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Topological finite-determinacy of functions with non-isolated
singularities

Javier Fernandez de Bobadilla

Abstract. We introduce the concept of topological finite-determinacy for germs of analytic
functions within a fixed ideal I, which provides a notion of topological finite-determinacy of
functions with non-isolated singularities. We prove the following statement which generalizes
classical results of Thom and Varchenko: let A be the complement in the ideal I of the space of
germs whose topological type remains unchanged under a deformation within the ideal that only
modifies sufficiently large order terms of the Taylor expansion. Then A has infinite codimension
in I in a suitable sense. We also prove the existence of generic topological types of families of
germs of I parametrized by an irreducible analytic set.
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1. Introduction

R. Thom announced in [17] his Stabilisation Theorem stating the following: let
J"(n, m) denote the space of r-jets of germs at the origin of differentiable mappings
from R™ to R™, and #; : J*(n,m) — J"(n,m) the natural projection mapping.
Consider f € J"(n, m). There exists a positive integer s, depending only on n, m
and r, and a proper algebraic subset ¥ C (73)~(f) such that any two germs g;
and gy with the same s-jet belonging to (72)~1(f)\ ¥ have the same topological
type.

Although R. Thom gave in [17] rather detailed ideas for the proof of his theo-
rem, the first complete proof was given in [18], [19] by A. Varchenko, and followed
a completely different approach. More in the line of R. Thom’s ideas, E. Looi-
jenga’s thesis contains the result in the function case (that is, when m = 1). Later,
A. du Plessis (see [11]) gave another proof for arbitrary m based on Thom’s sugges-
tions, using also his own ideas and ideas from Mather (actually both A. Varchenko
and A. du Plessis gave slightly stronger statements than R. Thom’s). In this paper

Supported by the Netherlands Organisation for Scientific Research (NWO). Supported by
the Spanish MCyT project BFM2001-1448-C02-01.



660 J. Fernandez de Bobadilla CMH

we are interested in a generalization of these results valid in the realm of (com-
plex or real) analytic non-isolated hypersurface singularities. In order to see what
kind of properties are desirable let us state A. Varchenko’s results in the setting
of complex analytic functions: let J"(C", C)o be the space of r-jets of germs of
holomorphic functions at the origin O of C™. Denote by D the group of germs
of biholomorphisms fixing the origin of C™. There is a natural action of D in
JT(C",C)p by composition on the right.

Theorem 1 (Varchenko [18]). Let T' C J"(C",C)o be an irreducible algebraic
subset. There exists s > r, and a proper algebraic subset A C (w2)~Y(T) such that
any two germs fi and fo whose s-jet is in (7)Y T)\ A have the same topological
type.

Moreover, for each r > 1 there exists a partition of J"(C",C)o into disjoint
constructible subsets U], ..., U};(T), invariant by the action of D, such that:

(1) If @ > 0, any two germs f1 and fo whose r-jet is in U] has the same
topological type.

(2) The codimension of Uf tends to infinity as r increases.

The subsets U] can be constructed so that, if s > r and 4 > 0, then (7$)~1(U])
coincides with one of the subsets U7 with j > 0. This enables to decompose
Ocr o as a union of subsets {V;};cz., such that for i > 0, the V;’s are formed by
germs of fixed topological type determined by their r(4)-jet (for a number r(i) only
depending on i), and Vj is infinite codimensional in a suitable sense (and therefore
easily avoidable by deformation).

Observe that the topological type of a function f € Oc¢n o with non-isolated
singularities is not determined by any r-jet of it, no matter how big is r: summation
of a generic homogeneous polynomial of arbitrarily high degree transforms it into a
function with an isolated singularity at the origin, whose sheaf of vanishing cycles
is concentrated at the origin, unlike the sheaf of vanishing cycles of f. Therefore
the functions defining non-isolated singularities belong to the residual set Vy of
the decomposition given above and, consequently, Theorem 1 is only meaningful
for the study of isolated singularities.

The object of this paper is to prove a replacement of Theorem 1 which is
meaningful for the study of non-isolated singularities of (complex or real) analytic
functions. Our strategy is to work with functions belonging to a fixed ideal [
instead of the whole space of analytic germs at the origin (for example, if we want
to study functions which are singular at a line, we can take I to be the square of
the ideal defining it). In this paper we prove a generalization of Theorem 1 valid
for any ideal of germs of complex or real analytic functions.

Working within a fixed ideal has been already successful in the study of non-
isolated singularities: generalized versality and analytic finite-determinacy, study
of the Milnor fibration. .. (see for example [5], [8], [9], [10], [13], [14], [15], [20]).
Many of these papers use a generalized morsification method that consists in de-
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forming non-isolated singularities within a fixed ideal I to get simpler ones, and
then study their properties. Up to now this worked only when [ has simple geomet-
ric properties: it is the square of a complete intersection ideal defining an isolated
singularity, or the analytic space defined by it is low dimensional. In order to es-
tablish the morsification method in general the generalization Theorem 1 provided
in this paper is needed. The generalized Morsification Method appears in [6].

Furthermore, the study of functions within an ideal is also relevant for the study
of isolated singularities satisfying a fixed amount of conditions (having some fixed
tangencies or multiplicities at infinitely near points. .. ).

Unlike in the case of isolated singularities, the interesting phenomena in the
study of functions with non-isolated singularities are not concentrated at the origin,
but at a neighbourhood at the origin of the singular locus. This makes insufficient
in practice the straightforward generalization of Theorem 1, in which the ring
Ocr o is replaced by the ideal I. We will need a stronger formulation in which we
consider, instead of jets at the origin, jets at points ranging in a fixed neighbour-
hood at the origin: view the ideal I as the stalk at the origin of a coherent ideal
sheaf I defined in a neighbourhood W of the origin. Define

JW,I) =[] L/m}™ 0L, (1)
zeW
where I, is the stalk of T at z, and my, the ideal of analytic functions vanishing at
z. For any non-negative integer r we will stratify the set J"(W, I ) in such a way
that each stratum is an analytic variety. The generalization of the subsets T, A
and U] in Theorem 1 will be analytic subsets of the strata of J"(W, I) satisfying
analogous properties.

As we are working on a neighbourhood W of the origin, the right generalization
of the invariance of the U] ’s by the action of D consists in the following property:
the subsets generalizing the U]’s are invariant by the action of diffeomorphisms
between open subsets of W which preserve the ideal sheaf I. Actually, what we
will prove is the invariance of such subsets by flows within W preserving I. This
can be viewed as an infinitesimal version of the invariance by diffeomorphisms,
and turns out to be enough for applications.

The structure of the paper is the following: first we stratify the spaces J" (W, I )
for any r < oo and show that the strata are analytic varieties in a natural way when
r < 00, and a limit of analytic varieties when » = oo. Later we define the class
of closed analytic subsets of the strata of J>°(W, I ), their irreducible components
and codimension. We also introduce the concept of residual subsets of J*(W, I )
which, roughly speaking, is a subset of infinite codimension. Then we state a
proposition that generalizes the main proposition of [18] to our setting. In essence
it states that given any irreducible analytic subset of a stratum of J°°(W, I ) there
is a proper closed analytic subset (discriminant) of it such that two germs in the
same connected component of its complement are topologically finite-determined
and topologically equivalent. Then, letting residual subsets enter in the picture,
we show that such a discriminant is unique, provided that it satisfies a certain
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minimality condition. After we define the concept of flow-invariant subsets of
J=(W, I ) as a replacement of the concept of diffeomorphism-invariant subsets of
Ocn,0. Then we can formulate the main result of the paper, which generalizes
Theorem 1 to our setting, and also shows that the predicted subsets are minimal
and unique in a certain sense. In the proof of our main result the invariance
of the relevant subsets by flows preserving the ideal sheaf I gets involved, in
contrast with the proof of the invariance by the action of D of Theorem 1, which
is straightforward. We leave for the last section the proof of the proposition stating
the existence of discriminants. For this we have found A. Varchenko’s ideas rather
suitable for our setting. Nevertheless, a naive generalization of Varchenko’s proof
collapses in a fundamental way in several places: summation of generic functions
of high order is needed, and this takes us out of our ideal sheaf.

The author would like to thank the referee and Isabel Hernandez Navarro for
suggestions concerning the exposition.

