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A balancing condition for weak limits of families of minimal
surfaces

Martin Traizet

Abstract. We prove a balancing condition for weak limits of families of embedded minimal
surfaces of finite total curvature. We use it to prove compactness theorems for certain families
of minimal surfaces.

Mathematics Subject Classification (2000). Primary 53A10.

Keywords. Minimal surface, compactness, forces.

The study of the moduli space of embedded complete minimal surfaces in R3

(up to homotheties) with finite total curvature and fixed topology is one of the
fundamental open problems in the classical theory of minimal surfaces.

Let M(G, N) be the space of complete, properly embedded minimal surfaces

in R3 with finite total curvature, genus G and N horizontal ends, modulo
homotheties. Concerning the genus zero case, it is known that A4 (0,1) is the plane,
Af(0, 2) is the catenoid, and Af (0, N) is empty if N > 3 (see [4]). In higher genus,
it is known that Af(G, 2) is empty if G > 1 (see [10]), and Af(l, 3) is the Costa
Hoffman Meeks family of genus one (see [1]). These are the only cases where

Af(G, N) is completely understood.
The following two conjectures have been proposed in [2], Section 5.2:

Conjecture 1 (the Hoffman Meeks conjecture). IfN>G + 3, M(G,N) is

empty.

Conjecture 2. If G > 1, Ai (G, 3) is the set of Costa Hoffman Meeks surfaces of
genus G.

In view of the recent proof of the uniqueness of the Riemann minimal examples

by Meeks, Perez and Ros [5], a possible strategy to prove these conjectures
would be to prove that if a counterexample exists, then one can deform it until it
degenerates. One would obtain a contradiction by proving that the set of
counterexamples is compact - actually compactness is also useful to prove that one can
deform.
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The subject of this paper is to prove compactness theorems for families of
minimal surfaces, under some geometric assumptions.

Using ideas of H. Choi, R. Shoen and B. White, Antonio Ros [8] has proven
that the moduli space M(G, N) is weakly compact in the following sense: if {Mn)n
is a sequence of embedded minimal surfaces with fixed genus G and number of ends

N, then up to passing to a subsequence, {Mn)n converges to a finite set of embedded

minimal surfaces {MijOO, • • • ,Mmoo}. Roughly speaking, this convergence
means that when n —> oo, the curvature concentrates in m disjoint small balls

B\n, ¦ ¦ ¦ Bm „, and after suitable blow-up, each sequence Mn 0 Bln converges to
M,',«,.

In this paper, we prove that the weak limit {MijOO, • • • Mmoo} satisfies a set

of algebraic equations which we call the balancing condition: Theorem 4. These

equations relate the logarithmic growths of the ends and the "positions" of the
limit surfaces MijOO, • • • ,Mmoo. By the position of MijOO, we mean the limit
(up to some scaling) of the center of Bin. From the balancing condition, we
deduce a single quadratic equation satisfied by the logarithic growths of the ends:

Theorem 7.

We then use these tools to prove compactness theorems. What we need to
prove is that the sequence {Mn)n converges to a single limit MijOO. Typically, we

prove that if m > 2, then the quadratic equation has a sign, so it cannot be zero.
Concerning the first conjecture, we obtain the following result:

Theorem 1. Consider some G > 1 and assume that A4(G',N') is empty for all
G' <G and all N' > G' + 3. Then for all N > G + 3, M(G, N) is compact.

In other words, if the conjecture is known to be true for all G" < G, then the
set of counterexamples in the genus G case is compact. This might be useful in
an inductive proof of the conjecture.

Since the conjecture is known to be true for G 0, we obtain

Corollary 1. If N > A, then Ai(l,N) is compact.

This was obtained by A. Ros in [8] when N > 5 using a quite different argument.
Regarding the second conjecture, we prove the following result. Let M be an

embedded minimal surface with N ends. It is well known that the logarithmic
growths of the ends satisfy c\ < ci < ¦ ¦ ¦ < cjy ¦

Definition 1. We say an embedded minimal surface with N ends has separated
ends if ci < C2 < • • • < c/y-

Given e > 0, we say that the surface has e-separated ends if Cfc+i — C]. >
e(cn — c\) for all 1 < k < N — 1. Note that this condition if invariant by scaling.

We say that a sequence (Mn)n has uniformly separated ends if there exists e > 0

such that all Mn have e-separated ends.
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Let C(G) be the set of Costa Hoffman Meeks surfaces of genus G.

Theorem 2. Assume thatG ^ 2. Let (Mn)n be a sequence of surfaces in M.{G, 3)\
C(G) with uniformly separated ends. Then there exists a subsequence which
converges to a single surface in A4(G,3).

We cannot guarantee that the limit is in A4(G,3) \C(G) because we do not
know that C(G) is open.

Some nasty things happen in the genus 2 case, which suggests that surprisingly
enough, the conjecture might be harder in this case.

The paper is organised as follows. We state our main result, the balancing
condition, in Section 1. We prove it in Section 2. We give applications and prove
Theorems 1 and 2 in Section 3.

1. Main result

1.1. Weak compactness

We first recall the weak compactness theorem of A. Ros:

Theorem 3. [8] Let {Mn)n be a sequence of non-flat embedded complete minimal
surfaces in R3 with finite total curvature, horizontal ends and fixed topology: genus
G and N ends. Then there exists a subsequence, denoted again by {Mn)n, an integer

m > 0 and non-flat embedded complete minimal surfaces MijOO, • • • MmjOO

with finite total curvature and horizontal ends, such that (Mn)n converges to

{¦^i,ooj ¦ ¦ ¦ j Mm<00}. This convergence means the following:
1) C(Mn) C(MiiOO)H \-C(MmtOO), where C{M) means the total curvature

ofM.
2) There exists homotheties <pt<n such that <pitn(Mn) converges smoothly to

AfjjOO uniformly on compact subsets o/R3.
3) Given R,n large enough, let Bin be the Euclidean ball ip- n(B(0, R)). Then

B\,n, ' ' ' j Bm,n are disjoint, and Mn decomposes as

Mn M1<n U • • • U Mm<n U Q1<n U • • • U QN<n

where Mi>n Mn C\ Btn and Qk,n is « graph over the exterior of some
convex disks in the horizontal plane xs 0, containing exactly one end

ofMn.

