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Sur les puissances de l'idéal fondamental de l'anneau de Witt

Fabien Morel

Résumé. Nous reformulons un résultat recent de Arason et Elman en donnant une présentation
très simple des puissances de l'idéal fondamental de l'anneau de Witt d'un corps de caractéristique

Abstract. We reformulate a recent result of Arason and Elman by giving a very simple
presentation of the powers of the fundamental ideal of the Witt ring of a field of characteristic

Mathematics Subject Classification (2000). 19D45, 15A63

Mots clés. Quadratic forms, Witt ring, Milnor K-theory.

Dans cet article, F désigne un corps commutatif qui est toujours supposé de

caractéristique ^ 2.
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sur des sujets directement liés ou non à ce travail.

1. Introduction

Cet article a deux objectifs. Le premier est de reformuler un résultat de Arason
et Elman [1] donnant une présentation de la n-ième puissance In(F) de l'idéal
fondamental de l'anneau de Witt W(F) d'un corps F de caractéristique ^ 2.

Nous donnons deux telles présentations, très proches, l'une dans le Théorème 2.1,

qui tient compte de la structure de VF(.F)-mc>dule des In(F), et l'autre dans le

théorème 2.4. Nous pensons que ces résultats présentent un intérêt propre,
notamment en faisant clairement apparaître l'anneau gradué ®In(F) comme la "K-
théorie de Witt de F".

Notre deuxième objectif est lié au problème du calcul des groupes d'homotopie
motiviques stables [9, 13, 5] de la forme

roO. ((pi \Ani
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avec «êZ. Nous avions pour cela été ammené à introduire la K-théorie de Milnor-
Witt de F

Récemment, en collaboration avec Mike Hopkins, nous avons considérablement
simplifié la présentation de K^W(F) - voir la définition 5.1 ci-dessous - de sorte

que l'on en a déduit (voir [5]) l'existence d'un homomorphisme canonique
d'anneaux gradués

K^w(F)^[S°;(Gm)A*] (1)

Nous avons établi dans [8] (voir aussi [6, 5]) que cet homomorphisme est un iso-

morphisme.
Comme nous le verrons ci-après, l'anneau K^IW(F) s'identifie à l'anneau de

Grothendieck-Witt GW(F) de k, si bien que l'on obtient, en degré 0, l'isomor-
phisme canonique

GW(F) [S0, S0]

conjecturé par l'auteur dans [4] en accord avec la preuve de la conjecture de Milnor
sur le gradué de W(F) donnée dans loc. cit. ; c'est par ailleurs ce travail qui
avait motivé nos travaux concernant les groupes [S°;(Gm)An]. Le présent article
représente une des étapes clef de la preuve de l'isomorphisme (1) ci-dessus.

On peut comme dans [3] définir des "residues" en K-théorie de Milnor-Witt
et définir pour tout fc-schéma lisse X le groupe de K-théorie de Milnor-Witt non-
ramifié (voir [8]). Cependant, à moins de réécrire le travail de Rost [11] en
remplaçant partout K-théorie de Milnor par K-théorie de Milnor-Witt, il n'est pas
évident que ces faisceaux de K-théorie de Milnor-Witt non-ramifié ait leur coho-

mologie Zariski (ou Nisnevich) invariante par produit par la droite affine A1. Le
Théorème 5.3 ci-dessous nous permettra dans [8] de parvenir à ce résultat d'une
façon très détournée.

La K-théorie de Milnor [3] est le quotient de la K-théorie de Milnor-Witt par
l'élément de Hopf r\ et la K-théorie de Witt est le quotient de la K-théorie de

Milnor-Witt par le plan hyperbolique h. Le résultat principal de cet article (les
théorèmes 2.1 et 2.4) est d'identifier la K-théorie de Witt à la somme des puissances
de l'idéal fondamental.

Le résultat principal de [8] démontre le caractère fondamental de la K-théorie de

Milnor-Witt des corps. Le Théorème 5.3 ci-dessous exprime que cet objet universel
est le résultat du "mélange" d'objets de nature "motivique" et d'objets de nature
"groupes de Witt". Ce mélange s'explique par le nécessaire mélange des deux
intuitions topologiques présentes en géométrie algébrique : la géométrie complexe

pour l'aspect motivique et la géométrie réelle pour l'aspect groupe de Witt. La
K-théorie de Milnor-Witt est donc en quelque sorte l'objet universel ayant ces

deux natures à la fois.
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2. Énoncé des résultats

On note W(F) l'anneau de Witt des formes quadratiques anisotropes sur F et

I(F) C W(F) son idéal fondamental.
Pour tout entier n > 0 notons In{F) la n-ième puissance de I{F). On note

I\{F) l'anneau commutatif gradué égal en degré n > 0 à In(F) et muni du

produit évident.
Pour tout u G Fx on note < u >G W(F) la classe de la forme quadratique de

rang un u.X2 et l'on note << u >>:= 1— < u >= 1+ < —u >G W(F) la forme
de Pfister associée.

