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Difféomorphismes holomorphes Anosov

Serge Cantat

Abstract. We classify the holomorphic diffeomorphisms of complex projective varieties with an
Anosov dynamics and holomorphic stable and unstable foliations : The variety is finitely covered
by a compact complex torus and the diffeomorphism corresponds to a linear transformation of
this torus.
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1. Introduction

1.1. Dynamique holomorphe

Par définition, un automorphisme d’une variété complexe M est un difféo-
morphisme holomorphe de M. Lorsque M est compacte, le groupe formé par ses
automorphismes est un groupe de Lie complexe de dimension finie noté Aut (M).
Certaines variétés projectives admettent des automorphismes dont la dynamique
est tres riche. Par exemple, si I'on choisit une sextique du plan projectif avec
dix points doubles, la surface obtenue en éclatant ces dix points est munie d’un
automorphisme qui possede une infinité de points périodiques et dont 1’entropie
topologique est strictement positive ([16], [7]). Cette remarque appelle deux ques-
tions naturelles : un tel exemple d’automorphisme étant donné, peut-on décrire
avec précision sa dynamique 7 Peut-on classer les variétés projectives qui sont le
siege d'une dynamique chaotique 7

Dans ce texte, nous abordons un probleme classique qui se situe a la frontiere
des deux questions précédentes. Il s’agit de classer les automorphismes des variétés
projectives complexes dont la dynamique est de type Anosov. Cet article poursuit
done Détude amorcée par E. Ghys dans [15].
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1.2. Automorphismes Anosov

Avant de présenter les résultats principaux, rappelons ce qu’est un difféo-
morphisme Anosov. Soit M une variété compacte munie d’une métrique rieman-
nienne. Un difféomorphisme f : M — M est de type Anosov §’il existe deux sous-
fibrés Et et £~ du fibré tangent TM et deux constantes strictement positives ¢
et x tels que

(i) TM est la somme directe de ET et B~ ;
(ii) ET et £~ sont invariants sous ’action de f;

(iii) pour tout entier relatif n, pour tout vecteur v de ET et tout vecteur v~
de E—,

IN

c|lv™ || exp(nx)

I df™ (o) |

[df*(07) || < ello™ || exp(—nx).

N

Sous ces hypotheses, les deux champs de plans déterminés par ET et I~ sont
continus et intégrables : ils déterminent deux feuilletages continus de M, le feuille-
tage instable F1 et le feuilletage stable F~. En général, Ft et F~ ne sont pas
différentiables, méme lorsque le difféomorphisme f est de classe C°°, mais leurs
feuilles le sont.

Remarque 1.1. Si f préserve une structure complexe j, ET et I~ sont j-invariants
et les feuilles de F1 et F~ sont donc holomorphes. A priori, la structure transverse
de Ft et F~ est seulement continue, toutefois nous ne connaissons aucun exemple
d’automorphisme sur une variété complexe compacte qui soit de type Anosov et
dont les feuilletages stable et instable ne soient pas holomorphes.

Nous utiliserons le vocabulaire suivant : si F est un feuilletage continu d’une
variété complexe M dont les feuilles sont holomorphes, la dimension de F est la
dimension complexe de ses feuilles. Un automorphisme Anosov est de codimension
1si F' ou F~ est de dimension 1.

Lorsque f est un difféomorphisme Anosov d’une variété compacte M, et lorsque
FT est un feuilletage par courbes, le feuilletage F~ est continuement différentiable
(cf. [17]). Cette propriété s'étend aux automorphismes Anosov des variétés com-
plexes compactes et 'on peut méme remplacer continuement différentiable par
holomorphe :

Proposition 1.2 (Ghys, [15]). Soit f un automorphisme Anosov d’une variété
compleze compacte M. Si FT est de dimension 1, alors F~ est un feuilletage ho-
lomorphe. En particulier, si M est une surface, alors FT et F~ sont holomorphes.
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1.3. Enoncés

Une conjecture célebre de S. Smale affirme que toute variété compacte possédant
un difféomorphisme de type Anosov est une infra-nilvariété, c’est-a-dire qu’apres
un revétement fini la variété est le quotient d'un groupe de Lie nilpotent par
un réseau cocompact. De nombreux résultats sont disponibles si ’on fait des hy-
potheses de régularité sur les feuilletages stable et instable du difféomorphisme
Anosov ([13], [14], [2], [3]). En ce qui concerne les automorphismes, on dispose du
tres joli résultat suivant.

Theorem 1.3 (Ghys, [15]). Soit M wune variété complexe compacte et f un auto-
morphisme de M.

(a) Si f est un automorphisme Anosov de codimension 1 qui a une orbite dense,
alors M est homéomorphe a un tore et f est topologiquement conjugué a
un difféomorphisme linéaire de ce tore.

(b) Si M est une surface, et si f est Anosov, alors M est un tore complexe et
[ en est un automorphisme linéaire.

La preuve de ce théoreme repose sur les propriétés transverses du feuilletage de
codimension 1 : ¢’est un feuilletage holomorphe transversalement projectif (cf. [15]
et le paragraphe 5.1). Le but du présent article est d’obtenir un résultat analogue en
supposant d’entrée de jeu que les feuilletages stable et instable sont holomorphes,
mais sans faire d’hypotheése sur la codimension des feuilletages ou la transitivité
topologique de la dynamique. Par contre, nous supposerons que M est projective.

Theorem 1.4. Soient M une variété projective compleze et f un automorphisme
de M de type Anosov.
(a) Si les feuilletages stable et instable de f sont holomorphes, alors M est
revétue par un tore et f provient d’un automorphisme linéaire de ce tore.
(b) Si f est un automorphisme Anosov de codimension 1, alors M est un tore
et f est linéaire.

Exemple 1.5. Soient A = Z @ Za un réseau cocompact de la droite complexe, A
le tore C?/A? et 7 le point de A associé au point (1/2,1/2) de C?. La transfor-
mation linéaire (z,y) — (3z + 2y, 2z + y) préserve le réseau A? et induit donc un
automorphisme Anosov de A. Nous noterons f ’automorphisme Anosov obtenu en
faisant agir cette transformation diagonalement sur A x A. Soit 7 I’automorphisme
d’ordre 2 de A x A défini par

jla,b) = (a+7,—b).