We introduce some more terminology. We call Qk,n the unbounded domain
at level k, and we say that the point at infinity in Qk,n is the end at level k of
Mn. Here the word "level" has a combinatorial meaning. To each end of MîjOO

corresponds one curve in dMln which lies in one domain Qk,n- We say that the
end under consideration is the end at level k of Mt oo.
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xl,n 2»n

FlG. 1. A family of minimal surfaces Mn whose weak limit is a Costa surface and two
catenoids, one with ends at levels 1 and 2. the other with ends at levels 2 and 3.

1.2. Uniform speed

Definition 2. Let \i-l%n be the ratio of the homothety ^pl_n. We say the sequence
(Mn)n has uniform speed if the \i-l%n are comparable, namely there exists a constant
C such that \iln < C\i3,n for all n. i.j.

In Section 3.2 we will see a nice criterion for uniform speed, namely, if a

sequence {Mn)n has uniformly separated ends, then it has uniform speed.

«
FlG. 2. A family of minimal surfaces Mn with non-uniform speed. The two catenoids collapse

faster than the 3-ended surface.

If the sequence has uniform speed, we may, by suitable scaling of Mn and

Mi oo ¦ Mm „a, assume that all \i-l%n are equal to 1. (Indeed, by scaling of Mn
we may assume that \i\n 1. Then passing to a subsequence, each \i-l%n has a

limit 4 G (0. oo). We replace <pln by ¥>j.n//Xj.n and Mloo by Mloo/£t.)
In case the sequence {Mn)n does not have uniform speed, we may still, by

suitable scaling, assume that all /xj>n are equal to 1. However, some of the surfaces

Mt oo need to be scaled by zero, so they must be seen as multi-sheeted horizontal
planes with a singular point. (Details: passing to a subsequence, we may assume
that min{/iin, ¦ ¦ ¦ ,yU,m.n} jj,%0 n with «o independent of n. By scaling of Mn we

may assume that /xj0 1. Then passing to a subsequence, each \i-l%n has a limit
4 G [1 oo]. We replace as above y>jjn by yi>n//¦*»,« an(i M,.ra by Mloo/£l. In case

4 oo, Mj oo must be seen as a multi-sheeted horizontal plane.)
Let me summarise: Mn and Mi>oo, • • • • Mm>oo have been scaled so that all (pln

have ratio 1 so are in fact translations. Each limit Mloo is either a non-flat finite
total curvature minimal surface, or a flat multi-sheeted horizontal plane. One
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basic problem is that our balancing condition will not "see" flat limits. Note that
at least one limit surface is non-flat.

1.3. The balancing condition

Let Qjfc be the logarithmic growth of the end at level k of MîjOO. Note that
Qi,k 0 if MjjOO is flat. We also write Qi^ 0 if MîjOO has no end at level k. We
shall interpret Qi^ as electrostatic charges. We define

Then Q^ is the limit of the logarithmic growth of the end at level k of Mn when

n —> oo.
Let pi^n be the projection of the center of the ball Bin on the horizontal plane

xs 0. We see pi>n as a point in the complex plane. In general pi>n —> oo, so

scaling is needed to see interesting limits. We may find homotheties ipn such that
up to a subsequence, each sequence ij}n{pi,n) nas a finite limit, which we call pt,
and moreover at least two points pi are distinct. We call {p\, ¦ ¦ ¦ ,pm} the limit
configuration. We think of pi as the position of MijOO, although we cannot see

both pi and MijOO at the same scale.

Definition 3. We say the configuration is non-singular if the points p\1 ¦ ¦ ¦ ,pm
are distinct.

In this case we define forces by
N n n

Theorem 4 (non-singular case). In the above setup, if the limit configuration
{pi, • • • ,pm} ts non-singular, then

1) the configuration is balanced: V«7 Ft 0.
2) There exists numbers H\, ¦ ¦ ¦ Hn-\ such that the following holds: for any

i, if'MjjOO has ends at levels k and k + 1, then

Qi,k+1 — Qi,k Hk-

The meaning of condition 2 is of course that if i and j are two such indices,
then

Qi,k + 1 - Qi,k Qj,k+1 - Qj,k-

We call 1 the balancing condition, or the force equation. We call 2 the charge
equation. These are purely algebraic equations. They are invariant by scaling of
the charges Qj & and scaling/rotation/translation of the points pi, ¦ ¦ ¦ ,pm.
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1.4. The singular case

Assume now that the configuration {p\, ¦ ¦ ¦ ,pm} is singular. Define an equivalence
relation on {1, • • • m} by i ~ j if pi p0-. Given an equivalence class a, write pa
for the common value of all pi, i G a. Define charges and forces by

Qa,k / ^Qi,k

p _ V^ V^ Qa,kQß,k

k=lß^a. Pa P?

where the last sum is taken on all equivalence classes ß (possibly with only one

point) different from a. As we shall see, the configuration is balanced in the sense

that F„ 0 for all classes a.

D O
ZOOItl J X X X IPa°

Vp« p« p4k
J

P5X

FlG. 3. A singular configuration, with a {2,3,4}. The configuration {pi,pa,Ps} is balanced.
The sub-configuration {p^tPstP"} is balanced.

We may say more by zooming in. Let a be a class with at least two elements.
We may find homotheties, denoted ip^, such that the sequence ^nfe,«.) has a finite
limit for each « G a, denoted pf, and at least two of these points are different.
(Clearly, ipn(pj,n) —> oo when j <^ a.) We call {pf, « G a} a sub-configuration. If
the sub-configuration pf is non-singular (which means, of course, that all points
pf, i G a, are distinct), we may define forces by

N QQ

Theorem 5 (singular case, depth 2). In the above setup, assume that all sub-

configurations are non-singular, then:

la) each sub-configuration if balanced, in the sense that Ff 0 for all a and
all « G a.

lb) The configuration is balanced, m the sense that Fa 0 for all classes a.
2a) For each a, there exists numbers H% such that the following holds: for

each i G a, if Mt „q has ends at levels k and k -\- 1, then

— Qi,k — Lk ¦
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2b) For each a and each i G a such that -Mj>oo has ends at levels k and k-\- 1,

there exists p G [0,1] such that

p(Qt.k+i - Qi,k) + (l - p)(Qa.k+i - Qa.k) Hk.

where Hk is as in Theorem 4-

The statements la) and 2a) say that each sub-configuration satisfies the
conclusion of Theorem 4. The statement lb) says that as far as forces are concerned,
we may see all surfaces Mîoo, « G a as one single surface with ends of logarithmic
growths Qatk.

