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A balancing condition for weak limits of families of minimal
surfaces

Martin Traizet

Abstract. We prove a balancing condition for weak limits of families of embedded minimal
surfaces of finite total curvature. We use it to prove compactness theorems for certain families
of minimal surfaces.
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The study of the moduli space of embedded complete minimal surfaces in R3
(up to homotheties) with finite total curvature and fixed topology is one of the
fundamental open problems in the classical theory of minimal surfaces.

Let M(G, N) be the space of complete, properly embedded minimal surfaces
in R® with finite total curvature, genus G and N horizontal ends, modulo homo-
theties. Concerning the genus zero case, it is known that M(0,1) is the plane,
M(0, 2) is the catenoid, and M (0, N) is empty if N > 3 (see [4]). In higher genus,
it is known that M(G,2) is empty if G > 1 (see [10]), and M(1, 3) is the Costa
Hoffman Meeks family of genus one (see [1]). These are the only cases where
M(G, N) is completely understood.

The following two conjectures have been proposed in [2], Section 5.2:

Conjecture 1 (the Hoffman Meeks conjecture). If N > G+ 3, M(G,N) is
empty.

Conjecture 2. If G > 1, M(G, 3) is the set of Costa Hoffman Meeks surfaces of
genus G.

In view of the recent proof of the uniqueness of the Riemann minimal exam-
ples by Meeks, Perez and Ros [5], a possible strategy to prove these conjectures
would be to prove that if a counterexample exists, then one can deform it until it
degenerates. One would obtain a contradiction by proving that the set of coun-
terexamples is compact — actually compactness is also useful to prove that one can
deform.
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The subject of this paper is to prove compactness theorems for families of
minimal surfaces, under some geometric assumptions.

Using ideas of H. Choi, R. Shoen and B. White, Antonio Ros [8] has proven
that the moduli space M(G, N) is weakly compact in the following sense: if (M, )y,
is a sequence of embedded minimal surfaces with fixed genus G and number of ends
N, then up to passing to a subsequence, (M, ), converges to a finite set of embed-
ded minimal surfaces {M1 oo, , Mmoo} Roughly speaking, this convergence
means that when n — oo, the curvature concentrates in m disjoint small balls
Biy, -, By, and after suitable blow-up, each sequence M,, N B;,, converges to
M; oo

In this paper, we prove that the weak limit {M1 o, -, Mm oo | satisfies a set
of algebraic equations which we call the balancing condition: Theorem 4. These
equations relate the logarithmic growths of the ends and the “positions” of the
limit surfaces M o, -+, My . By the position of M; .., we mean the limit
(up to some scaling) of the center of B;,. From the balancing condition, we
deduce a single quadratic equation satisfied by the logarithic growths of the ends:
Theorem 7.

We then use these tools to prove compactness theorems. What we need to
prove is that the sequence (M,,),, converges to a single limit M; . Typically, we
prove that if m > 2, then the quadratic equation has a sign, so it cannot be zero.

Concerning the first conjecture, we obtain the following result:

Theorem 1. Consider some G > 1 and assume that M(G', N’) is empty for all
G' <G and all N' > G'+ 3. Then for all N > G+ 3, M(G, N) is compact.

In other words, if the conjecture is known to be true for all G’ < G, then the
set of counterexamples in the genus G case is compact. This might be useful in
an inductive proof of the conjecture.

Since the conjecture is known to be true for G = 0, we obtain

Corollary 1. If N >4, then M(1,N) is compact.

This was obtained by A. Ros in [8] when N > 5 using a quite different argument.

Regarding the second conjecture, we prove the following result. Let M be an
embedded minimal surface with N ends. It is well known that the logarithmic
growths of the ends satisfy ¢; < ey < -+ <ep.

Definition 1. We say an embedded minimal surface with N ends has separated
endsif cp < co < --- < cpn.
Given £ > 0, we say that the surface has e-separated ends if cp11 —cp >
glexy —ep) forall 1 <k < N — 1. Note that this condition if invariant by scaling.
We say that a sequence (M,,),, has uniformly separated ends if there exists ¢ > 0
such that all M,, have e-separated ends.
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Let C(G) be the set of Costa Hoffman Meeks surfaces of genus G.

Theorem 2. Assume that G #£ 2. Let (My,), be a sequence of surfaces in M(G, 3)\
C(G) with uniformly separated ends. Then there exists a subsequence which con-
verges to a single surface in M(G, 3).

We cannot guarantee that the limit is in M(G,3) \ C(G) because we do not
know that C(G) is open.

Some nasty things happen in the genus 2 case, which suggests that surprisingly
enough, the conjecture might be harder in this case.

The paper is organised as follows. We state our main result, the balancing
condition, in Section 1. We prove it in Section 2. We give applications and prove
Theorems 1 and 2 in Section 3.

1. Main result
1.1. Weak compactness
We first recall the weak compactness theorem of A. Ros:

Theorem 3. [8] Let (M,), be a sequence of non-flat embedded complete minimal
surfaces in R> with finite total curvature, horizontal ends and fized topology: genus
G and N ends. Then there erists a subsequence, denoted again by (M, )y, an inte-
ger m > 0 and non-flat embedded complete minimal surfaces My o, , My oo
with finite total curvature and horizontal ends, such that (M,), converges to
Moo, , Mumoo}. This convergence means the following:
1) C(My) = C(Mi oo )+ - +C(Mpm ), where C(M) means the total curvature
of M.
2) There exists homotheties ¢, such that ;,(M,) converges smoothly to
M; o uniformly on compact subsets of R3.
3) Given R,n large enough, let By ,, be the Euclidean ball ¢; }(B(0, R)). Then
Biy, -, By are disjoint, and M, decomposes as 7

Mn:MLnU~~~UMm7nUQLnU~~~UQN7n

where M;, = M, N B;, and Q , is a graph over the exlerior of some
convex disks in the horizontal plane x3 = 0, containing eractly one end

of M,,.

We introduce some more terminology. We call €, the unbounded domain
at level k, and we say that the point at infinity in €y, is the end at level k of
M,,. Here the word “level” has a combinatorial meaning. To each end of M;
corresponds one curve in dM; ,, which lies in one domain €y, ,,. We say that the
end under consideration is the end at level & of M; .
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Q1,n M1,n Mz,n

Fic. 1. A family of minimal surfaces M,, whose weak limit is a Costa surface and two
catenoids, one with ends at levels 1 and 2, the other with ends at levels 2 and 3.

1.2. Uniform speed

Definition 2. Let y;, be the ratio of the homothety ¢; ,,. We say the sequence
(My,)y, has uniform speed if the p; ,, are comparable, namely there exists a constant
C such that p;, < Cu,, for all n,i, j.

