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Difféomorphismes holomorphes Anosov

Serge Cantat

Abstract. We classify the holomorphic diffeomorphisms of complex projective varieties with an
Anosov dynamics and holomorphic stable and unstable foliations : The variety is finitely covered

by a compact complex torus and the diffeomorphism corresponds to a linear transformation of
this torus.
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1. Introduction

1.1. Dynamique holomorphe

Par définition, un automorphisme d'une variété complexe M est un difféo-
morphisme holomorphe de M. Lorsque M est compacte, le groupe formé par ses

automorphismes est un groupe de Lie complexe de dimension finie noté Aut (M).
Certaines variétés projectives admettent des automorphismes dont la dynamique
est très riche. Par exemple, si l'on choisit une sextique du plan projectif avec
dix points doubles, la surface obtenue en éclatant ces dix points est munie d'un
automorphisme qui possède une infinité de points périodiques et dont l'entropie
topologique est strictement positive ([16], [7]). Cette remarque appelle deux questions

naturelles : un tel exemple d'automorphisme étant donné, peut-on décrire
avec précision sa dynamique 7 Peut-on classer les variétés projectives qui sont le

siège d'une dynamique chaotique 7

Dans ce texte, nous abordons un problème classique qui se situe à la frontière
des deux questions précédentes. Il s'agit de classer les automorphismes des variétés

projectives complexes dont la dynamique est de type Anosov. Cet article poursuit
donc l'étude amorcée par É. Ghys dans [15].
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1.2. Automorphismes Anosov

Avant de présenter les résultats principaux, rappelons ce qu'est un difféo-
morphisme Anosov. Soit M une variété compacte munie d'une métrique rieman-
nienne. Un difféomorphisme / : M —> M est de type Anosov s'il existe deux sous-
fibrés E+ et E du fibre tangent TM et deux constantes strictement positives c

et x tels que

(i) TM est la somme directe de E+ et E~ ;

(ii) E+ et E sont invariants sous l'action de / ;

(iii) pour tout entier relatif n, pour tout vecteur v+ de E+ et tout vecteur v~
de E-,

IK>+)II < c||«+||exp(nx)

\\dfn(v-)\\ <c||«-||exp(-nX).

Sous ces hypothèses, les deux champs de plans déterminés par E+ et E sont
continus et intégrables : ils déterminent deux feuilletages continus de M, le feuilletage

instable !F+ et le feuilletage stable T~. En général, T+ et T~ ne sont pas
differentiates, même lorsque le difféomorphisme / est de classe C°°, mais leurs
feuilles le sont.

Remarque 1.1. Si / préserve une structure complexe j, E+ et E sont j-invariants
et les feuilles de !F+ et T~ sont donc holomorphes. A priori, la structure transverse
de T+ et T~ est seulement continue, toutefois nous ne connaissons aucun exemple
d'automorphisme sur une variété complexe compacte qui soit de type Anosov et
dont les feuilletages stable et instable ne soient pas holomorphes.

Nous utiliserons le vocabulaire suivant : si T est un feuilletage continu d'une
variété complexe M dont les feuilles sont holomorphes, la dimension de T est la
dimension complexe de ses feuilles. Un automorphisme Anosov est de codimension
1 si !F+ ou T~ est de dimension 1.

Lorsque / est un difféomorphisme Anosov d'une variété compacte M, et lorsque
Jr+ est un feuilletage par courbes, le feuilletage T~ est continuement differentiate
(cf. [17]). Cette propriété s'étend aux automorphismes Anosov des variétés
complexes compactes et l'on peut même remplacer continuement differentiate par
holomorphe :

Proposition 1.2 (Ghys, [15]). Soit f un automorphisme Anosov d'une variété
complexe compacte M. Si J-+ est de dimension 1, alors J-~ est un feuilletage
holomorphe. En particulier, si M est une surface, alors T+ et T~ sont holomorphes.
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1.3. Énoncés

Une conjecture célèbre de S. Smale affirme que toute variété compacte possédant
un difféomorphisme de type Anosov est une infra-nilvariété, c'est-à-dire qu'après
un revêtement fini la variété est le quotient d'un groupe de Lie nilpotent par
un réseau cocompact. De nombreux résultats sont disponibles si l'on fait des

hypothèses de régularité sur les feuilletages stable et instable du difféomorphisme
Anosov ([13], [14], [2], [3]). En ce qui concerne les automorphismes, on dispose du
très joli résultat suivant.

Theorem 1.3 (Ghys, [15]). Soit M une variété complexe compacte et f un auto-
morphisme de M.

(a) Si f est un automorphisme Anosov de codimension 1 qui a une orbite dense,
alors M est homéomorphe à un tore et f est topologiquement conjugué à

un difféomorphisme linéaire de ce tore.

(b) Si M est une surface, et si f est Anosov, alors M est un tore complexe et

f en est un automorphisme linéaire.

La preuve de ce théorème repose sur les propriétés transverses du feuilletage de

codimension 1 : c'est un feuilletage holomorphe transversalement projectif (cf. [15]

et le paragraphe 5.1). Le but du présent article est d'obtenir un résultat analogue en
supposant d'entrée de jeu que les feuilletages stable et instable sont holomorphes,
mais sans faire d'hypothèse sur la codimension des feuilletages ou la transitivité
topologique de la dynamique. Par contre, nous supposerons que M est projective.

Theorem 1.4. Soient M une variété projective complexe et f un automorphisme
de M de type Anosov.

(a) Si les feuilletages stable et instable de f sont holomorphes, alors M est
revêtue par un tore et f provient d'un automorphisme linéaire de ce tore.

(b) Si f est un automorphisme Anosov de codimension 1, alors M est un tore
et f est linéaire.

