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Sur les puissances de 1’'idéal fondamental de ’anneau de Witt

Fabien Morel

Résumé. Nous reformulons un résultat récent de Arason et Elman en donnant une présentation
trés simple des puissances de 'idéal fondamental de ’anneau de Witt d’un corps de caractéristique

s D,
Abstract. We reformulate a recent result of Arason and Elman by giving a very simple pre-
sentation of the powers of the fundamental ideal of the Witt ring of a field of characteristic

£9.
Mathematics Subject Classification (2000). 19D45, 15A63.

Mots clés. Quadratic forms, Witt ring, Milnor K-theory.

Dans cet article, F' désigne un corps commutatif qui est toujours supposé de
caractéristique # 2.

Remerciements. Je tiens a remercier Mike Hopkins pour de nombreuses discus-
sions sur des sujets directement liés ou non a ce travail.

1. Introduction

Cet article a deux objectifs. Le premier est de reformuler un résultat de Arason
et Elman [1] donnant une présentation de la n-iéme puissance I™(F) de 'idéal
fondamental de 'anneau de Witt W (F) d’un corps F' de caractéristique # 2.
Nous donnons deux telles présentations, tres proches, 'une dans le Théoreme 2.1,
qui tient compte de la structure de W (F')-module des I™(F'), et I'autre dans le
théoreme 2.4. Nous pensons que ces résultats présentent un intérét propre, no-
tamment en faisant clairement apparaitre 'anneau gradué &1"(F') comme la “K-
théorie de Witt de F7”.

Notre deuxieme objectif est lié au probleme du calcul des groupes d’homotopie
motiviques stables [9, 13, 5] de la forme

8% (Gm)""]
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avec n € Z. Nous avions pour cela été ammené a introduire la K-théorie de Milnor—
Witt de F'

KMW (1),

Récemment, en collaboration avec Mike Hopkins, nous avons considérablement
simplifié la présentation de KM (F) — voir la définition 5.1 ci-dessous — de sorte
que l'on en a déduit (voir [5]) 'existence d’un homomorphisme canonique d’an-
neaux gradués

KXW(F) — 8% (Gm)™] 1

Nous avons établi dans [8] (voir aussi [6, 5]) que cet homomorphisme est un iso-
morphisme.

Comme nous le verrons ci-apres, 'anneau KW (F) s’identifie & I'anneau de
Grothendieck—Witt GW (F') de k, si bien que 'on obtient, en degré 0, I'isomor-
phisme canonique

GW(F) = s° s

conjecturé par auteur dans [4] en accord avec la preuve de la conjecture de Milnor
sur le gradué de W(F) donnée dans loc. cit.; c’est par ailleurs ce travail qui
avait motivé nos travaux concernant les groupes [S”; (G,,)"\"]. Le présent article
représente une des étapes clef de la preuve de I'isomorphisme (1) ci-dessus.

On peut comme dans [3] définir des “résidues” en K-théorie de Milnor—Witt
et, définir pour tout k-schéma lisse X le groupe de K-théorie de Milnor—Witt non-
ramifié (voir [8]). Cependant, & moins de réécrire le travail de Rost [11] en rem-
placant partout K-théorie de Milnor par K-théorie de Milnor—Witt, il n’est pas
évident que ces faisceaux de K-théorie de Milnor—Witt non-ramifié ait leur coho-
mologie Zariski (ou Nisnevich) invariante par produit par la droite affine A'. Le
Théoreme 5.3 ci-dessous nous permettra dans [8] de parvenir a ce résultat d'une
facon tres détournée.

La K-théorie de Milnor [3] est le quotient de la K-théorie de Milnor—Witt par
I’élément de Hopf n et la K-théorie de Witt est le quotient de la K-théorie de
Milnor—Witt par le plan hyperbolique h. Le résultat principal de cet article (les
théoremes 2.1 et 2.4) est d’identifier la K-théorie de Witt & la somme des puissances
de l'idéal fondamental.