In Section 3.2 we will see a nice criterion for uniform speed, namely, if a se-
quence (M, ), has uniformly separated ends, then it has uniform speed.

Yl =<

Fia. 2. A family of minimal surfaces M,, with non-uniform speed. The two catenoids collapse
faster than the 3-ended surface.

If the sequence has uniform speed, we may, by suitable scaling of M, and
Moo, s My oo, assume that all u; ,, are equal to 1. (Indeed, by scaling of M,,
we may assume that gy, = 1. Then passing to a subsequence, each p;, has a
limit ¢; € (0, 00). We replace ¢; ,, by @; n/tir, and M; o by M; o /4;.)

In case the sequence (M,,), does not have uniform speed, we may still, by
suitable scaling, assume that all y, ,, are equal to 1. However, some of the surfaces
M; ~ need to be scaled by zero, so they must be seen as multi-sheeted horizontal
planes with a singular point. (Details: passing to a subsequence, we may assume
that min{se1 ,,, -, hmon} = fig,n With ig independent of n. By scaling of M,, we
may assume that p;, = 1. Then passing to a subsequence, each p; , has a limit
{; € [1,00]. We replace as above ¢; », by @s.n /s and M; oo by M; o /l;. In case
{; = 00, M; o must be seen as a multi-sheeted horizontal plane.)

Let me summarise: M,, and M o, - , My, oo have been scaled so that all ¢; ,,
have ratio 1 so are in fact translations. Each limit M, o, is either a non-flat finite
total curvature minimal surface, or a flat multi-sheeted horizontal plane. One
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basic problem is that our balancing condition will not “see” flat limits. Note that
at least one limit surface is non-flat.

1.3. The balancing condition

Let @Q;r be the logarithmic growth of the end at level k£ of M; ... Note that
Qi = 01f M; o is flat. We also write Q; p = 0 if M; o has no end at level k. We
shall interpret @; ;, as electrostatic charges. We define

Qk:ZQi,lm 1<k<N.
]

Then Qy, is the limit of the logarithmic growth of the end at level k of M,, when
n — o0.

Let p; », be the projection of the center of the ball B; ,, on the horizontal plane
x3 = 0. We see p; , as a point in the complex plane. In general p;, — oo, so
scaling is needed to see interesting limits. We may find homotheties v,, such that
up to a subsequence, each sequence ¢, (p; ) has a finite limit, which we call p;,
and moreover at least two points p; are distinct. We call {p1, -+, pm } the limit
configuration. We think of p; as the position of Af; o, although we cannot see
both p; and M; o at the same scale.

Definition 3. We say the configuration is non-singular if the points py,--- ,pm
are distinct.

In this case we define forces by

k=1 jAi Pi —Pj

Theorem 4 (non-singular case). In the above setup, if the limit configuration
{p1, - ,pm} is non-singular, then

1) the configuration is balanced: Vi, F; = 0.
2) There erists numbers Hy,--- , Hy_1 such that the following holds: for any

i, if Mj oo has ends at levels k and k + 1, then
Qi k1 — Qi = Hy.

The meaning of condition 2 is of course that if i and j are two such indices,
then

Qik+1— Qik = Qjkr1 — Qjk-
We call 1 the balancing condition, or the force equation. We call 2 the charge
equation. These are purely algebraic equations. They are invariant by scaling of
the charges @Q; 5 and scaling/rotation/translation of the points p1,- -+, pm.
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1.4. The singular case

Assume now that the configuration {py, - - , p, } is singular. Define an equivalence
relation on {1,--- ,m} by i ~ j if p; = p;. Given an equivalence class o, write p,
for the common value of all p;, ¢ € a. Define charges and forces by

Qo = Y Qik

iCa

Qo kQsk
Ra=3 Y Gesdos

k= 1ﬂ7£a B

where the last sum is taken on all equivalence classes 3 (possibly with only one
point) different from «. As we shall see, the configuration is balanced in the sense
that F,, = 0 for all classes a.

Ps X

F1a. 3. A singular configuration, with o = {2, 3,4}. The configuration {p1,pa,ps} is balanced.
The sub-configuration {p§,pg,p$} is balanced.

We may say more by zooming in. Let o be a class with at least two elements.
We may find homotheties, denoted ¢, such that the sequence ¢ (p; ) has a finite
limit for each ¢ € o, denoted p$, and at least two of these points are different.
(Clearly, ¢2(pjn) — oo when j & «.) We call {p$, i € o} a sub-configuration. If
the sub-configuration p$* is non-singular (which means, of course, that all points
g, i € a, are distinct), we may define forces by

Qi Qg,
SRR 11

i1 en PP P
J#i

Theorem 5 (singular case, depth 2). In the above setup, assume that all sub-
configurations are non-singular, then:
1a) each sub-configuration if balanced, in the sense that F* =0 for all o and
all i € o
1b) The configuration is balanced, in the sense that F,, = 0 for all classes .
2a) For each «, there exists numbers H such that the following holds: for
each i € o, if M; o has ends at levels k and k + 1, then

Qi k1 — Qi = Hy.
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2b) For each o and each i € o such that M; oo has ends at levels k and k+1,
there exists p € [0,1] such that

Qi1 — Qik) + (1 — p)(Qakt1 — Qak) = Hi.

where Hy, is as in Theorem 4.

The statements 1a) and 2a) say that each sub-configuration satisfies the con-
clusion of Theorem 4. The statement 1b) says that as far as forces are concerned,
we may see all surfaces M; o, © € o as one single surface with ends of logarithmic
growths Qg 1.

To get some grasp on point 2b), observe that if p = 1 then we get Hy =
Qi k+1 — Qs 1 as if the configuration were non-singular, while if p = 0, we get
Hy, = Qo k41 — Qar as if all surfaces M; o, 7 € o, were one single surface with
logarithmic growths Q. ;. It is very reasonable that both cases might happen, so
one cannot hope for a better result.

We will use 2b) as follows: if p; is a non-singular point of the configuration
and Mj o, has ends at levels k and k + 1, then Q41 — Q;x is in the interval
bounded by Q; 41— Qs and Q441 — Qo k- In other words, in the singular case,
the charge equation must be replaced by some inequalities (see Section 3.3.2. for
an example).

There are no known examples of families of minimal surfaces which give in
the limit a singular configuration (figure 4 is for illustration only). However, in
[11], examples are constructed for which the configuration is arbitrary close to be
singular. This strongly suggests that singular configurations are possible.