To get some grasp on point 2b), observe that if p 1 then we get Hk
Qt.k+i — Qt.k as if the configuration were non-singular, while if p 0, we get
Hk Qa.k+i — Qa.k as if all surfaces Mj->oo, « G a, were one single surface with
logarithmic growths Qa.k- It is very reasonable that both cases might happen, so

one cannot hope for a better result.
We will use 2b) as follows: if p0 is a non-singular point of the configuration

and Mj.oo has ends at levels k and k + 1, then Qj,k+i — Qj.k is in the interval
bounded by Qt.k+i — Qt.k and Qa.k+i — Qa.k- In other words, in the singular case,
the charge equation must be replaced by some inequalities (see Section 3.3.2. for
an example).

There are no known examples of families of minimal surfaces which give in
the limit a singular configuration (figure 4 is for illustration only). However, in
[11], examples are constructed for which the configuration is arbitrary close to be
singular. This strongly suggests that singular configurations are possible.

Of course, there might be singular sub-configurations. In this case, by zooming
in again, we see balanced sub-sub-configurations, and so on. By successive zoomings

like this we obtain what we call a nested configuration. We have a similar
theorem in this case. This will be explained in Section 2.5.

FlG. 4. A family of minimal surfaces which gives a singular configuration. The three catenoids
on the left converge to the same point.

1.5. Related work

This paper stems from a failed attempt by the author [11] to construct counterexamples

to the conjectures 1 and 2. In [11], I proved the converse to Theorem 4 in
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the case where all surfaces MijOO are catenoids under an additional non-degeneracy
hypothesis. Namely if we start from a balanced, non-degenerate, non-singular
configuration of catenoids, we can construct a family of minimal surfaces.

I was then able to classify all configurations in the 3-ended case, and unfortunately

found only the ones which yield the Costa Hoffman Meeks family (except in
the genus 2 case). Still, it is quite interesting to see how the balancing condition
forces the configuration to be very symmetric. To me this was good support to
the conjecture.

Fortunately, [11] was more successful in answering other questions, in particular
I proved the existence of embedded minimal surfaces with no symmetries.

To prove compactness theorems, it is necessary to allow limit surfaces other
than catenoids, and one has to consider the case where the configuration is singular,
which makes things much more complicated.

2. Proof

Our plan is to identify the domain Qk,n with a domain in the complex plane, and

compute the limit of its Weierstrass data when n —> oo. We obtain the force

equation Fi 0 by computing the limit of the horizontal flux along certain cycles.
We obtain the charge equation by estimating the height between the domains Qk,n
and Ofc+lj„.

2.1. Preliminaries

We introduce some notations: gn and dhn are the Gauss map and height differential
of Mn, Xn is the ratio of tpn, Ik is the set of indices i such that MijOO has an end at
level k. For i G Ik, ~/i,k,n is the curve at level k in the boundary of MjjK, oriented
as a boundary, so —7Jifci„ is oriented as a boundary of Qk,n-

We now fix some level k, 1 < k < N and consider the domain Qk,n- As Qk,n
is a graph, we may (changing orientation if necessary) assume that the normal
points up, so that \gn\ > 1 in Qk,n- Let (n : Qk,n —> C be the composition of
the projection on the horizontal plane followed with the homothety ipn. Clearly
Cn(^fc,n) converges to C \ {pt, i e Ik}-

We need to introduce a global conformai coordinate zn on Qk,n- We shall do
this so that zn is as close as possible to (n (which preserves orientation but is

not conformai). By Koebe's Theorem on the uniformisation of multiply connected

domains, (see [9] and the reference therein), Qk,n is conformally equivalent to a

canonical circle domain, namely, there exists a conformai representation zn oîQk,n
onto a domain of the form C minus round disks D(alin,rlin), i G Ik- Moreover,
zn is unique up to a Moebius transform. We normalise zn by asking that zn (n
at three points, which we choose to be oo and two other fixed points far from the
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points pi. We need the following estimates:

Proposition 1. When n —> oo7 we have (up to subsequences) zn ~ £„ 'm the

sense that zn((^1(z)) —> z uniformly on compact subsets of C \ {pj, « G ifc}. ira

particular, we have lima^n p4 and limrîjn 0. Moreover, we have

r y l°gr»,n -,lim lim -1- 1

l

where R is the radius of Btn in Theorem 3.

Proof. Note that Qk,n, 7i,k,n and zn all depend on R. We will most often fix the
value of R, but we sometime need to let R —> oo. When this happens, we will
always let first n —> oo and then 1? —> oo.

It will be convenient to replace the ball B(0, i?) in the statement of Theorem 3

by a vertical cylindrical box of radius R and height 2R (in other words, we use

the norm ||x|| m&x.(y/x1 + x\, \x^\) to define balls in R3). This clearly does not
change anything to the statement of the theorem. Thus the projection of jtik,n
on the horizontal plane is the circle C(pi^n, R), and Çn{ii,k,n) is a circle of radius
XnR.

As l/gn is holomorphic in Qk,n, its maximum is on the boundary. Prom the

convergence of Mi>n to MijOO, we obtain

lim lim inf \gn\ oo

Hence (n is K-quasiconformal on Qk,n, with n —> 1 when n —> oo and iî —> oo.
Now fix some 1? and let if be a compact subset of C \ {pt, i G Ik}- Then

lim inf \gn\ oo

so (n restricted to K is K-quasiconformal with k —> 1 when n —> oo. Since -ZnoCr^1 :

if —> C is K-quasiconformal and fixes three points, we may extract a converging
subsequence by some standard normal family argument ([3], Proposition 5.1 page
73). Using an exhausting sequence of compact sets, zn oÇ~l converges on compact
subsets of C \ {pt, « G /fc} to a holomorphic function / : C \ {pt, i G Ik} —? C /
clearly extends to a holomorphic bijection of C U {oo}. Since / fixes three points,
it has to be the identity, which proves the first statements.

To prove the last statement, consider the annular domain in Qk,n defined by
rt,n < \zn — a,itn\ < e for some fixed small e > 0. The image of this domain by
(n is bounded by a circle of radius XnR and a curve which converges to the circle

C(pi,e) when n —> oo. Since Qn is K-quasiconformal, the moduli of these domains
differ by a factor at most k. The moduli are by définition loge — logr^n and

loge — log(Aniî). Since k —> 1 when R —> oo, the last statement follows. D
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2.2. Limit of the Weierstrass data

We identify Qk,n with a domain in the complex plane by mean of the conformai
coordinate zn, that is, we write zn z.