Le résultat principal de [8] démontre le caractere fondamental de la K-théorie de
Milnor—Witt des corps. Le Théoréme 5.3 ci-dessous exprime que cet objet universel
est le résultat du “mélange” d’objets de nature “motivique” et d’objets de nature
“oroupes de Witt”. Ce mélange s’explique par le nécessaire mélange des deux
intuitions topologiques présentes en géométrie algébrique : la géométrie complexe
pour l'aspect motivique et la géométrie réelle pour ’aspect groupe de Witt. La
K-théorie de Milnor—Witt est donc en quelque sorte l'objet universel ayant ces
deux natures a la fois.
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2. Enoncé des résultats

On note W (F) 'anneau de Witt des formes quadratiques anisotropes sur F' et
I(F") C W(F) son idéal fondamental.

Pour tout entier n > 0 notons I"™(F') la n-ieme puissance de I(F'). On note
I (F) I'anneau commutatif gradué égal en degré n» > 0 a I"(F) et muni du
produit évident.

Pour tout w € F'* on note < v >€ W (F') la classe de la forme quadratique de
rang un w.X? et 'on note << u >>:=1— < u >= 1+ < —u >€ W(F) la forme
de Pfister associée.

Soit Tensyy(py(I(F)) la W(F')-algebre tensorielle sur le W (F")-module I(F),
graduée en posant

Tensyy (p)(L(F))n = I(F) @w(py - .. @w(py I(F) (n copies).

Le groupe abélien I(F') est engendré par les << u >> et ’homomorphisme ca-
nonique de W (F')-algebres graduées Tensyy(py(I(F')) — I*(I") est donc surjectif.
D’autre part, pour tout w € F'* — {1} on a la relation de Steinberg

<<u>>.<<l—u>>=0 e I*(F)

qui découle de légalité 1+ < u(l —u) >=<u >+ <1 —u > dans W(F).

On note K!V(F), le quotient de 'algébre Tensy,(py(1(F)) par Iidéal bilatere
engendré par les produits tensoriels << u >> ® << 1—u >>, avecu € F* —{1}.
On dispose donc d’un épimorphisme canonique

KY(F) - I3(F).
Théoréme 2.1. L’homomorphisme canonique

KX_V(F) — I} (F)
est un isomorphisme.

Remarque 2.2. 1l est clair que I’anneau gradué KKV(F) Qwpy Z/2 s'identifie
a la K-théorie de Milnor modulo 2, k. (F) := KM(F)/2, (voir [3]) et que
I'anneau gradué I7(F) ®w(py Z/2 sidentifie quant & lui & la somme directe
nenl"(F)/I"TH(F).

Si l'on tensorise ’homomorphisme K (F) — It (F) précédent par Z/2 au
dessus de W(F) on obtient donc ’homomorphisme défini par Milnor dans [3]

ko(F) — @, I™(F)/I"H(F).

Le théoreme précédent ne peut donc pas étre élémentaire puisqu’il implique la
conjecture de Milnor sur la filtration de 'anneau de Witt par les puissances de
I'idéal fondamental, et en effet, le travail de Arason et Elman utilise affirmation
de cette conjecture [10, 4, 7].

Pour tout entier n < 0 on pose I"(F) := W(F). On note I*(F) I'anneau
commutatif Z-gradué égal en degré n > 0 a I"™(F) et muni du produit évident.
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L’anneau I*f (I') précédemment considéré s’identifie au sous-anneau constitué des
éléments de degré > 0. On note n € I~ 1(F) I'élément correspondant & 1 € W(F).
Observons que le produit par 1 est exactement I'inclusion I™(F) € I~ Y(F), pour
tout entier n € Z.