Soit Tensw{F)(I(F)) la W(F)-algebie tensorielle sur le W(F)-modu\e I(F),
graduée en posant

Tensw{F)(I(F))n := I(F) ®W{F) • • • ®w{F) I(f) (n copies).

Le groupe abélien I(F) est engendré par les << u » et l'homomorphisme
canonique de VF(.F)-algèbres graduées Tensw(F)(I(F)) —> I*(F) est donc surjectif.
D'autre part, pour tout u G Fx — {1} on a la relation de Steinberg

« u » « 1 - u »= 0 G I2(F)

qui découle de l'égalité 1+ < w(l — u) >=< u > + < 1 — u> dans W(F).
On note K^(F), le quotient de l'algèbre Tens-wçp)(I(F)) par l'idéal bilatère

engendré par les produits tensoriels << u >> (g) << \—u >>, avec m g Fx — {1}.
On dispose donc d'un épimorphisme canonique

k^(f)^/;(f).
Théorème 2.1. L'homomorphisme canonique

est un isomorphisme.

Remarque 2.2. Il est clair que l'anneau gradué K^[F) <%>w{F) ^/2 s'identifie
à la if-théorie de Milnor modulo 2, k*(F) := K^(F)/2, (voir [3]) et que
l'anneau gradué I+(F) <%>w(F) Z/2 s'identifie quant à lui à la somme directe

+1

Si l'on tensorise l'homomorphisme K^ [F) —> /^(-F) précédent par Z/2 au
dessus de W(F) on obtient donc l'homomorphisme défini par Milnor dans [3]

Le théorème précédent ne peut donc pas être élémentaire puisqu'il implique la

conjecture de Milnor sur la filtration de l'anneau de Witt par les puissances de

l'idéal fondamental, et en effet, le travail de Arason et Elman utilise l'affirmation
de cette conjecture [10, 4, 7].

Pour tout entier n < 0 on pose In(F) := W(F). On note I*(F) l'anneau
commutatif Z-gradué égal en degré n > 0 à In(F) et muni du produit évident.
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L'anneau I+(F) précédemment considéré s'identifie au sous-anneau constitué des

éléments de degré > 0. On note r\ G I^1(F) l'élément correspondant à 1 G W(F).
Observons que le produit par r\ est exactement l'inclusion In(F) C In~1(F), pour
tout entier n G Z.

Le lemme suivant est immédiat :

Lemme 2.3. Les symboles « a >>G I{F) et r\ G I~1(F) satisfont les 4

relations suivantes (dans I*^_(F)) :
(1) pour chaque paire (a, b) G (Fx)2 :

<< ab >>=<< a » + «b » -r\ « a, >><< b »
(2) pour tout a G Fx - {1} :

<< a >>. << 1 - a >>= 0

(3)

ï). « -1 >>= 2

(4) pour tout a G Fx
r] « a >>=<< a >> rj.

Ces relations sont en fait "les seules" :

Théorème 2.4. Le lemme précédent donne une présentation de l'anneau ï-gradué
r(F).

3. K-théorie de Witt

Ce qui précède nous conduit très naturellement à introduire la définition
suivante :

Définition 3.1. On note K^(F) l'anneau Z-gradué librement engendré par les

symboles de degré 1 :

{«}

pour chaque a G Fx et le symbole de degré —1

V

et soumis aux relations suivantes :

(1) pour chaque paire (a, 6) G (Fx)2 :

(2) pour tout ae Fx -{1} :

{a}.{l-a}
(3)

??.{-!} 2
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(4) pour tout a £ Fx
r].{a} {a}.rj.

Cet anneau K™ (F) s'appelle la K-théorie de Witt de F.

On dispose donc d'un homomorphisme canonique :

d'anneaux Z-gradués et le Théorème 2.4 affirme précisément que c'est un isomor-
phisme.