Proposition 2. Up to a subsequence, we have on Qk,n

lim dhn 2_, —~—dz

lim Xngndhn — 2dz

The convergence is uniform on compact subsets of C \ {jpi, i G Ik} o,nd is also

uniform with respect to R.

Proof. Let dhiy00 be the height differential of MîjOO. Since MijOO has horizontal
catenoid (or planar) type ends, dhiy00 has at most a simple pole at each end, so

there exists a constant C such that

VÄ, I \dh^\<C.

Up to the translation <fitn, Mn converges to MijOO so we have for n large enough

J \dhn\ < C.

By définition of Qitk, we have

flim / dhn 2mQîk.

By elementary complex analysis, Lemma 1 below with J 0, dhn converges to a

meromorphic differential with at most simple poles at pi, i G Ik- The residue at

Pi is Qi,k (provided the pi are distinct). This determines the limit, and proves the
first statement of the proposition. When several pi are equal, the residues add up,
and the statement still holds.

To prove the second statement, recall that (n ~ zn z which gives

dz ~ d(n Xn- (gn 1dhn - gndhn)

Since gn —> oo on compact subsets of C \ {pi}, this gives the second statement of
the proposition. D

For future reference, we state a lemma in a setting more general than needed
here.

Lemma 1. Consider a sequence of domains Qn C \ Uie/uJ ^(ai,n, ri,n), where

I and J are finite sets, lima^n pi ^ oo when i G I, limaijn oo when i G J,
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and limr^n 0. Let fn : Çln —> C be a sequence of holomorphic functions such
that

l \fn\<C

and fn(z)dz has at most a simple pole at oo. Then there exists a subsequence, still
noted fn, which converges on compact subsets o/C \ {jpi, i G /} to a meromorphic
function f. Moreover f has at most simple poles at eachpi, i G I, and f(z)dz has

at most a simple pole at oo.

Proof. Consider some e > 0 and let U£ be the set of z such that V« G /, \z —pi\ > e.

Then for n large enough, any z G Ue is at distance at least e/2 from dQn. By the
residue theorem (note that the integrand has no pole at oo)

!/»(*)!
1 f !n(w) dw c

ire

Hence we may extract a subsequence /„ which converges on Ue. By a diagonal
process, we may extract a subsequence which converges on Ue for all e. Let

/ lim/n. The above estimate implies that for any e > 0,

\f(z)dz\ < 2C
Z-Pi\=£

It easily follows, using a Laurent series, that / has at most a simple pole at pi. D

2.3. The balancing condition

Let 7 be a closed curve on a minimal surface. The flux of 7 is the vector flux(7)

/ v ds where v is the conormal to 7. Physically, the flux is the force exerted by
the surface on 7, so may be observed in soap film experiments, see figure 5.

Let ^(7) be the horizontal part of flux(7), seen as a complex number. In term
of Weierstrass Representation,

g 1dh -\- I gdh

Since 7 is a closed curve, we have

/ g-idh / gdh
'7 ¦'!

so

^(7) * / g-ldh 1 / gdh.
7 ¦>!
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2.3.1. The non-singular case

Proposition 3 (non-singular case). Assume that all points pi,i G Ik, are
distinct. Then for i G Ik,

Qi,kQj,klim »- fc n) -2tt
Pi -Pi

Since the curves %,k.n bound the minimal surface Mj>n, we have

]Tf(7*.fc.n)=0
k

where the sum is taken on all k such that Ml,00 has an end at level k. This gives
the balancing condition

Remark 1. The proposition predicts that when Qik and Qj,k have the same sign,
the force between them is attractive. This is in agreement with an interesting soap
film experiment, see figure 5. We start with a soap film bounded by three wire
circles in the same horizontal plane. The two small circles are hanging on threads.
When we carefully lift up the small circles, they are attracted to each other.
When we move one up and one down, they are repelled from each other. The first
experiment was explained to me by A. Ros and is described in [6], Section 2.1.

The second one was suggested by Proposition 3.

Note that if we interpret Qik and Q3.k as electrostatic charges, the force
between them should be repulsive when they have the same sign. This is the reason
why we defined the force Fi with the opposite sign.

FlG. 5. A soap film experiment.
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Proof. Observe that if we change the orientation of Mn, then 7iifci„, gn and dhn
are changed into —7jifci„, —l/Çn an(i dhn, so -F(7i,fcin) is not changed. This was
to be expected, of course, given the physical interpretation of the flux as a force.

Hence, we may assume that the Gauss map points up in Qk,n and use the results
of the preceding sections.

lim — F(jik,n) lim --— / g~ldhn lim -i / (dhnf (\ngndhnyl

-2tt Qi,kQ],k

In the above computation, we computed the integral on the circle C(pj, e) which is

homologous to 7^^ and where Proposition 2 applies (e is a fixed small number).
D

2.3.2. The singular case

We now explain how to adapt the above argument in the case where the
configuration is singular but each sub-configuration is non-singular, as in Theorem 5.

In this case, we have, with the notations of Section 1.4,

hm dnn

Let ja,k,n be the circle C(pa,e) in Qk,n- The above computation gives

Summing on k, we obtain that the configuration is balanced. This proves point
lb) of Theorem 5. Note that we do not need that the sub-configurations are
non-singular here.

To prove that the sub-configuration obtained by zooming on pa is balanced,
namely F" 0, we do the exact same thing, replacing the homothety ipn by ip"t

when we define (n. The only difference is that some points go to 00, so J ^ 0

when we use Lemma 1. D
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2.4. Height estimate

2.4.1. The non-singular case

We fix some point A G C away from all points pi, and let Akln be the point
zn A in Qk,n- Recall that Xn —> 0.

