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Pieri-type formulas for the non-symmetric Jack polynomials

P. J. Forrester and D. S. MeAnally

Abstract. In the theory of symmetric Jack polynomials the coefficients in the expansion of
the pth elementary symmetric function ep(z) times a Jack polynomial expressed as a series in
Jack polynomials are known explicitly. Here analogues of this result for the non-symmetric Jack
polynomials E^(z) are explored. Necessary conditions for non-zero coefficients in the expansion
of ep(z)Eri(z) as a series in non-symmetric Jack polynomials are given. A known expansion
formula for ZiEv(z) is rederived by an induction procedure, and this expansion is used to deduce
the corresponding result for the expansion of J} .=1 1^lz] Eri(z), and consequently the expansion
of eN_i(z)Eri(z). In the general p case the coefficients for special terms in the expansion are
presented.

Mathematics Subject Classification (2000). 33D80.
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1. Introduction

Jack polynomials and Macdonald polynomials can be defined as homogeneous
multivariable orthogonal polynomials, or as eigenfunctions of a family of commuting
differential or difference operators respectively. From the latter viewpoint these

polynomials occur in the study of certain quantum many body systems [3, 8]. In
their most basic form the polynomials are non-symmetric, although eigenfunctions
with a prescribed symmetry with respect to interchange of coordinates are often
required in application [1]. The polynomials with a prescribed symmetry can be
obtained from the non-symmetric polynomials by an appropriate symmetry
operation. One consequence of this feature is that many properties of the symmetric
Jack and Macdonald polynomials can be obtained from the corresponding
properties of the non-symmetric polynomials [2, 10].

There are, however, a number of properties of the symmetric Jack and Macdonald

polynomials which have no known relation to properties of the non-symmetric
polynomials. One example is the so-called Pieri formula [14, 9, 4]. To present this
formula requires some notation. Let k and A be partitions described by their
diagrams and suppose k C A. A skew diagram X/k is said to be a vertical m-strip if
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it consists of m boxes, all of which are in distinct rows. For X/n a vertical m-strip
define \m by A n + Xm, and put

where

r(K\= TT (ü'-^ + ".-"3)r ._JnW — 77^ ^~^ J \U)r ¦—

With this notation the Pieri formula reads

ep(z)PK(z) ]T UM(\/k)Px(z) (1.1)
A

rtical tti —strip

where

<ip<N

denotes the pth elementary symmetric function, and PK(x) := PK(x;a) denotes
the symmetric Jack polynomial indexed by the partition n and normalized so that
when expanded in terms of monomial symmetric functions the coefficient of the
monomial symmetric function mK is unity.

It is the objective of this paper to investigate non-symmetric analogues of the
Pieri formula (1.1). Our original idea was to adapt the method used by Knop
and Sahi [6] to derive (1.1), which involves the theory of the so-called shifted Jack
polynomials. This was passed on to D. Marshall, who subsequently [11] obtained
the explicit form of the coefficients in the expansions

ZiEv(z)= ]T c$Ev{z) (1.2)

N

)r,(z) ]T CrtvEv{z). (1.3)

In this work we will give an inductive proof of the evaluation of the cfy which
avoids all reference to the theory of the shifted Jack polynomials (the evaluation
of the Cr>v follows as a simple corollary from knowledge of the c^l

In Section 3 of the paper we present necessary conditions on v for the coefficients
in the expansion

zn ¦ ¦ ¦ zlpEv(z) ]T $ï~MEv{z) (1.4)

to be non-zero. Here use is made of the theory of shifted Jack polynomials. In
Section 4 the result of Marshall for the explicit value of c^l is revised, and in
Section 5 we present our inductive proof of this result. The expansion (1.4) in
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the case p N — 1, where N is the number of variables z := [z\,..., zpj), is

given in Section 6. In the final section, Section 7, a coefficient in the expansion of
ep(z)Eri(z) as a series in {Ev} is evaluated for a special value of v and the form
of the evaluation further explored for a larger class of v.