Les automorphismes f et ;7 commutent et 'automorphisme induit par f sur
(A x A)/j est un automorphisme Anosov d’une variété projective qui n’est pas
un tore.
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Remarque 1.6. (i) La conclusion du théoréme 1.4 est plus forte que la conjecture
de Smale puisque la variété M est revétue par un tore. Ceci résulte de la remarque
suivante : soient N un groupe de Lie complexe connexe et I un réseau cocompact
de N, alors N/I" est kéhlérienne si et seulement si N est abélien ; dans ce cas N/T'
est un tore.

Dans le méme ordre d’idée, si M est une variété complexe compacte kéhlérien-
ne dont le groupe fondamental est nilpotent sans étre virtuellement abélien il est
facile de déduire de [5] qu’aucun automorphisme de M n’est Anosov.

(i) Puisque toute variété compacte kahlérienne homéomorphe & un tore est un
tore complexe, la seconde affirmation du théoreme 1.4 est une faible généralisation
du théoreme de Ghys.

Remarque 1.7. Dans [15], Ghys étudie aussi les actions holomorphes de C* qui
sont de type Anosov (les fibrés stable et instable forts sont en somme directe avec
le champ de droites complexes tangent au flot) : ces actions y sont complétement
classées pour les variétés de dimension 3.

Sur une variété kdhlérienne, un théoreme de M. Gromov montre que tout au-
tomorphisme isotope a l’identité a une entropie nulle. En particulier, il n’y a pas
de flot d’Anosov. De surcroit, toute action holomorphe de C* est compactifiable
(cf. [20]).

1.4. Organisation de article

Les arguments employés pour démontrer les résultats de cet article relevent
essentiellement de la géométrie algébrique et analytique complexe. C’est d’ailleurs
pour cela que nous supposons la variété ambiante projective et les feuilletages holo-
morphes. Les techniques different donc profondément de celles présentées dans [15].

La partie 2 concerne une alternative dte a J.-P. Demailly et T. Peternell. Elle
permet de rapporter I’étude & celle des variétés uniréglées (traitée dans la partie 4)
et des variétés dont la premiére classe de Chern est nulle (partie 3). La partie 5 est
consacrée aux automorphismes Anosov dont le feuilletage stable ou instable est de
dimension 1 complexe.

1.5. Remerciements

Un grand merci & Etienne Ghys, & Sébastien Boucksom, & Dominique Cerveau,
a Jean-Pierre Conze et a Frédéric Touzet pour les discussions que nous avons eues
autour de ce theme. Les remarques judicieuses du rapporteur m’ont permis de
rectifier une premiere version confuse et incomplete de ce texte. La partie 2 doit
beaucoup a ses lectures attentives et je I’en remercie. Ce travail a été effectué lors
d’une délégation cnrs. Merci au cnrs pour m’avoir offert ces moments privilégiés.
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2. L’alternative de Demailly et Peternell

Dans cette partie, nous renforcons une alternative récente diie a J.-P. Demailly et
T. Peternell lorsque la variété projective M possede un automorphisme Anosov.

2.1. Courants positifs et pseudo-effectivité

Soit M une variété complexe compacte de dimension d. Une forme différentielle
de type (p,p) est dite positive si sa restriction & tout germe de sous-variété com-
plexe W de dimension p est une forme volume définissant la méme orientation que
la structure complexe de W.

Un (1,1)-courant est une forme linéaire continue sur I’espace des formes diffé-
rentielles de type (d — 1,d — 1), muni de la topologie de la convergence uniforme.
Un courant est positif s’il attribue une valeur positive a toute forme positive; il
est fermé s’il est nul sur les formes exactes. Si T est un courant fermé, la classe
d’homologie qui lui correspond sera notée [17].

Exemple 2.1. Soit w une forme de type (1, 1). On lui associe le (1, 1)-courant T,

défini par la formule
(T, |a) = / wAa
M

pour toute forme « de type (d — 1,d — 1). Ce courant est positif (resp. fermé) si
et seulement si w 'est.

Si L est un fibré en droites sur M, nous noterons c;(L) sa premiere classe de
Chern et [L] la classe d’homologie Poincaré-duale. La classe [L] sera appelée classe
d’homologie de L. Le fibré L est pseudo-effectif s’il existe un courant positif fermé
dont la classe d’homologie est égale & [L]. Par exemple, si le fibré en droites L est
muni d’'une métrique hermitienne dont la forme de courbure w est positive, alors L
est pseudo-effectif. Le courant T, associé a la forme w est en effet un courant positif
fermé représentant la classe d’homologie de L. Nous utiliserons de tels courants
T., dans la preuve de la proposition 2.6. De méme, lorsque L posséde une section
holomorphe, le courant d’intégration sur le lieu des zéros de cette section est un
courant positif fermé dont la classe d’homologie coincide avec celle de L : le fibré
L est donc pseudo-effectif.

Le fibré en droites le plus important est le fibré canonique. Il s’agit du fibré
Ky = det(T* M) dont les sections sont les formes holomorphes de degré maximal
dimg(M). Les propriétés de positivité de ce fibré régulent la géométrie de M. En
particulier, nous exploiterons un théoréme récent de J.-P. Demailly et T. Peternell
offrant I'alternative suivante [11] : si M est une variété projective complexe, ou
bien Kj; est pseudo-effectif, ou bien M est uniréglée, ce qui signifie que M est
couverte par une famille de courbes rationnelles.

Nous allons maintenant renforcer cette alternative dans le cas ou M possede
un automorphisme Anosov.
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2.2. Enoncé de Dalternative renforcée

Le but de ce paragraphe est de démontrer la proposition suivante.

Proposition 2.2. Si M est une variété projective complere qui posséde un auto-
morphisme Anosov, ou bien M est uniréglée ou bien sa premiére classe de Chern
est nulle.

D’apres 'alternative de Demailly et Peternell, il s’agit de montrer que la classe
d’homologie du fibré canonique Kjs est nulle des que K est pseudo-effectif et qu’il
existe un automorphisme Anosov. Un cas particulier instructif apparait lorsque
Ky admet une section et, plus généralement, lorsque la dimension de Kodaira de
M est positive ou nulle.