Proposition 4. Let i ÇL Lk C\ Ik+i- Assume the configuration is non-singular.
Then

A1

lim —Re / dhn Qlyk+i - Qi,k-
^oologA J

Up to the log factor, the left side is the height between Ak>n and Ak+i,n so

does not depend on the path of integration. This proves that Q^k+i — Qi,k is the
same for all ielfcn Ik+i-

Proof. Let Pitk,n be the point zn aîn + 2rîn in Qk,n- From the convergence of
MjjK to MjjOO we have

fPi.k+ l.rr
Re / dhn O (log R)

JPi.k.rr

where we compute the integral on a path which goes through MjjK. Lemma 2

below gives

Re

where as usual e(n) means a function which goes to 0 when n —> oo, uniformly
with respect to Using Proposition 1, we obtain

Re / dfen (gi,fc-gi,fc+i+e(n))(l +e(Ä)) log An

This gives

lim ^^Re [ "+1'n
dhn (Qhk+1 - Qhk)(l + e

n^oologA J

The result follows by letting R —> oo. D

Lemma 2. W^i/i i/ie hypotheses of Lemma 1, assume further that all pt, i G /
are distinct. Fix some small e > 0 and consider some z in the annular region
2rjjn < l-z — aj,n| < £• (Here the 2 might be replaced by any number > 1). Then
when n —> oo7

j^ fn(z)dz =(i^-jdD fn(z)dz) log \z - «,

where 0(1) means a function which is uniformly bounded with respect to z and n.
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Proof. By Lemma 1, the integral of /„ from zq to ajjK + e is a bounded function.
To estimate the integral from ajjK + e to z, we write the Laurent series of /„ in
the annular region rin < \z — ain\ < 2e:

where the coefficients cm depend on n and are given by

— f fn{z)
dz — f fn{z)

°m ^d()m+lZ 2J()From the proof of Lemma 1, we have

/ I/I < 2C

r"
- (r. \m+l '

\z-a,itn\=ritn \'i,n)
Now we compute

fn (z)dz c_i log — + N ———(Yz — a, „)m — em

The first term is what we want. Using the first and second estimates of cm, it
is straightforward to see that the sum for m > 0 and m < —2, respectively, are
bounded. D

2.4.2. The singular case

We now consider the case where the configuration is singular and each sub-

configuration is non-singular, as in Theorem 5. We define a conformai coordinate
z1^ on Qk,n using ip% instead of ipn in the definition of zn. Let A%n be the point
z"t A in Qk,n- Then by Proposition 4, we have when n —> oo

rAk+i,n

This proves point 2a) of Theorem 5.

To evaluate the integral from A].n to A% n, we go back to the coordinate zn.
When we identify Qk,n with a domain in the complex plane via zn, we have on
compact subsets of C \ {pa},

1- 77 V~^ Qa,k 7lim dhn y !—dz.
a

Z ~Pa

Also for the point z"t A, we have zn — aliU ~ AXn/X^. The proof of Proposition 4

gives

Re / dhn - Qaik log -^—.
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n r-j (Cjtk - CJi k+l n
hn logAn logAn

Passing to a subsequence we may assume that (recall that 0 < An < X"t < 1)

exists. This proves point 2b) of Theorem 5. D

2.5. The case of nested configurations

As was explained at the end of Section 1.4, in the case of singular configurations,
we may have to make several successive zooms before we see non-singular sub-

configurations. This is illustrated in figure 6. We construct by this process a tree,
whose leaves are labelled with the indices 1, ¦ ¦ ¦ m, and whose nodes are labelled
by subsets of {1, ¦ ¦ ¦ m}: each node is labelled by the set of leaves that are below
it. The root is labelled with {!,-¦¦ m} and corresponds to the full configuration.

a 1 2 ß

3 y 4 9 10 11

FlG. 6. A nested singular configuration of depth 3 and the corresponding tree, with
a {3,4,5,6,7,8}, ß {9, 10, 11} and 7 {5,6,7,8}.

The depth of a leaf is its distance to the root. The depth of a configuration is
the maximum depth of its leaves. For example, a non-singular configuration has

depth 1.

To each node a is associated a sequence of homotheties ip"t, such that for each

son ß of a and each { G ß, lim ip"t (pi,n) exists and only depend on ß. We call it
p'p. Moreover, for each a, at least two p°ß are distinct. (When a is the root, ip"t

is ipn.)
We call this rather heavy structure a nested configuration. We define charges
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and forces by

Uk Kk<N

Qß,kQ~t,k

Pß-P"

where ß and 7 are sons of a.
The following theorem generalises Theorem 5 to the nested case.

Theorem 6 (nested case). In the above setting,

1) each node a is balanced, in the sense that for all sons ß of a, Fa 0.

2) For each node a, there exists numbers Hk such that the following holds:
Consider a leaf i G a such that Mi<00 has ends at levels k and k -\- 1. Let
a «o, Oil, ¦ ¦ ¦ ,ar i be the descending path from the node a to the leaf i.
Then there exists non-negative numbers pi, ¦ ¦ ¦ pr such that

T T

> p., 1 and H? > o,(Q~fc+i - Qn..k)-

In other words, point 2 means that Hk is in the smallest interval containing all
the number Qas,k+i — Qas,k that we encounter while descending the tree from a
to 1 (a excluded). As was explained after Theorem 5, this gives useful inequalities.

Proof. The first point is clear from the proof of Proposition 3. For the second

point, we have by the proof of Proposition 4

Re [ k'n
dhn ~ Q as<k log ^— l<s<r-l.

Re / dhn ~ (Qar>k - Qar,k+i) log A«-1.
J aZ^-1

Let us define A^r 1. This gives

Aa° r \ öl — 11 ; fc+1.1 »—. o?A„

Passing to a subsequence, we may assume that for each 1 < s < r,

exists. This gives the result. D
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3. Applications

We say a configuration is trivial if it consists of one single point, which means
that the sequence Mn converges to one single surface MijOO. The idea to prove
compactness theorems is to classify all possible limit configurations, and use the
hypotheses to rule out all non-trivial ones.

3.1. The quadratic equation

The following equation is the key to all our classification results. The basic idea is

that it is quadratic and the charges are real, so in some cases it has no solutions.

Theorem 7. The charges satisfy

N

k=\

Proof. First assume the configuration is non-singular. Then we write

In the case of a singular configuration of depth 2 (namely when all sub-configurations

are non-singular) we obtain, from F" 0 and Fa 0 respectively

a' Z) Z) ^.fcQj,* 0 and
k a<ß

Here the notation a < ß simply means that we sum on all unordered pairs {a, /?}.
Now

k i<3

Clearly the result follows in general by induction on the depth of the nested
configuration. D

3.2. A criterion for uniform speed

The levels of the ends of a limit surface MijOO form a set of consecutive integers,
for if there were a gap at some level k, Min would cross the unbounded domain
^fc,n which contradicts embeddedness. In this section we prove
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Proposition 5. Consider some level k and assume that some limit surface Mt<00
has ends at levels k and k-\-l whose logarithmic growths are equal: Qitk Qi,k+1-
ThenQk+1<Qk.

This implies as a corollary:

Theorem 8. Assume that the surfaces Mn have uniformly separated ends. Then
the sequence {Mn)n has uniform speed, and all the limit surfaces MîjOO have
separated ends.