2. The analytic structure of J"(W, I)

Let the field K be either R or C. Denote by &y the sheaf of analytic functions on
an open subset W of K" (when K = C the sheaf &y is the sheaf of holomorphic
functions Oy/). For any z € W denote by m, the maximal ideal of the stalk of
Ew g

When K = R we will work with an special type of real analytic subsets. Con-
sider R™ as the subset of C" consisting of the points with real coordinates. Let
W C R™ be an open subset. A C-analytic subset of W is a closed real analytic
subset T C W such that there exists an open neighbourhood W* of W in C"
satisfying W* NR™ = W and a closed complex analytic subset T* C W* such that
T*NR™ =T. A Zarisky locally closed C-analytic subset of W is the difference
between two C-analytic subsets of W. We use Ch. 5 of [12] as a general survey
reference for C-analytic subsets. Proofs are due to H. Cartan, F. Bruhat and
H. Whitney, and can be found in [4], and, mostly, in [3]. For the convenience of
the reader we recall the properties that are convenient for us:

A real analytic subset T' C W is C-analytic if and only if there exist a coherent
ideal sheaf in & whose zero-set is T. Any real analytic subset is locally C-
analytic. Any (possibly infinite) intersection of C-analytic subsets is a C-analytic
subset. Any locally finite union of C-analytic subsets is C-analytic. The inverse
image of a C-analytic subset by an analytic mapping is a C-analytic subset. A
C-analytic subset is C'-irreducible if it is not the union of two C-analytic subsets
different from itself (a C-irreducible C-analytic subset needs not be irreducible
as a real analytic set). Given a C-analytic subset ' C W there exists a unique
irredundant, locally finite family of C-irreducible C-analytic subsets whose union
is T'. There is a notion of dimension of C-analytic subsets which satisfies the
following properties: let 7/ C T be C-analytic subsets of W, where T is C-
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irreducible, then dim(7") < dim(7"). If 1" is a C-analytic subset of dimension p,
there is a C-analytic subset 7" C T such that dim(T") < p, and T\ T’ is an
analytic manifold of dimension p; also, any point of T' can be approximated by
points where T is an analytic manifold of dimension p. A complexification of a real
(C)-analytic subset T is a complex analytic variety 7™ such that T is embedded
in T as a real analytic variety, and for each point ¢ € T" there is:

e a neighbourhood U* of ¢ in T%,

e a closed analytic subset Y* of an open subset of C”,

e and a complex analytic isomorphism ¢ : U* — Y'*
such that Y* NR"™ = (T N U*). Let T be a C-analytic subset of W and T* a
complexification of T. Then C' C T is a (C)-analytic subset of W if and only
if there is an open neighbourhood U* of T in T* and a closed complex analytic
subset of C* of U such that C*NT = C.

All the properties above are standard in the complex analytic setting whenever
they make sense.

We will adopt the following notational convention: when we work simultane-
ously with K =R, C and we write (C)-analytic, we mean C-analytic when K = R,
and complex-analytic when K = C. When we write just analytic, we mean just
real-analytic or complex-analytic depending on whether K equals R or C. When we
say that a (C)-analytic subset is irreducible we mean C-irreducible when K = R,
and just irreducible when K = C.

Let O denote the origin of K. Consider an ideal I C Eo; let {f1,..., f} be a
set generators of it. Consider an open neighbourhood W of the origin where each
of the generators is defined. Then {fi,..., fi.} generate a coherent ideal sheaf I
whose stalk Ip is equal to 1.

For any V' C W we define

TV =] L/my" i, gV, D) =] L. (2)
zcV €V
If 0 <7r < s < oo there are obvious projection mappings
w2 (v, ) - (v, D). (3)
For any r < oo there is another natural projection mapping
prr STV, 1) =V (4)

whose fibre J" (V, ), over apoint z € V' is, if r < oo, the vector space fz/m;“ﬂfm
and, if r» = oo, the space I,.
For any x € W define the function p, : Z>o — Z by the formula

pa(r) = dimg (I, /m5 Tt N ). (5)
Consider the Hilbert-Samuel function H, of the &w o-module M, = Ew »/ fz As
& /mr+1
g r+1 T W,z T
H,(r) = dimg (M, /m] " M,) = dimg (ja; n mé“/m@“)
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we deduce that i, (r) = dimg(Ew /m; ) — Hy(r). In [2] the Zarisky analytic
upper-semicontinuity of the function H, is proved. Therefore the function p is
Zarisky analytic lower-semicontinous. As any real-analytic subset is locally C-
analytic, by shrinking W we can assume that the subset of W where the function
w is smaller or equal than a given function is a closed (C)-analytic subset.

Definition 2. We define the Hilbert-Samuel stratification of W with respect to I
to be the minimal partition of W such that p, = p, for any two points z and y
in the same stratum. The strata are Zarisky locally closed (C)-analytic subsets,
and we will call them the I-strata of W.

We will use the following notations: consider an analytic function f on an open
subset U C K™. For any € U we denote the germ of f at z by f,. For any
positive integer r we denote the r-jet of f at x by j"f,. Denote by J"(M,K™)
the manifold of r-jets of mappings from an analytic manifold M to K. It has a
natural structure of vector bundle over M. Given any subset X of M, we denote
by J"(M,K™) x the restriction of the bundle to X.

For any positive integer r and any I-stratum X of W we endow
pr s JJN(X, 1) - X (6)

with a natural structure of analytic vector bundle as follows: define the Ew -
homomorphism ¢ : £ — Ew by the formula (g1, ..., gm) = > 1y gi fr. Taking
r-jets for any positive integer r, we obtain a mapping

" (WK™ — J7(W,K), (7)

given by the formula ¢" (5" g1,as -+ 3 Ime) = Dopey 3" (9kfe)z. We observe that
" is a homomorphism between trivial analytic vector bundles over W, whose
image is canonically identified with J" (W, I). Then the restriction

elx ST WK x — J7(W,K) x (8)

is a homomorphism of constant rank between trivial analytic vector bundles.
Therefore, its image J"(X, I ) has a structure of locally trivial analytic vector
bundle over X whose rank is r(X) = p,(r) (for € X arbitrary) and with pro-
jection mapping pr,. Furthermore, the inclusion J"(X, I~) — J'(W,K) x is a
monomorphism of analytic vector bundles.

We denote by 0X the closed (C')-analytic subset of W given by X\ X. It is clear
that J7 (X, I) is closed analytic in J" (W \ dX,K). Suppose that K = R. We claim
that J7 (X, I) is actually closed C-analytic in J” (W \ dX,R). View R™ as the set
of points of C™ with real coordinates. Locally around any x € W, each generator
fi is given by a convergent power series. Therefore, there exists an open subset
W* C C" such that W* N R"™ = W, and complex analytic functions ff,..., %
defined on W* extending fi, ..., fm. Let I* be the coherent sheaf generated by
them. Given any point z € X, we have

'm0~ (,/mtni,) o C,
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where m, denotes respectively in each side the maximal ideal of Ow+ , and of
Ew,». It follows easily that there is an I*stratum X* of W* satisfying X*NW =
X. Moreover 9X* N W = 9X. The real analytic manifold J"(W \ 0X,R) is
naturally embedded as the real part of J"(W*\ X* C). As J"(X,I) is equal to
J(X*, )N J (W\9X,R) and J"(X*, I*) is closed analytic in J"(W*\ 0X*,C),
our claim is proved.

A subset C' of J®(X, 1) is r-determined if it is of the form C = (x2°)~(C") for
a certain subset €’ of J7 (X, I). The determinacy degree of a subset C of J°(X, I)
is the minimal integer r such that C is r-determined.

Definition 3. A finitely-determined closed (C)-analytic subset of J*(X, I~) is a
r-determined subset for a certain integer r, such that 72°(C) is a closed (C)-
analytic subset in J" (X, I). A finitely-determined locally closed (C)-analytic subset
is the difference between two finitely-determined closed (C)-analytic subsets. The
irreducible (connected) components of a r-determined (locally) closed (C)-analytic
subset C' are defined to be the inverse images by 72° of the irreducible (connected)
components of 77°(C).

We endow J°(X, I ) with the final topology for the family of projections
{7>}en. Then, a family {C;};es of finitely-determined subsets of J*°(X, )
is locally finite if for any f € J*(X, I ) there exists a positive integer r and a
neighbourhood U of #°(f) € J7(X,I) such that (72°)~1(U) meets only finitely
many C;’s. Choosing r high enough we can assume that each of the subsets that
(72°) "1 (U) meets are r-determined. Therefore the union U, ;C; looks locally like

r
a finite-determined subset. This motivates

Definition 4. A closed (C)-analytic subset of J™°(X, ) is the union of a locally
finite family of finitely-determined closed (C)-analytic subsets of J>(X,I). A
locally closed (C)-analytic subset is the difference between two closed (C')-analytic
subsets. The set of érreducible components of a (locally) closed (C)-analytic subset
of J®(X, I) is defined to be the union of the sets of irreducible components of the
members of the locally finite family that gives rise to it.

Definition 5. Let C' be an r-determined irreducible (locally) closed (C)-analytic
subset of J(X,I). Its codimension codim(C, J>(X,I)) is defined to be the
codimension of 72°(C) in J" (X, ).

The above definition does not depend on 7 because for any two positive integers
s > 7, the mapping #* : J¥(X,I) — J7(X,I) is an affine bundle and, therefore,
preserves codimension and irreducibility by inverse image.

Consider a possibly infinite filtration

CiD--DC;D ... (9)
of closed (C)-analytic subsets of J*°(X, I). We say that an irreducible component
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C; 5 of Oy is stable if it is an irreducible component of Cy for any k& > 4. The
component C; ; is called strongly unstable if it does not contain any stable compo-
nent of Cy, for any k > 4. Let {C; ;};en be the set of strongly unstable irreducible
components of C; (if there is a finite amount we allow repetition in the indexing).
The intersection of all the closed subsets of the filtration decomposes naturally
as
() Ci = 21U 2, (10)
iEN

where Z; is the union of all the stable irreducible components of the C;’s and

Zo= |J () Cig):

{Js}ienel i€N

Take any positive integer c¢. Let {C7}c 7, be the set of all the strongly unstable
components of any of the C;’s whose codimension is bigger or equal than c. Let
J! be the indexes corresponding to the components which are maximal by the
inclusion relation among the elements of {C?} ;¢ 7.. The following inclusion follows
easily from the definition of strongly unstable components and from the fact that
each C; is a locally finite union of irreducible closed (C)-analytic subsets:

Z,c | ¢
JETL
It is easy to check that the family {C} ez, is locally finite. Hence the set Z; is

contained in a closed (C)-analytic subset with all of its irreducible components of
codimension bigger or equal than ¢. This motivates

Definition 6. A closed subset of J*°(X, I~) is residual if for any positive integer cit
is contained in a closed (C')-analytic subset of U with all its irreducible components
of codimension at least c.