Exemple 1.5. Soient A Z © Za un réseau cocompact de la droite complexe, A
le tore C2/A2 et t le point de A associé au point (1/2,1/2) de C2. La transformation

linéaire (x, y) i—> (3x + 2y, 2x + y) préserve le réseau A2 et induit donc un
automorphisme Anosov de A. Nous noterons / l'automorphisme Anosov obtenu en
faisant agir cette transformation diagonalement sur A x A. Soit j l'automorphisme
d'ordre 2 de A x A défini par

Les automorphismes / et j commutent et l'automorphisme induit par / sur
(A x A)/j est un automorphisme Anosov d'une variété projective qui n'est pas
un tore.
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Remarque 1.6. (i) La conclusion du théorème 1.4 est plus forte que la conjecture
de Smale puisque la variété M est revêtue par un tore. Ceci résulte de la remarque
suivante : soient N un groupe de Lie complexe connexe et F un réseau cocompact
de N, alors N/T est kahlénenne si et seulement si N est abélien ; dans ce cas N/T
est un tore.

Dans le même ordre d'idée, si M est une variété complexe compacte kahlérien-
ne dont le groupe fondamental est nilpotent sans être virtuellement abélien il est
facile de déduire de [5] qu'aucun automorphisme de M n'est Anosov.

(n) Puisque toute variété compacte kahlérienne homéomorphe à un tore est un
tore complexe, la seconde affirmation du théorème 1.4 est une faible généralisation
du théorème de Ghys.

Remarque 1.7. Dans [15], Ghys étudie aussi les actions holomorphes de C* qui
sont de type Anosov (les fibres stable et instable forts sont en somme directe avec
le champ de droites complexes tangent au flot) : ces actions y sont complètement
classées pour les variétés de dimension 3.

Sur une variété kahlérienne, un théorème de M. Gromov montre que tout
automorphisme isotope à l'identité a une entropie nulle. En particulier, il n'y a pas
de flot d'Anosov. De surcroît, toute action holomorphe de C* est compactißable
(cf. [20]).

1.4. Organisation de l'article

Les arguments employés pour démontrer les résultats de cet article relèvent
essentiellement de la géométrie algébrique et analytique complexe. C'est d'ailleurs

pour cela que nous supposons la variété ambiante projective et les feuilletages
holomorphes. Les techniques diffèrent donc profondément de celles présentées dans [15].

La partie 2 concerne une alternative due à J.-P. Demailly et T. Peternell. Elle

permet de rapporter l'étude à celle des variétés uniréglées (traitée dans la partie 4)
et des variétés dont la première classe de Chern est nulle (partie 3). La partie 5 est
consacrée aux automorphismes Anosov dont le feuilletage stable ou instable est de

dimension 1 complexe.

1.5. Remerciements

Un grand merci à Etienne Ghys, à Sébastien Boucksom, à Dominique Cerveau,
à Jean-Pierre Conze et à Frédéric Touzet pour les discussions que nous avons eues

autour de ce thème. Les remarques judicieuses du rapporteur m'ont permis de

rectifier une première version confuse et incomplète de ce texte. La partie 2 doit
beaucoup à ses lectures attentives et je l'en remercie. Ce travail a été effectué lors
d'une délégation cnrs. Merci au cnrs pour m'avoir offert ces moments privilégiés.
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2. L'alternative de Demailly et Peternell

Dans cette partie, nous renforçons une alternative récente due à J.-P. Demailly et
T. Peternell lorsque la variété projective M possède un automorphisme Anosov.

2.1. Courants positifs et pseudo-effectivité

Soit M une variété complexe compacte de dimension d. Une forme différentielle
de type (p,p) est dite positive si sa restriction à tout germe de sous-variété
complexe W de dimension p est une forme volume définissant la même orientation que
la structure complexe de W.

Un (1, l)-courant est une forme linéaire continue sur l'espace des formes
différentielles de type (d — 1, d — 1), muni de la topologie de la convergence uniforme.
Un courant est positif s'il attribue une valeur positive à toute forme positive; il
est fermé s'il est nul sur les formes exactes. Si T est un courant fermé, la classe

d'homologie qui lui correspond sera notée [T].

Exemple 2.1. Soit w une forme de type (1,1). On lui associe le (1, l)-courant Tu
défini par la formule

{Tu\a)= f ,Aa
J M

pour toute forme a de type (d — 1, d — 1). Ce courant est positif (resp. fermé) si

et seulement si lu l'est.

Si L est un fibre en droites sur M, nous noterons c\(L) sa première classe de

Chern et [L] la classe d'homologie Poincaré-duale. La classe [L] sera appelée classe

d'homologie de L. Le fibre L est pseudo-effectif s'il existe un courant positif fermé
dont la classe d'homologie est égale à [L]. Par exemple, si le fibre en droites L est

muni d'une métrique hermitienne dont la forme de courbure w est positive, alors L
est pseudo-effectif. Le courant Tu associé à la forme w est en effet un courant positif
fermé représentant la classe d'homologie de L. Nous utiliserons de tels courants
Tu dans la preuve de la proposition 2.6. De même, lorsque L possède une section
holomorphe, le courant d'intégration sur le lieu des zéros de cette section est un
courant positif fermé dont la classe d'homologie coïncide avec celle de L : le fibre
L est donc pseudo-effectif.

Le fibre en droites le plus important est le fibre canonique. Il s'agit du fibre
Km det(T*M) dont les sections sont les formes holomorphes de degré maximal
dime (M). Les propriétés de positivité de ce fibre régulent la géométrie de M. En
particulier, nous exploiterons un théorème récent de J.-P. Demailly et T. Peternell
offrant l'alternative suivante [11] : si M est une variété projective complexe, ou
bien Km est pseudo-effectif, ou bien M est uniréglée, ce qui signifie que M est
couverte par une famille de courbes rationnelles.