Indeed, if the sequence {Mn)n does not have uniform speed, then at least one
limit surface Mioo is flat so all its ends satisfies Qik 0. If the ends are uniformly
separated then Qk < Qk+i-

3.2.1. Proof in the non-singular case

First assume that the limit configuration is non-singular. We shall use the
following doubtful but very convenient notation:

I claim that \/j, AQjik < 0. Indeed, if MjjOO has ends at levels k and k + 1, then
AQJik AQjfc 0 by the charge equation (Theorem 4). Else, either MjjOO has

its top end at level k, in which case AQjk —Qjlk < 0, or its bottom end at level
k + 1, in which case AQj^k Qj,k+i < 0, or no end at level k nor k + 1, in which
case AQjfc 0. Summing on j gives AQk < 0. D

3.2.2. Proof of Proposition 5 in the singular case

In the case of singular configuration, we argue by induction on the depth r of the
configuration. So assume that we have proven the proposition for all configurations
of depth < r and consider a configuration of depth r. Without loss of generality
we may assume that all leaves of the tree have the same depth r, by introducing if
necessary trivial sub-configurations (namely, configurations with only one point).

Let «o be the root of the tree. Let i be given in the hypothesis of the proposition,

and let «o, «l, • • • ar * be the descending path from the root to {. By the
induction hypothesis, we have AQOsy]~ < 0 for each s > 1, because we may see the
sub-configuration a.s as a configuration of depth < r. Hence

Hk prAQarik + ¦¦¦+ p±AQauk < 0.

Consider now any leaf j and let uq, ß-y, ßi ¦ ¦ ¦ ßr j be the descending path
from the root to j. I claim that there exists non-negative numbers pi, ¦ ¦ ¦ ,pr, not
all zero, such that

prAQßrik + pr-yAQß^^k + ¦¦¦+ piAQßlik < 0.
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If j G I(k) n I(k + 1), this follows from Hk < 0 and Theorem 6. Else we have as

above AQjik < 0, so the claim holds with pr-\ ¦ ¦ ¦ p\ 0.

From this we want to deduce that

p'r_1AQßr_uk + ---+p'1AQßuk<0 (1)

for some other non-negative numbers p[, ¦ ¦ ¦ p'r-\, not all zero. We fix ßr-\ and
consider all its sons ßr. (The numbers p\1 ¦ ¦ ¦ pr depend on ßr.) If there exists a

son ßr of ßr-i such that pr 0, then we are done. Else we divide by pr to obtain

AQßr,k + ^AQßr_lik + ¦¦¦ + -AQßuk < 0.
Pr Pr

Summing on all the sons ßr of ßr-\ we obtain

AQßr_uk + p'^AQßr_uk + ¦¦¦+ P'{AQßuk < 0

for some non-negative numbers p"_i, ¦ ¦ ¦ ,p'{. This proves (1). Now iterating this
summation process we obtain by induction that AQßlik < 0. So we have proven
that for all sons ß of the root, AQßik < 0. Summing on ß we obtain AQk < 0. D

3.3. Classification of configurations with 3 ends

In this section we assume that each surface Mn has N 3 ends. Then each limit
surface MijOO is either a minimal surface with three ends, or a catenoid with ends

at levels 1 and 2, or a catenoid with ends at levels 2 and 3. In the later two cases

we call it a catenoid at level 1 and 2, respectively. The size of a catenoid is the

logarithmic growth of its top end (this is equal to the radius of its waist circle).

Proposition 6 (classification). Assume that N 3 and the sequence (Mn)n has

uniform speed. Then the possible weak limits {MijOO, • • • Mmoo} are, up to
normalisation (namely: changing indices i, scaling charges Qiyk, translating /scaling/
rotating the pt, and putting all surfaces Mn upside down)

1) m 1, and MijOO is a minimal surface with three ends.

2) m r + 1 where r > 2. -MijOO, • • • Mr<00 are catenoids at level 1 with size
1. -Mr^ijOO is a catenoid at level 2 with size r — 1. The configuration is as

follows: pi, ¦ ¦ ¦ ,pr are the r roots of unity, pr+i 0.

3) m A, all MijOO are catenoids of size 1, at level 1 if i 1, 2 and 2 if i 3, 4.
The configuration is given by p\ 1, pi —1, ps a and p4 I/a where

a G C \ {0, 1, —1} is a free parameter.
4) m 4 and the configuration is singular with two sub-configurations: a sub-

configuration of three catenoids of size 1 given by point 2) above with r 2,
and one single catenoid -M4jOO at level 2 with size c G (0, 1], Namely, if
we write a. {1,2,3} for the sub-configuration, then -MijOO and M2<00 are
catenoids at level 1 with size 1, M^^ is a catenoid at level 2 with size 1,

pi l,p% -1 andpl =0.
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Case 2 is the configuration that we obtain as a limit of the Costa Hoffman Meeks

family of genus r — 1. This configuration is non-degenerate, in the sense that it
admits no non-trivial infinitesimal deformation (see [11]). As a consequence, if
(Mn)n converges to this configuration, then Mn must be a Costa Hoffman Meeks
surface for n large enough (see [11] - this follows from uniqueness in the implicit
function theorem).

Case 3 is the possible limit of a family of minimal surfaces of genus 2 and 3

ends, known as Horgan surfaces, whose existence remains doubtful (see [11]). This
configuration admits a non-trivial deformation so is degenerate. Case 4 may be
seen as a limit case of case 3 when a —> 0. It is illustrated in figure 4.

Before proving the proposition, let us prove Theorem 2 as a corollary. Let
(Mn)n be a sequence of minimal surfaces as in this theorem. Since the ends are
uniformly separated, the surface has uniform speed by Theorem 8, so we are in
one of the four cases of the above classification. Case 3 and 4 are excluded because

Mn would have genus 2. Case 2 is also excluded because in this case, Mn would
be a Costa Hoffman Meeks surface of genus r — 1 for n large enough. Therefore,
the only possibility is case 1, which proves the theorem. D

Remark 2. If we remove the hypothesis that the sequence has uniform speed,
then many other weak limits are possible (or at least, we cannot rule them out).
Here is an example: m 2, MijOO is a 3-ended surface with Qii Q\ß < Qi,3
and M2jOO is a catenoid at level 1 with size 0. There might also be more catenoids
of size 0 at level 1, which gives examples of arbitrary genus > 2 (see figure 2).
These examples do not have uniformly separated ends of course.