Dans cette partie nous allons établir de façon élémentaire, comme la notation
le suggère, que l'algèbre K^[F) définie au paragraphe précédent s'identifie à la
sous-algèbre des éléments de degré positifs ou nuls de K^(F).
Lemme 3.2. Pour chaque entier n > 1 il existe un unique homomorphisme de

W(F)-modules :

r, : K™n(F) -+ K^iF)
tel que

r](« Ul » «Un ») (1- < «1 >)• << «2 >> «Un »
pour chaque n-uplet d'unité de F.

Démonstration. Par construction de K^(F), le noyau de l'épimorphisme :

W(F) ¦ ¦ ¦ <8>w){F)

est le sous-groupe engendré par les << u\ >> <g> • • • (g) << un » avec (u\,..., un)
G (Fx)n tel qu'il existe i < j avec ut + u3 1. Il s'agit donc de montrer qu'alors
le produit (1- < u\ >). << w2 >> << un >> est nul dans K^n-i(F). Si

i > 1 c'est trivial. Sinon, on a, en utilisant la définition du produit tensoriel au
dessus de W(F) :

(1- < mi >). << w2 >> «un »
« U2» ((1- < «1 >). << Uj » «Un »

0

puisque (1- < ux >). << u3 »= 0 G I(F). D

On note K™(F) le W(F)-modu\e Z-gradué égal en degré n G Z à K^(F) si

n > 0 et à W(F) si n < 0. On note r\ G K™_X{F) l'élément 1. On déduit très
facilement du lemme précédent qu'il existe une unique structure de ^(i^-algèbre
associative unitaire graduée sur K^(F) telle que le produit K^n{F)<g>K^m{F) —>

K^n+m(F) est celui de K^(F) dans le cas où n et m sont positifs où nuls, et telle

que le produit par r\ est l'homomorphisme défini par le lemme.
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Lemme 3.3. Les symboles << a >>G KY\{F) et r\ G K^_1{F) vérifient les

quatre relations de la définition "précédente. On en déduit un homomorphisme
canonique d'algèbres :

$ : K™{F) -+ KY{F)
qui envoie le symbole {«} G K^(F) sur la forme de Pfister << u >> G I(F).

Notre objectif ici est d'établir qu'en fait :

Théorème 3.4. L'homomorphisme

Kf(F) -+ K?(F)
est un isomorphisme.

Pour chaque u G Fx posons :

Autrement dit r]{u} 1— < u >. On peut verifier que $(< u >) =< u >G W(F).
Il n'est pas difficile d'établir :

Lemme 3.5. 1) Pour tout n > 1, le groupe K^ (F) est engendré par les produits

avec les u-% G Fx.
2) Pour tout n < 0, le groupe K^ (F) est engendré par les

rf. <u>
avec u G Fx

On en déduit en particulier que $ est surjectif, puisque I(F) est engendré
comme groupe par les << u >>.
Lemme 3.6. Pour toute paire (a,b) G (Fx)2 on a dans K^f (F) :

1) {ab} {a}+ <a> .{b} {a}. <b> +{b} ;
2) < ab > < a > < b > ;

3) {1} 0, < 1 >= 1 et < -1 >= -1 G K^(F) ;

4) < a > est une unité de l'anneau tC^ (F) dont l'inverse est < a^1 > ;
5) {f } {a}~ < f > -{b}. En particulier pour tout a G Fx on a : {a^1}

- < ar1 > .{a}.

Démonstration. 1) est évident. On obtient 2) en appliquant r\ à la relation (1) (et
en utilisant (4)). D'après la relation (3) on a bien < —1 >= — 1. On en déduit
< 1 >= 1 car d'après le point 2) on a < — 1 >=< 1 > < — 1 >. Le point 1)

ci-dessus démontre que

d'où {1} 0. Le point 4) résulte clairement de 2) et 3) et le point 5) est une
conséquence facile de 1) 2) 3) et 4). D
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Proposition 3.7. Pour tout a G Fx et pour tout b G Fx on a :

1) {a}.{-a}=0 inKf(F).
2) < a > .{b} {b}. <a>.

Démonstration. On adapte [3, Lemma 1.1].
1) On part de l'égalité —a -^"-î pour a G Fx — {1} (pour a 1 la formule

résulte de {1} 0). Le lemme précédent implique

l~a ] ~ ' .{1-a-1]
— a

et donc

{-a}.{a} {1 - a}.{a}- < -a > .{1 - a 1}.{a} - < -a > .{1 - a 1}.{a}.

