Then o;(S/1) = o;(S/ Gin(1)) for all j.

Proof. After a generic change of coordinates we may assume that Gin(/) = in(7),
and that xz,,z,_1,...,21 is a generic sequence. For the reverse lexicographical
order induced by z1 > z9 > ... > x,, one has

in((xiw e 7$n) +I) = (xh 7$n) +11'l(])
and

(i, 20) + 1) @im1) = (@0, @) +i0(0)) 7

It follows that

((zgy oo yxn)+ D) iz (g ooy + T
and

((ziy ...y zy) +in(d)) t i1 /2, ..., 2) +in(d)

have the same Hilbert function. This yields the desired conclusion. (Il

Proof of Corollary 2.4. Since we assume char(K) = 0 the ideal Gin(7) is strongly
stable and hence componentwise linear. It follows from 1.5 that

n—i+2

(s (1) = 35 ("7 )ay(s/ Ginn),

j=1
By Lemma 2.5 and our assumption this implies that

Bit1(S/I) = n§2 <nz_‘7> o (S/T).

=1
Now we apply Theorem 2.3 and again Lemma 2.5 to conclude that
n—k+2 " _j
s = = 3 ("7 Jastsn

J=1
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S (" )estsrciniry

j=1
Br+1(S/ Gin(I)) = Bx(Gin(I))
fork=1d,...,n—1. ([l

I

We give an example of an ideal I (many other such examples may be con-
structed) for which I and Gin(/) have different resolutions, but the tail of their
resolutions are the same.

Example 2.6. Let
I= (x%x%,x%) + (x1,29,. .. ,955)37

then
Gin(I) = (x%,xlxz,xg) + ($17$2,ZE3)3.

The minimal free resolution of I and Gin([) are, respectively,
0 — R?(-7) — R*®(—6) — R%(-5) —
R*(-3) @ R™(-4) - R3(-2)® R¥?(-3) - 0

0 — R'2(=7) - R%(—6) — R%(=5) — R"™(—4) - R3(-2)® R?*°(-3) - 0.
We have also:

Corollary 2.7. Assume char(K) =0, and let I C S be a graded ideal. Let J be
either the (unique) lex-segment ideal with the same Hilbert function as I or the
generic initial ideal of I with respect to a term order T. Suppose that 3;(I) = 3;(J)
for some i. Then

Be(l) = Bp(J) forall k>i.

Proof. Set G = Gin(I). One has 8;(I) < 5;(G) < B;(J) for all j. This is
due to Bigatti [4] and Hullett [15] when J is the lex-segment ideal and to Conca
[8, Theorem 5.1.] when J is a gin of I. Hence by Corollary 2.4 we have that
Be(I) = Br(G) for all k > i. Therefore it suffices to show that 5,(G) = Bi(J)
for all k > i. We have m<;(J;) < m<i(Gyy) for all i and j: this is a result of
Bayer [3] and Bigatti [4] when J is the lex-segment ideal and a result of Conca
when J is a gin of I (see the proof of [8, Theorem 5.1.]). This however implies
m;(J) > m;(G), see [8, Proposition 3.3]. Taking into account the Eliahou-Kervaire
formula (3) for the Betti numbers of a stable ideals, our assumption and the
inequalities m;(J) > m;(G) imply m;(J) = m;(G) for all § > i. Applying again
the Eliahou-Kervaire formula (3) we see that 8, (G) = B (J) for all k > 4. O

We conclude this section with an example of a strongly stable ideal I whose
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corresponding lex-segment ideal Lex([) has a free resolution which is different from
that of I, but has the same tail.

Example 2.8. Let
1= (zy,. ..7:52)2 + ($1$%7:E1$3:E4) in §=Klzy,...,z4].
The ideal I is strongly stable and its Lex-segmente ideal is
Lex(I) = (ﬂc%7 T1T9, T1T3, xlxi,xg,mgxg).
The minimimal free resolution of I and Lex(I) are, respectively,
0— S(—6) — S4(—5) — S?(-3) @ S5(—4) — S3(—2)® S?*(-3) =0

0 — S(—6) — S(—4) ® S4(—5) — S3(-3) ® S6(—4) — S3(-2)® S3(-3) = 0

3. Betti numbers and Hilbert polynomials

In this section we compare the Betti numbers of two componentwise linear ideals
I € J which have the same Hilbert polynomial.
If a graded ideal I C S is componentwise linear, then

Biirs (1) = Billzy) — Bi(mlj_yy) (4)
for all 7 and j, see [14, Proposition 1.3].
Let I be a strongly stable ideal generated by monomials of the same degree.