Remark 7. Suppose that Z C J°(X, ) admits a decomposition as a union of
a closed (C)-analytic subset Z(®) and a residual subset Z("). The subset Z(*) is
uniquely determined by Z, and is called the analytic part of Z. The subset Z(") is
uniquely determined if it is minimal among the subsets such that Z = Z(@) U Z("),
Then it is called the residual part of Z.

Given a filtration like (9), the intersection of all its terms can be decomposed
as the union of a closed (C)-analytic subset and a residual subset.

3. The topological and finite-determinacy discriminants

In order to fix ideas we state now what we mean by topological finite-determinacy
of functions.
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Definition 8. Two germs of functions f : (K", z) — (K,¢) and f' : (K™, 2/') —
(K,t") are said to be topologically right-left equivalent (we will say topologically
equivalent to abbreviate) if there are germs of homeomorphisms ¢ : (K", z’) —
(K™, z) and ¢ : (K,t) — (K,#') such that Yofog = g. A function f € I, is called
topologically k-determined with respect to I if any other g € I, with the same
k-jet is topologically equivalent to f.

Proposition 9. Let X be any I-stratum of W. Let T C J®(I,X) be a r-
determined locally closed irreducible (C)-analytic subset. There exists an s > r and
a proper s-determined closed (C)-analytic subset A of T such that if two germs
1,9 €T have their s-jets n°(f) and 75°(g) in the same connected component of

m o (T)\ w3 (A)

then they are topologically equivalent.
The proof of this proposition will be given in the last section of the paper.

Notation. Let T be a subset of J" (X, f) for a certain r < oco. Given any x € W,
we denote by T}, the fibre (pr,)~!(x) N T of the restriction of the mapping pr, to
T. If V is a subset of X we denote by T}y the intersection (pr,) " *(V)NT.

Let T C J°(I,X) be a locally closed (C)-analytic subset with irreducible
components {I;};c;. For each j € J, let A; C T be the (C)-analytic subset
predicted by Proposition 9. By the locally finiteness of the family {7}};c, the
union A := UjcsA; is closed (C)-analytic in 7. It is easy to check that any
germ in 7'\ A is topologically finite-determined and any two germs in the same
path-connected component of it are topologically equivalent.

Proposition 10. Let T be a locally closed (C)-analytic subset of J°(I, X). There
erist unique subsets ' C A of T not containing any irreducible component of it
with the following properties:

(i) We have decompositions A = A U AT and T' =T UTT) where Al®)
and T are closed (C)-analytic subsets, and AT and TU) gre residual
closed subsets.

(ii) Any f,g € T in the same path-connected component of T\ T are topologi-
cally equivalent. Moreover, any f € T\ A is topologically finite-determined
with respect to I.

(iii) The subsets A and T" are minimal among the subsets of T satisfying Prop-
erties (i) and (ii).
For any positive integer k, we let T'<y, be the union of the irreducible components
of T which are k-determined, and TSy be the union of all the other irreducible
components. There is a unique subset Ay, of T<y, such that:

o [t is the union of a closed (C)-analytic subset and a residual subset.
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o Any two germs in the same path-connected component of 1>y \ Ay are topo-
logically k-determined and have the same topological type.
o [t is minimal among the subsets of T<y, having the three properties above.

Moreover, the subset Ay, is actually a k-determined closed (C)-analytic.
We have ' C A C Ng>o(Ak UTS). Moreover

re = Al = (Nk>0(Ag U Tor ). (11)

In other words, the subsets T, A and the intersection Ng>o(Ag UTSy), only may
differ in a residual set.

Proof. Let C be the set whose elements are subsets of T' not containing any of
its irreducible components and satisfying the first two properties of I'. The set C
is not empty because the subset A, constructed in the last paragraph before the
proposition, belongs to it. We consider in C the partial order given by inclusion.
Consider a chain

By D DG e (12)

of subsets of S. We claim that the intersection K := N;cnK; belongs to C.
By Property (i) each K; decomposes as K; := Ki(a) u Ki(r)7 with Ki(a) a closed
(C)-analytic subset and K i(r) residual. The closed (C)-analytic parts form a chain

B e B oy (13)

We construct a chain
LiD---DL;D... (14)

of subsets that admit a decomposition in a closed (C)-analytic subset Lga) and
a residual subset LET) such that N;enl; = K and all the irreducible components

of LE‘” are either stable or of codimension at least i. We proceed inductively:
suppose that for a certain positive integer m we have defined a chain

By 3 D30 D Bt I I Lngmad Do (15)

such that, for any i < m, all the irreducible components of Lga) are either stable
or of codimension at least ¢ and

(N L)) Lma) = K. (16)

i<m i>m

Clearly, for any j € N there are no non-stable components of codimension strictly

smaller than m in ng)m - Let {Ch}rem be the collection of irreducible compo-
)

nents of ng,m 41 of codimension m which are non-stable in the filtration given by
the closed (C)-analytic parts of the elements of filtration (15). For any h € H we
denote by ij the smallest positive integer such that Cj is not an irreducible com-

ponent of e . For any positive integer j let {Z;};cr, be the set of irreducible

m,m+ip
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components of Ly, n+; not belonging to {C, }rep. Define

Lttty = (U 20 U L UCU (Ch 0 Linmes)- (17)

el J<in
Define L,,1 = Lypyi1m+1. By construction, the Equality (16) holds replacing
m by m + 1. We will prove that each subset L, 1 ,; for 7 > 0 admits a

decomposition in a closed (C)-analytic subset Lga) and a residual subset LET). By

construction, all the non-stable irreducible components of LEZ)H are of codimension

at least m+1. Iterating inductively the procedure we obtain the desired chain (14).
For any non-negative integer ;7 we consider the decomposition L, 1 m4; =

L(a) U L(T’)

m+1,m+j m+41,m-+j?
o the set LEZ)HM +4 is the union of all the irreducible components of L

m,ym+j
not belonging to {Ch }ren, together with U;;, (Cr, N e

m,m+ih)'

where

e the set szzrl7m+j is the union of the sets Lg?m+j and Uj<;, (Cp N Lg?mﬂ.h).
As the irreducible components {C}, }rerr form a locally finite family, the set

LEZ)+1 mtj 18 & locally finite union of closed (C)-analytic subsets and, hence, it
is closed (C)-analytic. On the other hand, for any positive integer ¢ and any h
such that j < 4, there exists a closed (C)-analytic subset C} contained in Cj,
and containing Cj N Lffl)m 14, With all its irreducible components of codimension
at least c. By the local finiteness of {C}, }rhem, the subset U;;, Cj, is closed (C)-
analytic. Therefore, U;«;, (Cp, N Lm’mﬂh)(’”) is residual and, hence, Lf;irl’mﬂ, is
also residual.

Now we prove that K belongs to C. Let K(*) be the union of the stable
irreducible components of the filtration given by the Lga)’s. Define D to be the

union of all the intersections of the form ﬁieN(Lgu) U L)), where Lgu) is the
union of all the non-stable components of L;. As K = N;cnL;, we obtain easily
the decomposition K = K(® U D. We show that D is residual: let ¢ be any
positive integer. Consider a closed (C)-analytic subset C' containing LY) with all
its irreducible components of codimension at least ¢. The set Lg“) U C, whose
irreducible components are all of them of codimension at least ¢, contains D.

Let v : [0,1] — T\ K be a continuous path. In order to show that K belongs to
C, we only have to check that the topological type of the germ «(¢) is independent of
t. The set T\ K is the union of the increasing sequence of open subsets {T\ K, }ien.
By the compactness of [0, 1], there is an index so that v([0,1]) C T\ K;. As K; € C,
the topological type remains constant along [0, 1].

We have shown that any decreasing sequence in C has a lower bound. By Zorn’s
Lemma we deduce the existence of I'. The uniqueness holds, as the intersection of
two subsets in C is easily shown to belong to C. The existence and uniqueness of
A and Ay for any k € N is analogous.