Of course, there might be singular sub-configurations. In this case, by zooming
in again, we see balanced sub-sub-configurations, and so on. By successive zoom-
ings like this we obtain what we call a nested configuration. We have a similar
theorem in this case. This will be explained in Section 2.5.

Fic. 4. A family of minimal surfaces which gives a singular configuration. The three catenoids
on the left converge to the same point.

1.5. Related work

This paper stems from a failed attempt by the author [11] to construct counterex-
amples to the conjectures 1 and 2. In [11], I proved the converse to Theorem 4 in
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the case where all surfaces M; o, are catenoids under an additional non-degeneracy
hypothesis. Namely if we start from a balanced, non-degenerate, non-singular con-
figuration of catenoids, we can construct a family of minimal surfaces.

I was then able to classify all configurations in the 3-ended case, and unfortu-
nately found only the ones which yield the Costa Hoffman Meeks family (except in
the genus 2 case). Still, it is quite interesting to see how the balancing condition
forces the configuration to be very symmetric. To me this was good support to
the conjecture.

Fortunately, [11] was more successful in answering other questions, in particular
I proved the existence of embedded minimal surfaces with no symmetries.

To prove compactness theorems, it is necessary to allow limit surfaces other
than catenoids, and one has to consider the case where the configuration is singular,
which makes things much more complicated.

2. Proof

Our plan is to identify the domain €2y, with a domain in the complex plane, and
compute the limit of its Weierstrass data when n — oo. We obtain the force
equation F; = 0 by computing the limit of the horizontal fluz along certain cycles.
We obtain the charge equation by estimating the height between the domains Qy
and Qk+1,n~

2.1. Preliminaries

We introduce some notations: g,, and dh,, are the Gauss map and height differential
of M, M\, is the ratio of ¢y, I}, is the set of indices 4 such that M; o, has an end at
level k. For i € Iy, i k,n is the curve at level £k in the boundary of M; ,, oriented
as a boundary, so —v;  , is oriented as a boundary of Qy ,,.

We now fix some level k, 1 < k < N and consider the domain Q. As Qp
is a graph, we may (changing orientation if necessary) assume that the normal
points up, so that |g,| > 1 in Q4. Let ¢, : Qi — C be the composition of
the projection on the horizontal plane followed with the homothety ,. Clearly
Cn(Q,n) converges to C \ {p;, i € I1.}.

We need to introduce a global conformal coordinate z,, on Qy ,. We shall do
this so that z, is as close as possible to ¢, (which preserves orientation but is
not conformal). By Koebe’s Theorem on the uniformisation of multiply connected
domains, (see [9] and the reference therein), Qy ,, is conformally equivalent to a
canonical circle domain, namely, there exists a conformal representation z,, of Q ,
onto a domain of the form € minus round disks D(a; n, i), ¢ € Ir. Moreover,
zp is unique up to a Moebius transform. We normalise z, by asking that z,, = (,
at three points, which we choose to be co and two other fixed points far from the
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points p;. We need the following estimates:

Proposition 1. When n — oo, we have (up to subsequences) z, ~ (, in the
sense that z, (¢, Y(2)) — z uniformly on compact subsets of C \ {p;, i € Iy}. In
particular, we have lim a; ,, = p; and limr;,, = 0. Moreover, we have

. . logrip
lim lim ==
R—oon—o0 log >\n

where R is the radius of B;,, in Theorem 3.

Proof. Note that Qp,,, Vi r,n and 2z, all depend on R. We will most often fix the
value of R, but we sometime need to let R — oo. When this happens, we will
always let first n — oo and then R — oc.

It will be convenient to replace the ball B(0, R) in the statement of Theorem 3
by a vertical cylindrical box of radius R and height 2R (in other words, we use
the norm ||z|| = max(y/z7 + 23, |x3]|) to define balls in R?). This clearly does not
change anything to the statement of the theorem. Thus the projection of «;
on the horizontal plane is the circle C(p;n, R), and (,(vi,xn) is a circle of radius
A R.

As 1/g, is holomorphic in Q ,, its maximum is on the boundary. From the
convergence of M; ,, to M; o, we obtain

L A
Hence ¢, is x-quasiconformal on €y, ,,, with K — 1 when n — o0 and R — oo.
Now fix some R and let K be a compact subset of C \ {p;,i € I;}. Then

lim inf |g,|=o0
"0 (LK)

50 (y, restricted to K is k-quasiconformal with £ — 1 when n — co. Since z,0(, ! :
K — C is k-quasiconformal and fixes three points, we may extract a converging
subsequence by some standard normal family argument ([3], Proposition 5.1 page
73). Using an exhausting sequence of compact sets, 2, o, ! converges on compact
subsets of C \ {p;, % € I} to a holomorphic function f : C \ {p;,i € I} - C. f
clearly extends to a holomorphic bijection of C U {oo}. Since f fixes three points,
it has to be the identity, which proves the first statements.

To prove the last statement, consider the annular domain in €2, defined by
Tin < |2n — ain| < € for some fixed small € > 0. The image of this domain by
(. is bounded by a circle of radius A, R and a curve which converges to the circle
C(pi,e) when n — oo. Since (, is k-quasiconformal, the moduli of these domains
differ by a factor at most x. The moduli are by definition loge — logr;, and
loge —log(Ay, R). Since k — 1 when R — oo, the last statement follows. O
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2.2. Limit of the Weierstrass data

We identify Q ,, with a domain in the complex plane by mean of the conformal
coordinate z,, that is, we write z,, = 2.

Proposition 2. Up to a subsequence, we have on €y, ,,

lim dh, = Y Qi g,
e i€l FPi

lim A,gndh, = —2dz

The convergence is uniform on compact subsets of C \ {pi, i € I} and is also
uniform with respect to R.

Proof. Let dh; o, be the height differential of M; .. Since M; ., has horizontal
catenoid (or planar) type ends, dh; - has at most a simple pole at each end, so
there exists a constant C such that

VR, |dhi oo < C.
&(M;,.cNB(0,R))

Up to the translation ; ,, M, converges to M; o, so we have for n large enough

[ lami<c
Y-

i k,m

By definition of @Q; , we have

lim / dhy, =27 Qy 1.

TS s e
By elementary complex analysis, Lemma 1 below with J = (), dh,, converges to a
meromorphic differential with at most simple poles at p;, ¢ € I;. The residue at
pi is Qs x (provided the p; are distinct). This determines the limit, and proves the
first statement of the proposition. When several p; are equal, the residues add up,
and the statement still holds.

To prove the second statement, recall that {,, ~ z, = z which gives

1 —_
dz ~ o = Mg <g;1dhn _ gndhn)

Since g, — o0 on compact subsets of C \ {p;}, this gives the second statement of
the proposition. O

For future reference, we state a lemma in a setting more general than needed
here.