Le lemme suivant est immédiat :

Lemme 2.3. Les symboles << a >>¢€ I(F) et n € [ *(F) satisfont les 4 rela-
tions suivantes (dans I (I')) :
(1) pour chaque paire (a,b) € (F*)? :
<< ab>>=<<a>>+<<b>> np<<a>><<b>>
(2) pour tout a € F* — {1} :
<<a>>.<<1l—a>>=0

3)

N << —1>>=2

(4) pour tout a € I
n<<a>>=<a>>1.

Ces relations sont en fait “les seules” :

Théoreme 2.4. Le lemme précédent donne une présentation de l'anneau Z-gradué

I*(F).

3. K-théorie de Witt

Ce qui précede nous conduit tres naturellement & introduire la définition sui-
vante :

Définition 3.1. On note KV (F) I'anneau Z-gradué librement engendré par les
symboles de degré 1 :
{a}

pour chaque a € F'* et le symbole de degré —1

n

et soumis aux relations suivantes :
(1) pour chaque paire (a,b) € (F*)? :

fab} = {a} +{b} —n{a}{b}
(2) pour tout @ € F'* — {1} :
{a} {1l —a}=0

(3)
n{—1}=2
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(4) pour tout a € F'*
n{ay = {a}n.
Cet anneau KV (F) s’appelle la K-théorie de Witt de F.

On dispose donc d'un homomorphisme canonique :
KJ(F) = I'(F)

d’anneaux Z-gradués et le Théoreme 2.4 affirme précisément que c’est un isomor-
phisme.

Dans cette partie nous allons établir de facon élémentaire, comme la notation
le suggere, que l'algebre KKV(F) définie au paragraphe précédent s’identifie a la
sous-algebre des éléments de degré positifs ou nuls de KV (F).

Lemme 3.2. Pour chaque entier n > 1 il existe un unique homomorphisme de
W (F)-modules :

w 144
n: K+,n(F) - +,n—1(F)
tel que
nl<<ug >>..... <<y >>) = (1—<up >). <<wug >> ..., << Uy >>

pour chaque n-uplet d’unité de F.

Démonstration. Par construction de KKV(F)7 le noyau de I’épimorphisme :

I(F) @wpy - ®wyry L(F) = K, (F)

est le sous-groupe engendré par les << uy >> @ - Q@ << uy, >> avec (ug, ..., Uy)
€ (F)™ tel qu'il existe ¢ < j avec u; + u; = 1. 1l s’agit donc de montrer qu’alors
le produit (1— < ug >). << wg >> ... << up >> est nul dans KV, ((F). Si
¢ > 1 c’est trivial. Sinon, on a, en utilisant la définition du produit tensoriel au
dessus de W(F) :

(I— <up >). <<ug >>..... << Uy, >>
=<< Uy S>> ... ((1— <up >). <<uy >> ). << Uy S>>
=0
puisque (1— <wujy >). << wu; >>=0¢€ I(F). O

On note KV (F) le W(F)-module Z-gradué égal en degré n € Z & KV (F) si
n > 0eta W(F)sin <0.Onnote n e KV (F) I'élément 1. On déduit tres
facilement du lemme précédent qu’il existe une unique structure de W (F')-algebre
associative unitaire graduée sur KV (F) telle que le produit K, E’Vn(F) ®K I’Vm( F)—
KI/V,ner(F) est celui de KV (F') dans le cas ol n et m sont positifs ol nuls, et telle
que le produit par n est I’homomorphisme défini par le lemme.
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Lemme 3.3. Les symboles << a >>¢€ KJY|(F) et n € K}V |(F) vérifient les
quatre relations de la définition précédente. On en déduit un homomorphisme ca-
nonique d’algébres :
d: KY(F)— KY(F)

qui enwoie le symbole {u} € K{V(F) sur la forme de Pfister << u >>¢& I(F).

Notre objectif ici est d’établir qu’en fait :
Théoréme 3.4. L’homomorphisme

KY(F) - K (F)

est un isomorphisme.

Pour chaque v € F* posons :

<u>=1-nfu} € K} (F).