Now we show that A is k-determined (C)-analytic. Consider an irreducible

component 7 of A(ka>. Let r be the determinacy degree of Z. If » < k then
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Z is k-determined. We study the case r > k. Consider the affine bundle #J, :
JN(X, 1) = JE(X, ). Let B = n5°(T<x), E == 72°(T<y), and 7 := 7} - E — B.
The irreducible closed (C)-analytic subset Z, := 7g°(Z) is contained in £. We
claim that the set

Y ={yeB:E,CZ}

is a (possibly empty) closed (C)-analytic subset of B. When K = R, it is easy to
choose complexifications £* and B* of F and B, and a mapping n* : E* — B*,
which is a complex affine bundle, such that 7', = 7. As Z, is C-analytic, there
exists an open neighbourhood U* of F in E*, and an irreducible complex closed
analytic subset Z} of U* such that Zf N F = Z,. The open subset U* can be
chosen so that for any = € B the fibre U} is connected (we prove this at the end).
Let N be the rank of the affine bundle n* : E* — B*. The subset
A* ={z€ Z* : dim,(Zz.(,)) = N}

‘ﬂ'

isa complex closed analytic subset of Z*. Given any z € A*, we have dim, Z”, () =
dim,(F . Therefore, Z* "(2) contains an open neighborhood V, of z in £, (=)
Clearly, \/g is contained in A *(2) and, hence, this subset is both closed and open
in the connected set U* N B* ()" Thus A* ) = =U*NE* ) for any z € A*. This

implies

T+ (2
Ut 0 () (A7) = A,

and from here it is easy to deduce that 7*(A*) is a closed complex analytic subset
of the open subset 7*(U*) C B*. For any x € B we have that U* N E} D F,.
Therefore 7*(A*) N B C Y. On the other hand, if z € Y, we have E, C U* N Z}.
Consequently, Z* is a closed complex analytic subset containing the real part F,
of U* N E}. This implies that Z} contains a neighbourhood of E, in U* N E*
and, hence, by connectedness of U* N EZ, it is equal to it. Thus, #*(A*)NB =Y,
which proves our claim when K = R. The proof in the complex case is analogous,
but easier.

If (75°)"Y(Y) = Z, then Z is actually k-determined. Otherwise we let A}
be the subset given by the union of A (72°)~1(Y), and all the irreducible

components of A(ka) different from Z. Clearly, the set A} is strictly contained in
Ay. Consider two germs f, g in the same path-connected component of T<j \ A.
We claim that both of them are topologically k-determined and have the same
topological type. This clearly gives a contradiction with the minimality of Ay,
which shows that Z is k-determined. In the special case that neither f nor g
belong to Ay, the claim holds by definition of Ag. Suppose that f belongs to
Ay. As f does not belong to A}, there exists an open neighbourhood V¢ of f in
J®(X, I) such that V; N A, = §. Then f must be an element of Z \ (75°)~*(Y).
Let 2 := proo(f). As f does not belong to (75°)~1(Y), there exists a continuous
path  : [0,1] — V; N T<;, N J*(X, I), such that 4(0) = f, the k-jet of ~(t) does
not depend on ¢, and v(¢) does not belong to Z for ¢ # 0. Obviously, y(t) & Ay
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for ¢ # 0, and therefore the claim is reduced to the already verified case in which
neither f nor g belong to Ay.

In order to show the k-determinacy of Ay, it remains to show A(,;) = 0, but
this can be proved using arguments analogous to the last paragraph.

The inclusions I' € A C Ng>o(Ag NT%y) are trivial. Now we show Equal-
ity (11). Let C be an irreducible component of (N>o(Ay UT54))(*). We suppose
that C is not contained in I', and we look for a contradiction. There exists a cer-
tain integer r such that C is an irreducible component of Ay, for any k > r. This is
so because, once we have chosen r large enough, we can assume that TS, does not
contain C'. In particular C is r-determined. By Proposition 9 we find an integer
s > r and a s-determined proper closed (C)-analytic subset Ay C C such that
any germ in C'\ A; is s-determined. Define A/ as the union of all the irreducible
components of A, different from C. Let A, be the union of all the irreducible
components of I'(®) not contained in A, UT.,. As I is contained in A, UT., we
have the inclusion A, C C; moreover the last inclusion is strict because C' is not
contained in I". Consider a proper closed (C)-analytic subset Az of C such that
'™ is contained in As U AL UTS (the existence of Ajs is clear as ') is residual).
Define

A= A1UA2UA3U(CQT>S).

Any germ in T'<; \ (AUA’) belongs either to T'<;\ A; or to C'\ A;. Therefore, it is
topologically s-determined. The set T<s\ (AUAL) is clearly included in T\ T" and,
hence, any two germs in the same path-connected component of T<, \ (AU A/)
have the same topological type. Then AU A’ have the same properties of A, and
is strictly smaller than it. This is a contradiction.

Finally, let’s check that U* can be chosen so that U* N E is connected for
any x € B. As m : ' — B has contractible fibres there is a continuous section
s : B — E. Therefore, we can give a continuous R-vector bundle structure to
n: K — B and to 7* : E* — B* in such a way that F is a subbundle of the
restriction of E* to B. Shrinking enough B* around B we can suppose that B
is a strong deformation retract of B*. Indeed, by the Triangulation Theorem for
real analytic subsets we can think of (B*, B) as a polyhedral pair; then we apply
Corollary 11 of [16], page 124. By well known arguments it follows that there is
a vector subbundle ¢ : F' — B* of 7 : E* — B* extending 7 : ¥ — B. Using
partitions of unity we can construct a continuous tensor on E‘*B that restricts to
an euclidean inner product on each fibre F,. Let d, be the distance induced by it
in F,. It is easy to find positive continuous functions

a:B* - RU{+o0} B:B* =R,

(where a basis of neighbourhoods for +oo in RU{+o0} is given by {(a, +00)}aer),
such that a(B) = {+o0} and

{z € E} :d,(2,0) < a(z), d(zF;)<pl@)}CcU*NE].
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Redefining U* as the open subset
{2 € B dpuiny(5,0) < aln* (), dlz, Froge)) < Bl* (2))}

we obtain the desired properties. (Il

Definition 11. Let 7' be a locally closed (C)-analytic subset of J*°(I, X). We
call the sets I and A that were constructed in the last proposition topological and
finite-determinacy discriminants of T respectively. For any positive integer k the
set Ay is called the k-determinacy discriminant of T'.

Next we study the behaviour of discriminants when restricting to open subsets
of U:

Lemma 12. Let T, T" and A be as in Proposition 10. Let U be an open subset of
W. When K = C, the subsets I'\y and TN Ay are respectively the topological and
finite-determinacy discriminants of Ty .

Proof. Clearly, I'|y contains the topological discriminant of 7jy;. Consider the

decomposition Iy = F‘(g) U F|(£,>7 where the first component is (C)-analytic and
(a)

the second is residual. Any irreducible component C’ of F‘U is a subset of a

unique irreducible component C' of T'(®) | which is r-determined for a certain r. By
Proposition 9 there exists s > r and a s-determined closed (C)-analytic subset A
of C such that any two germs in the same path-connected component of C'\ A have
the same topological type. Let Z be any irreducible component of T. As K =C
we have that both Z\T'NZ and C \ A are path-connected. Hence, two germs
which are both contained in one of these two subsets have the same topological
type. We claim that there exists a component Z of T' containing C such that the
topological type of the germs of Z\T'N Z is different to the topological type of the
germs of C'\ A. Otherwise we let I} be the union of all the irreducible components
of T(@) different from C. Let I'; be the union of the intersections C'N X where X
is any irreducible component of 7' not containing C, and define

I’ :=T,Ur,ur®uA.

It is easy to check that I'V has the first two properties of I' and is strictly smaller
than it. This is a contradiction.
Let Z’ be an irreducible component of Z;; containing C”. As

dim(Z") = dim(Z) > dim(C) = dim(C"),

the inclusion €’ C Z' is strict. As Z'\T'jy N Z’ and C"\ (AN C’) are contained in
Z\I'nZ and C'\ A respectively, the topological type of the germs of Z'\I'|;y N2’
is different from the topological type of the germs of C"\ (AN C’). It follows that
C'" is contained in the topological discriminant of 7.

The proof for A is analogous. (Il
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4. The main result

For any z € W we denote by D, the group of germs of analytic diffeomorphisms
of K" that fix x, and by D, . the set of germs of analytic diffeomorphisms at =
that not necessarily fix it. Followmg [9], we define D _ to be the subset of D, .
preserving the ideal; i.e. the subset formed by the germs that have a representative
¢ : U — W such that qﬁ*]¢(y) = I for any y € U.

Let ¢; be a 1-parameter famlly of diffeomorphisms of D; _ smoothly depending
on t, such that ¢g = Id(gn ). Let ¢14, ..., dn ¢ beits components The germ (at z)
of analytic vector field defined by X := Zz 1 At/ dt—00/Oz; preserves the ideal
sheaf I; i.e., satisfies X (I,,) C I,.. Let © be the sheaf of analytic vector fields in W.
Define ©; _ as the subsheaf whose sections preserve the ideal sheaf I. Denote the
stalk of @ . at z by ©5 . Integration associates to any X € ©,, a l-parameter
flow ¢ of germs of analytlc diffeomorphisms of D,  for which ¢o = Idgn 4); if
X € 0f, e then ¢, € Dy, . for any value of .

Any representatlve ¢: U — W of a germ ¢ € Dy, . induces by pushforward a
mapping B ~

gu : I(U,T) - To(e(U), T), (18)

defined by ¢.(f,) = (fyo¢*1)¢(y) for any y € U and f, € I~y As the my-adic
filtration is transformed by pushforward into the m,)-adic filtration, the mapping
¢, descends to a mapping

5 ¢ I(UD) = T ($(U), D). (19)

Clearly, any representative ¢ : U — W of a germ ¢ € D;_ . preserves the Hilbert—

Samuel stratification; i.e., $(U N X) = ¢(U) N X for any I-stratum X. It is easy
to check that the restriction

e JUNX,T)— J(GU)N X, T) (20)

is an analytic diffeomorphism when r < oco.