Nous allons maintenant renforcer cette alternative dans le cas où M possède

un automorphisme Anosov.
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2.2. Énoncé de l'alternative renforcée

Le but de ce paragraphe est de démontrer la proposition suivante.

Proposition 2.2. Si M est une variété projective complexe qui possède un auto-
morphisme Anosov, ou bien M est uniréglée ou bien sa première classe de Chern
est nulle.

D'après l'alternative de Demailly et Peternell, il s'agit de montrer que la classe

d'homologie du fibre canonique Km est nulle dès que Km est pseudo-effectif et qu'il
existe un automorphisme Anosov. Un cas particulier instructif apparaît lorsque
Km admet une section et, plus généralement, lorsque la dimension de Kodaira de

M est positive ou nulle.

Lenime 2.3. Soit M une variété complexe compacte. Si M possède un automorphisme

Anosov, ou bien son fibre canonique est un fibre de torsion, ou bien la
dimension de Kodaira de M est égale à — oo. En particulier, si la dimension de

Kodaira de M est positive ou nulle, Km est un fibre de torsion.

Démonstration. Supposons que la dimension de Kodaira de M est positive ou
nulle. Il existe alors une puissance positive KMl du fibre canonique admettant des

sections holomophes non triviales. L'automorphisme Anosov / agit linéairement
sur le C-espace vectoriel de dimension finie formé des sections de KMl et possède
donc un un vecteur propre non nul :

BAgC, 3CleB°(M,KMl), f*Cl XCl. (2.1)

Le module de A est égal à 1 car AA coïncide avec la racine /-ème du degré
topologique de /. En particulier, / préserve la mesure (Cl A Cl)1/1. Puisque le support
de cette mesure coïncide avec la variété M, l'ensemble des points périodiques de

/ est dense dans M ; en effet, les points périodiques d'un difféomorphisme Anosov
forment une partie dense de son ensemble non-errant.

Soit Z le lieu des zéros de Cl. Si Z n'est pas vide, c'est une hypersurface
(singulière) /-invariante. Si m est un point périodique de / et si la variété stable ou
instable de m coupe Z, alors m appartient à Z, car Z est un ensemble compact
/-invariant.

Soit z un point de Z et U un voisinage ouvert de z qui soit un ouvert distingué
pour le feuilletage stable et le feuilletage instable de /. Puisque Z est une hypersurface,

si U est suffisamment petit alors Z coupe chaque variété instable ou chaque
variété stable locale contenue dans U. En particulier, Z contient tous les points
périodiques situés dans un tel ouvert. Ainsi, si Z était non vide, Z contiendrait un
ouvert, car les points périodiques de / sont denses. Ceci est absurde.

La section holomorphe Cl ne s'annule donc pas et KMl est le fibre en droites
trivial. Ceci termine la preuve. D

Remarque 2.4. L'étude des sous-variétés compactes invariantes par un
difféomorphisme Anosov est un sujet difficile pour lequel on dispose d'une littérature
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importante. L'absence d'hypersurface compacte invariante par un difféomorphisme
Anosov transitif a été remarquée par M. W. Hirsch [18]. On pourra consulter [12]
et la bibliographie qui s'y trouve pour des compléments.

2.3. Courants positifs invariants

Dans ce paragraphe nous étudions les courants positifs T qui sont invariants
sous l'action d'un automorphisme Anosov /. Ceci signifie que, pour toute forme a,

(T\fa) (T\a).
Lenime 2.5. Soit M une variété complexe compacte kahlérienne dont le fibre
canonique est pseudo-effectif. Pour tout automorphisme f de M il existe un courant
positif fermé T vérifiant les deux propriétés suivantes :

(a) UT T;
(b) la classe d'homologie de T coïncide avec celle de Km-

Démonstration. Puisque Km est pseudo-effectif, le convexe F([ifM]) formé des

courants positifs fermés dont la classe d'homologie est celle de Km n'est pas vide.
Puisque M est une variété compacte kahlérienne, la norme d'un courant positif
fermé ne dépend que de sa classe d'homologie. La norme des éléments de FQ^m])
est donc constante et F([ifM]) est compact pour la topologie faible.

Puisque la classe d'homologie [Km] est un point fixe pour l'action de Aut(M)
sur H2„_2(M, R), ce convexe est Aut(M)-invariant. Le théorème du point fixe de

Schauder-Leray-Tychonoff permet de conclure. D

Proposition 2.6. Soit M une variété complexe compacte munie d'un automorphisme

Anosov f. Si le fibre canonique Km est pseudo-effectif la première classe
de Chern ci(M) est nulle.

D'après l'alternative de Demailly et Peternell, cette proposition est équivalente
à la proposition 2.2. Pour l'établir, nous allons montrer que le courant T fourni
par le lemme 2.5 est nul. Un cas particulier a déjà été obtenu au cours de la preuve
du lemme 2.3 : nous y montrons en effet que le courant d'intégration sur le lieu
des zéros d'une section holomorphe de Km /-invariante est nul. Voici la seconde
idée pour traiter le cas général.