D'après le lemme 3.6 (et le fait que < a > commute avec {a}) on trouve bien

{-a}.{a} =< -a > .{1 - a 1}.{a x}. < a
1 >= 0

par la relation de Steinberg.
2) On a {ab} {a}+ < a > .{b} {ba} {b}. < a > +{a} d'après le point

1) du lemme 3.6 ce qui implique < a > .{b} {b}. < a >.
3) On a d'après ce qui précède {—a} {a}. < —1 > +{—1} { — 1} — {«}•

Ainsi 0 {a}.{-a} {a}.{-l} - {a}.{a} D

On pourrait en déduire tout de suite en adaptant loc. cit. que l'algèbre K^(F)
est bien commutative.

Corollaire 3.8. Pour tout couple (u,v) G (Fx)2 on a :

l){v2}=0;
2) < u{v2) >=< u > ;

3) lorsque u + v ^ 0 : < u > + < v >=< u + v > + < uv(u + v) >.

Démonstration. On a {v2} 2{v} — ri{v}.{v} 2{v} — r]{v}.{ — 1} 2{v} —

{v}.r]{-l} 2{v} - 2{v} 0.

On en déduit que {u(v2)} 0 et < u(v2) >=< u >.
Enfin d'après la relation de Steinberg à laquelle on applique r\1 on a :

< a> + < 1 - a >= 1+ < a(l - a) >

Pour a ^pg on obtient la formule souhaitée. D

On reconnaît dans le précédent corollaire la présentation standard de l'anneau
de Grothendieck-Witt GW(F) [12] et l'on obtient ainsi un homomorphisme
d'anneaux

GW(F) -? K^(F).
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On observe enfin que l'image de h est 1+ < —1 >= 2 — r]{ — 1} 0 d'où en fait un
homomorphisme d'anneaux

W(F) - K(F).
Lemme 3.9. L'homomorphisme précédent

W(F) -+ K^{F)
est un isomorphisme et le produit par rf1, n£N,

K™(F) - KWJF)

est un isomorphisme.

Démonstration. On a déjà observé plus haut que les groupes K^n(F) pour n > 0

sont engendrés par les rjn. < u >. Les homomorphismes

W(F) -? Kwn(F), <u>^rf.<u>
sont donc tous surjectifs.

Mais ils sont injectifs car le composé

W(F)^Kwn(F)^I-n(F)
est un isomorphisme (évident). D

Ce lemme démontre le Théorème 3.4 en degré < 0.

Lemme 3.10. Le groupe ahélien I(F) est le quotient du groupe abélien libre sur
les symboles << u >>G I(F), u G Fx par les relations :

1) << 1 »=0
2) << u(v)2 >>=<< u » pour tout (u,v) G (Fx)2 et

3) << u » + « 1 - u >>=<< u{\ - u) » pour u G Fx - {!}.

Démonstration. On utilise la suite exacte de groupes abéliens :

0 -? I(F) -? GW{F) -> Z -> 0.

La présentation standard du groupe Grothendieck-Witt rappelée ci-dessus et la
section canonique Z —> GW(F), 1 i—*¦ 1 donne immédiatement le lemme. D

On vérifie ensuite immédiatement que l'application

u ^ {u} G KY{F)
satisfait les trois relations précédentes et l'on en déduit un homomorphisme

Lemme 3.11. L'homomorphisme

I(
est un isomorphisme de W(F) K^(F)-modules.



Vol. 79 (2004) L'idéal fondamental de l'anneau de Witt 697

Démonstration. On sait déjà qu'il est surjectif et de plus l'injectivité résulte du fait
que le composé I(F) —> K^(F) —> I(F) est l'identité. On vérifie très facilement

que c'est bien un isomorphisme de VF(.F)-mc>dules. D

Démonstration du théorème 3.4- Puisque les symboles {«} G K^ (F) vérifie la

relation de Steinberg on déduit finalement du Lemme précdent que les isomor-
phismes W(F) K^(F) et I(F) K^(F) induisent un homomorphisme de

W(F)-algebves :

Kw{F) ^ Kw{F)

qui est de toute évidence surjectif en degrés > 0 et dont le composé avec K^(F) —>

K^(F) est l'inclusion évidente. Ceci implique cette fois le théorème 3.4 en degrés
> 1. D

4. La méthode de Arason et Elman

On se propose de déduire le théorème 2.1 du théorème 3.1 de [1]. Rappelons-en
l'énoncé. Pour chaque n-uplet (ui,...,un) G (Fx)n on note simplement
<< «i,... ,un >> G In(F) le produit << u\ >> • • • << un >>, que l'on
appelle la n-forme de Pfister associée au symbole (u\,...,un).