2. The non-symmetric Jack polynomials

The non-symmetric Jack polynomials Er)(z) can be specified as the simultaneous
polynomial eigenfunctions of the commuting operators

where sip is the operator which permutes z-% and zp, satisfying the eigenvalue
equations

&Eri=fjîEri, (i=l,...,N) (2.1)

and with coefficient of zv zm ¦ ¦ ¦ zVN unity. For a given composition r\ :=
(rji,... ,t)n), the eigenvalue fjt in (2.1) is given by

t]i := ar/t - #{A; < i[qk > r/t} - #{A; > i\qk > r]t}. (2.2)

An alternative characterization of the non-symmetric Jack polynomials is as

multivariable orthogonal polynomials. With Zj := e2™3, introduce the inner
product

(f\g):= f dXl--- f dxN TT \zk-zJ\Vaf*(z1,...,zN)g(z1,...,zN),
Jo Jo

(2.3)
where the * denotes complex conjugation. Suppose \r]\ \v\ for compositions r\ ^
v. Introduce the dominance partial ordering < on compositions by the statement
that v < 1] if *YJj=\v3 < S?=i Vj f°r each p 1,...,N. Let r]+ denote the

partition corresponding to the composition r\. Introduce a further partial ordering
< by the statement that v < r\ if v+ < r]+, or in the case i/+ r]+, if v < r\. Then
for a given value of \r\\, the ETj can be constructed via a Gram-Schmidt procedure
from the requirements that

(EV\EV)=O, (2.4)

for r\ ^ i/, and that

rj'"\\z) ~ z ' / i cr\vz ¦ \A-°)

We will have future use for the explicit value of
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This requires the introduction of further quantities for its presentation. Following

[13], define the arm and leg lengths at the node (i,j) of the diagram of a

composition r\ by

(2.6)
and put

dri:= JJ

(2.7)
Also, define the generalized factorial by

and put

In terms of the quantities (2.7) and (2.8) we have [12, 2]

Starting with Eçqn^(z) 1, the non-symmetric Jack polynomials can be

recursively generated from the action of just two fundamental operators. The first
of these operators is the elementary permutation operator st := stt+i, which
permutes Zi and Zi+\. It has the action [12]

SiEri(z)=} Ev(z), Vi Vi+i (2-10)

¦£-Ev(z)+Eatr)(z), Vî<Vî+i

where

âi,v := m ~ Vi+i- (2-11)

The second required operator is the raising type operator, defined when acting on
functions according to

ZN) ZNf(zN, Zi,..., ZN-l),

which has the property [7]

$Er,(z) Esniz), $>r]:=(r]2,...,r]N,m + l)- (2-12)

Starting from r\ (0N), all compositions can be generated by the action of $?y

and sir), so (2.10) and (2.12) provide the recursive generation of all the Ev.
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Future use will be made of the quantities (2.7) and (2.8) with r\ replaced by
strj and $?y. In particular, we require the formulas [13]

(2.13)

Let us now revise some aspects of the theory of non-symmetric shifted Jack

polynomials E* [5]. The polynomial E*(z) is the unique polynomial of degree
< \rj\ with the property

E;(p/a) o, \P\<\v\, P + n

and E*(fj/a) ^ 0 with coefficient of zv in its monomial expansion unity (fj :=
(fji,... ,t)n) where the fjj are specified by (2.2)). The non-symmetric Jack
polynomial Ev is the leading homogeneous term of E* so that

E*(z) Ev(z) + lower degree terms. (2-14)

A fundamental property of the E* is the extra vanishing condition. Introduce
the partial ordering ¦< on compositions by writing v ¦< r\ if there exisits a permutation

TV such that vi < r)^) for i < tt(î) and v% < r)^) for i > ir(i). Note that
for v and r\ partitions the statement v -< r\ is equivalent to v Ç r\ (inclusion of
diagrams) but for compositions, although v Ç r\ implies v <r\ (take tt to be the

identity), the converse is not true in general. The extra vanishing condition states
[5]

E*(v/a) 0 for r)-£,v. (2.15)

3. Structure of the Pieri type expansions for the non-symmetric
Jack polynomials

Our interest is in the coefficients c^'"'*p in the expansion (1.4). In this section
we will use the theory of the non-symmetric shifted Jack polynomials to present

necessary conditions for the coefficients to be non-zero.
Now the extra vanishing condition (2.15) implies that any analytic function

vanishing on {p/a : r\ -/< p] can be written in the form

f(z) J2 ^Et(z). (3.1)