Puisque / est un difféomorphisme Anosov, / réalise une dilatation uniforme le

long de son feuilletage instable et une contraction uniforme le long de son feuilletage

stable. En particulier, toute forme différentielle invariante par / est nulle le

long de T+ et de T~. Une forme différentielle positive qui est nulle le long de deux

sous-espaces supplémentaires est identiquement nulle : c'est l'inégalité de Cauchy-
Schwartz. Il n'existe donc pas de forme positive invariante. Pour les courants positifs,

la preuve est essentiellement la même ; pour la mettre en place, on approxime
le courant invariant par une forme presque positive et presque invariante.
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Démonstration. Notons d la dimension de la variété M et fixons une métrique
hermitienne de forme fondamentale n. Sa forme volume est donc égale à nd. Nous
calculerons la norme des (1, l)-courants à l'aide de cette métrique ; ainsi, pour tout
courant positif T, || T || (T \ k^1

Soit T un (1, l)-courant positif fermé invariant sous l'action de / et dont la
classe d'homologie est égale à celle de Km- II s'agit de montrer que T est

identiquement nul. Pour cela, effectuons la décomposition de Siu de T :

{Zl} + R (2.2)

où chaque {Z{\ est le courant d'intégration sur une hypersurface de M et R est

un courant positif fermé dont les nombres de Lelong sont concentrés sur des sous-
ensembles analytiques de codimension supérieure ou égale à 2. Cette décomposition
est unique, donc invariante sous l'action de /. Nous allons tout d'abord montrer
que R est nul.

Soit {Ui\ un recouvrement de M par des ouverts distingués pour T+ et T~ et

{pi} une partition de l'unité adaptée à ce recouvrement. Sur chaque IÀ-Il on dispose
donc de p dimc(-F^) sections continues v±, vp du fibre tangent complexe
TM telles que, en tout point x delAt,

TxF-=Vectc(v1,V2,...,vp). (2.3)

De même, chaque Ut est muni de q dimc(-F+) champs de vecteurs vp+i, vp+q
engendrant le feuilletage Jr+.

Notons w le champ de bivecteurs
p

wx ^2pl{x)^2vJ{x)Avj{x). (2.4)

Ce champ est partout tangent au feuilletage stable donc, lorsque n est suffisamment
grand, le champ de bivecteurs w — f™w est strictement positif le long de T~.
Autrement dit, il existe une constante positive C telle que, pour toute (1, l)-forme
lu positive le long de T~ et pour tout point x,

lox K (/»,) < || u;TœT || < Cux K - (/»,). (2.5)

Cette inégalité permet de contrôler la norme d'une forme différentielle positive le

long du feuilletage stable. Une inégalité similaire est valable le long du feuilletage
instable si l'on remplace / par son inverse et que l'on choisit n et C convenablement.

Lorsque la forme w est presque positive, i.e. lorsque w > —en, une inégalité
analogue est valable, avec un terme correcteur additif de taille e.

L'inégalité de Cauchy-Schwartz montre que, pour tout point x, et pour toute
forme positive u>, la norme de w en x est majorée par la moyenne géométrique de la

norme de lu le long de TXT~ et le long de TXT+. De même, s'il existe e strictement
positif tel que lu > —ck, alors

Viel, \\ux\\<e+J\\uTxr+ II2 + II^t^- II2- (2.6)
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Dans la suite, l'entier n et la constante C seront telles que l'équation (2.5) soit
vérifiée. Pour chaque paire d'indices (i,j), nous noterons aj la (d—l,d — l)-forme
duale du champ de bivecteurs ptv0 A Vj pour la forme volume Kd ; autrement dit,
pour toute forme lu de type (1,1 et pour tout point x,

Tout ceci étant mis en place, nous pouvons démontrer la proposition. D'après le

théorème d'approximation de Demailly [10], il existe une suite (wj.) de (1,1)-formes
à singularités algébriques satisfaisant :

\{R-TUh\4)\ < l

> -tk VA;.
k

(2.7)

(2.8)

(2.9)

Le troisième point signifie que to], est presque positive : plus k est grand et plus
lu], est proche d'une forme positive. De plus, les singularités des lu], sont concentrées

sur des ensembles analytiques (de codimension 2) contenus dans l'ensemble des

points où R a des nombres de Lelong positifs.
Le premier point, l'invariance de T sous l'action de / et la définition des formes

a3t montrent que

i+ii/.ir- /» (2.10)

Le signe Jx signifie que l'on intègre en dehors des singularités de lû]~. Cette quantité
tend donc vers 0 lorsque k tend vers l'infini. En remplaçant / par son inverse et
en choisissant n convenablement, la même affirmation s'avère bien sûre valable le

long du feuilletage Jr+.
L'inégalité (2.5), son analogue pour Jr+ et la remarque concernant l'inégalité

de Cauchy-Schwartz (équation 2.6) assurent alors que la suite

k Lûk A K d-1

X

tend vers zéro. Ceci montre que le courant R se concentre sur le sous-ensemble où
ses nombres de Lelong sont strictement positifs. Puisque les nombres de Lelong de

R sont nuls en codimension 1, et puisque R est un courant positif fermé de type
(1,1) (i.e. de bidimension (d — l,d— 1)), ce courant est nul.

Nous pouvons maintenant conclure. Puisque R est nul, la décomposition de Siu
de T est réduite à l'égalité

T Y\Î{ZÎ}. (2.11)



788 S. Cantat CMH

Le courant T étant invariant sous l'action de /, nous pouvons supposer que les

diviseurs Z-% sont eux-mêmes invariants. Soit W l'espace vectoriel engendré par les

classes d'homologie [Zj\. Au sein de W, la classe d'homologie [Km] est contenue
dans l'intérieur du cône convexe engendré par les [Zt]. Il en résulte que l'un des

multiples entiers de [Km] est égal à la somme d'un nombre fini de classes [Dj],
où chaque Dj est un diviseur effectif /-invariant. Le fibre en droites Km est donc

isomorphe au produit tensoriel

où L est un fibre plat (donc unitaire). Puisque Km et les Dj sont /-invariants,
L* l'est aussi et l'on peut munir L* d'une métrique plate invariante ||.||l*. Nous

noterons encore ||.||l* la métrique qui s'en déduit sur les puissances tensorielles
deL*.