Autrement dit n{u} = 1— < w >. On peut vérifier que (< u >) =< u > W(F).

Il n’est pas difficile d’établir :
Lemme 3.5. 1) Pour tout n > 1, le groupe K}V (F) est engendré par les produits

avec les u; € <.
2) Pour tout n <0, le groupe K}V (F) est engendré par les

nt.o<u>
avec u € F'*.

On en déduit en particulier que ® est surjectif, puisque I(F) est engendré
comme groupe par les << u >>.

Lemme 3.6. Pour toute paire (a,b) € (F*)? on a dans K}V (F) :
1) {ab} = {a}+ < a> {b} = {a}. <b>+{b};
) <ab>=<a>.<b>;
N{1}=0,<1l>=1let< =1>=-1€ KV (F);
4) < a > est une unité de Uanneau K (F) dont Uinverse est < a1 >;
5) {4} = {a}— < ¢ > {b}. En particulier pour tout a € F* on a : {a~ '} =
—<a !> {a}.

Démonstration. 1) est évident. On obtient 2) en appliquant 7 a la relation (1) (et
en utilisant (4)). D’aprés la relation (3) on a bien < —1 >= —1. On en déduit
< 1 >=1 car d’aprés le point 2) on a < —1 >=< 1 > . < —1 >. Le point 1)
ci-dessus démontre que

{I}={1}+<1> {1}

d’ott {1} = 0. Le point 4) résulte clairement de 2) et 3) et le point 5) est une
conséquence facile de 1) 2) 3) et 4). O
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Proposition 3.7. Pour tout a € F* et pour tout b€ F* on a :
1) {a}.{=a} =0 in K} (F).
2) <a>{b}={b}. <a>.
3) {a}.{a} = {a}.{~1} in K}V(F).

Démonstration. On adapte [3, Lemma 1.1].

1) On part de I'égalité —a = —% pour a € F* — {1} (pour a = 1 la formule
résulte de {1} = 0). Le lemme précédent implique

{—a}—{ 1 —a }—{1—a}—<—a>.{1—a1}

1—a!

et donc

{—a}{a}={l—a}fa}— < —a> {1l —a '} {a} = — < —a> {1 —a '} {a}.
D’apres le lemme 3.6 (et le fait que < a > commute avec {a}) on trouve bien
{—a}{a} =< —a>{l—a '} {a '} <at>=0

par la relation de Steinberg.

2) On a {ab} = {a}+ < a > b} = {ba} = {b}. < a > +{a} d’apres le point
1) du lemme 3.6 ce qui implique < a > {b} = {b}. < a >.

3) On a d’apres ce qui précede {—a} = {a}. < =1 > +{-1} = {1} — {a}.
Ainsi 0 = {a} {—a} = {a}.{-1} — {a}{a} . O

On pourrait en déduire tout de suite en adaptant loc. cit. que l'algebre K (F)
est bien commutative.

Corollaire 3.8. Pour tout couple (u,v) € (F*)? on a :
1) {+*’} =0;
2} < wln?] ety By
3) lorsque u+v #0 : <u>+ <v>=<u+v>+ <wo(u+v)>.

Démonstration. On a {v?} = 2{v} — n{v}{v} = 2{v} — n{v}.{-1} = 2{v} —
{ohn{—1} = 2{v} — 2{0} = 0.

On en déduit que {u(v?)} = 0 et < u(v?) >=< u >.

Enfin d’apres la relation de Steinberg a laquelle on applique 7, on a :

<a>+<l—-a>=1+<a(ll —a)>.

u

oo on obtient la formule souhaitée. O

Pour a =

On reconnait dans le précédent corollaire la présentation standard de I’anneau
de Grothendieck—-Witt GW (F') [12] et ’on obtient ainsi un homomorphisme d’an-
neaux

GW(F) — K¥ (F).
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On observe enfin que 'image de h est 14+ < —1 >=2 —p{—1} = 0 d’ot en fait un
homomorphisme d’anneaux

W(F) — KgV(F)
Lemme 3.9. L’homomorphisme précédent
W(F) — K" (F)
est un isomorphisme et le produit par n*, n € N,
K3/ (F) — KT (F)

est un isomorphisme.