It follows from this that

z ¦¦¦z E*(z)= Y^ c<-ll'---'lp')E*(z) (3 2)
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for some coefficients c^'"'*p Taking the leading homogeneous term on both sides

using (2.14) gives

zn ¦ ¦ ¦ zlpEv(z) ]T c^-^E^z) (3.3)

which is a refinement of (1.4).
The statement (3.3) can be further refined by making use of the orthogonality

(2.4). Applying this orthogonality in (3.3) shows that

Using the facts that with z1 := z\ ¦ ¦ ¦ zpj we have

EvHlN)(z) z'E^z), (z'flz'g) (f\g) and (f\g) (g\f)

(the latter provided / and g have real coefficients) it follows from (3.4) that

(3.5)
(ju...,jN_p) {EV\EV)

{EV\EV) ^+VN) {EV\EV)

where j\,... ,Jn-p are such that {1,..., N} {i\,..., ip} U {j\,... ,JN-p}- But

according to (3.3) c^~/^rp) 0 for v -£. r) + (lN) and thus (3.5) implies

c(ii,...,iP) 0 for v^v+(lN). (3.6)

Hence in (3.3) we can make the additional restriction v ¦< rj+ (lN), and so obtain

Zîl ¦ ¦ ¦ zîpEri{z) Y, $i'-'ip)Ev(z) (3.7)

where

In,p :={v.ï)<v<ï)^ (1W), \v\ \rj\ +p}. (3.8)

Note that by performing the sum 1 < i\ < ¦ ¦ ¦ < ip < N in (3.7) we obtain

ep(z)Ev(z) Y, A$K(z) (3-9)

for some constants AifJ.
Next we seek a more explicit description of the set 3n,p- Let wv be the shortest

element of Sjy (the permutations of {1,..., N}) such that w^1(?y) is a partition
and similarly define wv. It is straightforward to show [5] that if v ¦< r\ then
the permutation tt in the definition of the partial order can be represented tt
«V o w^1 =: 7Ti,^. Now, members v of the set 3n,p require both r\ < v and

v ^ V + (1W) with \i/\ \rj\ + p. For the former ordering constraint the relevant
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permutation is -nrhU tt"*. Replacing tt by tt^1 in the definition of ;< shows we

require

Vi < v*v,n(i) for * < n^V (*)> Vi < viTv,r,(i) for * > ^.J) (*) • (3.10)

For the latter ordering constraint the relevant permutation is 7r„i??. Replacing tt
by tt^1 and i by tt(«) in the definition of ;< shows we require

Vitv.v{i) < ^ + ^ for 7r"-'7 (*)<*> ^„^(j) < ??J + 1 f°r 7T^,77 (*)>*• (3-11)

Combining (3.10) and (3.11) gives

^ < ^,„(») < % + l for « < 7r„i7?(«), ??j < ^^„(j) < rit + l for « > 7r„i7?(«),

and so

V-Kv.vii) Vt + 1 for *<7IV,77(*)> ^„(î)=î?* for *>^,i)(*)- (3-12)

In the case i ¦nl,^{i) (3.10) and (3.11) give r\i < v^v ^ < r\% + 1 and so

v^u,r,{i)=rH or v*v,rl(î)=rH + l- (3-13)

It remains to implement the requirement \v\ \r)\+p. We see from (3.12) and
(3.13) that we must have

*V,,(»V) =%¦ + (r l,...,p) (3.14)

for some 1 < i\ < ¦ ¦ ¦ < ip < N and

v*wUr)=Vjr (r l,...,N-p) (3.15)

where {n,..., ip} U {jh ,jN_p} {1,2,..., N}. Combining (3.14) and (3.15)
with (3.12) and (3.13) shows compositions v G In,p are characterized by the
properties

Vir(ir) Vir + for *r<7I"(*r) r=l,...,p
vir{jr) V]r for Jr > TT(ir-) T 1, N - p (3.16)

for some permutation ty (tt tt^^ suffices). The characterization (3.16) can be

interpreted in terms of the diagram of r\. We begin by adding one box to the rows

«i,..., ip. Then we consider all rearrangements of the rows such the rows with a

box added move downwards or stay stationary, while the rows with no box added

move upwards or stay stationary. An example is given in Figure 1.