Lemme 2.3. Soit M une variété complere compacte. Si M posséde un automor-
phisme Anosov, ou bien son fibré canonique est un fibré de torsion, ou bien la
dimension de Kodaira de M est égale a —o0. En particulier, si la dimension de
Kodaira de M est positive ou nulle, Kp; est un fibré de torsion.

Démonstration. Supposons que la dimension de Kodaira de M est positive ou
nulle. Il existe alors une puissance positive Kf\%l du fibré canonique admettant des
sections holomophes non triviales. L’automorphisme Anosov f agit linéairement
sur le C-espace vectoriel de dimension finie formé des sections de K]%Il et possede
donc un un vecteur propre non nul :

JAeC, IQeH’(M,KF), fQ=). (2.1)

Le module de X est égal & 1 car A\ coincide avec la racine l-éme du degré topo-
logique de f. En particulier, f préserve la mesure (Q A ﬁ)l/ !. Puisque le support
de cette mesure coincide avec la variété M, I’ensemble des points périodiques de
f est dense dans M ; en effet, les points périodiques d’un difféomorphisme Anosov
forment une partie dense de son ensemble non-errant.

Soit Z le lieu des zéros de . Si Z n’est pas vide, ¢’est une hypersurface (sin-
guliere) f-invariante. Si m est un point périodique de f et si la variété stable ou
instable de m coupe Z, alors m appartient & Z, car Z est un ensemble compact
f-invariant.

Soit z un point de Z et U un voisinage ouvert de z qui soit un ouvert distingué
pour le feuilletage stable et le feuilletage instable de f. Puisque Z est une hypersur-
face, si U est suffisamment petit alors Z coupe chaque variété instable ou chaque
variété stable locale contenue dans U. En particulier, Z contient tous les points
périodiques situés dans un tel ouvert. Ainsi, si Z était non vide, Z contiendrait un
ouvert, car les points périodiques de f sont denses. Ceci est absurde.

La section holomorphe €2 ne s’annule donc pas et Kf\%l est le fibré en droites
trivial. Ceci termine la preuve. (Il

Remarque 2.4. [’étude des sous-variétés compactes invariantes par un diffé-
omorphisme Anosov est un sujet difficile pour lequel on dispose d’une littérature
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importante. L.’absence d’hypersurface compacte invariante par un difféomorphisme
Anosov transitif a été remarquée par M. W. Hirsch [18]. On pourra consulter [12]
et la bibliographie qui s’y trouve pour des compléments.

2.3. Courants positifs invariants

Dans ce paragraphe nous étudions les courants positifs T' qui sont invariants
sous ’action d’un automorphisme Anosov f. Ceci signifie que, pour toute forme a,

(T|f*a)=(T]a).

Lemme 2.5. Soit M une variété complexe compacte kihlérienne dont le fibré ca-
nonique est pseudo-effectif. Pour tout automorphisme f de M il eriste un courant
positif fermé T vérifiant les deux propriétés suivantes :

(a’) f*T - T ;
(b) la classe d’homologie de T coincide avec celle de K.

Démonstration. Puisque Kjps est pseudo-effectif, le convexe T'([K]) formé des
courants positifs fermés dont la classe d’homologie est celle de Kj; n’est pas vide.
Puisque M est une variété compacte kahlérienne, la norme dun courant positif
fermé ne dépend que de sa classe d’homologie. La norme des éléments de I'([Ks])
est donc constante et I'([K/]) est compact pour la topologie faible.

Puisque la classe d’homologie [K /] est un point fixe pour Paction de Aut(M)
sur Ho,, 2(M, R), ce convexe est Aut(M )-invariant. Le théoreme du point fixe de
Schauder—Leray—Tychonoff permet de conclure. (Il

Proposition 2.6. Soit M une variété complexe compacte munie d’un automor-
phisme Anosov f. Si le fibré canonique K est pseudo-effectif, la premiére classe

de Chern c¢1(M) est nulle.

D’apres I’alternative de Demailly et Peternell, cette proposition est équivalente
a la proposition 2.2. Pour I'établir, nous allons montrer que le courant T' fourni
par le lemme 2.5 est nul. Un cas particulier a déja été obtenu au cours de la preuve
du lemme 2.3 : nous y montrons en effet que le courant d’intégration sur le lieu
des zéros d’une section holomorphe de Kj; f-invariante est nul. Voici la seconde
idée pour traiter le cas général.

Puisque f est un difféomorphisme Anosov, f réalise une dilatation uniforme le
long de son feuilletage instable et une contraction uniforme le long de son feuille-
tage stable. En particulier, toute forme différentielle invariante par f est nulle le
long de F1 et de F~. Une forme différentielle positive qui est nulle le long de deux
sous-espaces supplémentaires est identiquement nulle : c’est 1’'inégalité de Cauchy—
Schwartz. Il n’existe donc pas de forme positive invariante. Pour les courants posi-
tifs, la preuve est essentiellement la méme ; pour la mettre en place, on approxime
le courant invariant par une forme presque positive et presque invariante.
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Démonstration. Notons d la dimension de la variété M et fixons une métrique
hermitienne de forme fondamentale . Sa forme volume est donc égale & x¢. Nous
calculerons la norme des (1, 1)-courants a Paide de cette métrique ; ainsi, pour tout
courant positif T, || T ||= (T | k¢1).

Soit T un (1, 1)-courant positif fermé invariant sous I'action de f et dont la
classe d’homologie est égale & celle de K. Il s’agit de montrer que T est identi-
quement nul. Pour cela, effectuons la décomposition de Siu de T :

T=> MN{Z}+R (2.2)
i>1

ou chaque {Z;} est le courant d’intégration sur une hypersurface de M et R est
un courant positif fermé dont les nombres de Lelong sont concentrés sur des sous-
ensembles analytiques de codimension supérieure ou égale a 2. Cette décomposition
est unique, donc invariante sous 'action de f. Nous allons tout d’abord montrer

que R est nul.
Soit {U;} un recouvrement de M par des ouverts distingués pour F*t et F~ et
{p:i} une partition de I’'unité adaptée a ce recouvrement. Sur chaque U;, on dispose

donc de p = dimg(F ) sections continues vy, ..., v, du fibré tangent complexe
T M telles que, en tout point = de U,

T.F = Vectc(vh V9, ..., i}p). (23)
De méme, chaque U; est muni de ¢ = dimg(F 1) champs de vecteurs vy i1, ..., Vpiq

engendrant le feuilletage FT.
Notons w le champ de bivecteurs

Wy = sz(x)

Ce champ est partout tangent au feuilletage stable donc, lorsque n est suffisamment
grand, le champ de bivecteurs w — f]'w est strictement positif le long de F—.
Autrement dit, il existe une constante positive C telle que, pour toute (1, 1)-forme
w positive le long de F~ et pour tout point =z,

S (we— (f10)) S Jonp- | S Cogluon— (k). (25)
Cette inégalité permet de controler la norme d’une forme différentielle positive le
long du feuilletage stable. Une inégalité similaire est valable le long du feuilletage
instable si ’on remplace f par son inverse et que ’on choisit n et C' convenable-
ment. Lorsque la forme w est presque positive, i.e. lorsque w > —ex, une inégalité
analogue est valable, avec un terme correcteur additif de taille e.