Démonstration. On a déj observé plus haut que les groupes K" (F) pour n >0
sont engendrés par les ™. < u >. Les homomorphismes

W(F) = K" (F), <u>—n". <u>

sont donc tous surjectifs.
Mais ils sont injectifs car le composé

W(F) = KW (F) = I™™(F)

est un isomorphisme (évident). O

Ce lemme démontre le Théoreme 3.4 en degré < 0.

Lemme 3.10. Le groupe abélien I(F') est le quotient du groupe abélien libre sur
les symboles << u >>€ I(F), v € F'* par les relations :

1) <<1>>=0

2) << u(v)? >>=<<u >> pour tout (u,v) € (F*)? et

3) <<u>>+ <<l —u>>=<<u(l —u) >> pour v € I'* — {1}.

Démonstration. On utilise la suite exacte de groupes abéliens :

0—I(F)— GW(F)—1Z—0.

La présentation standard du groupe Grothendieck—Witt rappelée ci-dessus et la
section canonique Z — GW (F), 1 — 1 donne immédiatement le lemme. O

On vérifie ensuite immédiatement que ’application
satisfait les trois relations précédentes et I'on en déduit un homomorphisme
I(F) = KV (F).
Lemme 3.11. L’homomorphisme
I(F) — KV (F)
est un isomorphisme de W(F) = K} (F)-modules.
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Démonstration. On sait déja qu’il est surjectif et de plus 'injectivité résulte du fait
que le composé I(F) — K}V (F) — I(F) est I'identité. On vérifie trés facilement
que c’est bien un isomorphisme de W (F')-modules. O

Démonstration du théoréme 3.4. Puisque les symboles {u} € K]V (F) vérifie la
relation de Steinberg on déduit finalement du Lemme précdent que les isomor-
phismes W(F) = KV(F) et I(F) = KV(F) induisent un homomorphisme de
W (F)-algebres :

EY/(F) — KY(F)

qui est de toute évidence surjectif en degrés > 0 et dont le composé avec KMV (F) —
K (F) est I'inclusion évidente. Ceci implique cette fois le théoréme 3.4 en degrés
> 1. O

4. La méthode de Arason et Elman

On se propose de déduire le théoreme 2.1 du théoreme 3.1 de [1]. Rappelons-en

I’énoncé. Pour chaque n-uplet (uy,...,u,) € (F*)" on note simplement
<< UL, Uy >> € I(F) le produit << uy >> -+ << u, >>, que on ap-
pelle la n-forme de Pfister associée au symbole (uq, ..., uy).

Théoréme 4.1 ([1, 3.1]). Pour chaque entier n > 1 notons I"(F) le quotient
du groupe abélien Z|(F*)"| librement engendré par Uensemble (F*)" par le sous
groupe abélien engendré par les éléments de la forme suivante :
(0) (w1,...,un) pour tout (ui,...,uy,) € (F)" tel que la n-forme de Pfister
<< ULy Uy >> est nulle dans W(F).
(1) (a,uay ... un)+(byug, ... un)—(a+byug, ... un)—(ab(a+b),us, ... up)
pour tout (a,b,us, ..., uy) € (F*)"T tel que a+b#£0.
(2) (a.b,c,uz, ..., un)+(a,bus, ..., uy) —(a.c,byus, ..., up) —(a,c,us, ..., uy)
pour tout (a,b,c,us, ... u,) € (F*)"1 lorsque n > 2.
Alors ’homomorphisme évident Z[(F>)"*| — I"(F) induit un isomorphisme

I"(F) = I'(F).

Remarque 4.2. En fait d’apres [1], pour » > 2, la relation (1) est conséquence
de (0) et (2).