In the case p 1 the compositions v defined by (3.16) and thus belonging to
the set Jjvi have the property of being the minimal elements lying above r\ [5].
Note that this set can be indexed by subsets / {ti,..., ts} of {1,..., N} with
t\ < ¦ ¦ ¦ <ts which correspond to the element

v =: c/(??) G Jat,i (3.17)

where

vt, Vt}+1 3 l,-..,s-l
vt. r/h + 1

n m %ii (3.18)
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i
2

h

h
FlG. 1. Construction of the composition v : r] ^< v ^< r] -\- (I)3 with 77 (2.0. 1) and

v\ \r]\ + 1. The unshaded boxes originate from the diagram of 77. With reference to the
original diagram of 77 the row with the additional box (shaded) must move downwards or stay
stationary, while the rows with no box added move upwards or stay stationary. The labels in

the description (3.18) are also noted.

Furthermore, the subset / is called maximal with respect to r\ if / ^ 0 and

Vj 7^ Vtu j tu-i + 1, • • •, tu - 1 (m 1,..., s; t0 := 0)

W^Vtr+l j ts + l,...,N (3.19)

It follows from (3.18) that an equivalent way to characterize the maximal subsets
is via the conditions

vt, - 1, i 1, - 1

=l,...,s; ts+1 :=N (3.20)

It is shown in [5] that it is only these maximal subsets which give distinct compositions

v (we illustrate this point in Figure 2). Thus we can write

In,i '¦= Jjv.iM \y '¦ v ci(v)> /maximal}. (3-21)

It is also convenient to introduce the set J^ of maximal subsets

Irj {I : /is maximal w.r.t. rj\, (3.22)

so that 3N.i {ci(v) '¦ / € Jj;}-
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3 2

3

FlG. 2. In this example, starting with r\ (0, 2, 2), two different choices of subsets

/ {ii,... ,ts} give the same composition, but only the second subset is maximal (note that in
the first diagram 772 Vti)-

4. A Pieri type formula for the non-symmetric Jack polynomials
in the case p 1

So far the theory of shifted Jack polynomials [5] has been used to deduce the
structural formula (3.7), and also notions from that theory are used to label the
set Jjv.p appearing in (3.7) in terms of certain maximal subsets /. To now evaluate
the coefficients in (3.7), the most natural way to proceed is to make further use

of theory from [5]. In the case p 1 this part of the program has recently been

successfully undertaken by Marshall [11]. The presentation of the result requires
some notation.

First write

a{x,y) :=
1

a(x-y)'
FoTl={t1,...,ta}C{l,...,N}, 7

b{x,

¦l <

y)

<

X

ts

-y
x -

put

- l/a
-y

s-l

M=l
S tu+l-l
n n
u=lj=tu +

tl-1
x (xts + (N- I)/a)

(4.1)

(4.2)

-l,xj), ts+1:=N+l (4.3)

ß/(-):=(n

(4.4)
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and for i G / write

(i). _ j a(xtfc_j - x»), « tk (k 2,...,s)
Xl [ ' \ a(xts -Xi-l),i ti

(xi-xt), i tk (k= l,...,s-l)
(x,-xtl-l), i is.

(4-5j

In terms of these quantities, and the quantity d'v of (2.7), the result of Marshall
[11] reads

(4.6)

Also, noting from (4.5) that

YJxf(x) -a (4.7)

iei
it follows from (4.6) that [11]

N
7.Ww .-,.2.-// V^ ^ (AR\[zyErilz) ~a % Z^ ^ ùc^riiz)- (4.8)