L’inégalité de Cauchy—Schwartz montre que, pour tout point z, et pour toute
forme positive w, la norme de w en x est majorée par la moyenne géometrique de la
norme de w le long de T, F~ et le long de T, F*. De méme, s'il existe ¢ strictement
positif tel que w > —ek, alors

VeeX, |wull<e+ \/II wr,rt |I° + | wr 7 |17 (2.6)

Zvj(x) AT(z). (2.4)

J=1
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Dans la suite, ’entier n et la constante C seront telles que ’équation (2.5) soit
vérifiée. Pour chaque paire d’indices (4, 7), nous noterons of la (d—1,d —1)-forme
duale du champ de bivecteurs p;u; A pour la forme volume k% autrement dit,
pour toute forme w de type (1, 1) et pour tout point z,

(w A af)z = wy (pi() (v; AT5)a) (Hd)z :

Tout ceci étant mis en place, nous pouvons démontrer la proposition. D’apres le
théoréme d’approximation de Demailly [10], il existe une suite (wy,) de (1, 1)-formes
a singularités algébriques satisfaisant :

, I
[ R (28)
1
wg > 5k vk. (2.9)

Le troisiéme point signifie que wy est presque positive : plus k est grand et plus
wy, est proche d'une forme positive. De plus, les singularités des wy, sont concentrées
sur des ensembles analytiques (de codimension 2) contenus dans I’ensemble des
points ot R a des nombres de Lelong positifs.

Le premier point, 'invariance de T" sous ’action de f et la définition des formes

J montrent que

a;

’

LA m
P

<

/ wi (w — frlw) k% < (2.10)
X

Le signe [ )/( signifie que I’on integre en dehors des singularités de wy. Cette quantité
tend donc vers 0 lorsque k tend vers l'infini. En remplacant f par son inverse et
en choisissant n convenablement, la méme affirmation s’avere bien siire valable le
long du feuilletage F .

L’inégalité (2.5), son analogue pour F* et la remarque concernant 1'inégalité
de Cauchy-Schwartz (équation 2.6) assurent alors que la suite

’

/ wi A\ k41
X

tend vers zéro. Ceci montre que le courant R se concentre sur le sous-ensemble oll
ses nombres de Lelong sont strictement positifs. Puisque les nombres de Lelong de
R sont nuls en codimension 1, et puisque R est un courant positif fermé de type
(1,1) (i.e. de bidimension (d — 1,d — 1)), ce courant est nul.

Nous pouvons maintenant conclure. Puisque R est nul, la décomposition de Siu
de T est réduite a 1'égalité

k—

T=> M{Z} (2.11)

i>1



788 S. Cantat CMH

Le courant T étant invariant sous 'action de f, nous pouvons supposer que les
diviseurs Z; sont eux-mémes invariants. Soit W 1’espace vectoriel engendré par les
classes d’homologie [Z;]. Au sein de W, la classe d’homologie [K ;] est contenue
dans lintérieur du céne convexe engendré par les [Z;]. Il en résulte que I'un des
multiples entiers de [K ] est égal & la somme d’un nombre fini de classes [D;],
ol chaque D; est un diviseur effectif f-invariant. Le fibré en droites Kj; est donc
isomorphe au produit tensoriel

(®;0(D;)) ® L

ol L est un fibré plat (donc unitaire). Puisque Kjps et les D; sont f-invariants,
L* Dest aussi et Pon peut munir L* d’une métrique plate invariante ||.||z+. Nous
noterons encore ||.||p+ la métrique qui s’en déduit sur les puissances tensorielles
de L*.

Comme les D; sont effectifs, il existe une section € de Kjp; ® L* qui est f-
invariante. Nous pouvons maintenant reprendre la preuve du lemme 2.3. Cette
section est une forme holomorphe & valeurs dans L, et la densité [|Q A Q|1+ est
f-invariante. La démonstration du lemme 2.3 s’adapte alors en utilisant la mesure
associée a cette densité car c’est une mesure de support total absolument continue
par rapport a la mesure de Lebesgue. On en déduit que Kj; ® L* possede une
section ne s’annulant pas. Ainsi, Kj; est un fibré plat et la premiere classe de

Chern de M est nulle. O

3. Principe de Bochner et théoréme de Bogomolov

Le but de cette partie est de démontrer le théoreme principal de ce texte lorsque
la premieére classe de Chern de la variété ambiante M est nulle. Pour cela, nous
emploierons le théoreme de structure de Bogomolov, ce qui permet de ramener
Pétude aux variétés de Calabi—Yau (cf. [1]). Dans ce contexte, ¢’est le principe de
Bochner qui permet de conclure.

3.1. Variétés de Calabi—Yau

Une variété de Calabi—Yau est une variété complexe, compacte, kiahlérienne et
simplement connexe dont le fibré canonique est trivial. La variété est donc munie
d’une forme volume holomorphe partout non nulle. Une telle variété posséde une
métrique Kahlérienne Ricci-plate (cf. [1]); nous fixerons une telle métrique % et
noterons x la forme de Kahler associée.