On observe que le groupe abélien Z[(F*)"] s’identifie au produit tensoriel
ZIF*| ®gz - @z Z[F*] ( n facteurs). Notons R, (F') le sous-groupe abélien gradué
de Tensy (F'™) engendré par les relations (0), (1) et (2), autrement dit le noyau de
la projection Tensy(F™*) — I[*(F).

On introduit I’homomorphisme d’anneaux gradués

Tensz(F*) — KV (F)
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déterminé par I’homomorphisme (correspondant au degré 1) Z(F*) — I(F),
(a) << a>>.

Lemme 4.3. Le sous groupe abélien gradué R.(F) de Tensz(F*) est dans le
noyau de ’homomorphisme d’anneauz gradués

Tensy (F*) — KW (F).

Démonstration du théoréme 2.1 a partir du théoréme 4.1. Nous commencgons
par observer que le lemme précédent et le Théoreme 4.1 permettent d’établir le
théoreme 2.1 : en effet, puisque I(F') est engendré comme groupe abélien par les
<< a >> on en déduit que I’homomorphisme induit

Tensz(F*)/R.(F) = I*(F) — K (F)

est surjectif en degrés > 1. Comme de plus le composé avec ’homomorphisme du
théoreme 2.1
I'(F) - KY(F) - I'(F)

est un isomorphisme (en degrés > 1) d’aprés 4.1 on en déduit bien le théoreme
2.1. O

Démonstration du Lemme 4.3. 1] est clair par construction que R, (F') est un idéal &
droite. Le symbole (1) € Z[F*] est dans R (F') d’apres la relation (0) du théoréme
4.1. D’autre part pour tout couple (b,c) € (F*)?, la relation (2) appliquée au
triplet (1,5, ¢) donne (b)® (¢)+(1)® (b) — (¢) ® (b) — (1) ® (¢) € Ra(F). Comme on
adéja (1)®(b) € Ra(F) et (1)®(c) € Ra(F) on en déduit que (b)® (c) —(c)®(b) €
Ro(F). De la, il résulte que R, (F) est un idéal bilatere (et que le quotient est
commutatif!).

Notons Ker,(F) le noyau de Tensz(F*) — K (F). On va établir que pour
tout n € N, Ry (F) C Ker,(F).

Il est clair que Ri(F) = Ker((F) puisque KV (F) = I(F) par définition et
I'(F) = I(F) d’aprés le téoréme 4.1. Bien siir, ici, la démonstration est élémentaire
et n'utilise que la présentation de I(F') rappelée en 3.10.

D’apres la remarque ci-dessus, il nous suffit maintenant de vérifier que pour
n > 2 les éléments de la forme bf(0) et bf(2) sont dans Kers(F').

Supposons tout d’abord n = 2. Supposons que (a,b) € Ra(F), c’est & dire que
la forme << a,b >> est nulle dans W (F). On sait que cela signifie qu’il existe
(o, B) € (F*)? avec

b=a?—af’.

Montrons qu’alors << a >> . << b >>=0 dans
KYV(F) =I(F)®w I(F)) <<u>>® <<1—u>>.
On a (dans K}V (F)) :

L B> L hS>=x< as> Lo —af? >>
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B

—<<a>> (<< >>+<al>. << 1—a(2) >>
(67

=<< a.(g)2 >>.<<1- a.(g)2 B0

car dans I(F) on a << a? >>=0et << a.(g)Z >>=<< a >>. On a donc bien
(a,b) € Kero(F).

Supposons maintenant que (a,b,c) € (F*)? est un triplet quelconque. Mon-
trons que 1’élément de type (2) associé :

(a.b,¢) + (a,b) — (a.c,b) — (a, )
appartient a Kery(F'). Autrement dit vérifions que
<<ab>> . << e>>F <<a>> . <<b>>
=<<ac>> . <<b>>+ <<a>>. << e>>
dans K3V (F). Or
<<ab>> <<e>>F <<a>> . <<b>>
=(<<a>>+<a>. . <<b>>). << e>>F+<<a>> . <<b>>
=<<a>>. << e>>FH<a>. << e>> . <<b>>F <<a>> . <<b>>
(car KV (F) est commutative)
=<<a>>.<<e>> << ac>>. << b>>.