Lemma 1. Consider a sequence of domains Q, = C\J;c1, ;7 D(@sm:7in), where
I and J are finite sets, lima; , = p; # oo when i € I, lima; , = 0o when i € J,
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and limr;,, = 0. Let f, : Q, — C be a sequence of holomorphic functions such

that
[ wnisc
O,

and fn(2)dz has at most a simple pole at 0co. Then there erists a subsequence, still
noted [y, which converges on compact subsets of C \ {p;,i € I} to a meromorphic
function f. Moreover f has at most simple poles at each p;, i € I, and f(z)dz has
at most a simple pole at 0o.

Proof. Consider some € > 0 and let U, be the set of z such that Vi € I, |z —p;| > ¢.
Then for n large enough, any 2z € U, is at distance at least £/2 from 9€2,,. By the
residue theorem (note that the integrand has no pole at o)

! —fn(w)dw & <
e

2mi Jaq, W — 2

|fn(2)] =

Hence we may extract a subsequence f,, which converges on U.. By a diagonal
process, we may extract a subsequence which converges on U, for all . Let
f=1lim f,,. The above estimate implies that for any £ > 0,

[ el s
|z—ps|=¢

It easily follows, using a Laurent series, that f has at most a simple pole at p;. O

2.3. The balancing condition

Let v be a closed curve on a minimal surface. The flux of « is the vector flux(y) =
f7 v ds where v is the conormal to . Physically, the flux is the force exerted by
the surface on «, so may be observed in soap film experiments, see figure 5.

Let F'(vy) be the horizontal part of flux(v), seen as a complex number. In term
of Weierstrass Representation,

F(v)-%(lm+Lgdh)

Since « is a closed curve, we have

/g_ldh:/gdh
¥ 4

F(v) = '/g_ldh:i/gdh.
g v

SO
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2.3.1. The non-singular case

Proposition 3 (non-singular case). Assume that all points p;,i € Iy, are dis-
tinct. Then for i € Iy,

Qi k@ k

1
lim —F(vipn) = —27 -
A (itn) Z Pi —Pj

n—oo
" J#i

Since the curves v; 3., bound the minimal surface M, ,, we have
ZF('Yi,k,n) =0
k

where the sum is taken on all k such that M; o, has an end at level k. This gives
the balancing condition

Remark 1. The proposition predicts that when Q; . and Q; » have the same sign,
the force between them is attractive. This is in agreement with an interesting soap
film experiment, see figure 5. We start with a soap film bounded by three wire
circles in the same horizontal plane. The two small circles are hanging on threads.
When we carefully lift up the small circles, they are attracted to each other.
When we move one up and one down, they are repelled from each other. The first
experiment was explained to me by A. Ros and is described in [6], Section 2.1.
The second one was suggested by Proposition 3.

Note that if we interpret Q; ; and @, as electrostatic charges, the force be-
tween them should be repulsive when they have the same sign. This is the reason
why we defined the force F; with the opposite sign.

Fia. 5. A soap film experiment.
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Proof. Observe that if we change the orientation of M, then «; x », g» and dh,
are changed into —v; .n, —1/9 and dhy,, so F(%i kn) is not changed. This was
to be expected, of course, given the physical interpretation of the flux as a force.
Hence, we may assume that the Gauss map points up in €, and use the results
of the preceding sections.

lim %F(mn) ~ lim —;—/g,;ldhn: lim —i/(dhn)z Angndhn) L

) 7

1 ij QJ
— Wik | — 1R :

2/ Zj:z—f’j B Zz—pg

Qz kQ% kaQl,k
= —m Res,, ( 7 +2 Z z—p)JrZ — b, 0% — )
#z I gt 7
_ 27TZ Qz kQJ, )
P Pi — Py

In the above computation, we computed the integral on the circle C(p;,¢) which is
homologous to ~; 4, , and where Proposition 2 applies (¢ is a fixed small number).

O

2.3.2. The singular case

We now explain how to adapt the above argument in the case where the con-
figuration is singular but each sub-configuration is non-singular, as in Theorem 5.
In this case, we have, with the notations of Section 1.4,

lim dh,, — Z Qo

n—oo z —pa

Let vo,x,n be the circle C(pa, €) in Q. The above computation gives

lim —F(’ya kn)= —2m M
nveo A 2 Pa—7p
Summing on k, we obtain that the configuration is balanced. This proves point
1b) of Theorem 5. Note that we do not need that the sub-configurations are
non-singular here.

To prove that the sub-configuration obtained by zooming on p, is balanced,
namely F* = 0, we do the exact same thing, replacing the homothety ,, by ¥
when we define ¢,,. The only difference is that some points go to oo, so J #
when we use Lemma 1. O



Vol. 79 (2004) Families of minimal surfaces 811
2.4. Height estimate

2.4.1. The non-singular case
We fix some point A € C away from all points p;, and let Ay ,, be the point
z, = Ain Qp ,,. Recall that A\, — 0.

Proposition 4. Let i € I, N I 1. Assume the configuration is non-singular.
Then

. _1 Ak+1,n
nhi{io log A, e /Ak " dhn = Qi k1 — Qik-

Up to the log factor, the left side is the height between A, and A1, so
does not depend on the path of integration. This proves that Q; 11 — Q4 is the
same for all © € I, N ;4 1.

Proof. Let P; 1, be the point z, = a;, + 2r;, in 4 ,. From the convergence of
M; , to M; oo we have

By wevm
Re/ dh,, = O(log R)
Poitm
where we compute the integral on a path which goes through M;,,. Lemma 2
below gives
Bosm
B / dhn = (Qix + £(n)) logrin + O(1)
Ao,

where as usual £(n) means a function which goes to 0 when n — oo, uniformly
with respect to R. Using Proposition 1, we obtain

Aptin
Re/A dhn, = Qi — Qi1 +e(n))(1+e(R))log Ay + O(R).

This gives

_1 Ak+1,n
Jim ke [ Qi1 = Qu)(1+(R))

The result follows by letting R — oc. (Il
Lemma 2. With the hypotheses of Lemma 1, assume further that all p;, i € 1
are distinct. Fix some small € > 0 and consider some z in the annular region

2rin < |z —ayn| < e. (Here the 2 might be replaced by any number > 1). Then
when n — 00,

/ZO fu(z)dz = (% /8Dm fn(z)dz> log|z —a;n| +0O(1)

where O(1) means a function which is uniformly bounded with respect to z and n.
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Proof. By Lemma 1, the integral of f,, from 2 to a;, + ¢ is a bounded function.
To estimate the integral from a; , + ¢ to z, we write the Laurent series of f, in
the annular region r; ,, < |z — a; | < 2e:

fn(z) - Z Cm(z - ai,n)m
meZ
where the coefficients ¢, depend on n and are given by

1 fn(2) L fa(2)
/zam|25 dz dz.