On dit qu'une variété de Calabi—Yau est irréductible si la composante connexe
du groupe d’holonomie de cette métrique est irréductible. En ce cas, le théoreme
de classification de Berger montre que ce groupe coincide avec SU(m) ou Sp(r) (m
est égal & la dimension de M et r & la moitié). [irréductibilité correspond au fait
que ces deux groupes ne préservent aucun sous-espace vectoriel non trivial de C”.
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Lorsquune variété de Calabi—Yau est réductible, elle est isomorphe au produit
d’un nombre fini de variétés de Calabi—Yau irréductibles : la décomposition du
fibré tangent en la somme des fibrés tangents a chacun des facteurs irréductibles
correspond a la décomposition en sous-espaces invariants par I’holonomie.

Proposition 3.1. Soit M une variété de Calabi—Yau. Toute décomposition du
fibré tangent de M en la somme de deur sous-fibrés holomorphes est subordonnée
a la décomposition de M en facteurs irréductibles. En particulier, M n’a pas d’au-
tomorphisme Anosov dont les feuilletages stable et instable sont holomorphes.

Démonstration. 1l s’agit dun résultat classique qui résulte du célebre principe
de Bochner.
Supposons que le fibré tangent de M scinde en la somme de deux sous-fibrés
holomorphes :
TM = FE, & Es. (3.1)

Notons p la dimension de Fy et j: Fy — T'M l'injection canonique. En prenant la
puissance extérieure p-ieme de j, nous obtenons un morphisme non nul du fibré en
droites det(F4) vers le fibré vectoriel AP TM. Autrement dit, APj détermine une
section holomorphe non nulle du fibré vectoriel A¥(TM)®(det(E}))*. Puisque TM
est un fibré Ricci-plat, ce fibré vectoriel peut étre muni d’une structure d’Hermite-
Einstein. D’apres le principe de Bochner, la courbure de ce fibré doit étre positive
ou nulle et, T'M étant Ricci-plat, nous obtenons

ei(By) <0, (3.2)
La méme inégalité s’applique & o et I’équation (3.1) entraine les égalités
Cl(El) =0= Cl(Eg). (33)

Nous sommes donc dans le cas d’égalité du principe de Bochner. En particulier,
F est invariant par transport parallele et peut étre décomposé en une somme de
sous-espaces irréductibles pour 'action du groupe d’holonomie. Nous avons donc
montré que Fy et Ey sont subordonnés a la décomposition de M en ses facteurs
irréductibles.

Si f est un automorphisme Anosov dont les feuilletages stable et instable sont
holomorphes, on peut appliquer cette propriété a TFT et TF . Ceci montre que
les feuilles de F+ et F~ sont compactes, ce qui est impossible car f contracte
uniformément F . (Il

3.2. Le théoréme de Bogomolov
Employons maintenant le théoreme de structure de F. A. Bogomolov : si la

classe de Chern de M est nulle, et si M est kdhlérienne, il existe un revétement
fini de M qui est isomorphe au produit d’'un tore par une variété de Calabi—Yau.
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Proposition 3.2. Si M est une variété kahlérienne compacte dont la premiére
classe de Chern est nulle et si M posséde un automorphisme Anosov dont les
feuilletages stable et instable sont holomorphes, alors M est revétue par un tore.

Démonstration. Appliquons le théoreme de F. A. Bogomolov. Le revétement uni-
versel de M est donc le produit d’un espace affine C* par une variété de Calabi-
Yau B. ~

Soit f : M — M un automorphisme de M et f son relevé au revétement univer-
sel M = CF x B. L’espace affine C* ne contient pas de sous-ensemble analytique
compact, donc f préserve la projection de M sur C*. Autrement dit, il existe un
automorphisme ¢ de CF et une application holomorphe a — 1, de C* vers le
groupe de Lie Aut(B) tels que

f(a7 b) - (d)(a)? Q/)a(b)) (3'4)
pour tout point (a,b) du produit C* x B. Le groupe d’automorphismes de B est
discret (principe de Bochner), donc 1, ne dépend pas de a. Ceci montre que f
agit diagonalement sur M = C* x B.

Puisque I'automorphisme Anosov f agit diagonalement, 1’automorphisme in-
duit par f sur le facteur B est un automorphisme Anosov a feuilletages stable
et instable holomorphes. D’apres la proposition 3.1, la variété B est réduite a un
point. La variété M est donc revétue par un tore et f provient d'un automorphisme
de ce tore. (Il

Remarque 3.3. Tout automorphisme d’un tore complexe compact C*/T" est une
transformation affine de ce tore car sa différentielle est constante : c’est, en ef-
fet, une fonction holomorphe du tore (compact) vers I’espace affine des matrices
complexes de taille k& x k. Puisque cette transformation affine définit un automor-
phisme Anosov, il est facile de voir qu’elle possede un point fixe. Quitte & choisir
convenablement 'origine, il s’agit donc d’une transformation linéaire.

4. Variétés uniréglées

Le but de cette partie est de démontrer qu’il n’y a pas d’automorphisme Anosov
a feuilletages stable et instable holomorphes sur les variétés projectives uniréglées.
Modulo 'existence du quotient rationnel, ce résultat se ramene a un théoreme de
Y. Miyaoka sous une forme récente die & F. A. Bogomolov et M. McQuillan.

4.1. Variétés rationnellement connexes
Une variété projective complexe M est rationnellement connexe si deux points

quelconques de M peuvent étre joints par une courbe rationnelle. Pour qu’une
variété soit rationnellement connexe, il faut et il suffit qu’il existe une courbe
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rationnelle ¢ : P1(C) — M telle que le fibré ¢*(T'M) soit une somme de fibrés en
droites O(m) strictement positifs (i.e. m > 0). Cette définition a un sens car tout
fibré vectoriel de la droite projective est une somme de fibrés en droites, et ce de
maniere unique a permutation pres des facteurs.

Voici une formulation affaiblie et simplifiée, mais suffisante pour les applications
que nous avons en vue, du théoreme de Y. Miyaoka renforcé par F. A. Bogomolov
et M. McQuillan.

Theorem 4.1 ([4]). Soit M une variété projective et F un feuilletage holomorphe
lisse de M. Sl existe une courbe rationnelle ¢ : P1(C) — M telle que le fibré
c(TF) soit une somme de fibrés en droites O(m) strictement positifs, il existe
alors une courbe rationnelle contenue dans l'une des feuilles de F.

Corollaire 4.2. Si M est rationnellement connere, et si M posséde deuzx feuille-
tages holomorphes partout transverses F et G, il existe alors une courbe rationnelle
contenue dans l'une des feuilles de F (resp. de G ).