Definition 13. Let X be a I-stratum of W, and T' ¢ J(X,I) be a (locally)
closed (C)-analytic subset. We say that 1" is flow-invariant if for any open subset
V C W, any vector field € T'(V, 095 ) and any flow ¢ : U x (a,b) — V integrating
0, we have ¢ (T,) = Ty, () for any te(ab)andzeU.

Now we are ready to state the main result of the paper:

Main Theorem. Shrink W so that Gf,e is generated by sections defined on the

whole W. Consider X, a I-statum of W. Let T be any locally closed (C)-analytic
subset of J*(X,1I). There erists

e a unique filtration (which we call the filtration by successive discriminants)

T=ADA DDA D...
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by closed (C)-analytic subsets,

o two residual subsets I'") and A") (called respectively the topological and
finite-determinacy cumulative residual discriminants of T),

with the following properties:

(1) We have N;>0A; C ) ¢ Alr),

(2) For any i > 0, the sets Ag1 U (D0 N A) and Ay U (AU N Ay are
respectively the topological and finite-determinacy discriminants of A;.

(3) Any irreducible component of A; has codimension at least 1.

(4) If T is flow-invariant, then A; is flow-invariant for any i > 0. Moreover
the k-determinacy discriminant of A; is flow invariant. Therefore the sets
" N A; and T N A; are contained in a residual subset which is an
intersection of flow-invariant closed (C)-analytic subsets of C.

As a consequence, any germ f of T\ A" is topologically finite-determined with
respect to I. Furthermore, if K = C, giwen any open subset of W/ C W the
filtration by successive discriminants and the topological and finite-determinacy
cumulative residual discriminants for Ty are the restrictions over W' of the
corresponding objects for T'.

This theorem shows, in particular, that given any ideal sheaf of analytic func-
tions, the subset of functions that are not topologically finite-determined with
respect to it is very small (we can think of it as an infinite-codimension subset).
In contrast with Theorem 1, we can not provide uniform finite-determinacy bounds
for prescribed codimension, that is, we can not ensure that for a prescribed in-
teger i, there is another positive integer r for which the subset A; is necessarily
r-determined. The reason is that in the jet-spaces J"(X, I), instead of the alge-
braic structure present in ordinary jet-spaces, we have just an analytic structure.
Furthermore, the subsets in which O¢n o decomposes according to Varchenko’s
Theorem, are invariant by the whole Dp. As we want to work in a neighbour-
hood of the origin, rather that just at the origin itself, we need to replace the
Do-invariance by the flow-invariance. Nevertheless we have the following:

Remark 14. If we restrict ourselves to work at the origin, that is, to use the space
I = Iy instead of J>°(X, I), the corresponding jet spaces I/m’c’;rl N I are affine
spaces. Then, if we assume [ to be generated by Nash functions, the arguments of
this paper can be modified so that, if the starting subset T' of the Main Theorem
is finitely determined and algebraic, then, the subsets A; are finitely-determined

and algebraic. Finally, let Dy ., be the subgroup of Dy formed by diffeomorphisms
which preserve the ideal I. If T is assumed to be Dy -invariant, then the subsets
{A;}i>0, '™ and A™) can be constructed to be Dy, -invariant.

Proof of the Main Theorem. We show first the existence and uniqueness of the
required objects satisfying all the requirements except Property 4. For any non-
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negative integer j there is a unique filtration
T=A D> DA
by closed (C)-analytic subsets, and two unique filtrations
I'g>---D1Yy
AgD DA

by closed subsets with the following properties:

e For any ¢ < j the sets A;11U(T';NA;) and A; 11 U(A;NA;) are respectively
the topological and finite-determinacy discriminants of A;, being the set A;
the analytic part in both cases.

o The sets I'; N A; and A; N A; are respectively the topological and finite-
determinacy discriminants of A;.

The construction is obvious for 7 = 0. Supposing that the filtrations have been
constructed for a certain j, it is clear that A;; must be defined to be equal to
the non-residual part of the topological discriminant of A;, that is

Ajpr = (050 45) ),

The set I';1 can only be defined to be the union of the residual parts of the topo-
logical discriminants of A;, for any ¢ < j, with the whole topological discriminant
of Aj11. The definition of Aj;,; is analogous. We have shown by induction that
the required filtrations can be constructed for any non-negative integer 7 and are
unique. It is easy to show that the infinite filtration

AgD---DA;D...

and the closed sets ['(") = Njenl’; and A = NjenA; satisfy Properties 1 — 3
from the statement of the Theorem. If K = C, using Lemma 12 it is easy to
check that the filtration by successive discriminants and the topological and finite-
determinacy cumulative residual discriminants satisfy the compatibility condition
concerning restrictions to open subsets of W.

It only remains to prove Property 4 when T is flow-invariant. We only prove the
statement concerning A;, being the one concerning the k-determinacy discriminant
analogous. We work by induction on . Suppose that A; is flow-invariant for any
j < i. We show that A; is flow-invariant. For this we show that each irreducible
component C of A;; is flow invariant.

Consider an increasing sequence {Vj }ren of open subsets of W such that the
closure Vi, is compact and contained in Vj4; and the union UgenVy equals W.
Denote by dV}, the boundary V; \ V;,. Define dj, := d(Vy, 8V 1), that is, the min-
imal euclidean distance between points of V7, and 8V . Consider a decreasing
sequence {ey }ren of positive real numbers such that ¢, < dj, for any k € N.

Let Ay be the set of analytic diffeomorphisms ¢ such that there exists

e a vector field 0 € (W, 05 ),

e an open subset U which is a neighbourhood of V,
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e a flow ¢ : U x (a,b) — W integrating 6, such that ¢ = ¢, for a certain
t € (a,b).
For any ¢ € Ay, we define §(¢) := max{||¢(z) — z|| : x € V;}. Given any positive
1, we define

AT = {pe Ay 1 5(¢) < ).

If 7 < €, then it is easy to show that ¢(Vy1) DV, for any ¢ € AZH.
Let r be the determinacy degree of the irreducible component C. The set

Di(m) = [\ ¢(Cryip)ivis
PeAl L,

is a r-determined closed (C)-analytic subset of J°°(X N Vi, I) because it is in-
tersection of such type of subsets. Let {C}},cs be the irreducible components of
A;4q different from C. Define

fe(m) = De(m) J(U G-

jeJ

Consider two germs f and g in the same path-connected component of

Ay \ (A1 4 () UTH)).
We claim that f and g are topologically equivalent. Define

X = m¢€AZ+1¢*(Ai+1 U F(T))‘Vk

As X C A§+1’k(77) U F‘(‘T/i, the germs f and g are in the same path-connected
component of Ay, \ X. Let v :[0,1] — A;y, \ X be a continuous path joining
them. For each t € [0,1], there exists ¢ € A]_ , such that ~(t) is not in the
closed subset ¢, (A;41 U F(T))Wk. Therefore, there exists a positive £ such that
Yt — &t + &) does not meet ¢y(A; g UTT)) ;. Hence, ¢*(y(t — &t + &) is
included in A4;\ (As: 1 UT)) and, consequently, all the germs of y(t — &, +&) are
topologically equivalent. Covering [0, 1] by intervals like (¢ — &, ¢t + &), we conclude
the proof of our claim.

Now we show that Dy(n) is flow invariant. We do it in two steps:

Step 1: we prove that Dy(n) is flow-invariant with respect to vector fields
defined on the whole W. Consider such a vector field § € T'(W,©;.). Choose a
point z € V4; consider a neighbourhood U of z in W and a flow ¢ : U x (a,b) — V4
(with 0 € (a,b)) obtained by integration of 6. We have to show that ¢, D (n), =
Di(n)yy(xy for any t € (a,b).

In order to get lighter notation, denote by D’(n) the projection #2°(Dy(n)).
As Dy(n) is r-determined, it is enough to show that j"¢uD'(n)e C D'(n)y,(x)
for any ¢ € (a,b) or, which is the same, that j7¢..(f) belongs to D'(n) for any
f e D'(n),. Choose f € D'(n),. Define Ly to be the set whose elements are the
numbers ¢ € (a, b) such that j"¢. (f) belongs to D'(n). As D'(n) is closed, the set
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Ly is non-empty (as 0 belongs to it) closed subset of (a, b). If we prove that Ly is
also open, then we conclude by connectedness of (a,b).

Consider ¢ € Ly, we need to find a neighbourhood of ¢ included in L. As
i, 00, = Y, 14,, We can assume without loosing generality that ¢ = 0. By
noetherianity of germs of analytic subsets, there exists a neighbourhood N; of f
in J7(X,I) and a finite subset A(f) of Ay, such that

DN =1 [ 5w Crap Dival [Ny
PEA(S)
By the finiteness of A(f), the number v := max{¢ € A(f) : 6(¢)} is strictly
smaller than 7. Consider the compact subset K := Uge 4¢ f)d)(VkH) C W. There
exists a positive £ such that if [¢t| < £, the domain of definition of v, contains an
open neighbourhood of K and

max{][()(x) — || : = € K} <.