Cm — = = .
™ oy (z —ajn)mt? o I8 (DR (2 — iy 3 )22

From the proof of Lemma 1, we have

C/
1f1£2C = |ewm| < ey
/Za,;’n—QE (2£)m+1
c’
<C = | < ——.
/zai,n =Tin |f| o |C | - (ri,n)m+l

Now we compute

/a¢,n+5 fn(Z)dZ o 10g % " m;1 mci 1 ((Z - ai,n)m+1 = €m+1) %

The first term is what we want. Using the first and second estimates of c¢,,, it
is straightforward to see that the sum for m > 0 and m < —2, respectively, are

bounded. O

2.4.2. The singular case

We now consider the case where the configuration is singular and each sub-
configuration is non-singular, as in Theorem 5. We define a conformal coordinate
zy on Qy,, using ¢ instead of ¢, in the definition of z,. Let A7 be the point
zy = Ain Q. Then by Proposition 4, we have when n — oo 7

Ag+1,n
Re/ dhy, ~ (Qik — Qikr1)log Ay,
AR
This proves point 2a) of Theorem 5.

To evaluate the integral from A, to A7 . we go back to the coordinate z,.
When we identify Qy ;, with a domain in the complex plane via z,, we have on
compact subsets of C \ {p,},

lim dhy, = > Qak g
B Z — Pa

Also for the point 2% = A, we have z, —a; , ~ AX,/AS. The proof of Proposition 4
gives

AR \
Re/ dhy, ~ Qo 1 log nf
Ak,n )‘n
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This gives
1 Akt1,n log A& log Ay, — log AS
R dhy, ~ Qi1 — Qs z ok — Qo =L
L, e/Ak’n (Qik —Q ,k+1)10g N +(Qak — Qok+1) Tog .

Passing to a subsequence we may assume that (recall that 0 < A, < A2 < 1)

log AY
= 1li ~ e 0,1
P nggo]og)\ne[7 ]
exists. This proves point 2b) of Theorem 5. (Il

2.5. The case of nested configurations

As was explained at the end of Section 1.4, in the case of singular configurations,
we may have to make several successive zooms before we see non-singular sub-
configurations. This is illustrated in figure 6. We construct by this process a tree,
whose leaves are labelled with the indices 1, --- , m, and whose nodes are labelled
by subsets of {1,---,m}: each node is labelled by the set of leaves that are below
it. The root is labelled with {1,---,m} and corresponds to the full configuration.

Fia. 6. A nested singular configuration of depth 3 and the corresponding tree, with
oa={3,4,5,6,7,8}, B = {9,10,11} and v = {5,6,7, 8}.

The depth of a leaf is its distance to the root. The depth of a configuration is
the maximum depth of its leaves. For example, a non-singular configuration has
depth 1.

To each node « is associated a sequence of homotheties ¢, such that for each
son 3 of o and each ¢ € 3, lim 5 (p; ) exists and only depend on 3. We call it
p3. Moreover, for each a, at least two pg are distinct. (When « is the root, 2
is ¥n,.)

We call this rather heavy structure a nested configuration. We define charges
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and forces by

1Ca

N
- Q3,kQ,k
-3y L
hm1475 P8 TPy

where 3 and - are sons of a.
The following theorem generalises Theorem 5 to the nested case.

Theorem 6 (nested case). In the above setting,

1) each node « is balanced, in the sense that for all sons B of Fg‘ =0.

2) For each node «, there exists numbers HY such that the following holds:
Consider a leaf i € o such that M; o has ends at levels k and k + 1. Let
o= ag, a1, 0 =1 be the descending path from the node « to the leaf i.
Then there exists non-negative numbers py,--- , p, such that

Zps =1 and Hf = Zps(Qas,k+l — Qo k)

s=1 s=1

In other words, point 2 means that H} is in the smallest interval containing all
the number Q,, 111 — @a. r that we encounter while descending the tree from o
to i (a excluded). As was explained after Theorem 5, this gives useful inequalities.

Proof. The first point is clear from the proof of Proposition 3. For the second
point, we have by the proof of Proposition 4

Az’sn )\045—1
Re/ dhnNQas,klog/’\‘Ts 1<s<r-—1.
n

Es—1
Apn

A
Re / dhy ~ (Qay b — Qay k1) log A1,

op_1
Ay

Let us define A0~ = 1. This gives

T

1 Atin log An°™! —log A%
——R dh,, ~ e k — Ga = .
log A2° © /AZO ;(Q e s,k+1) log A%

Passing to a subsequence, we may assume that for each 1 < s <7,

log A\n*~! — log A2+
log A°

exists. This gives the result. (Il

ps = lim
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3. Applications

We say a configuration is trivial if it consists of one single point, which means
that the sequence M, converges to one single surface M . The idea to prove
compactness theorems is to classify all possible limit configurations, and use the
hypotheses to rule out all non-trivial ones.

3.1. The quadratic equation

The following equation is the key to all our classification results. The basic idea is
that it is quadratic and the charges are real, so in some cases it has no solutions.

Theorem 7. The charges satisfy

N
3> QirQyk = 0.

k=11<j

Proof. First assume the configuration is non-singular. Then we write
— _Q kQ k
0=D PFi=3 3 > P22 =3 > Qi
i ki j#i k i<j

In the case of a singular configuration of depth 2 (namely when all sub-configura-
tions are non-singular) we obtain, from Fi* = 0 and F,, = 0 respectively

3D QirQik =0 and > > QurQpk =0

k ijca k a<f
1<J

Here the notation e < 3 simply means that we sum on all unordered pairs {«, 8}.
Now

ZZQZ ¥Qik ZZ D QikQik Y DD Qik > Qik =

i<j o g€ k a<fica JjEB
fy N——
Qo k Qpk

Clearly the result follows in general by induction on the depth of the nested con-
figuration. O

3.2. A criterion for uniform speed

The levels of the ends of a limit surface M; o form a set of consecutive integers,
for if there were a gap at some level k, M;,, would cross the unbounded domain
Q. which contradicts embeddedness. In this section we prove
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Proposition 5. Consider some level k and assume that some limit surface M; o
has ends at levels k and k+1 whose logarithmic growths are equal: Q; ) = Qs py1.
Then Qry1 < Q.