3.3.1. Proof in the non-singular case

We first prove the proposition in the non-singular case. Let n-i, n^ and n%

be respectively the number of catenoids at level 1, at level 2, and the number of
minimal surfaces with three ends. For a catenoid of size c with ends at levels k
and k + 1 we have Qhk —c and Qi^+i c so Qi^+i — Qi,k 2c. By the charge
equation (Theorem 4), all catenoids at the same level have the same size. Let
c\ > 0 and c2 > 0 be the size of the catenoids at level 1 and 2. Let J be the set
of indices i such that MijOO has three ends. The quadratic equation (Theorem 7)
gives an equation of the form A + B + C 0 where

iGJ

C n\
The idea is to obtain informations by proving each term is non-negative.
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Step 1. We prove that A > 0 with equality only if «.3 < 1. If 1 G J then
Qi,i < Qi,2 < Qj,3 and at least one inequality is strict. Moreover Q^i < 0 and

Qhs > 0. This gives

Qi,iQj,i + Qt,2Qj,2 + Qi,3Qj,3Qi,2(Qj,i + Q3a + Qj,s) °-

This proves the claim.

Step 2. We classify the case «.3 > 1. By the charge equation (Theorem 4), we
have if « G J, Qi^ — Qi,i 2ci and Qi^ — Qly2 2c2 so all terms in B are
non-negative. Keeping only one term we get

B > 2nic\ + 2n2cj.

This gives

B + C > - [(nici - n2C2)2 + ni(ni + 2)c^ + n2(n2 + 2)^]

All terms are non-negative so all must be zero, hence n\ n2 0 and A 0

which gives «.3 1. This is case 1 of the proposition.

Step 3. We classify the case «.3 0. Only the C term remains which we rewrite
as

c
9

[("-ici - "-2C2)2 + ni(ni - 2)ci + n2(n2 - 2)c22] 0.

If n-i > 2 and «-2 > 2 then all terms are non-negative so n\ n2 2 and c\ c2.
This is case 3 of the proposition. If n\ 1 then ci (n-2 — I)c2 so c\ > 0 implies
n2 > 2. This is case 2 upside down. The case n2 1 is similar. It remains to
classify the possible configurations pi, • • • ,pm in each case. This is done in [11].

D

3.3.2. Proof of Proposition 6 in the singular case

Assume the configuration is singular. First observe that there are no non-trivial
configurations with N 2 - this clearly follows from the quadratic equation.
Hence any non-trivial sub-configuration must have 3 ends. As far as forces are
concerned, each sub-configuration may be seen as one single surface with three
ends of logarithmic growths Qa,i, Qa,2 and Qa^. So in this section, we see each

sub-configuration as a "fake" 3-ended surface. The difference between a sub-

configuration and a "true" 3-ended surface is that for a sub-configuration, the
charge equation Hk Qi,k+i — Qi,k does not hold and must be replaced by some
inequalities as explained after Theorem 5.

As in the previous section, let n\ and n2 be the number of catenoids at level
1 and 2 which correspond to non-singular points of the configuration. Let «.3 be

the number of 3-ended surfaces plus the number of sub-configurations (or "fake"
3-ended surfaces).

The equation A + B + C 0 still holds provided we replace J by J U J'
where J' is the set of a. corresponding to sub-configurations. If a is a non-trivial
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sub-configuration, then it must match one of the cases 2,3,4 of Proposition 6.

Observe that in all cases, the logarithmic growths of the sub-configuration satisfy
Qa,i < Qa,2 < Qa,3 with at least one strict inequality. Hence, we conclude as in
step 1 that A > 0, with equality if «.3 < 1.

To estimate the B term in step 2, we need to obtain some inequalities for
Qa,k+i — Qa,k- We deal with each case of the proposition separately.

Case 2. Assume the configuration contains a sub-configuration a given by case
2 of the classification. If « G a is a catenoid at level 1, we have by point 2b) of
Theorem 5

Qi,2-Qi,i 2, Qa,2~Qa,i=r + l ==> 2<2ci<r+l.
If j G a is the catenoid at level 2, we have

Qj,3 ~ Qj,2 2r - 2, Qaß - Qaa r - 2 => r - 2 < 2c2 < 2r - 2.

These inequalities are enough to conclude. Indeed, we obtain

r - 2
Qa,2 - Qa,l > 2ci, Qq, 3 - Qa 9 > 7«2-

r - 1

We use this to estimate B, this gives

2 - n2c2)2 + c^(n^ + 2ni) + c^n2 n2 - r-1
If n-2 0, or n-2 1 and r > 3, or n2 > 2, the last term is non-negative, so all
must be zero, which gives n\ n2 0. The only remaining case is n2 1 and

r 2. In this case, we obtain, from the first inequalities, that c2 <c\. This gives

B + C > l- [(nlCl - c2)2 + c\{n\ + 2nx) - c\]

If n-i > 1 this is positive, so n\ 0. Hence A 0 so «.3 1. This is case 4 of the
classification.

Case 3. Assume the configuration contains a sub-configuration a given by
case 3 of the classification. If « G a is a catenoid at level k G {1, 2}, we have

Qi,k+1 - Qi,k Qa,k + 1 - Qa,k 2, => 2cfc 2.

Hence in this case, the sub-configuration behaves as a "true" 3-ended surface. As
in the non-singular case, we conclude that this case cannot happen.

Case 4. Assume the configuration contains a sub-configuration ß given by
case 4 the classification, so that we have nested configurations a C ß. If « G a is

a catenoid at level 1, we have by Theorem 6

Qi,2-Qi,l=2, Qa,2-Qa,l=3, Qß,2 ~ Qß,l 3 - C ==> 2 < 2Cl < 3.

If « G a is the catenoid at level 2, we have

Qt,3 ~ Qt,2 2, Qa,3 ~ Qa,2 0, Qß,3 - Qß,2 2c => 0 < 2c2 < 2.
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Hence Qß.2 — Qß.i > 4ci/3 and C2 < ci. We conclude as in case 2 that n-2 1

and n\ 0. Then since Qßt3 — Qß.2 > 0, we have B + C > 0, so this case cannot
happen. D

Remark 3. From embeddedness, we have Qk < Qk+i- We were careful not to use

this information in the proof. Indeed, it is a priori not true that for a subconfiguration,

one has Qa.k < Qa,k+i- We conclude a posteriori, from the classification,
that this is true.