On a donc bien Ry(F') C Kera(F'). Le méme argument démontre en fait que tout
élément de type (2) (quelque soit n) appartient & Ker, (F).

Supposons finalement que (uy,...,uy) € (FX)", avec n > 2, est tel que la
forme de Pfister << w1,...,u, >> est nulle dans W (F') Un théoreme classique
[12, Chap 4 Thm 1.2] affirme que si deux n-formes de Pfister << ay,...,a, >> et
<< by,...,b, >> sont isomorphes dans W(F) c’est qu’il existe une “p-chaine”
passant de la premiere a la seconde. Ainsi on peut passer de (uy,...,un) 4 (1,...,1)
par une suite de permutations de deux éléments et de relations du type
(a1,a2,a3...,an) ~ (ay,ah,as...,b,) avec << ay,ap >>=<< aj,ay >> dans
W(F). Comme D’étape précédente (pour n = 2) établit que K3V (F) = I%(F) on
en déduit bien que << wy; >>..... <<up >>=0€ KY(F).

Le lemme est ainsi établi. (|

La méthode de Arason et Elman. On pourrait établir le théoreme 2.1 direc-
tement a l’aide de la méthode suivante dégagée par Arason et Elman. On suppose
que F est de type fini sur son corps premier, et on se donne une W (F)-algébre
commutative N-graduée, A,, et une application

F* — A, u— {u}.

On suppose :
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1) que ’homomorphisme
Tensyy gy (F*) — A,
U R @uy — {urh. ... {un}
est surjectif ;

2) que l'application u; ® -+ ® u, —<< uy,...,u, >>€ ["(F) induit un
homomorphisme de W (F)-algebres N-graduées (forcément surjectif)

Ay = IT(F).
3) Qu'il existe pour chaque n > 0 un homomorphisme (nécessairement unique)

de W (F)-modules
n: A, — An_1

tel que n({ui}..... {un}) = (1— < uq >){us}..... {un};
4) Que ’anneau N-gradué quotient

A /n(As)

s’identifie & la K-théorie de Milnor modulo 2 (via le symbole v +— {u} € A1/n(A2));

5) Que si << uq, ug >>=<< vy, vp >>dans W(F) alors {ui}.{us} = {v1}.{va}
dans A, ;

6) Que ’homomorphisme sp : k. (F) —
phisme et que I’homomorphisme k,(F) — H
degré suffisament grand ;

Alors I’'homomorphisme

O I (F)/I"L(F) est un isomor-
*(F;Z/2) est un isomorphisme en

A, = I'(F)

est un isomorphisme.
Leur méthode de démonstration s’adapte en effet & ce cadre. D’apres 3), 4) et
6) on dispose de diagrammes commutatifs de suites exactes pour n >0 :

A, — A, —I"YF)/IMF)— 0

| |
0 — I"(F) — I"YF) —» " YF)/I"(F) — 0.

Il suffit donc d’établir 'isomorphisme en grand degré. Leur lemme 2.1 établit que
pour un certain ng, I™(F') est sans torsion et que la filtration par les I™(F'), n > ng
est la filtration 2-adique. Enfin 5) implique que 1’on dispose d’un homomorphisme
canonique pour tout n > 0 du groupe abélien libre sur les symboles (uq,...,uy)
modulo les isomorphismes en forme de Pfister associées. On peut donc appliquer
leur corollaire 3.4 pour conclure.