This implies as a corollary:

Theorem 8. Assume that the surfaces M, have uniformly separated ends. Then
the sequence (My)y has uniform speed, and all the limit surfaces M; o have sep-
arated ends.

Indeed, if the sequence (M,,), does not have uniform speed, then at least one
limit surface M; . is flat so all its ends satisfies @Q; ;, = 0. If the ends are uniformly
separated then Qp < Qr+1.

3.2.1. Proof in the non-singular case

First assume that the limit configuration is non-singular. We shall use the
following doubtful but very convenient notation:

AQir = Qi1 — Qik-

I claim that Vj, AQ;, < 0. Indeed, if M; o has ends at levels k£ and %k + 1, then
AQjr = AQ; i = 0 by the charge equation (Theorem 4). Else, either M; o, has
its top end at level k, in which case AQ;; = —Q; ; <0, or its bottom end at level
k+ 1, in which case AQ;r = Q;1+1 <0, or no end at level £ nor & + 1, in which
case AQ;r = 0. Summing on j gives AQy < 0. |

3.2.2. Proof of Proposition 5 in the singular case

In the case of singular configuration, we argue by induction on the depth r of the
configuration. So assume that we have proven the proposition for all configurations
of depth < r and consider a configuration of depth r. Without loss of generality
we may assume that all leaves of the tree have the same depth r, by introducing if
necessary trivial sub-configurations (namely, configurations with only one point).

Let g be the root of the tree. Let i be given in the hypothesis of the proposi-
tion, and let ay, a1, - -+ , o, = i be the descending path from the root to i. By the
induction hypothesis, we have AQ,, 1 < 0 for each s > 1, because we may see the
sub-configuration o, as a configuration of depth < r. Hence

Hk = p'r’AQozT,k o RAREls o p1AQa1,k < 0.

Consider now any leaf j and let ap, 51,52, 3, = j be the descending path
from the root to j. I claim that there exists non-negative numbers py, - - , p,, not
all zero, such that

prAQa 1+ pr—1AQp._ x+ -+ p1AQz 1 < 0.
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If 7 € I(k) N I(k + 1), this follows from Hj < 0 and Theorem 6. Else we have as

above AQ; 1 <0, so the claim holds with p,_; = --- = p; = 0.
From this we want to deduce that
Pr—18Qp, 1k + -+ p1AQp k <0 (1)
for some other non-negative numbers pj,-- -, pl._;, not all zero. We fix 3,_1 and
consider all its sons .. (The numbers p1,--- , p, depend on (3,.) If there exists a

son (3, of 3,._1 such that p, = 0, then we are done. Else we divide by p, to obtain

AQg, i + p;fl AQp, 4k + -+ %AQﬂl,k <0.

r

Summing on all the sons 3, of 3,_1 we obtain

AQp, _y k+pr—1AQp, _, k+ -+ p{AQp, 1 <0

for some non-negative numbers p//_,-- -, p/. This proves (1). Now iterating this

summation process we obtain by induction that AQpg, » < 0. So we have proven
that for all sons 3 of the root, AQg; < 0. Summing on 8 we obtain AQy <0. O

3.3. Classification of configurations with 3 ends

In this section we assume that each surface M,, has N — 3 ends. Then each limit
surface M; o is either a minimal surface with three ends, or a catenoid with ends
at levels 1 and 2, or a catenoid with ends at levels 2 and 3. In the later two cases
we call it a catenoid at level 1 and 2, respectively. The size of a catenoid is the
logarithmic growth of its top end (this is equal to the radius of its waist circle).

Proposition 6 (classification). Assume that N = 3 and the sequence (M,,),, has
uniform speed. Then the possible weak limits {My oo, , My, oo} are, up to nor-
malisation (namely: changing indices i, scaling charges Q; , translating/scaling/
rotating the p;, and putting all surfaces M,, upside down)
1) m =1, and Mj o is a minimal surface with three ends.
2)m=r+1wherer >2. Moo, , My o are catenoids at level 1 with size
1. M, 1,00 5 a catenoid at level 2 with size v — 1. The configuration is as

follows: py,--- ,p, are the rt roots of unily, py41 = 0.

3) m =4, all M; o are catenoids of size 1, at level 1 ifi = 1,2 and 2 if i = 3,4.
The configuration is given by p1 = 1, po = —1, p3 = a and ps = 1/a where
a€ C\{0,1,—1} is a free parameter.

4) m = 4 and the configuration is singular with two sub-configurations: a sub-
configuration of three catenoids of size 1 given by point 2) above with r = 2,
and one single catenoid My o at level 2 with size ¢ € (0,1]. Namely, if
we write oo = {1,2,3} for the sub-configuration, then Mi oo and My o are
catenoids at level 1 with size 1, M3 o is a catenoid at level 2 with size 1,
i =1, p§ = =1 and p§ = 0.
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Case 2 is the configuration that we obtain as a limit of the Costa Hoffman Meeks
family of genus » — 1. This configuration is non-degenerate, in the sense that it
admits no non-trivial infinitesimal deformation (see [11]). As a consequence, if
(M,,)y, converges to this configuration, then M,, must be a Costa Hoffman Meeks
surface for n large enough (see [11] — this follows from uniqueness in the implicit
function theorem).

Case 3 is the possible limit of a family of minimal surfaces of genus 2 and 3
ends, known as Horgan surfaces, whose existence remains doubtful (see [11]). This
configuration admits a non-trivial deformation so is degenerate. Case 4 may be
seen as a limit case of case 3 when a — 0. It is illustrated in figure 4.

Before proving the proposition, let us prove Theorem 2 as a corollary. Let
(M,)n be a sequence of minimal surfaces as in this theorem. Since the ends are
uniformly separated, the surface has uniform speed by Theorem 8, so we are in
one of the four cases of the above classification. Case 3 and 4 are excluded because
M,, would have genus 2. Case 2 is also excluded because in this case, M,, would
be a Costa Hoffman Meeks surface of genus » — 1 for n large enough. Therefore,
the only possibility is case 1, which proves the theorem. (Il

Remark 2. If we remove the hypothesis that the sequence has uniform speed,
then many other weak limits are possible (or at least, we cannot rule them out).
Here is an example: m = 2, M o is a 3-ended surface with Q11 = Q12 < Q13
and M o is a catenoid at level 1 with size 0. There might also be more catenoids
of size 0 at level 1, which gives examples of arbitrary genus > 2 (see figure 2).
These examples do not have uniformly separated ends of course.