Démonstration. Fixons une courbe rationnelle ¢: P*(C)— M le long de laquelle TM
est une somme de fibrés en droites strictement positifs. Puisque TM =TF & TG,
nous avons ['égalité ¢*(T'M)=c*(TF)®c*(1'G) et chacun des deux facteurs de cette
somme directe est donc lui-méme une somme de fibrés en droites positifs. Ainsi,
F et G contiennent chacun une courbe rationnelle dans 1'une de leurs feuilles. [J

Corollaire 4.3. Une variété rationnellement connexe ne posséde pas d’automor-
phisme Anosov a feuilletages stable et instable holomorphes.

Démonstration. Soient {B;} un recouvrement fini de M par des ouverts biholo-
morphes & des boules et ¢ un nombre de Lebesgue pour ce recouvrement : tout
ensemble de diametre inférieur a e est contenu dans I’'un des B;. Puisqu'une boule
ouverte ne contient pas d’ensemble analytique compact de dimension strictement
positive, toute courbe de M a un diametre supérieur a e.

Appliquons le théoréme 4.1 et le corollaire 4.2. Si un tel automorphisme Anosov
f existait, il existerait une courbe rationnelle C' dans I'une des feuilles du feuilletage
stable de f. Puisque f est une contraction uniforme le long de ce feuilletage, pour
n trées grand devant 1, f(C) serait une sous-variété compacte de M de diametre
inférieur a e. Ceci contredit le choix de e. O

4.2. Quotient rationnel

Soit M une variété projective. On définit sur M une relation d’équivalence R,
dénommée équivalence rationnelle, en disant que deux points sont en relation s’il
existe une chaine de courbes rationnelles dans M qui joint z & y. En général, 'es-
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pace quotient M /R n’est pas une variété ; par exemple, toute surface K3 projective
possede une infinité dénombrable de courbes rationnelles. Toutefois, la construc-
tion du quotient rationnel montre que c’est presque le cas (cf. [9], chap. 5) :

Soit M une variété projective complexe. Il existe une variété projective normale
(singuliére) Rat(M) et une fibration méromorphe p : M --+ Rat(M) qui satisfait
les propriétés suivantes :

(a) p est une fibration réguliére propre en dehors d’un fermé de Zariski de M ;

(b) les fibres de p sont rationnellement connexes;

(c) les fibres génériques de p sont des classes de R-équivalence ;

(d) sitp: M --+ B est une autre fibration méromorphe satisfaisant (a) et (b),

il existe une application rationnelle = : B --» Rat(M) telle que p = 7 o 1.
Le troisieme point utilise la définition suivante : une propriété est générique si
elle est valable sur le complémentaire d’'une famille dénombrable de fermés de
Zariski d’'intérieur vide. La fibration p est appelée quotient rationnel de M. D’apres
la propriété (d), cette fibration est invariante par tout endomorphisme rationnel
de M. Tout automorphisme de M permute donc les fibres de p.

Poursuivons maintenant 1’étude des automorphismes Anosov. Nous supposons
donce que M est une variété projective uniréglée munie d’un automorphisme Anosov
dont les feuilletages stable et instable sont holomorphes. Puisque M est uniréglée,
les fibres du quotient rationnel p : M --» Rat(M) ont une dimension strictement
positive.

Lemme 4.4. Les feuilletages F et F— induisent deur feuilletages holomorphes
partout transverses sur les fibres génériques de p.

Dans cet énoncé, la transversalité est & prendre au sens fort : si V' est une fibre
générique de p, alors TV est égal 3 la somme directe de TF NTV et de TFTNTV.

Démonstration. Soit V une fibre lisse de p autour de laquelle p est une fibration
holomorphe propre. Notons TV le fibré tangent de V et 7 : TMjyy — Ny la
projection du fibré tangent a A sur le fibré normal de V' (ce fibré est trivial, il
s’identifie au produit de V' et du fibré tangent de Rat(M) au point p(V)).

D’apres le corollaire 5.14 du livre [9], on peut choisir une courbe rationnelle
¢ : P(C) — V passant par un point générique de V pour laquelle ¢*(TM) est la
somme directe de dim(V) fibrés en droites strictement positifs et de codim(V)
fibrés en droites triviaux. Les facteurs positifs de cette somme directe corres-
pondent au fibré tangent de V et les facteurs triviaux au fibré normal de V.

Décomposons cette somme directe de maniere compatible avec la décomposition
TM =TFt @ TF . On obtient ainsi

FTFH)=0(p1)®..00(@pa, ) ©0& .00 (4.1)
FTF ) =0(@)®...o0(q )20 .00 (4.2)

oil les p; et les g; sont strictement positifs, (d; + d_) est égal a la dimension
de V et le nombre total de facteurs triviaux est égal a la codimension de V. Le
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long de I'image de c, la projection mpr+ @ TF T — Ny contient chaque facteur
strictement positif dans son noyau car Ny est trivial. Ainsi, le long de I'image
de ¢, TFT intersecte TV sur un fibré de dimension supérieure ou égale & d . Le
méme argument s’applique & F~. Puisque (d; + d_) est égal & la dimension de V/
et puisque TFT et TF~ sont en somme directe, il vient :

Vo € ¢(PH(C)), T.V=(T.F NT,V)e (T.F NT,V). (4.3)

En déformant ¢ le long de V, on peut faire passer la courbe ¢ par un point générique
de V. Cette propriété est donc valable au point générique, et par semi-continuité
de la dimension, elle est valable partout, ce qu’il fallait démontrer. Il

Proposition 4.5. Une variété projective complexe uniréglée ne posséde pas d’auto-
morphisme Anosov a feuilletages stable et instable holomorphes.

Démonstration. Supposons qu’une telle variété M admette un automorphisme
Anosov f & feuilletages holomorphes. Puisque M est uniréglée, le quotient ra-
tionnel a des fibres de dimension positive et nous pouvons appliquer le lemme
précédent. Le corollaire 4.2 montre alors que F T posséde une courbe rationnelle
dans 'une de ses feuilles et 'argument du corollaire 4.3 s’applique sans modifica-
tion pour conclure. (Il

5. Difféomorphismes Anosov de codimension 1

Nous abordons maintenant la preuve du second point du théoreme 1.4. Les
techniques sont similaires mais s’appuient sur les travaux de Ghys mentionnés dans
I'introduction. En particulier, la structure transverse du feuilletage de codimension
1 joue un roéle important.