Given any ¢ € A(f), and ¢t with || < £, the domain of definition of the composite
Y10 is clearly a neighbourhood of V1. Moreover,

[biog(z) — 2| < ||di(P(2)) — S| + |lo(2) — 2| <n—v+n=n

and, hence, ¢,0¢ belongs to A} 41+ Then, we have

(D' M NNp) =7 u(l [ 57w (Crui Dl () Ny) C
PCA(f)

(@ ﬂ to(;b ( k+1 \Vk (@ ﬂ CVk-H))\Vk - D/(W)

SEA(S) PEAT

for any ¢t € (=£,£); Therefore (—¢,&) is included in L.

Step 2: Let 0y,...,0; be vector fields generating the sheaf ©; _ over W. Con-
sider an open subset U C W and a section 6 € T'(U, @I,e) For any z € U there
exists a neighbourhood U, of z in U and analytic functions g1, ..., g such that
0= Z?Zl gifi. Choose local coordinates (21, ..., 2,) around z with the property
that each z; is defined on the whole K". Having perhaps to shrink U,, we can
assume that the power series expansions of gi,...,gn With respect to these co-
ordinates are convergent on the whole U,. Denote by gfl) the truncation of the

power series expansion of g; at the I-th term. The functions g( ) are polynomials in
the local coordinates and, hence, their domain of definition is also K™. Therefore,
for each positive integer l we can define the vector field §¢) e T'(W, 0 7.) by the

formula 0 = 2?21 gim@i. The sequence of vector fields {6()},cr converges to 6
on U,.

The following statement can be easily deduced from the continuous depen-
dence of the solutions of differential equations with respect to a parameter (see
[1] Ch. 1, § 2.8): there exists a positive integer N, an open neighbourhood U/ C U,
of & containing the origin, and a positive real number £ such that
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(1) for any [ > N there exists a flow ¢ : U/ x (=¢,€) — U, integrating the
vector field 00,

(2) there exists a flow ¢ : U, x (¢, &) — U, integrating the vector field 6, and
the sequence of mappings {zb(l)}lz N converges to .

Suppose that we are given any flow ¢ : U’ x (a,b) — U (with 0 € (a,b))
integrating 6. Define L; as in Step 1. Again, it is enough to show that L; is
open. Using that ¢y, 1, = 11, 0¢y,, the proof can be reduced to the existence
of & > 0 such that (—¢,¢) is contained in Ly. Choose a positive £ and an open
neighbourhood U] C U, of x such that the flow ¢ : U, x (=, &) — U is a limit
of flows ) : U’ x (=¢,¢) — U integrating vector fields {0}, defined on the
whole W. Then 5"¢u(f) is the limit of the sequence {j*zbgi)(f)}leN. For being
0 defined on the whole W, due to Step 1, we have jrzﬁt(i)(f) € D'(n) for any
le N and any t € (=¢,€). Then, as D’'(n) is closed, we have j .. (f) € D'(n) for
any ¢t € (—=¢, &) . This concludes the proof of the flow-invariance of Dy ().

We claim that the restriction Dy y1(ex11)|v; is equal to Dy (ex). As Vi1 C Vigo
and €1 < €, we have Azkal C Ar . Consequently, Dyi1(exi1)jv, O Diler).
Obviously

(1 «Drsalers)ve € () D(Crviss)vie = Diler)-

DAk, pe Ak,

On the other hand, by the flow-invariance of Dy 1(€g 1))y, the first term of the
last expression is equal to DZ’;+ 11‘ V" This shows our claim. It follows that the union
D= U Dk(ﬁk)

keN

is a r-determined closed (C)-analytic subset of C which is flow-invariant. We
define A, | as the union of D with all the irreducible components of A;, different
from C. Any two germs in the same connected component of A;\ (4], U )
are topologically equivalent; indeed, it is enough to check this statement at the
restriction over each Vi, and this has been already proved. Therefore, the set
AU (") N A;) contains the topological discriminant of A;. Taking analytic
parts we get Aj, ; D A; 1, which implies that D = C. Consequently C is flow-
invariant. |

5. Generalization of Varchenko’s method

The overall structure of the proof of Proposition 9 follows [18]. It is based on
an algorithm that shows the existence of a generic R-L-topological type for any
family of functions, and on a definition of the so-called optimal germs in each finite-
determined locally closed analytic subset of J*°(X, I ). Nevertheless, a straight-
forward generalization of Varchenko’s proof to our case does not work, mostly
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because in his definition of optimal germs it is needed to perform certain modi-
fications of functions that would take us outside the ideal sheaf we are working
with. Also because he works with germs at the origin and we want to deal with
a neighbourhood of it. This forces us to perform non-trivial modifications both in
the algorithm and in the selection of optimal germs.

For notational convenience we recall §1.1 of [18]: let C,,[2] be the space of monic
polynomials 2™ + ay_12" "L+ --- +ap. It is an affine space whose coordinates are

ao, ..., an. For each sequence of positive integers iy, ...,%; such that iy + --- +
i, = m, we consider the subset of C,[z] consisting of polynomials with &k roots
of multiplicities iy,...,4;. This defines a stratification of C,[z], whose strata

will be called multiplicity strata. For each m, we define 5, to be the union of
multiplicity strata containing polynomials with less than m different roots. The
set S, is determined by a finite set of polynomial equations (with real coefficients)
in ag,...,ay.

Let U C K! be an open subset. An U-family of functions is, by definition, a
K-valued analytic function F' defined on an open neighbourhood V of {O} x U C
K" x K. Let T C U be a closed (C)-analytic analytic subset. A T-family of
functions is the restriction to V N (K™ x T) of a U-family of functions. With
any T-family of functions, we associate its graph I' C [V N (K" x T)] x K, i.e. the
subvariety defined by the function P¥ := w—F', where u is the coordinate function
of the target K.

Suppose K = R. View R” as the subset of points in C™ with real coordinates.
Let F' be a T-family of functions. As T' is C-analytic, there exists an open subset
U* c C! and a closed analytic subset T C U* such that U* N R? = U and
T*NU =T. According with Proposition 16 of [12], page 105, the subsets 7™ and
U* can be chosen minimal in the following sense: if 7" is any other complex analytic
subset of a neighbourhood of T"in C" for which 7" > T, then T'"NW > T*NW for a
certain neighbourhood W of T'in C™. As F' can be expressed locally as convergent
power series, we can shrink U* so that there is a neighbourhood V* of V in C* xC?,
containing {O} x U*, and a complex analytic function F'* defined on V* whose
restriction to V is F'. If T™ is chosen minimal, we say that the T*-family defined
by ™ is a minimal complex extension of the T-family defined by F. We denote
by I'* the graph of the T*-family defined by F*. Clearly I'* N (R® x R x R) =T.

Our aim is to show that generic functions of any T-family of functions are R-L-
topologically equivalent. We work first for K = C, and then explain the necessary
modifications needed for the real case.

Algorithm. Fix a coordinate system (z1,...,2,) of C*. Consider a T-family of
functions (for a certain 7' C C'). We describe an algorithm that constructs:
(i) a new coordinate system (21, ..., z,) of C"™ (which will be called a suitable
coordinate system),
(ii) a proper analytic subset A C T,
(iii) positive continuous functions r1, ..., 7,11 defined over T'\ A,
(iv) non negative integers k1, ka, ..., kny1 (With k4 =0),
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(v) asequence of pseudopolynomials Py, ..., P, of the form P, 1 := ud+1,
and
di—1
Pz oy 2p,u,y) = zid" + Z ag(zHl7 e ,zmu?y)zg7
§=0

for i < n, with d; > 0 for any 4, and ag analytic in U, 1, where
Ui = {(Z,“ sy Rnsy Uy y) HEAS T\A7 |Z’L| < Ti(y)7 ¥4 § 5 |Z’n| < T’n(y)7 |u| < Tn+1(y)}7

with the following properties: let I'; := V(P;) U V(R;), where R; := v, then
(1) ynU; =I'nU;.
(2) For each i < n the polynomials P;(z;, a;t1,...,an,b,c) are in the same
multiplicity stratum as polynomials in z; if (@11, ..., an,b,¢) € U1 \Tig1.
(3) The roots of the polynomial P;(z;, a;+1,...,an,b, c) are in the disc of radius
r;i(c) for any (aiy1,...,an,b,¢c) € Upyy.