3.3.1. Proof in the non-singular case

We first prove the proposition in the non-singular case. Let nq, ny and ns
be respectively the number of catenoids at level 1, at level 2, and the number of
minimal surfaces with three ends. For a catenoid of size ¢ with ends at levels &
and k+1 we have Q; ;, = —c and Q; p11 = ¢80 Q; g+1 — Qi x = 2¢. By the charge
equation (Theorem 4), all catenoids at the same level have the same size. Let
¢y > 0 and ¢y > 0 be the size of the catenoids at level 1 and 2. Let J be the set
of indices i such that M; o has three ends. The quadratic equation (Theorem 7)
gives an equation of the form A + B 4+ C = 0 where

3
A=Y QixQjx,

k=144eJ
1<J
B = qu(Qu — Qi) +n22(Qi3 — Qi 2),

e
C=nyi(ns — l)c% + na(ng — l)c% — ninacicy.

The idea is to obtain informations by proving each term is non-negative.



Vol. 79 (2004) Families of minimal surfaces 819

STEP 1. We prove that A > 0 with equality only if ng < 1. If i € J then
Qi1 < Qs2 < Q43 and at least one inequality is strict. Moreover ;1 < 0 and
Qi3 > 0. This gives

Qi,1Q4,1 + Qi 2Q52 + Qi3Q;3Q:2(Qj,1 + Q5,2 + Qj,3) = 0.
This proves the claim.

STEP 2. We classify the case ng > 1. By the charge equation (Theorem 4), we
have if 1 € J, Q;2 — Q51 = 2¢1 and Q;3 — Q2 = 2¢o so all terms in B are
non-negative. Keeping only one term we get

B> 2nlcf + 2ngc§.

This gives
1
B+C> 5 [(nic1 — naca)? + ni(ng + 2)ct + na(ng + 2)05] ;

All terms are non-negative so all must be zero, hence ny = ny = 0 and A =0
which gives ng = 1. This is case 1 of the proposition.

STEP 3. We classify the case ng = 0. Only the C term remains which we rewrite
as

—_

G = 3 [(n101 = n202)2 +ni(ng — 2)0? + na(ng — 2)03] =0.

If ny > 2 and ny > 2 then all terms are non-negative so ny = no = 2 and ¢y = ¢s.
This is case 3 of the proposition. If n; = 1 then ¢; = (ny — 1)ca so ¢1 > 0 implies
ng > 2. This is case 2 upside down. The case ny = 1 is similar. It remains to
classify the possible configurations pq,- - ,pm in each case. This is done in [11].
O

3.3.2. Proof of Proposition 6 in the singular case

Assume the configuration is singular. First observe that there are no non-trivial
configurations with N = 2 — this clearly follows from the quadratic equation.
Hence any non-trivial sub-configuration must have 3 ends. As far as forces are
concerned, each sub-configuration may be seen as one single surface with three
ends of logarithmic growths Q, 1, Qa2 and Q. 3. So in this section, we see each
sub-configuration as a “fake” 3-ended surface. The difference between a sub-
configuration and a “true” 3-ended surface is that for a sub-configuration, the
charge equation Hy = Q; x+1 — @i, does not hold and must be replaced by some
inequalities as explained after Theorem 5.

As in the previous section, let n; and no be the number of catenoids at level
1 and 2 which correspond to non-singular points of the configuration. Let ns be
the number of 3-ended surfaces plus the number of sub-configurations (or “fake”
3-ended surfaces).

The equation A + B + C = 0 still holds provided we replace J by J U J’
where J’ is the set of « corresponding to sub-configurations. If « is a non-trivial
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sub-configuration, then it must match one of the cases 2,3,4 of Proposition 6.
Observe that in all cases, the logarithmic growths of the sub-configuration satisfy
Qa1 £ Qa2 £ Qn s with at least one strict inequality. Hence, we conclude as in
step 1 that A > 0, with equality if ng < 1.

To estimate the B term in step 2, we need to obtain some inequalities for
Qo k+1 — Qo,x. We deal with each case of the proposition separately.

CASE 2. Assume the configuration contains a sub-configuration « given by case
2 of the classification. If i € « is a catenoid at level 1, we have by point 2b) of
Theorem 5

Qi — Qi1 =2, Qoanr—Qa1=7+1 = 2<2¢<r+1L
If j € « is the catenoid at level 2, we have
Qiz—Q2=2r—-2, Qa3—Qar=7r—2 =r—2<2c<2r-2.
These inequalities are enough to conclude. Indeed, we obtain

r—2
Qo — Qa1 2 2c1, Qoaz— Qa2 2

.
1
We use this to estimate B, this gives

r —

y 2
B+C> 5 (n1e1 = nges)? + € (nF + 2n1) + c3ny (ng = 1)} .

If ngo =0, or ng =1 and r > 3, or ny > 2, the last term is non-negative, so all
must be zero, which gives ny = ny = 0. The only remaining case is ny = 1 and
r = 2. In this case, we obtain, from the first inequalities, that ¢y < ¢q. This gives

1
B+C> 5 [(nic1 — e2)? + c3(nd + 2n4) — ] .

If ny > 1 this is positive, so ny = 0. Hence A = 0 so n3 = 1. This is case 4 of the
classification.

CASE 3. Assume the configuration contains a sub-configuration « given by
case 3 of the classification. If i € « is a catenoid at level k € {1, 2}, we have

Qikt1 — Qik = Qakr1 — Qak =2, = 2c, = 2.

Hence in this case, the sub-configuration behaves as a “true” 3-ended surface. As
in the non-singular case, we conclude that this case cannot happen.

CASE 4. Assume the configuration contains a sub-configuration 5 given by
case 4 the classification, so that we have nested configurations o C 5. If i € o is
a catenoid at level 1, we have by Theorem 6

Qiz—Qi1=2, Qa2—0Qa1=3, Qp2—0Qpg1=3—-c =2<2¢ <3

If ¢ € a is the catenoid at level 2, we have

Qiz—Qi2=2, Qa3z—0CQo2=0, Qp3—Cp2=2c=0<2c <2
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Hence Qg2 — Qp,1 > 4¢1/3 and ¢o < ¢;. We conclude as in case 2 that ng = 1
and ny = 0. Then since Qg3 — Qg2 > 0, we have B + C > 0, so this case cannot
happen. O

Remark 3. From embeddedness, we have Q; < Q1. We were careful not to use
this information in the proof. Indeed, it is a priori not true that for a subconfigu-
ration, one has Qn 1 < Qo k+1. We conclude a posteriori, from the classification,
that this is true.