5.1. Codimension 1 et structure transverse

Dans toute cette partie, f désignera un automorphisme Anosov d’une variété
complexe compacte M dont le feuilletage instable est de dimension 1 complexe.
Dans ce cadre le feuilletage F— est un feuilletage holomorphe et les feuilles de
FT sont paramétrées par la droite complexe C. En particulier, les feuilles de
FT sont munies d’une structure affine canoniquement associée & leur structure
complexe ; cette structure affine est f-invariante et est uniquement caractérisée
par cette propriété [15]. Le pseudo-groupe d’holonomie de F~ agit projectivement
par rapport a cette structure affine (cf. [15]). Autrement dit, 7~ est un feuilletage
holomorphe lisse de codimension 1 transversalement projectif.

Notons M le revétement universel de M, 7 : M — M Dapplication de revétement
et I' le groupe d’automorphismes de ce revétement. Les feuilletages F1 et F~ se
relevent en deux feuilletages F+ et F— de M. D’apres [21], il existe une appli-
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cation holomorphe ¢ : M — P!(C) et une représentation du groupe fondamental
p:T'— PGL(2,C) telles que
(i) 0 est une submersion locale et, localement, les fibres de d sont les feuilles
de F~;
(ii) & est D-équivariante : pour tout z dans M et tout ~ dans I, 8(v(z)) =
P()(0(=)).
Chaque feuille de F se projette affinement et biholomorphiquement sur le com-
plémentaire d’'un point de P'(C). A priori, ce point dépend de la feuille. S’il n’en
dépend pas, on peut supposer que p(I') est contenu dans le groupe affine, ce qui
revient & dire que le feuilletage 7~ est transversalement affine.

5.2. Simple connexité et conclusion

Commencons par renforcer I'alternative obtenue dans la deuxieme partie de ce
texte.

Lemme 5.1. Soit M une variété projective complexe munie d’un automorphisme
Anosov de codimension 1. Ou bien M est rationnellement connexe, ou bien Ky
est un fibré de torsion.

Démonstration. D’apres la proposition 2.2 et le théoreme de Bogomolov, il suffit de
montrer que M est rationnellement connexe si elle est uniréglée. Vues |’existence
et I'invariance du quotient rationnel, il suffit de montrer qu'un automorphisme
Anosov de codimension 1 ne préserve pas de fibration holomorphe.

Supposons donc que f : M — M est un automorphisme Anosov dont le
feuilletage stable est de codimension 1 et que f permute les fibres d’une fibration
7 : M — B. Notons f : B — B l’automorphisme induit par f sur la base de la
fibration. Nous allons montrer que cette situation est impossible. Nous verrons en
effet qu’ou bien f est une contraction uniforme, ou bien f contracte uniformément
une fibre invariante, ces deux cas de figure étant absurdes.

Soit ¢ un point de B pour lequel il existe un point = de M satisfaisant 7 (x) =y
et dr(| T, F ) =1, B. 1l existe alors un voisinage I de x dans la feuille stable
dont I'image par 7 est un voisinage de y. Si tous les points de B satisfont cette
propriété, alors B peut étre couverte par un nombre fini d’ouverts U tels que le
diamétre de 7"(7,11) tend vers 0 lorsque n tend vers l'infini. Ceci est impossible car
f : B — B est une transformation surjective.

L’ensemble des points y de B tels que

Ve en Yy), dime(dr,(T,F)) < dimg(B)

est donc non vide. C’est un sous-ensemble analytique de B car F~ est holomorphe.
Nous noterons I/ son image réciproque par «; comme le feuilletage instable de f
est de dimension 1, F est contenu dans I’ensemble des points = de M tels que FT
est partout transverse a la fibre de 7 passant par x.
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L’ensemble E est un sous-ensemble analytique de M qui est f-invariant. Puisque
I’ensemble des points périodiques de f est dense dans ’ensemble des points non
errants de f, on en déduit facilement que f possede un point périodique zy dans
FE. Quitte a changer f en I'un de ses itérés, nous pouvons supposer que zg est un
point fixe.

Notons Vj la fibre de 7 passant par xzp et fy la restriction de f & cette fibre
invariante. Puisque le feuilletage instable de f est partout transverse a Vj, tous
les points périodiques de fy situés sur V; sont des points périodiques attractifs.
I’ensemble non errant de fp est donc constitué de points périodiques attractifs
et Vi est couverte par les bassins d’attraction de ces points. Ceci contredit la
surjectivité de fp.

Nous avons ainsi obtenu une contradiction et ceci termine la preuve. (Il

Remarque 5.2. Cet argument n’est plus valable des que les feuilletages stable et
instable de I"automorphisme Anosov sont de dimension 2. Par exemple, ’automor-
phisme diagonal f : A x A — A x A construit dans ’exemple 1.5 préserve deux
fibrations non triviales.

Le lecteur intéressé trouvera dans [18], théoréme 7, et surtout [19], théoréme 5.1,
des énoncés qui permettent de court-circuiter les arguments proposés dans la
preuve du lemme 5.1.

Proposition 5.3. Soit f un automorphisme Anosov d’une variété projective com-
plexe M. Si le feuilletage stable ou instable de f est de dimension 1 complexe, alors
M est un tore et f est un automorphisme linéaire.

Démonstration. Supposons que c’est le feuilletage instable qui est de dimension 1
et employons 'alternative fournie par le lemme précédent.

Si M est rationnellement connexe, M est simplement connexe. Dans ce cas,
I’application § permettant de développer la structure projective tranverse de F—
est une application holomorphe (surjective) de M sur P'(C) dont les fibres sont
les feuilles de F~. Ceci est impossible car aucune feuille de 7~ n’est compacte.

Supposons maintenant que le fibré canonique de M est un fibré de torsion.
Puisque f est un automorphisme Anosov de codimension 1, f ne préserve aucune
fibration holomorphe non triviale. En particulier, le théoréme de Bogomolov assure
que M est revétue par un tore ou que M est compacte. La deuxiéme situation est
exclue par I'argument précédent.