Comme les Dj sont effectifs, il existe une section Q de Km <S> L* qui est /-
invariante. Nous pouvons maintenant reprendre la preuve du lemme 2.3. Cette
section est une forme holomorphe à valeurs dans L, et la densité \\Q A Q\\l* est

/-invariante. La démonstration du lemme 2.3 s'adapte alors en utilisant la mesure
associée à cette densité car c'est une mesure de support total absolument continue

par rapport à la mesure de Lebesgue. On en déduit que Km <S> L* possède une
section ne s'annulant pas. Ainsi, Km est un fibre plat et la première classe de

Chern de M est nulle. D

3. Principe de Bochner et théorème de Bogomolov

Le but de cette partie est de démontrer le théorème principal de ce texte lorsque
la première classe de Chern de la variété ambiante M est nulle. Pour cela, nous
emploierons le théorème de structure de Bogomolov, ce qui permet de ramener
l'étude aux variétés de Calabi-Yau (cf. [1]). Dans ce contexte, c'est le principe de

Bochner qui permet de conclure.

3.1. Variétés de Calabi Yau

Une variété de Calabi-Yau est une variété complexe, compacte, kahlérienne et
simplement connexe dont le fibre canonique est trivial. La variété est donc munie
d'une forme volume holomorphe partout non nulle. Une telle variété possède une
métrique Kahlérienne Ricci-plate (cf. [1]) ; nous fixerons une telle métrique h et
noterons n la forme de Kahler associée.

On dit qu'une variété de Calabi-Yau est irréductible si la composante connexe
du groupe d'holonomie de cette métrique est irréductible. En ce cas, le théorème
de classification de Berger montre que ce groupe coïncide avec SU (m) ou Sp(r) (m
est égal à la dimension de M et r à la moitié). L'irréductibilité correspond au fait
que ces deux groupes ne préservent aucun sous-espace vectoriel non trivial de Cn.
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Lorsqu'une variété de Calabi-Yau est réductible, elle est isomorphe au produit
d'un nombre fini de variétés de Calabi-Yau irréductibles : la décomposition du
fibre tangent en la somme des fibres tangents à chacun des facteurs irréductibles
correspond à la décomposition en sous-espaces invariants par l'holonomie.

Proposition 3.1. Soit M une variété de Calabi-Yau. Toute décomposition du

fibre tangent de M en la somme de deux sous-fïbrés holomorphes est subordonnée
à la décomposition de M en facteurs irréductibles. En particulier, M n'a pas d'au-
tomorphisme Anosov dont les feuilletages stable et instable sont holomorphes.

Démonstration. Il s'agit d'un résultat classique qui résulte du célèbre principe
de Bochner.

Supposons que le fibre tangent de M scinde en la somme de deux sous-fibrés

holomorphes :

TM E1®E2. (3.1)

Notons p la dimension de E\ et j : E\ —> TM l'injection canonique. En prenant la

puissance extérieure p-ième de j, nous obtenons un morphisme non nul du fibre en
droites det(i?i) vers le fibre vectoriel f\pTM. Autrement dit, Apj détermine une
section holomorphe non nulle du fibre vectoriel /\p(TM)<g>(det(i?i))*. Puisque TM
est un fibre Ricci-plat, ce fibre vectoriel peut être muni d'une structure d'Hermite-
Einstein. D'après le principe de Bochner, la courbure de ce fibre doit être positive
ou nulle et, TM étant Ricci-plat, nous obtenons

(3.2)

La même inégalité s'applique à E2 et l'équation (3.1) entraîne les égalités

(3.3)

Nous sommes donc dans le cas d'égalité du principe de Bochner. En particulier,
E\ est invariant par transport parallèle et peut être décomposé en une somme de

sous-espaces irréductibles pour l'action du groupe d'holonomie. Nous avons donc
montré que E\ et Ei sont subordonnés à la décomposition de M en ses facteurs
irréductibles.

Si / est un automorphisme Anosov dont les feuilletages stable et instable sont
holomorphes, on peut appliquer cette propriété à TT+ et TT~. Ceci montre que
les feuilles de T+ et T~ sont compactes, ce qui est impossible car / contracte
uniformément T~. D

3.2. Le théorème de Bogomolov

Employons maintenant le théorème de structure de F. A. Bogomolov : si la
classe de Chern de M est nulle, et si M est kahlérienne, il existe un revêtement
fini de M qui est isomorphe au produit d'un tore par une variété de Calabi-Yau.
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Proposition 3.2. Si M est une variété kahlérienne compacte dont la première
classe de Chern est nulle et si M possède un automorphisme Anosov dont les

feuilletages stable et instable sont holomorphes, alors M est revêtue par un tore.

Démonstration. Appliquons le théorème de F. A. Bogomolov. Le revêtement
universel de M est donc le produit d'un espace affine Ck par une variété de Calabi-
Yau B.

Soit / : M —> M un automorphisme de M et / son relevé au revêtement universel

M Ck x B. L'espace affine Ck ne contient pas de sous-ensemble analytique
compact, donc / préserve la projection de M sur Ck. Autrement dit, il existe un
automorphisme </> de Ck et une application holomorphe a i—> ipa de Ck vers le

groupe de Lie Aut(B) tels que

f(a,b) (4>(a),Mb)) (3.4)

pour tout point (a, 6) du produit Ck x B. Le groupe d'automorphismes de B est
discret (principe de Bochner), donc ipa ne dépend pas de a. Ceci montre que /
agit diagonalement sur M Ck x B.