5. K-théorie de Milnor—Witt

La définition suivante a été trouvée en collaboration avec Mike Hopkins :
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Définition 5.1. On note KMW(F) I'anneau Z-gradué associatif unitaire libre-
ment engendré par les symboles de degré 1 :

[a]
pour chaque a € F* et le symbole de degré —1

n

et soumis aux relations suivantes :
(1) pour chaque paire (a,b) € (F*)

[ab] = [a] + [b] + 7.[a].[b]
(2) pour tout a € F* — {1} :

2 .

[a]l.1 —a] =0

3)
n.(n[-1]+2)=0
(4) pour tout a € F'*
n-[al = la]n.
Cet anneau KMW (F) s’appelle la K-théorie de Milnor-Witt de F.

Remarque 5.2. Posons h = 5.[—1]+2 € K} (F). On observera que la relation
(3) se réécrit :
n.h = 0.

Si l'on “tue” I’élément h on obtient exactement la K-théorie de Witt précédem-
ment définie, en posant {u} := —[u]. Autrement dit KMW (F)/h = KV (F).

Si 'on tue cette fois 1’élément 7 on obtient clairement la K-théorie de Milnor
de F': KMW(F)/n = KM(F) (Bien sir, si l’on tue les deux on trouve la K-théorie
de Milnor modulo 2).

Il en résulte que le produit par n : K %rvlv(F) — KMW(F) induit un homomor-
phisme (de KMW (F)-modules)

KW \(F) — KMY (F) - KM(F) -0,

Posons pour tout n € Z, i"(F) := ["(F)/I""1(F). Les i"(F) tous ensembles
forment un anneau commutatif Z-gradué noté I*(F'). On note J*(F') I'anneau Z-
gradué produit fibré de I*(F') et de KM (F) au dessus de i*(F) via les morphismes
évidents I*(F) — *(F) et KM(F) — i*(F). Ces groupes furent introduits dans
[2]. Pour n < 0 on a KM(F) = I"(F)/I""(F) = 0 et donc J"(F) = W(F).
Posons n=1¢€ W(F) = J }(F).

Pour tout u € F*, posons’

[u] = (— << u >>7U) = I(F) XI(F)/I2(F) =,

1 Cest le point de vue “homotopique” rappelé ci-dessus qui justifie le choix du signe.
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On vérifie sans peine que les éléments [u] € J'(F) et n = 1 € J1(F) satisfont
les 4 relations de la définition précédente. On obtient donc un homomorphisme
canonique d’anneaux Z-gradués :

KMW(F) — J*(F).
Théoréme 5.3. L’homomorphisme précédent

KMW(F) - J*(F)
est un isomorphisme.

Démonstration. Pour tout n € N on dispose d'un diagramme commutatif de suites

exactes
Kml(F) — K,JLWW(F) — K,]LW(F) — 0
| | ]
0— I"YF) - I(F) — KM(F)(F)—o.
Mais 'homomorphisme vertical de gauche est un isomorphisme car il s’identifie
(& la multiplication par un signe prés) a Iisomorphisme du théoreme 2.4. [l

La démonstration en degré < 0 est tout a fait élémentaire. L’auteur ignore s’il
existe une démonstration élémentaire en tout degré du résultat précédent, c’est a
dire n’utilisant pas la preuve par Voevodsky des conjectures de Milnor.

Corollaire 5.4. Pour tout n € N on dispose d’une suite exacte fonctorielle en I
0— I""Y(F) = KMY(F) = KM(F) - 0.

Remarque 5.5. On peut maintenant préciser les idées mentionnées dans l’intro-
duction. ’homomorphisme

E}Y(F) — [8°, (Gm)™]

envoie le symbole [a] sur la classe de 'application pointée Spec(F) . — G, corres-
pondant & a. L’image de 7 est la classe de I’application de Hopf algébrique, c’est
a dire le morphisme canonique

A? — {0} - PL.
Lélément < a >€ KMW(F) a pour image quant & lui la classe de I’application
fo PSP [z,y] — [az,y].
Pour plus de détails voir [5, 6, 8].
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