3.4. Classification in the low genus case

In this section we prove Theorem 1. We fix some genus G and assume that
conjecture 1 holds for all genus &/ < G, namely, any embedded minimal surface
of genus G’ has at most G’ 4 2 ends. We consider a sequence (M,,),, of embedded
minimal surfaces of genus GG and with N ends which are counterexamples to the
conjecture, namely N > G + 3. We want to prove that the limit configuration is
trivial (only one surface) so (M,,),, converges to a counterexample. So we assume
the limit configuration is non-trivial and we obtain a contradiction. Claims 1 and
2 below reduce the problem to the analysis of the configurations of type 1-2-2---1
(by which we mean that there is one catenoid at level 1, two catenoids at level 2,
and so on). We can then easily rule out these configurations by proving that the
quadratic equation is negative.

It is interesting to compare this with the argument of A. Ros in [8]. By a
completely different argument he could rule out configurations of type 1-1 (which
is a particular case of the above case with no 2’s). So he obtained similar, but
weaker, compactness results.

CLAIM 1. There exists levels a and b, with a < b, such that the following holds:

e there is precisely one surface M; ., between levels a—1 and a (by this we mean
that M;  is the only surface which has ends at levels a — 1 and a, it may have
more ends).

Fic. 7. A sequence of minimal surfaces of genus 4 with 7 ends. We keep only the shaded
surfaces in Claim 2.
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e For each k such that a < k < b, there are precisely two surfaces between levels
k and k + 1, and these are catenoids.
o There is one surface between levels b and b+ 1, which we call M; ., with j # 1.
It follows that M; o has its top end at level a and M} o, has its bottom end at
level b. Both M; o, and M, ., may, or may not, be catenoids.

CLAIM 2. Remove all surfaces which are below a, and all surfaces which are above
b+1 (namely, keep only M; o, M; o and the middle catenoids, if any). Then this
new configuration is still balanced.

CrAIM 3. The configuration of Claim 2 cannot be balanced.

Proof of Claim 1. Let G; and N; be the genus and number of ends of M; .. The
genus of M, is given by

G=>(Gi+N;—1)—N+1.

For 1 <k <N — 1, define

1if M; o has its top end at level k4 1,
a;p = 21if M; o has ends at levels k& and £ + 1, and k£ + 1 is not the top end,
0 else.

Then

=

s
aik:2N¢—3

’

o~
Il
B

ap = E a;r > 1 because M, is connected.

K3

If there exists ¢ such that G; = G, then all other surfaces must have genus zero
so be catenoids, and there is only one per level, so the claim holds with a = b
(because the configuration is non-trivial).

Else we have G; < G for all i, so G; > N; — 2. This gives

2N —4>G+N—-1= (Gi+N;—=1) =) 2N:=3)=> > ai = ar
i i k k

K3

We have N — 1 integers ar > 1 to make a total < 2(N — 1) — 2, so the sequence
ai, -+ ,an—_1 must contains a subsequence of the form 1,2,---,2,1 (the number
of 2 may be zero). The claim easily follows. Il

Proof of Claim 2. The claim follows from the following

Lemma 3 (pruning the configuration). Assume we have a balanced configu-
ration such that for some level a, there is only one surface M; o between levels a
and a+1. Let I~ (respectively I') be the set of j such that M « has all its ends
at level < a (respectively > a+1). Then the configuration obtained by removing all
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surfaces My, j € I~ is still balanced. In the same way, the configuration obtained
by removing all surfaces M, j € I'", 4s balanced.

Proof. First assume the configuration is non-singular. Let

ro3y duds

k=1jert Pi P
so that F; = F;" + F,". Then
N-1
JeI~ k=1 j eer—ufi} d
e
because the last sum is zero whatever the value of the p;. Hence F, = F," = 0.

When we remove all surfaces below level a, namely M ., with j € I, the forces I}
for 5 € I'™ do not change (because the surfaces below level a do not interact with
the surfaces above level a+ 1) and F; is replaced by Ff. Hence the configuration
is still balanced.

In the singular case, we need to prove that the configuration is balanced in
the sense of Theorem 6. Let o be the class of 4. Let I~ (respectively 1) be
the set of classes 3 such that all surfaces M} o, for j € 3 have ends below level a
(respectively above a+1). Then as above, we have Il = 0. Observe that pruning
only changes the charges Q) x for k& < a, but these do not interact with the points
pg for B € I'T™. Hence, the configuration remains balanced after pruning, in the
sense I3 = 0. It is clear that each sub-configuration remains balanced, simply
forget about the rest of the configuration and use the same argument. (Il

Proof of Claim 3. For a < k < b, let ¢;, and ¢, be the sizes of the two catenoids at
level k. Note that we do not assume that the configuration is non-singular here, so
we cannot say that ¢, = ¢. We do not assume either that it has uniform speed,
so we might have ¢, = ¢, = 0. The quadratic equation gives

b—1 b—2
—Qialca+ch) + Quplco1+ch 1)+ Y 2ekch — > (eh+ ch)(chit +chyr) = 0.
k=a k=a

We rewrite this as
(2¢acy — Qialca +¢5)) + Qjpleo—1 4 chq)

b—2 (2)
+ ) (2ek 11641 — (Chpt + Sy ok + ¢4)) = 0.
k=a
We want to prove that each term is non-positive. Since M,, is embedded we have
Qr < Qpyq forall 1 <k < N —1 (here Qp is the logarithmic growth before the
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pruning operation). We have
Qo122 Qia1> Qi
Qo = Qia —Ca— sz
Qr=cr1+c, 1—ck—c forat+1<k<b-1
This gives for a < k <b— 2,

—cp — ¢ £ Qr £ Qry1 =+ — Chy1 — Chyp1 = —2(cr + &) < —(ert1+Chir)

1
= 20k 116541 — (Gt + Chpn)(en k) S —5(ertr — chyr)” <O,

In the same way,
_Qi,a < Qafl < Qa < Qi,a — Cq — c;

implies that
2ca0; - Qi,a(ca + C:z) <0.

Since Q; < 0, all terms in (2) are non-positive, so all are zero. In particular, we
have either Q;, = 0, so M;; is flat, or ¢,_1 = ¢j_; = 0, so the catenoids at level
b — 1 are flat. The following lemma shows that this cannot happen

Lemma 4. For each k, 1 <k < N — 1, there is at least one surface M; o which
has ends at levels k and k+ 1 and is not flat.

Proof. Assume to the contrary that there is some k such that all surfaces which
have ends at levels k and k + 1 are flat. Then @ > 0, with equality only if all
surfaces which have their top end at level k are flat. In the same way Q11 <0,
with equality only if all surfaces which have their bottom end at level k + 1 are
flat. Since Q; < Qg 1, this proves that all surfaces which have ends at levels £ —1
and k, or K+ 1 and k+ 2, are flat. By induction we find that all surfaces are flat,
which is impossible. (Il
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