(4) &(0,...,0,y) =0 for any i, j.

k2

Notation 15. Let f € C{z1,...,2n,u}, we define
mult’(f) := mult(f(z1,...,2,,0)), and wideg, (f):=mult(f(21,0,...,0)).
Now we describe the algorithm under the assumption that P¥(0,...,0,y) =0

for any y € T' (otherwise the existence of the claimed objects is easy):
Step 1: As PF(0,...,0,y) = 0 for any y € T, and u fP¥, we deduce that

0 <mult/(PF(-,..., . y)) < oo for any y € T. Define
dy = min{mult'(P¥(.,...,,y)) :y e T}.
Considering new coordinates (21,24 ...,z.) of C" related to (zy,...,2,) by the

formulas z1 := 2z, z; := 2% + )\ilzl for i > 1, where the )\il ’s are generic, we deduce
that wideg,, (PF(s,...,s,y)) = dy for certain y € T
Define
Ay = {yeT:wideg, (P"(,...,y) > di}.
Clearly A; is a proper analytic subset of T
By Weierstrass Preparation Theorem applied in a neighbourhood of the set

{(0,...,0,y) :y e T\ A1},

there exists a neighbourhood V; of T'\ A; in C!, and positive continous functions
71,73, ...,7L ¢ defined on Vi such that P¥ decomposes on the set

{(2172217 o '72717,7u7y) ‘Y€ Vl? |21| < rl(y)7 SEEE |Z'rll| < r'rlb(y)7 |u| < r'rlL+]_(y)}

as PF = ¢P;, where

e the function ¢ is analytic and does not vanish at any point of the set and
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e P; is a pseudopolynomial of the form
di—1
Pl(zl7221"'7n7 _Zl +Za1227~~ 7n)uy)

such that its coeflicients a{ are analytic on the set

{(22s v zmo ) 1y € Vi lza| <ra(y), - lonl <), ul <o (9)}-
Set k; = 0. Choosing 74,...,r} 11 small enough we ensure that Property 3 is
satisfied for Py.
Step i (for 1 < 7 < n): in the previous step we have constructed a system

of coordinates z1,...2; 1, Z Lo L2l of €7 a proper analytic subset A4; ; C
T, positive continuous functions r,...7r;_q,7 1717 ,.;1, a nelghbourhood Vi 1 of
T\ A;_1 in C" and a pseudopolynomial P;_; = z +Z s 1_ i;lzgil such that

the functions 0‘1‘71 are analytic on the set U/ deﬁned by
{&a b uy) g e Vi 57 < @),

< Tn (y)7 Iul < T:;Fll(y)}'
Consider P;_; as a family of polynomials of C;,_[z;_1] parametrized by the
set U/ defined by

{Gh e w) iy e M\ Ay [ < @) e T <o @), Jul < ()}

Since 7' is irreducible there exists a multiplicity stratum of Cg4, | [2;—1] whose clo-
sure contains all the polynomials of this family, and such that there is a polynomial
of the family belonging precisely to this stratum. Let this stratum contain polyno-
mials with m; different roots. Let G, ..., Gy, be the polynomials in the variables
ag, .. .aq; , determining the set S,,, in Cq4, ,[2:—1]. We order them so that the
first s; of them (for a certain positive s;) are the polynomials that does not vanish
identically in U/ when we substitute the variables a;’s by the functions o ’s.
Define an analytic function on the set U’ by the formula

dz 1—1
HG 117"' & 1 )

Having perhaps to substitute rf;l by another smaller positive continuous function,
we can assume that P/ admits a unique expression in U/ as

0

k

= E ¢ku ;
k=0

where v, is an analytic function on U/” not depending on w. Let k be minimal such
that the restriction of ¢y, is not identically zero. Define P} = e g Uk

Clearly Pi/‘/U/ # - Define k; := k;_1 + k[, and P/" = Pi”/uk;. Clearly we have
d; := min{mult’(P/”(0,...,0,y)) :y € T\ A;i_1} < o0.
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We consider several cases:

CasE 1 (d; = 0): We choose the definitive coordinate system (21, ..., 2,) equal
to (z1,...,2i 1, zfﬂ? <.y 2271). Define the closed analytic proper subset A as
A=A 1 U{yeT\ A :mult' (P/"(,...,,y) > 0}.
Define P; = --- = P11 =1, take ky,1 1 = - - - = k1 = 0 and choose, for any 5 > 1,

the positive continuous function r; upper-bounded by réfl and small enough so
that the intersection {P/" = 0} N U; is empty. The algorithm concludes here.

CASE 2 (d; > 0): We consider new coordinates (21, ..., 2, 21,1, ..., 2}) related

—.

to the previous ones by the formulas zf = z and 271 = z; + )\;zZ for j > 4.

J
Choosing the )\§ ’s generic, we obtain that the set
A=A U{yeT\ Ay wideg, (/") > d;}

is a proper analytic subset of T.
By Weierstrass Preparation Theorem applied in a neighbourhood of the set

{(0,...,0,y) :y e T\ A;},

there exists a neighbourhood V; of T'\ A; in C' and positive continuous functions
73,7y ..., 7 4 such that P/” decomposes on the set

{(Zia 277};—}—17 R 7Z:;L7u7y) Ty e ‘/7l7 lZ’L| < r’i(y)7 o 6 g |Z;7,| < T;(yL |u| < riH—l(y)}
as P/" = ¢P;, where

e the function ¢ is analytic and does not vanish at any point of the set,
e P is a pseudopolynomial of the form

di—1
i i L d; Jioi i J
Pilan 2ipy» i hy) =25 F E 0 (2 050 <« 5.2 U )25 4
j=0

]
i

such that its coefficients o are analytic on

{(Z771;+17 cee 7erzau7y) cY < ‘/’h |Z'Z';+1| < r771;+1(y)7 ceey |Z:7,| < T:L(y)7 |’IL| < ri—}—l(y)}’

Choosing 7¢ TP e 1 small enough we ensure that Property 3 is satisfied for P;.

Step n + 1: this step runs parallel to the induction step (Step 7). As w is the
only variable of P/, ; we must be in Case 1. This concludes the algorithm.

The real case: Suppose now that K = R. Consider T" C U, a closed C-analytic
subset contained in an open subset of R™. Let V be an open neighbourhood of
{0} x U in R x R'. Let F': V — R define a T-family of functions. Consider
T+ Cc U* C C" and a complex analytic function F** : V* — C (where V* is a
neighbourhood of {O} x U* in C* x C') such that the T*-family given by F is a
minimal complex extension of the T-family defined by F'. It is easy to check that
the preceding algorithm can be applied to the T*-family F* so that:
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(1) The initial coordinate system (z1, ..., zy) is a real coordinate system when
restricted to R™. In each step we choose a change of coordinates with real
matrix, so that the new coordinate functions (2, ..., z,) of C* form a real
coordinate system when restricted to R”.

(2) The subset ANR" is a proper C-analytic subset of T'.

J assumes real values when

0

(3) For any ¢ < n and j < d; — 1, the function «
Ziy ...y 2n, U,y are real.

Given a T-family of functions F', for any ¢ € T' we will denote by F}; the germ
at the origin given by the restriction of F' to K™ x {t}.

Proposition 16. Let K be either R or C. Let F' be a T-family of functions. Let
A C T be the subset constructed in the preceding algorithm. For any t,t' in the
same connected component of T\ A, the functions I|, and Fly are topologically
R- L-equivalent.

Proof. Suppose K = C. Let I' be the graph of F. View I' as a family of analytic
hypersurfaces parametrized by T'. Proposition 3.1 of [18] can be adapted to apply
(with minor changes in its proof) to this setting. If K = R, we consider a T™*-
family F* which is a minimal complex extension of the T-family F. Let I'* be the
graph of F™*. Then, Proposition 3.2 of [18] can be adapted to apply (with changes
in its proof) to the family of hypersurfaces I'*.

Notice that we have designed our algorithm so that the matrix (¢; ;) relat-
ing the coordinate systems (z1,...,z,,u) and (21, ..., 2n,u) of K" x K has block
form ¢pq14 = ¢ipgq for any @ # n + 1. Since we are able to adapt Proposi-
tions 3.1 and 3.2 of [18], the proofs of Propositions 4.1 and 4.2 of [18] apply word
by word in our case. Applying them respectively in the complex and real case, our
result follows. (|

Let X be any I-stratum of W. Let T C J*®(X,I) be an irreducible (C)-
analytic subset. Before proving Proposition 9, we have to distinguish a special
class of germs in T, which will be called optimal germs. This class is, in a certain
sense, “finitely determined and open”. We select the germs that we will call
optimal in the following way:

Search for Optimal Germs. The differences between the algorithm described
above and Varchenko’s algorithm force us to also introduce some different features
in the selection of optimal germs. In particular, Varchenko’s search for optimal
germs can be performed with any coordinate system of K™. This will not be the
case in our situation: as the search for optimal germs advances, we will need to
modify our original coordinate system, getting at the end a new one that will be
regarded as good coordinate system with respect to T'. We will proceed in several
stages in which we will select smaller subsets of T each time.

We fix an initial coordinate system (zi,...,z,) for K. We view any f €
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J®(X, I~) as a convergent power series in C{zy,...,z,} by taking its Taylor ex-
pansion at proo(f).

Stage 1. Given any f € T we consider P/ = u — f € Clxy,..., 2y, u}.
Obviously, mult’(P/) < co and, therefore,

dy = min{mult’(P') : f € T} < .

Considering z1, 24, ..., 2L, a new coordinate system of K™ related with the old one

%0
by formulas of the form =1 = 21, #; = 2} + Alzy, with the A!’s real and generic
enough, we obtain that min{wideg, (P1): f € T} = di. Define the non-empty
set

& = {f € T/wideg, (P') = di}.