Then
mi(mI) = me,(I) (5)

for all 4, see [4, Proposition 1.3].

Lemma 3.1. Let I C S be a strongly stable ideal and fir 1 < d < N such that
d <deg(u) < N for allu € G(I). Then, for all i, one has
N

Billwyyy) — Bill) = Z Z m<p—1(I5) (k; 1).

j=d k=i+1

Proof. Since I is strongly stable, it follows from the formulae (4) and (5) that

Ww(hﬁ)<kzl> - ﬁi WWOﬂRﬁ)<k;])

n

Billiy) — Bilmiyy) =

1

k 1 k=i+1

= k—1 - k—1
= > mi(*7) - 2 mat(7)

k=i+1 k=i+1

_< 55 m<k1Uuﬂ<k;1)>

k=i+1
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Since I(g_1y = 0 and mInny = Inryqy for all N' > N, by using the formula (4),
it follows that

2

= 3 arsl) = 3Pl ~ Al
=0

N

=D (BIiz) = Bi(mIizy)) + Bi(mIiwy)

j=d

N
= > (Billy)) — Bi(mI)) + BTy
j:d

- _Z( Z m<k1(I(j>)<k;1>)+/8i(I(N+1))’

as desired. |
We are now in the position to state the main result of the present section.

Theorem 3.2. Let I and J be componentwise linear ideals of S with I C J, and
suppose that I and J have the same Hilbert polynomial. Then we have:

(a) Bi(J) < Bi(I) for alli.

(b) if Bi(J) = Bi(1) for some 0 < i < n, then B(J) = Brp(l) for all k.

(¢) Lety be a generic linear form. Then the following conditions are equivalent:

(i) BiI) = Bi(J) for some 0 <i < ny
(i) I+ (y) =J +(y).

Proof. By Lemma 1.4 the generic initial ideals Gin(I) and Gin(J) of I and J are
stable. Since I and J are componentwise linear, [2, Theorem 1.1] guarantees that
Gi(I) = B:(Gin(1)) and B;(J) = B:(Gin(J)) for all 4. In [2] it is assumed that the
base field is of characteristic 0. However for this direction one does not need this
hypothesis. In fact, since Gin(I) is stable by Lemma 1.4 the argument in the proof
of [2, Theorem 1.1] is valid. Since I C .J, one has Gin(I) C Gin(.J). Therefore, in
proving (a), (b) we may replace I, J with their gin and assume that both I and J
are stable. Since the resolution of a stable ideal is independent of the characteristic
we may assume that the characteristic in 0 and thus taking again generic initial
ideals may assume that I and .J are even strongly stable, at least when dealing
with the statements (a) and (b). When dealing with (¢) we may also replace I
and J with their gins and y with z,,. This is because, I + (y) = J + (y) holds if
and only if the two ideals have the same Hilbert function and the Hilbert function
of I+ (y) does not change by replacing I with Gin([) and y with z,,. Note that a
stable ideal is invariant under any linear transformation h with h(z;) = x; for all
1=1,...,n—1. It follows that x,, is a generic linear form with respect to a stable
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ideal. So the equality I 4 (z,) = J + (x,) can be checked in any characteristic
and we may assume that the characteristic is 0 and take the gin again. Summing
up, for all the three statements, we may assume that I and J are strongly stable
monomial ideals and that y is z,,.

(a) Since I C J, and since I and J have the same Hilbert polynomial, there is
N > 0 with mI<N> = I(N+1> = J<N+1> = mJ(N> Let d = min{d;,d s}, where dy =
min{deg(v) : v € G(I)} and dy = min{deg(v) : v € G(J)}. Then d < deg(w) < N
for all w e G(I)UG(J). Now, Lemma 3.1 guarantees that

N n L
B =) =3 ¥ (maal) ~mastp)(* 1)

j=d k=it1 !
Since I C J, one has G(I;y) C G(J;y) for all j. It then follows that
mi(l) < mi(Jiy),  meallyy) < m<i(Ji)

for all  and for all 4. Thus 8;(J) < B;(1) for all 4.