Puisque l'automorphisme Anosov / agit diagonalement, l'automorphisme
induit par / sur le facteur B est un automorphisme Anosov à feuilletages stable
et instable holomorphes. D'après la proposition 3.1, la variété B est réduite à un
point. La variété M est donc revêtue par un tore et / provient d'un automorphisme
de ce tore. D

Remarque 3.3. Tout automorphisme d'un tore complexe compact Cfc/T est une
transformation affine de ce tore car sa différentielle est constante : c'est, en
effet, une fonction holomorphe du tore (compact) vers l'espace affine des matrices
complexes de taille k x k. Puisque cette transformation affine définit un automorphisme

Anosov, il est facile de voir qu'elle possède un point fixe. Quitte à choisir
convenablement l'origine, il s'agit donc d'une transformation linéaire.

4. Variétés uniréglées

Le but de cette partie est de démontrer qu'il n'y a pas d'automorphisme Anosov
à feuilletages stable et instable holomorphes sur les variétés projectives uniréglées.
Modulo l'existence du quotient rationnel, ce résultat se ramène à un théorème de

Y. Miyaoka sous une forme récente due à F. A. Bogomolov et M. McQuillan.

4.1. Variétés rationnellement connexes

Une variété projective complexe M est rationnellement connexe si deux points
quelconques de M peuvent être joints par une courbe rationnelle. Pour qu'une
variété soit rationnellement connexe, il faut et il suffit qu'il existe une courbe
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rationnelle c : P1(C) —> M telle que le fibre c*(TM) soit une somme de fibres en
droites O(m) strictement positifs (i.e. m > 0). Cette définition a un sens car tout
fibre vectoriel de la droite projective est une somme de fibres en droites, et ce de

manière unique à permutation près des facteurs.
Voici une formulation affaiblie et simplifiée, mais suffisante pour les applications

que nous avons en vue, du théorème de Y. Miyaoka renforcé par F. A. Bogomolov
et M. McQuillan.

Theorem 4.1 ([4]). Soit M une variété projective et J- un feuilletage holomorphe
lisse de M. S'il existe une courbe rationnelle c : P1(C) —> M telle que le fibre
c*(TJ-) soit une somme de fibres en droites O(m) strictement positifs, il existe
alors une courbe rationnelle contenue dans l'une des feuilles de J-.

Corollaire 4.2. Si M est rationnellement connexe, et si M possède deux feuilletages

holomorphes partout transverses T et Q, il existe alors une courbe rationnelle
contenue dans l'une des feuilles de T (resp. de Q).

Démonstration. Fixons une courbe rationnelle c : P1 (C) —> M le long de laquelle TM
est une somme de fibres en droites strictement positifs. Puisque TM TT'© TQ,
nous avons l'égalité c*{TM) c*[TT)®c*{TQ) et chacun des deux facteurs de cette
somme directe est donc lui-même une somme de fibres en droites positifs. Ainsi,
T et Q contiennent chacun une courbe rationnelle dans l'une de leurs feuilles. D

Corollaire 4.3. Une variété rationnellement connexe ne possède pas d'automor-
phisme Anosov à feuilletages stable et instable holomorphes.

Démonstration. Soient {B{\ un recouvrement fini de M par des ouverts biholo-
morphes à des boules et e un nombre de Lebesgue pour ce recouvrement : tout
ensemble de diamètre inférieur à e est contenu dans l'un des ßj. Puisqu'une boule
ouverte ne contient pas d'ensemble analytique compact de dimension strictement
positive, toute courbe de M a un diamètre supérieur à e.

Appliquons le théorème 4.1 et le corollaire 4.2. Si un tel automorphisme Anosov

/ existait, il existerait une courbe rationnelle C dans l'une des feuilles du feuilletage
stable de /. Puisque / est une contraction uniforme le long de ce feuilletage, pour
n très grand devant 1, fn(C) serait une sous-variété compacte de M de diamètre
inférieur à e. Ceci contredit le choix de e. D

4.2. Quotient rationnel

Soit M une variété projective. On définit sur M une relation d'équivalence TZ,

dénommée équivalence rationnelle, en disant que deux points sont en relation s'il
existe une chaine de courbes rationnelles dans M qui joint x à y. En général, l'es-
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pace quotient M/72, n'est pas une variété ; par exemple, toute surface K3 projective
possède une infinité dénombrable de courbes rationnelles. Toutefois, la construction

du quotient rationnel montre que c'est presque le cas (cf. [9], chap. 5) :

Soit M une variété projective complexe. Il existe une variété projective normale
(singulière) Rat(M) et une ßbration méromorphe p : M ---> Rat(M) qui satisfait
les propriétés suivantes :

(a) p est une ßbration régulière propre en dehors d'un fermé de Zariski de M ;

(b) les fibres de p sont rationnellement connexes ;

(c) les fibres génériques de p sont des classes de IZ-équivalence ;

(d) si ip : M ---> B est une autre ßbration méromorphe satisfaisant (a) et (b),
il existe une application rationnelle tt : B ---> Rat(M) telle que p tt o ip.

Le troisième point utilise la définition suivante : une propriété est générique si

elle est valable sur le complémentaire d'une famille dénombrable de fermés de

Zariski d'intérieur vide. La fibration p est appelée quotient rationnel de M. D'après
la propriété (d), cette fibration est invariante par tout endomorphisme rationnel
de M. Tout automorphisme de M permute donc les fibres de p.

Poursuivons maintenant l'étude des automorphismes Anosov. Nous supposons
donc que M est une variété projective uniréglée munie d'un automorphisme Anosov
dont les feuilletages stable et instable sont holomorphes. Puisque M est uniréglée,
les fibres du quotient rationnel p : M ---> Rat(M) ont une dimension strictement
positive.

Lemme 4.4. Les feuilletages T+ et T~ induisent deux feuilletages holomorphes
•partout transverses sur les fibres génériques de p.

Dans cet énoncé, la transversalité est à prendre au sens fort : si V est une fibre
générique de p, alors TV est égal à la somme directe de TT~T\TV et de TT+ C\TV.