La variété M est donc revétue par un tore : il existe un revétement fini et
galoisien P : M’ — M, ou M’ est un tore, auquel f se releve en un automorphisme
Anosov linéaire f’ de codimension 1. Soit G le groupe des automorphismes (affines)
du revétement P : M’ — M. L’automorphisme f’ appartient au normalisateur de
G et 'un de ses itérés commute donc avec chaque élément de GG. En particulier
les espaces propres de la partie linéaire de chaque élément de GG sont invariants
sous 'action de f’ : chacun de ces espaces contient donc la droite instable ou est
contenu dans ’espace stable de f’. Ces espaces sont donc denses dans le tore M’.
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Soit g un élément de G. Puisque g n’a pas de point fixe, g(z) = a(z) + ¢ avec un
vecteur de translation ¢ qui n’appartient pas a I'image de la transformation linéaire
a — id. En particulier, le sous-espace propre de a associé a la valeur propre 1 est
de dimension positive. Ce sous-espace est donc dense dans M’ et, par conséquent,
a = id. Chaque élément de G est donc une translation, ce qui montre que M est
un tore. |

Remarque 5.4. La proposition précédente est encore valable lorsque M est seule-
ment supposée kdhlérienne compacte. Pour cela, on peut employer les arguments
suivants.

La dimension de Kodaira de M est négative ou nulle, donec M doit étre une
variété spéciale au sens de F. Campana [6] : sinon, la fibration du coeur intro-
duite par Campana serait une fibration méromorphe cp; : M --+ C(M) presque
holomorphe invariante par f, ce qui est impossible.

Puisque M est spéciale, toute représentation linéaire du groupe fondamental
de M est virtuellement abélienne [6].

La structure transverse projective du feuilletage stable de f montre alors que
le premier nombre de Betti de M est strictement positif. La fibration d’Albanese
de M étant f-invariante, la dimension de ses fibres est nulle et elle réalise un
biholomorphisme si ’on remplace M par I'un de ses revétements finis. Ainsi, &
revétement fini pres M est un tore.

Remarque 5.5. Le théoreme de Ghys mentionné dans l'introduction permet de
montrer que M est homéomorphe & un tore sans supposer que M est kahlérienne
mais en supposant que f a une orbite dense. Sous de telles hypotheses, nous ne
savons pas renforcer la conclusion et montrer que M est biholomorphe a un tore.
Pourtant, il est facile de montrer que les exemples connus de variétés complexes
compactes homéomorphes mais non biholomorphes a des tores ne possedent pas
d’automorphismes Anosov (cf. [8] pour de tels exemples).

Références

[1] Arnaud Beauville, Variétés Kahleriennes dont la premiere classe de Chern est nulle, J.
Differential Geom. 18 (1984), 755-782.

[2] Yves Benoist, Patrick Foulon and Frangois Labourie, Flots d’Anosov a distributions stable
et instable différentiables, J. Amer. Math. Soc. 5 (1992), 33-74.

[3] Yves Benoist et Frangois Labourie, Sur les difféomorphismes d’Anosov affines a feuilletages
stable et instable différentiables, Invent. Math. 111 (1993), 285-308.

Fedor A. Bogomolov and Michael McQuillan, Rational curves on foliated varieties,
Prépublication de PTHES (2001), 1-29.

Frédéric Campana, Remarques sur les groupes de Kahler nilpotents, Ann. Sci. Ecole Norm.
Sup. (4) 28 (1995), 307-316.

Frédéric Campana, Orbifolds, special varieties and classification theory, preprint, 1-102,
version 2003.

4

[5

[6



Vol. 79 (2004) Difféomorphismes holomorphes Anosov 797

[7] Serge Cantat, Dynamique des automorphismes des surfaces complexes compactes, These
de doctorat de ’E.N.S., Lyon, 1999.

[8] Fabrizio Catanese, Deformation types of real and complex manifolds, in : Contemporary
trends in algebraic geometry and algebraic topology (Tianjin, 2000), Nankai Tracts Math.
5, 195238, World Sci. Publishing, River Edge, NJ, 2002.

[9] Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag,
New York, 2001.

[10] Jean-Pierre Demailly, Regularization of closed positive currents and intersection theory, J.
Algebraic Geom. 1 (1992), 361-409.

[11] Jean-Pierre Demailly and Thomas Peternell, On the geometry of positive cones of projective
and Kahler varieties, preprint, 1-9, 2002.

[12] Albert Fathi, Some compact invariant sets for hyperbolic linear automorphisms of tori,
Ergodic Theory Dynam. Systems 8 (1988), 191-204.

[13] Etienne Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Sci.
Ecole Norm. Sup. (4) 20 (1987), 251-270.

[14] Etienne Ghys, Rigidité différentiable des groupes fuchsiens, Inst. Hautes Etudes Sci. Publ.
Math. 78 (1993), 163-185.

[15] Etienne Ghys, Holomorphic Anosov systems, Invent. Math. 119 (1995), 585-614.

[16] Marat H. Gizatullin, Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980),
110144, 239.

[17] Moris W. Hirsch, Charles C. Pugh and Michael Shub, Invariant manifolds, Lecture Notes
in Mathematics 583, Springer-Verlag, Berlin, 1977.

[18] Morris W. Hirsch, On invariant subsets of hyperbolic sets, in : Essays on Topology and
Related Topics (Mémoires dédiés & Georges de Rham), 126-135, Springer, New York, 1970.

[19] Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, in : Global
Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), 133-163, Amer.
Math. Soc., Providence, R.I., 1970.

[20] David I. Lieberman, Compactness of the Chow scheme : applications to automorphisms
and deformations of Kéhler manifolds, in : Fonctions de plusieurs variables complexes, I
(Sém. Frangois Norguet, 1975-1977), 140-186, Springer, Berlin, 1978.

illiam Thurston e geometry and topology of 3-manifolds, Princeton Universi ecture

[21] William Th , The g try and topology of 3. ifolds, Pri Uni ity L
Notes, 1977.

S. Cantat

IRMAR, UMR 6625 du CNRS
Université de Rennes |

35042 Rennes

France

e-mail : cantat@Quniv-rennesl.fr

(Received: May 26, 2003)

To access this journal online:
http://www.birkhauser.ch




	Difféomorphismes holomorphes Anosov