3.4. Classification in the low genus case

In this section we prove Theorem 1. We fix some genus G and assume that
conjecture 1 holds for all genus G < G, namely, any embedded minimal surface
of genus G' has at most G + 2 ends. We consider a sequence {Mn)n of embedded
minimal surfaces of genus G and with N ends which are counterexamples to the
conjecture, namely N > G + 3. We want to prove that the limit configuration is
trivial (only one surface) so {Mn)n converges to a counterexample. So we assume
the limit configuration is non-trivial and we obtain a contradiction. Claims 1 and
2 below reduce the problem to the analysis of the configurations of type 1-2-2- ¦ ¦ 1

(by which we mean that there is one catenoid at level 1, two catenoids at level 2,

and so on). We can then easily rule out these configurations by proving that the
quadratic equation is negative.

It is interesting to compare this with the argument of A. Ros in [8]. By a

completely different argument he could rule out configurations of type 1-1 (which
is a particular case of the above case with no 2's). So he obtained similar, but
weaker, compactness results.
Claim 1. There exists levels a and 6, with a <b, such that the following holds:

• there is precisely one surface Mioo between levels a—I and a (by this we mean
that Mj.oo is the only surface which has ends at levels a—I and a, it may have

more ends).

FlG. 7. A sequence of minimal surfaces of genus 4 with 7 ends. We keep only the shaded
surfaces in Claim 2.
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• For each k such that a < k < 6, there are precisely two surfaces between levels
k and k + 1, and these are catenoids.

• There is one surface between levels 6 and 6 + 1, which we call MjtOO, with j ^ i.

It follows that MjjOO has its top end at level a and MJOO has its bottom end at
level 6. Both MijOO and MjtOO may, or may not, be catenoids.

Claim 2. Remove all surfaces which are below a, and all surfaces which are above

6+1 (namely, keep only MijOO, MjjOO and the middle catenoids, if any). Then this
new configuration is still balanced.

Claim 3. The configuration of Claim 2 cannot be balanced.

Proof of Claim 1. Let Gj and Ni be the genus and number of ends of MijOO. The

genus of Mn is given by

G ^2(Gt + Ni-1)-N+1.
i

For 1 < k < N - 1, define

{1
if MjjOO has its top end at level k + 1,

2 if MjjOO has ends at levels A; and k+1, and A; + 1 is not the top end,
0 else.

Then
N-l

k=\

i,k > 1 because Mn is connected.

If there exists « such that Gj G, then all other surfaces must have genus zero
so be catenoids, and there is only one per level, so the claim holds with a b

(because the configuration is non-trivial).
Else we have Gj < G for all {, so Gj > A7j — 2. This gives

We have N — 1 integers a^ > 1 to make a total < 2(N — 1) — 2, so the sequence

ai, • • • ajv_i must contains a subsequence of the form 1, 2, • • • 2,1 (the number
of 2 may be zero). The claim easily follows. D

Proof of Claim 2. The claim follows from the following

Lemma 3 (pruning the configuration). Assume we have a balanced configuration

such that for some level a, there is only one surface Mt<00 between levels a
and a+ 1. Let I (respectively I+ be the set of j such that MJOO has all its ends

at level < a (respectively > a+1). Then the configuration obtained by removing all
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surfaces Mj, j G / is still balanced. In the same way, the configuration obtained
by removing all surfaces Mj, j G 1^, is balanced.

Proof. First assume the configuration is non-singular. Let

QQ
k=ijei± Pl P3

so that Ft F+ + F.~. Then

F-+yF y y Qm9iä 0

because the last sum is zero whatever the value of the pj. Hence F. F^ 0.

When we remove all surfaces below level a, namely MJOO with j G / the forces Fj
for j G /+ do not change (because the surfaces below level a do not interact with
the surfaces above level a+ 1) and Fi is replaced by F^. Hence the configuration
is still balanced.

In the singular case, we need to prove that the configuration is balanced in
the sense of Theorem 6. Let a be the class of {. Let / (respectively /+) be

the set of classes ß such that all surfaces MJOO for j G ß have ends below level a

(respectively above a+ 1). Then as above, we have f+ 0. Observe that pruning
only changes the charges Qa^ for k < a, but these do not interact with the points
Pß for ß G /+. Hence, the configuration remains balanced after pruning, in the
sense Fß 0. It is clear that each sub-configuration remains balanced, simply
forget about the rest of the configuration and use the same argument. D

Proof of Claim 3. For a < k < b, let C]~ and c'k be the sizes of the two catenoids at
level k. Note that we do not assume that the configuration is non-singular here, so

we cannot say that C]. c'k. We do not assume either that it has uniform speed,

so we might have ck c'k 0. The quadratic equation gives

6-1 6-2

-Qi,a(Ca + O + Qi,6(c6-1 + 4_i) + ^ 2ckC'k ~ Y,^°k + Cfc)(cfc + 1 + 4+ l) 0-

k=a k=a

We rewrite this as

(2caCa - Qt,a(ca + c'a)) + Qj,b{cb-1 + 4-l)
6-2 (2)

+ J2 (2cfc+ic'fc+i - (cfc+i + 4+i)(cfc + 4)) o.

k=a

We want to prove that each term is non-positive. Since Mn is embedded we have

Qk < Qk+i for all 1 < k < N — 1 (here Qk is the logarithmic growth before the
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pruning operation). We have

Qa-l > Qi.a-l > —Qi a

Qfc cfc_i + c'k_1 -ck-ck for a + 1 < k < b - 1

This gives for a < k < b — 2,

-ck-c'k <Qk <Qk+i ck + c'k

+i)(cfc + 4) < ~2(Cfc+! ~ 4
In the same way,

-Qi.a < Qa-l <Qa< Qi.a ~ Ca - <
implies that

Since Qjb < 0, all terms in (2) are non-positive, so all are zero. In particular, we
have either Qjj, 0, so M3^ is flat, or Cb_i db_1 0, so the catenoids at level
6 — 1 are flat. The following lemma shows that this cannot happen

Lemma 4. For each k, 1 < k < N — 1, there is at least one surface Mt „q which
has ends at levels k and k -\- 1 and is not flat.

Proof. Assume to the contrary that there is some k such that all surfaces which
have ends at levels k and k + 1 are flat. Then Qk > 0, with equality only if all
surfaces which have their top end at level k are flat. In the same way Qk+i < 0,

with equality only if all surfaces which have their bottom end at level k + 1 are
flat. Since Qk < Qk+i, this proves that all surfaces which have ends at levels k — 1

and k, or k + 1 and k + 2, are flat. By induction we find that all surfaces are flat,
which is impossible. D
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