Théorème 4.1 ([1, 3.1]). Pour chaque entier n > 1 notons F1 (F) le quotient
du groupe abélien Z,[(Fx)n] librement engendré par l'ensemble (Fx)n par le sous

groupe abélien engendré par les éléments de la forme suivante :
(0) («i, un) pour tout («i,.. un) G (Fx)n tel que la n-forme de Pfister

<< u\,. ,un » est nulle dans W(F).
(1) (a, «2, • • • ,un)-\-(b,U2, ¦ ¦ ¦ ,un) — (a+ 6, «2, • • • ,un) — (a. b. (a + 6), «2, • • • ,un)

pour tout (a,b,U2, ¦ ¦ ¦ ,un) G (Fx)n+1 tel que a + b ^ 0.

(2) (a.6, c, «3,. un) + (a, b,u3,..., un) - (a.c, b,u3,..., un) - (a, c, u3, un)

pour tout (a,b,c,u3,. ,un) G (Fx)n+1, lorsque n > 2.

Alors l'homomorphisme évident Z[(Fx)n] —> In(F) induit un isomorphisme

F {F) ^F(F).

Remarque 4.2. En fait d'après [1], pour n > 2, la relation (1) est conséquence
de (0) et (2).

On observe que le groupe abélien Z,[(Fx)n] s'identifie au produit tensoriel

Z[FX] <g>z • • • ®zZ[Fx] n facteurs). Notons R+(F) le sous-groupe abélien gradué
de Tensz(-Fx) engendré par les relations (0), (1) et (2), autrement dit le noyau de

la projection Tensz(Fx) -? F (F).
On introduit l'homomorphisme d'anneaux gradués

Tensz(Fx) -? KY{F)
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déterminé par l'homomorphisme (correspondant au degré 1) Z(FX) —> L(F),
(a) i—><< a >>.

Lemme 4.3. Le sous groupe abélien gradué R+(F) de Tensz(.Fx) est dans le

noyau de l'homomorphisme d'anneaux gradués

Tensz(Fx)^ iff (F).

Démonstration du théorème 2.1 à partir du théorème J^.l. Nous commençons
par observer que le lemme précédent et le Théorème 4.1 permettent d'établir le

théorème 2.1 : en effet, puisque I{F) est engendré comme groupe abélien par les

<< a » on en déduit que l'homomorphisme induit

Tensz(Fx)/R4F) =I*(F) -> iff (F)

est surjectif en degrés > 1. Comme de plus le composé avec l'homomorphisme du
théorème 2.1

est un isomorphisme (en degrés > 1) d'après 4.1 on en déduit bien le théorème
2.1. D

Démonstration du Lemme 4-3. Il est clair par construction que R*(F) est un idéal à

droite. Le symbole (1) G Z[.FX] est dans R-i(F) d'après la relation (0) du théorème
4.1. D'autre part pour tout couple (6, c) G (Fx)2, la relation (2) appliquée au
triplet (1,6, c) donne (6) (g) (c) + (1) <g> (6) - (c) (g) (6) - (l)<g> (c) G R2(F). Comme on
adéja (1)<8>(6) G ^(-F1) et (l)®(c) G i?2(-F) on en déduit que (5)<g>(c) - (c)<g>(5) G

R2(F). De la, il résulte que R+(F) est un idéal bilatère (et que le quotient est

commutatif
Notons Ker*(F) le noyau de Tensz(-Fx) —> iff (F). On va établir que pour

tout n G N, RN(F) C Kern(F).
Il est clair que Ri(F) Ker-i(F) puisque iff (F) I(F) par définition et

/1(i;l) L(F) d'après le téorème 4.1. Bien sûr, ici, la démonstration est élémentaire
et n'utilise que la présentation de L(F) rappelée en 3.10.

D'après la remarque ci-dessus, il nous suffit maintenant de vérifier que pour
n > 2 les éléments de la forme 6/(0) et 6/(2) sont dans KeYs(F).