Démonstration. Soit V une fibre lisse de p autour de laquelle p est une fibration
holomorphe propre. Notons TV le fibre tangent de V et tt : TM\y —> Ny la

projection du fibre tangent à M sur le fibre normal de V (ce fibre est trivial, il
s'identifie au produit de V et du fibre tangent de Rat(M) au point p{V)).

D'après le corollaire 5.14 du livre [9], on peut choisir une courbe rationnelle
c : P1(C) —> V passant par un point générique de V pour laquelle c*(TM) est la

somme directe de dim(V) fibres en droites strictement positifs et de codim(V)
fibres en droites triviaux. Les facteurs positifs de cette somme directe
correspondent au fibre tangent de V et les facteurs triviaux au fibre normal de V.

Décomposons cette somme directe de manière compatible avec la décomposition
TM TF+ 0 TT~. On obtient ainsi

c*{tt+) o(Pl) e... e o{Pd+) e o e... e o (4.1)

O{qi)@...@O{qd_)@O@...@O (4.2)

où les pi et les qj sont strictement positifs, (d+ + d_) est égal à la dimension
de V et le nombre total de facteurs triviaux est égal à la codimension de V. Le
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long de l'image de c, la projection ti\tt+ '¦ TT+ —> Ny contient chaque facteur
strictement positif dans son noyau car Ny est trivial. Ainsi, le long de l'image
de c, TF+ intersecte TV sur un fibre de dimension supérieure ou égale à d+. Le
même argument s'applique à T~. Puisque (d+ + d-) est égal à la dimension de V
et puisque TT+ et TT~ sont en somme directe, il vient :

Vx G c(F\C)), TXV (TXT+ n TXV) ® {TXT~ n TXV). (4.3)

En déformant c le long de V, on peut faire passer la courbe c par un point générique
de V. Cette propriété est donc valable au point générique, et par semi-continuité
de la dimension, elle est valable partout, ce qu'il fallait démontrer. D

Proposition 4.5. Une variétéprojective complexe uniréglée ne possède pas d'auto-
morphisme Anosov à feuilletages stable et instable holomorphes.

Démonstration. Supposons qu'une telle variété M admette un automorphisme
Anosov / à feuilletages holomorphes. Puisque M est uniréglée, le quotient
rationnel a des fibres de dimension positive et nous pouvons appliquer le lemme

précédent. Le corollaire 4.2 montre alors que T+ possède une courbe rationnelle
dans l'une de ses feuilles et l'argument du corollaire 4.3 s'applique sans modification

pour conclure. D

5. Difféomorphismes Anosov de codimension 1

Nous abordons maintenant la preuve du second point du théorème 1.4. Les

techniques sont similaires mais s'appuient sur les travaux de Ghys mentionnés dans

l'introduction. En particulier, la structure transverse du feuilletage de codimension
1 joue un rôle important.

5.1. Codimension 1 et structure transverse

Dans toute cette partie, / désignera un automorphisme Anosov d'une variété
complexe compacte M dont le feuilletage instable est de dimension 1 complexe.
Dans ce cadre le feuilletage T~ est un feuilletage holomorphe et les feuilles de

Jr+ sont paramétrées par la droite complexe C. En particulier, les feuilles de

Jr+ sont munies d'une structure affine canoniquement associée à leur structure
complexe ; cette structure affine est /-invariante et est uniquement caractérisée

par cette propriété [15]. Le pseudo-groupe d'holonomie de T~ agit projective ment

par rapport à cette structure affine (cf. [15]). Autrement dit, T~ est un feuilletage
holomorphe lisse de codimension 1 transversalement projectif.

Notons M le revêtement universel de M, tt : M —> M l'application de revêtement
et F le groupe d'automorphismes de ce revêtement. Les feuilletages Jr+ et T~ se

relèvent en deux feuilletages T+ et T~ de M. D'après [21], il existe une appli-
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cation holomorphe S : M —> P1(C) et une représentation du groupe fondamental

p-.r -> PGL(2, C) telles que
(i) S est une submersion locale et, localement, les fibres de ô sont les feuilles

de .F";
(ii) S est F-équivariante : pour tout x dans M et tout 7 dans F, ô(j(x))

Chaque feuille de T+ se projette afnnement et biholomorphiquement sur le

complémentaire d'un point de P1(C). A priori, ce point dépend de la feuille. S'il n'en
dépend pas, on peut supposer que p(Y) est contenu dans le groupe affine, ce qui
revient à dire que le feuilletage T~ est transversalement affine.

5.2. Simple connexité et conclusion

Commençons par renforcer l'alternative obtenue dans la deuxième partie de ce

texte.

Lenime 5.1. Soit M une variété projecüve complexe munie d'un automorphisme
Anosov de codimension 1. Ou Men M est rationnellement connexe, ou bien Km
est un fibre de torsion.

Démonstration. D'après la proposition 2.2 et le théorème de Bogomolov, il suffit de

montrer que M est rationnellement connexe si elle est uniréglée. Vues l'existence
et l'invariance du quotient rationnel, il suffit de montrer qu'un automorphisme
Anosov de codimension 1 ne préserve pas de fîbration holomorphe.

Supposons donc que / : M —> M est un automorphisme Anosov dont le

feuilletage stable est de codimension 1 et que / permute les fibres d'une fîbration
TV : M —> B. Notons / : B —> B l'automorphisme induit par / sur la base de la
fîbration. Nous allons montrer que cette situation est impossible. Nous verrons en
effet qu'où bien / est une contraction uniforme, ou bien / contracte uniformément
une fibre invariante, ces deux cas de figure étant absurdes.

