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Abundance of stable ergodicity

Christian Bonatti, Carlos Matheus, Marcelo Viana and Amie Wilkinson

Abstract. We consider the set PHo (M) of volume preserving partially hyperbolic diffeomor-
phisms on a compact manifold having 1-dimensional center bundle. We show that the volume
measure is ergodic, and even Bernoulli, for any C? diffeomorphism in an open and dense subset
of PH.,(M). This solves a conjecture of Pugh and Shub, in this setting.
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To Charles and Mike: Happy 60th birthdays!

1. History

A fundamental problem, going back to Boltzmann and the foundation of the kinetic
theory of gases, is to decide how frequently conservative dynamical systems are
ergodic.

A first striking answer was provided by KAM (Kolmogorov, Arnold, Moser)
theory: ergodicity is not a generic property, in fact there are open sets of conserva-
tive systems exhibiting positive volume sets consisting of invariant tori supporting
minimal translations.

In sharp contrast with this elliptic type of behavior, ergodicity prevails at the
other end of the spectrum, namely, among strongly hyperbolic systems. Indeed,
after partial results of Hopf and Hedlund, Anosov proved that the geodesic flow
of any compact manifold with negative curvature is ergodic. In fact, the same is
true for any sufficiently smooth conservative uniformly hyperbolic flow or diffeo-
morphism.

By the mid-nineties, Pugh and Shub proposed to address the ergodicity problem
in the context of partially hyperbolic systems, where the tangent space splits
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into uniformly contracting (stable), uniformly expanding (unstable), and “neutral”
(central) directions. To summarize their main theme:

A little hyperbolicity goes a long way in guaranteeing ergodicity.
In more precise terms, in [9] they proposed the following

Conjecture. Stable ergodicity is a dense property among C? wvolume preserving
partially hyperbolic diffeomorphisms.

At about the same time, there was a renewed interest in the geometric and
ergodic properties of partially hyperbolic systems in the broader context of possibly
non-conservative dynamical systems. A main goal here was to establish existence
and finiteness of SRB (Sinai, Ruelle, Bowen) measures, and to characterize their
basins of attraction.

Thus the general theme of partially hyperbolic dynamics evolved into a very
active research field, with contributions from a large number of mathematicians.
See, for instance, [2, 5] for detailed accounts of much progress attained in the last
few years.

2. Result

The purpose of this note is to point out that, putting together recent results by
Shub, Wilkinson [10] followed by Baraviera, Bonatti [1], by Bonatti, Viana [3]
followed by Burns, Dolgopyat, Pesin [4], and by Dolgopyat, Wilkinson [6], one
obtains a proof of the conjecture stated above, when the central direction is 1-
dimensional.

Theorem. Let M be a compact manifold endowed with a smooth volume form
w, and PH, (M) be the set of all partially hyperbolic diffeomorphisms having 1-
dimensional center bundle and preserving the volume form.

Then the volume measure defined by w is ergodic, and even Bernoulli, for any
C? diffeomorphism in a C* open and dense subset of PH,,(M).

The proof of the theorem follows. In fact, we prove a bit more: every C?
diffeomorphism in PH,, (M) is C' approximated by another C? diffeomorphism in
PH,, (M) which is stably Bernoulli. Note that it is not known whether C? maps
are dense in PH,,(M).

Throughout, all maps are assumed to be volume preserving. First, [1] extends
the technique of [10], to prove that every partially hyperbolic diffeomorphism may
be C! approximated by another for which the integrated sum of all Lyapunov ex-
ponents along the central direction is non-zero. Under our dimension assumption,
this just means that the integrated central Lyapunov exponent is non-zero, for
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a C' open and dense subset (1 of partially hyperbolic diffeomorphisms. Let us
decompose O; as O_ UQO,, according to whether the integrated central exponent
is negative or positive. Up to replacing f by its inverse, we may suppose that
f € O_. For such f, there is a positive volume set of points with negative central
Lyapunov exponent.

Next, also for f in a C'!' open and dense subset Oy, [6] proves that the diffeo-
morphism has the accessibility property: any two points may be joined by a path
formed by finitely many segments contained in leaves of the strong-stable foliation
or the strong-unstable foliation. In fact, they prove more: every C? diffeomor-
phism is C! approximated by other C? diffeomorphisms with this accessibility
property.

We conclude that each f € O NOs is ergodic with respect to volume, by using
Theorem 2 of [4], which builds on techniques of [3]: If a C? partially hyperbolic
volume preserving diffeomorphism of a compact smooth Riemannian manifold is
accessible and has negative central exponents on a set of positive measure, then it
is ergodic and has negative central exponents almost everywhere.

Finally, the same arguments extend directly to any iterate f, n > 1. Indeed,
€ O4 if and only if f € O, and f" is accessible if and only if f is, since the
two maps have the same strong foliations. This shows that f” is ergodic, for every
n > 1, whenever f € Oy N Os. Using Theorem 8.1 of Pesin [8], we conclude that
f is Bernoulli.

3. Notation used

To conclude, we give the technical definitions of the notions involved.

Let M be a compact manifold endowed with a volume form w. A volume
preserving diffeomorphism f : M — M is stably ergodic if the volume measure
defined by w is ergodic for any C? diffeomorphism in a C'-neighborhood of f.

A diffeomorphism f : M — M is partially hyperbolic if there is a splitting
TM = E* @& E° @ E" of the tangent bundle into three invariant bundles (with
positive dimension) and there exists m > 1 such that

m s 1 —m °
IDF™ I E*ll < 5 and [|Df7™ [ B <

Do =

and
™m S m CcC\— 1 m wUN\— m C 1
IDf™ | ES| |(Df™ | )| < 5 and [[(Df™ [ BY) HHIDF™ | EC| < 3

The first condition means that E® is uniformly contracting and E* is uniformly
expanding. The last one means that the splitting is dominated.

1 Because we compare expansion and contraction rates at the pointwise level, rather than uni-
formly over the whole manifold, our definition of partial hyperbolicity is more general than the
definition in [4]. Nonetheless the main results in [4] extend in a fairly straightforward fashion to
our setting.
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We denote PH(M) the space of partially hyperbolic G diffeomorphisms on M
with dim F° = 1, and PH,, (M) the subset of volume preserving diffeomorphisms.

Let f € PH(M). Then the stable bundle £® and the unstable bundle E* are
uniquely integrable. The corresponding integral foliations, respectively strong-
stable F° and strong-unstable F* are invariant, and their leaves are uniformly
contracted by all forward and backward iterates of f, respectively.

We say that f € PH(M) has the accessibility property if any two points of M
may be joined by a path formed by finitely many segments contained in leaves of
the strong-stable foliation or the strong-unstable foliation.

4. Questions

One would like to remove the assumption on the central dimension.

Another important open problem is the C” version of the conjecture, any r > 1.
In this direction, Nitica, Torok [7] prove C" density of accessibility assuming a r-
normally hyperbolic 1-dimensional, integrable central bundle with at least two
compact leaves.

Here we prove ergodicity assuming C? regularity. While ergodic systems al-
ways form a Gy, it is not known whether C? maps are dense in the space C!
volume preserving diffeomorphisms; see Zehnder [11]. So it remains open whether
ergodicity is generic (dense G) among C'! partially hyperbolic with 1-dimensional
central bundle.
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