Supposons tout d'abord n 2. Supposons que (a, 6) G R2(F), c'est à dire que
la forme << a, 6 >> est nulle dans W(F). On sait que cela signifie qu'il existe

(a,ß) G (Fx)2 avec
7 2 o26 a — ap

Montrons qu'alors <<a>>.<<6 >>= 0 dans

KY{F) := L{F) (E)W(F) I{F)/ « u » (E) « l - u »
On a (dans Kf {F)) :

« a» << 6 >>=<< a » << a2 - aß2 >>
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<< a » .(<< a2 » + < a2 > « 1 - a.(-f »a

« a.(-) » « 1 - a.(-) >>=0
a a

cat dans I(F) on a << a2 >>= 0 et << a.(f >>=<< a >>. On a donc bien

(a,&)eKer2(F).
Supposons maintenant que (a, 6, c) G (Fx)3 est un triplet quelconque. Montrons

que l'élément de type (2) associé :

(a.6, c) + (a, 6) — (a.c, b) — (a, c)

appartient à Ker2(-F). Autrement dit vérifions que

<< a.b » « c » + « a » « b >>

<< a.c » «b » + « a » « c »
dans Kf(F). Or

<< a.b » « c » + « a » « b >>

(<< a » + < a > « b >>). « c » + « a » « b »
=<< a » « c » + < a > « c » << b » + « a » «b»

(cat K^ (F) est commutative)

=<< a» « c » + << a.c » «b»
On a donc bien R.2(F) C Ker2(-F). Le même argument démontre en fait que tout
élément de type (2) (quelque soit n) appartient à KeTn(F).

Supposons finalement que (u\,...,un) G (Fx)n, avec n > 2, est tel que la
forme de Pfîster << u\,...,un » est nulle dans W(F) Un théorème classique
[12, Chap 4 Thm 1.2] affirme que si deux n-formes de Pfîster << a\,... ,an » et

<< &i,...,5n >> sont isomorphes dans W(F) c'est qu'il existe une "p-chaîne"
passant de la première à la seconde. Ainsi on peut passer de (u\,..., un) à (1,..., 1)

par une suite de permutations de deux éléments et de relations du type
(ai, a2, as an) ~ (a^, a2, 03 6n) avec << ai, 02 >>=<< «i,«2 >> dans

W(F). Comme l'étape précédente (pour n 2) établit que K^(F) I2(F) on
en déduit bien que << u\ >> << un >>= 0 G K™ (F).

Le lemme est ainsi établi. D

La méthode de Arason et Elman. On pourrait établir le théorème 2.1
directement à l'aide de la méthode suivante dégagée par Arason et Elman. On suppose

que F est de type fini sur son corps premier, et on se donne une Vl/(i;l)-algèbre
commutative N-graduée, A*, et une application

Fx -4A1]Ui-> {«}.

On suppose :
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1) que l'homomorphisme

Tensw{F)(Fx) ^ A*

v,\ <g> ¦ ¦ ¦ <8> «„ i—> {wi} {«„}
est surjectif ;

2) que l'application «i <g> • • • (g) un i—><< «i,...,% >>G In{F) induit un
homomorphisme de VF(.F)-algèbres N-graduées (forcément surjectif)

3) Qu'il existe pour chaque n > 0 un homomorphisme (nécessairement unique)
de VF(.F)-mc>dules

r] : An -> An-i
tel que ?y({wi} {«„}) (1- < «i >).{«2} {%} ;

4) Que l'anneau N-gradué quotient

s'identifie à la K-théorie de Milnor modulo 2 (via le symbole u i—> {m} g ^1
5) Que si << mi, «2 >>=<< v\, v-2 » dans W(F) alors {mi}.{m2} {^i}-{'y2}

dans A-2 ;

6) Que l'homomorphisme sF : k+(F) —> ©n/n(-F)//n+1(i;l) est un isomor-
phisme et que l'homomorphisme k*(F) —> H*(F;Z/2) est un isomorphisme en
degré sufnsament grand ;

Alors l'homomorphisme

est un isomorphisme.
Leur méthode de démonstration s'adapte en effet à ce cadre. D'après 3), 4) et

6) on dispose de diagrammes commutatifs de suites exactes pour n > 0 :

An -+ An^ -+ In-\F)/In{F) -+ 0

I I II

0 -> In{F) -* In-\F) -* In-\F)/In{F) -* 0.