(b) If 3;(J) = Bi(I) for some 0 < i < n, then m<p_1(I;)) = m<p—1(Jy;) for
all 7 and for all i < k& < n. Thus in particular m<, 1(I(5y) = m<n—1(Jy) for
all 5.

Since mgnfl(f(ﬁ) = z:;ll mk(Im) and mgnfl(J<j>) = Zz;ll mk(J<j>), and
since my(L;y) < mi(Jyy), one has my(I;y) = me(Jy)) for all j and for all
k <n—1. Hence g,(J) = B(I) for all k.

(c) Let I =1+ (x,)/(xn) and J = J + (z,,)/(xy). Then I and J are strongly

stable ideals in K21, ..., @,_1] with mg (L)) = mi (L) and mg (i) = mp(Jj)
for all j and all k < n — 1. In the proof of (b) we have seen that 3;(I) = 5;(J) for
some 7, if and only if m<,1(L(5y) = m<n—1(J(;)) for all 5. But this is the case if
and only if I and J have the same Hilbert function. This in turn is equivalent to

saying that I = J. Il

Remark 3.3. If in Theorem 3.2 we assume that I and J are strongly stable with
the same Hilbert polynomial, then the assumption I C J may be replaced by the
weaker assumption m«<;(l;) < m<;(J;) for all 4 and j in order to conclude 3.2.(a),
and by m;(I;) < m;(J;) for all i and j in order to conclude 3.2.(b).

Let y € S be a generic linear form. For any ideal J C S we denote by .J the
image of J in § = S/yS.

Corollary 3.4. Assume char(K) = 0, and let I C S be an m-primary graded
ideal. Suppose that I C m?. Then

(a) Bo(Gin(I)) > ("571). )
(b) Bo(Gin(I)) = ("T47") if and only if I = m?.

Similarly we obtain also an upper bound for the number of generators of Gin([/):



838 A. Conca, J. Herzog and T. Hibi CMH

Corollary 3.5. Assume char(K) = 0, and let I C S be an m-primary graded
ideal generated in degree d. Let C be the ideal generated by a reqular sequence of

n elements of degree d in I. Then [o(Gin(I)) < Bo(Gin(C)).

Proof. The ideals Gin(C) and Gin([) are strongly stable and hence componentwise
linear. Furthermore, they have the same Hilbert polynomial (since they are both
Artinian) and Gin(C) C Gin([). The conclusion then follows from 3.2. O

In view of this result one might ask whether the gin of a complete intersection
does depend on the specific complete intersection. Not surprisingly, it does. For
instance in the case d = 3 and n = 4 the monomial and the generic complete
intersection have distinct gins but the two ideals have the same Betti numbers.
For d = 3 and n = 5 the monomial and the generic complete intersection have
distinct gins and the gin of the monomial c.i. has 77 generators while that of the
generic c.i. has “only” 76 generators. It would be nevertheless interesting to have
an upper bound for the number of generators of Gin(I) which just depend on the n

and d. To this end, the following question is of interest: Let fy,..., f, be a regular
sequence of forms of degree d in n variables. Is it true that So(Gin(fy,..., fn)) <
Bo(Gin(z4, ..., 2%))? What we can prove is the following:

Lemma 3.6. Assume char(K)=0. Let I be a generic complete intersection of n
forms of degree d in K|z1,...,2,] and let J = (2f,...,2%). Then B;;(Gin(I)) <

Proof. Let I = (f1,..., fn) where f1,..., f,, is a regular sequence of forms of degree
d. Consider the ideal H of K[z1,...,%n,y1,...,yn] generated by g; = f; +y¢, and
let H' be the ideal generated by f; + L% where L; are generic linear forms in the
x;’s. Consider the revlex order with respect to 1 > -+ >z, > y1 > -+ >y, and
let A be the linear map, an involution, sending z; to y; and vice versa. Then J is
the initial ideal of h(H). Since Gin(H) = Gin(h(H)) it follows from [8, Corollary
1.6] that m<;(Gin(H);) > m<;(Gin(J);) and hence 3;;(Gin(H)) > 5;;(Gin(J)),
[8, Proposition 3.6]. But if U is an ideal with depth S/U > k, then Gin(U) does not
change by factoring out k generic linear forms. We get that Gin(H) = Gin(H’).
So we have shown that 3;;(Gin(H’)) > 8;;(Gin(J)). But if the f; are generic then
the f; + L¢ are generic as well. O
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