Soit y un point de B pour lequel il existe un point x de M satisfaisant tt(x) y
et chr(\ TXT TyB. Il existe alors un voisinage U de x dans la feuille stable T~
dont l'image par tt est un voisinage de y. Si tous les points de B satisfont cette
propriété, alors B peut être couverte par un nombre fini d'ouverts Ui tels que le

diamètre de / (Ui) tend vers 0 lorsque n tend vers l'infini. Ceci est impossible car

/ : B —> B est une transformation surjective.
L'ensemble des points y de B tels que

Vx G n-\y), dimc(dTrx(TxF-)) < dimc(B)

est donc non vide. C'est un sous-ensemble analytique de B car T~ est holomorphe.
Nous noterons E son image réciproque par tt ; comme le feuilletage instable de /
est de dimension 1, E est contenu dans l'ensemble des points x de M tels que Jr+
est partout transverse à la fibre de -k passant par x.
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L'ensemble E est un sous-ensemble analytique de M qui est /-invariant. Puisque
l'ensemble des points périodiques de / est dense dans l'ensemble des points non
errants de /, on en déduit facilement que / possède un point périodique xq dans

E. Quitte à changer / en l'un de ses itérés, nous pouvons supposer que xo est un
point fixe.

Notons Vo la fibre de -k passant par xo et /o la restriction de / à cette fibre
invariante. Puisque le feuilletage instable de / est partout transverse à Vo, tous
les points périodiques de /o situés sur Vo sont des points périodiques attractifs.
L'ensemble non errant de /o est donc constitué de points périodiques attractifs
et Vo est couverte par les bassins d'attraction de ces points. Ceci contredit la

surjectivité de /o.
Nous avons ainsi obtenu une contradiction et ceci termine la preuve. D

Remarque 5.2. Cet argument n'est plus valable dès que les feuilletages stable et
instable de l'automorphisme Anosov sont de dimension 2. Par exemple, l'automor-
phisme diagonal f:AxA^AxA construit dans l'exemple 1.5 préserve deux
fibrations non triviales.

Le lecteur intéressé trouvera dans [18], théorème 7, et surtout [19], théorème 5.1,
des énoncés qui permettent de court-circuiter les arguments proposés dans la

preuve du lemme 5.1.

Proposition 5.3. Soit f un automorphisme Anosov d'une variétéprojecüve
complexe M. Si le feuilletage stable ou instable de f est de dimension 1 complexe, alors
M est un tore et f est un automorphisme linéaire.

Démonstration. Supposons que c'est le feuilletage instable qui est de dimension 1

et employons l'alternative fournie par le lemme précédent.
Si M est rationnellement connexe, M est simplement connexe. Dans ce cas,

l'application S permettant de développer la structure projective tranverse de T~
est une application holomorphe (surjective) de M sur P1(C) dont les fibres sont
les feuilles de T~. Ceci est impossible car aucune feuille de T~ n'est compacte.

Supposons maintenant que le fibre canonique de M est un fibre de torsion.
Puisque / est un automorphisme Anosov de codimension 1, / ne préserve aucune
fibration holomorphe non triviale. En particulier, le théorème de Bogomolov assure

que M est revêtue par un tore ou que M est compacte. La deuxième situation est
exclue par l'argument précédent.

La variété M est donc revêtue par un tore : il existe un revêtement fini et
galoisien P : M' —> M, où M' est un tore, auquel / se relève en un automorphisme
Anosov linéaire /' de codimension 1. Soit G le groupe des automorphismes (affines)
du revêtement P : M' —> M. L'automorphisme /' appartient au normalisateur de

G et l'un de ses itérés commute donc avec chaque élément de G. En particulier
les espaces propres de la partie linéaire de chaque élément de G sont invariants
sous l'action de /' : chacun de ces espaces contient donc la droite instable ou est

contenu dans l'espace stable de /'. Ces espaces sont donc denses dans le tore M'.
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Soit g un élément de G. Puisque g n'a pas de point fixe, g(x) a(x) +1 avec un
vecteur de translation t qui n'appartient pas à l'image de la transformation linéaire
a — id. En particulier, le sous-espace propre de a associé à la valeur propre 1 est
de dimension positive. Ce sous-espace est donc dense dans M' et, par conséquent,
a id. Chaque élément de G est donc une translation, ce qui montre que M est

un tore. D

Remarque 5.4. La proposition précédente est encore valable lorsque M est seulement

supposée kahlérienne compacte. Pour cela, on peut employer les arguments
suivants.

La dimension de Kodaira de M est négative ou nulle, donc M doit être une
variété spéciale au sens de F. Campana [6] : sinon, la fîbration du coeur introduite

par Campana serait une fîbration méromorphe cm '¦ M —-> C(M) presque
holomorphe invariante par /, ce qui est impossible.

Puisque M est spéciale, toute représentation linéaire du groupe fondamental
de M est virtuellement abélienne [6],

La structure transverse projective du feuilletage stable de / montre alors que
le premier nombre de Betti de M est strictement positif. La fîbration d'Albanese
de M étant /-invariante, la dimension de ses fibres est nulle et elle réalise un
biholomorphisme si l'on remplace M par l'un de ses revêtements finis. Ainsi, à

revêtement fini près M est un tore.

Remarque 5.5. Le théorème de Ghys mentionné dans l'introduction permet de

montrer que M est homéomorphe à un tore sans supposer que M est kahlérienne
mais en supposant que / a une orbite dense. Sous de telles hypothèses, nous ne

savons pas renforcer la conclusion et montrer que M est biholomorphe à un tore.
Pourtant, il est facile de montrer que les exemples connus de variétés complexes
compactes homéomorphes mais non biholomorphes à des tores ne possèdent pas
d'automorphismes Anosov (cf. [8] pour de tels exemples).
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