Il suffit donc d'établir l'isomorphisme en grand degré. Leur lemme 2.1 établit que

pour un certain tiq, In{F) est sans torsion et que la filtration par les In{F), n > n-o

est la fîltration 2-adique. Enfin 5) implique que l'on dispose d'un homomorphisme
canonique pour tout n > 0 du groupe abélien libre sur les symboles [u\,... ,un)
modulo les isomorphismes en forme de Pfîster associées. On peut donc appliquer
leur corollaire 3.4 pour conclure.

5. K-théorie de Milnor-Witt

La définition suivante a été trouvée en collaboration avec Mike Hopkins
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Définition 5.1. On note K^w[F) l'anneau Z-gradué associatif unitaire librement

engendré par les symboles de degré 1 :

[a]

pour chaque a G Fx et le symbole de degré —1

V

et soumis aux relations suivantes :

(1) pour chaque paire (a, 6) G (Fx)2 :

[ab] [a] + [b]+r1.[a].[b]

(2) pour tout a £ Fx - {1} :

[a].[l -a] =0
(3)

r?.(r?.[-l] + 2) 0

(4) pour tout a G Fx
r).[a] [a].r).

Cet anneau K^W(F) s'appelle la K-théorie de Milnor-Witt de F.

Remarque 5.2. Posons h := rj.[—l] + 2 G KqIW(F). On observera que la relation
(3) se réécrit :

r).h 0.

Si l'on "tue" l'élément h on obtient exactement la K-théorie de Witt précédemment

définie, en posant {u} := -[«]. Autrement dit Kfw(F)/h Kf{F).
Si l'on tue cette fois l'élément r\ on obtient clairement la K-théorie de Milnor

de F : K^w(F)/r] K^(F) (Bien sûr, si l'on tue les deux on trouve la K-théorie
de Milnor modulo 2).

Il en résulte que le produit par r\ : K^^(F) —> K^w [F) induit un homomor-
phisme (de K^w (F)-modules)

K^i(F) -? K^W(F) -? K™{F) -+ 0.

Posons pour tout n G Z, in(F) := In(F)/In+1(F). Les in(F) tous ensembles

forment un anneau commutatif Z-gradué noté I*(F). On note J*(F) l'anneau Z-
gradué produit fibre de I*(F) et de Kff(F) au dessus de i*(F) via les morphismes
évidents I*(F) -> i*(F) et K^1 (F) -> i*(F). Ces groupes furent introduits dans
[2]. Pour n < 0 on a if^(F) In{F)/In+1 {F) 0 et donc Jn(F) VF(F).
Posons ri 1 G VF(F) J"1^).

Pour tout u £ Fx, posons1

[m] := (- << u >>,u) G /(F) x/(F)//2(F)

1 C'est le point de vue "homotopique" rappelé ci-dessus qui justifie le choix du signe.



702 F. Morel CMH

On vérifie sans peine que les éléments [u] G ^(F) et r\ 1 G J^1(F) satisfont
les 4 relations de la définition précédente. On obtient donc un homomorphisme
canonique d'anneaux Z-gradués :

Théorème 5.3. L'homomorphisme précédent

K^w(F)-> J*(F)

est un isomorphisme.

Démonstration. Pour tout n G N on dispose d'un diagramme commutatif de suites
exactes

K?+1(F) - KÏfw(F) - K™ (F) -+ 0

I I II

0 _> In+\F) -* In{F) -* K^{F){F) -* 0.

Mais l'homomorphisme vertical de gauche est un isomorphisme car il s'identifie
(à la multiplication par un signe près) à l'isomorphisme du théorème 2.4. D

La démonstration en degré < 0 est tout à fait élémentaire. L'auteur ignore s'il
existe une démonstration élémentaire en tout degré du résultat précédent, c'est à

dire n'utilisant pas la preuve par Voevodsky des conjectures de Milnor.

Corollaire 5.4. Pour tout n G N on dispose d'une suite exacte fonctorielle en F

0 -? In+1(F) -? K™W{F) -? K^f(F) -? 0.

Remarque 5.5. On peut maintenant préciser les idées mentionnées dans
l'introduction. L'homomorphisme

envoie le symbole [a] sur la classe de l'application pointée Spec(i;l)+ —> Gm
correspondant à a. L'image de r\ est la classe de l'application de Hopf algébrique, c'est
à dire le morphisme canonique

L'élément < a >G K^fw(F) a pour image quant à lui la classe de l'application

fa : P1 ^P1, [x,y] i-> [ax,y].

Pour plus de détails voir [5, 6, 8].
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