By Weierstrass Preparation Theorem, given any f € &£}, it is possible to find
positive numbers 71(f),...,7,+1(f) such that P/ can be decomposed over the
open subset

Ull(f) = {(Z172217 g Zrlw u) : |Zl| < Tl(f), ceey |U| < ’l”n+1(f)}
as P/ = ¢1Pi[f], where ¢; does not vanish anywhere in U; and Py[f] is a pseu-
dopolynomial of the form
di—1

Pifl(z1, .. u) =2+ D Add[f](2, .. ).
j=1

View Py[f] as a family of polynomials of Cg4, [21] (even when K = R) parametrized
by the open subset

U21(f) = {(2217 "'7Z'r1wu) : |221| < rQ(f)?' 7|U| SrnJrl(f)}'

There exists a stratum Sy(f) of Cgy, [21] whose closure contains the whole family,
and such that there is a member of the family belonging to it. Let m1(f) be the
number of roots of a generic element of S1(f). Define m{ := max{m(f) : f € &},
and let S be a stratum of Cg, [21] such that there is f € £ with S1(f) = S{ and

m1(f) = m{. Define the non-empty set
£ ={f € &1/5:(f) =7}

Let z‘fl + Z;h;ll ajz{ be a generic polynomial Cg, [z1]. There are polynomials
Q1,...,Qs (with real coefficients) in the variables aq, .. ., ag, —1 whose set of com-
mon zeros determines the set of polynomials in Cg, [21] with less than m{] roots.
Let f € £7. Denote by T;[f] the analytic functions in 23, ..., 2}, u obtained sub-
stituting in @y the a;’s by the of[f]’s. Define s1(f) to be the number of T}[f]’s
that do not vanish identically in Us(f). Clearly, s1(f) > 0 for any f € 2. De-
fine s§ := max{si(f) : f € E}. Choose f € &£ such that s;(f) = s{. Up to a

re-ordering we can assume that

Py[f] = 1] 71s)
i=1
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does not vanish identically in Us(f). Define the non-empty set

& = {f € &/P Ny £ 0}
For any f € &£ we let ki(f) be the maximal power of u which divides Pj[f].
We define kY := min{k(f) : f € £},
& ={f € &/ku(f) = ki},
and, for any f € &,
FYf] = Pi[f)/ut.

Stage i (for 1 < i < n). In the previous stage we have chosen a coordinate

system 217...,zi,hzgfl,...,zﬁl of K" and set of germs & _¢. Moreover, for

each f € &_1, we have given positive numbers r{(f),...,r,+1(f) and an analytic
function P;’[f] defined on

U == e b T <)o ful < raga ()}
such that w fP/'[f] (hence mult’(P/'[f]) < 00). Consider
d; = min{mult’'(P[f]): f € &_1}.

Define {zi7zf+17 ..., 2L} by the formulas szl — 7 and 2071 = z; + Aézh with /\é.
real for j > i. For any f € &_1, we express P/'[f] respect to the new variables
Bl vy Zis Bty - - -5 2y w. Then, if the AJ’s are chosen generic enough, there exists

[ € &1 such that wideg, (P/'[f]) = d;. Define the non-empty set
&= {f € &1 : wideg, (P/'[f]) = d;}.

For each f € &' we can diminish the numbers r;(f),...,7,+1(f) so that the
function P/’[f] can be decomposed over the open subset

Ui(f) = {(Z% Zz?qtl) cee >Zfz7u) : |ZZ| < ri(f)> veey |u| < r"H’l(f)}
as P/[f] = #:iP;[f], where ¢; does not vanish anywhere in U} and P;[f] is a

3
pseudopolynomial of the form

d;—1

Bl g =+ Oy o [Fllaty 4 o )
j=1

View P;[f] as a family of polynomials of Cy,[2;] parametrized by the open subset

UZl(f) = {(Z§+17 # '7ZZ+17 u) : |Zi1+1| < Ti+1(f)7 ERLS |u| < T’ﬂ+1(f)}'

By analogy with Stage 1, we define numbers m?, s?, kY, a stratum SY € Cyg, [2],

and a decreasing sequence of subsets £} D &7 D &2 D &. Moreover, for each
function f € & we construct functions P/, [f] and P/’[f] analytic in 5 'y o5 oy 0y

such that P/, [f] = u* P/'[f] and u fP'[f].
Stage n+ 1. For any f € &,, the function P/[f] is a unit in K{u}. Moreover,
in the previous stage we have constructed a coordinate system (zq, ..., z,) of K"
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which will be said to be a good coordinate system with respect toT'. We will define
the subset
&r Cm, '(T) (21)

of optimal germs of m *(T) with respect to the coordinate system (21,...,2,) as

Er = &,. This finishes the Search for Optimal Germs.

Proof of Proposition 9. We will start by proving that being optimal respect to a
fixed good coordinate system (zi,...,2y,) is a finitely determined property, i.e.,
that there exists s > r with the following property: given any z € X and any
g € N mitl a germ f € T, belongs to & if and only if f + g belongs to &r.
By convenience of the reader we repeat the statement of Proposition 4.2 of [18]:

(1) For any two natural numbers k and p there exists a third one L(k,p) such
that for any f € C{z1,...,2n} with wideg, (f) =k and g € mZEP) the following
property holds: consider analytic functions ¢, ¢', P, P, such that $(O) # 0,
¢'(0) £0 and f = Po, f+ g = P'¢ in some neighbourhood of O, where P and
P’ are Weierstrass polynomials in z1 of degree k. Then ¢ — ¢’ and P — P’ are in
m?.

In order to choose s we define the following numbers recursively:

an = ko_y + max{d, + 1, L(dn, d, + k2)},
a; = kY | +max{d; +1,L(d;, a1 +d;)} for 2<i<n—1,
a = max{ch +1, L(Cl17 as + dl)}

Fix s := ay. With this choice, taking into account () along the procedure of
Search for Optimal Germs, it is easy to show that given f € T, and g € N ms !
then f € Ep, ifand only if f+ g € Ep.

Now we suppose that f € &r. We will show that f and f + g are topologically
equivalent. Consider a coordinate function y for the affine line Al, and define
the Al-family F' := f + yg. The germ F), is optimal respect to (z1,...,2z,) for
any y € Al- for being yg € I.n m:T!. It is easy to check that the algorithm can
be applied to the family F, taking as initial coordinate system (z1,...,2,) and
having in each step the trivial coordinate change. Denote by A the subset of Al
constructed in the algorithm. The Search for Optimal Germs has been designed
in a compatible way with the algorithm so that Fj, is optimal with respect to
(#1,...,2,) if and only if y € Al \ A. Therefore, A = . Applying Proposition 16
we obtain the topological equivalence of f = Il and [ + g = F};.

We are ready to prove the statement of the proposition. Recall that I is
generated over W by the functions fi,..., fi,. Given any z € W, we denote by
fi.« the Taylor expansion of f; at x. Consider the K-vector space I/ of polynomials
of degree bounded by S, let {g1,...,gn} be a basis of V. The product W x V™
is an open subset of K*™N and a point of it is represented by a mN + 1-
uple (z,A],..., Ay, .., AT, .., AN, with 2 € W and A} € K. Consider the
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W x V™-family defined by the unique analytic function I’ in a neighbourhood of
{0} x W x V™ in K" x W x V™ satisfying

m N
Fiensy =D D 9ifim

i=1j=1
for any (z, h;) e W x V™. Associated with F', we have a natural analytic mapping
P W x V™ — JH(WK)
which assigns to (z, h;) the s-jet of the germ F, ;. viewed as a germ at z.
™3

As T is a r-determined (C)-analytic subset of J°°(X,I) and s > r, the subset
T =71 (72°(T)) is a closed (C)-analytic subset of (W \ 8X) x V™. Therefore,
we can consider the T”-family of functions obtained by restriction of F'.

It is easy to check that ¥(1") = #2°(T"). Therefore, there exists ¢’ € T’ such
that ¥ (¢') is the s-jet of an optimal germ of T with respect to the coordinate
system (z1, ..., 2, ). Taking into account the way we have designed the algorithm
and the Search for Optimal Germs, and the fact that being optimal with respect
to the fixed coordinate system is an s-determined property, it follows easily that

(1) the algorithm can be applied to the T’-family of functions F' choosing at
each stage the trivial coordinate change;

(2) a point ¢’ € T” belongs to the (C)-analytic proper subset A" C T" con-
structed in the algorithm if and only if 4(¢') is not the s-jet of an optimal
germ of T' with respect to the fixed coordinate system.

Therefore, A’ is of the form ¢~ (A”) with A” C J*(X,I). The fact that A” is
(C)-analytic is easily deduced from the facts that ¢ x,ym : X x V™ — J*(X, I
is an epimorphism of trivial analytic vector bundles, and that A’ is (C)-analytic.
Define A as the s determined (C)-analytic subset A := (72°)~1(A”).

Consider f, f’ in the same connected component of 7'\ A. Then there exist
t,t’ in the same connected component of 7"\ A’ such that (t) = #2°(f) and
Y(t') = 7°(f'). By Proposition 16 we have that F}; and Fj, are topologically
equivalent. For beingt,#' & A, the germs Fj; and Fj, are optimal with respect with
the coordinate system (z1,...,2,). As f and f’ have respectively the same s-jet
that F; and F);,, and optimal germs are topologically s-determined, we conclude
the topological equivalence of f and f'. (Il
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