We remark that it follows from the définition (4.3) of B/(x) that for / not maximal
(i.e. cases for which the relations (3.20) are not obeyed), Bi(ci(rj)/a) 0. Thus
the restriction to maximal subsets in the summation of (4.6) and (4.8) is in fact a

feature of the analytic form of the coefficients.
The dependence on ci{rj) in (4.6) and (4.8) can be replaced by a dependence

on fj. Thus we note from the définitions (4.2), (4.4) and (4.5) that

^M)=Xii\f1/a) (tel),
which when substituted in (4.6) and (4.8) give

given iGl
N ~

^ZiJErjiz) -a2d'v Y^ I n
j,—I

n °'
EciM(z). (4.10)

i=\ ieJv c'(v)

A still more useful form of (4.9) results by introducing

Biiffja) : a—j-^—Bf(fj/a)

V tu-i n (4-11)

(n. n
«=ij=tu-i+i
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where the equality follows from (2.8) and (4.4). In terms of this quantity (4.9)
reads

5. Inductive proof

In this section we will provide an inductive proof of (4.12). This has the advantage
of being independent of the theory of the shifted Jack polynomials, relying only on
the recurrence properties (2.10) and (2.12) of the non-symmetric Jack polynomials
themselves.

Strategy

It has already been remarked that starting with Eçqn^(z) 1, the non-symmetric
Jack polynomials can be generated recursively from the recurrence properties
(2.10) and (2.12). To make use of these properties, suppose for a given r\ we

know the coefficients ctfj, in the expansion

zjEv(z) ]T c^E^z) (5.1)

for each j 1,..., N. Then, with zn+i := z\ and c^j, := Crhl, (2.12) gives

(z) $(zJ+1Ev(z)) ]T i^E^iz). (5.2)

This shows ZjE^r)(z) can be computed from knowledge of the expansion (5.1) for
the given r\. Moreover, we can can give an explicit relationship between coefficients.
To demonstrate this, for / Ç {1,..., N}, I ^ 0 put

:= {j - 11j e I n {2,..., N}} U {N\ 1 G /}. (5.3)

Then we can check that $(/) is maximal with respect to $?y if and only if / is

maximal with respect to r\. This means that in (5.2) we can replace the summation
v G J at, l [t?] by ^v € Jat, i [$??], which allows us to change variables $z/1—> v to obtain

(5.4)

On the other hand (5.1) gives

zJE*v(z)=
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Comparing (5.4) and (5.5) shows we require

r(i) =r(i+i) a i AT-11) r(A° - r^ f5 61

Let us now consider the computation of ZjESîr)(z) for rjt < j^+i from knowledge
of the expansion (5.1) for the given r\. For this purpose we rewrite (5.1) as

z5ETI{z) YJ^lVv{z) (5.7)
V

where a^v crftl, v G Ja^iM and a^v 0 otherwise. By doing this the sum over
v in (5.7) is unrestricted. Since from (2.10), with r\% < r\i^\1

.jEafri{z) zj(sîEv(z)-J-Ev(

{ Si(ziEv(z)), j i+l -j-ZjE^z) (5.8)
Si(zî+1Eri(z)), j i l'ri

we see that knowledge of ZjEri{z) for each j 1,...,N implies the value of

ZjESiV{z). We want to exhibit this feature as a recurrence for the coefficients otftl.
Now, from (5.7) and (2.10)

st(z0Eri(z)) Y^ W

while (5.7) itself gives

iii.Kiz). (5.10)

Substituting (5.10), (5.9) and (5.7) in (5.8) and equating coefficients of Eu(z) gives

a recurrence allowing atft's.v to be computed. In the recurrence it is necessary to
distinguish the cases vi < z/j+i from vi > i^+i. However this can be avoided if we
write the recurrence in terms of the quantity

(i)
77'" '

and make use of (2.13). We then find for v-%

^ (l - (5~1U(î+1) + (5"1â(î+1) - (T1^ f5.ll)Sir/,v \ î,is r),sii/ ' î,is 77,1/ *;TÏ 77,1/ v /
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while for v-% v^\

Noting that for v% vt+i we have s^v is, we see that the equations (5.11) remain
valid in that they reduce to the equations (5.12), so it suffices to consider (5.11)
for all v.

Starting from knowledge of c9QN,
v

and a£lN
v

for a particular j the

recurrences (5.6) and (5.11) can be used to compute all the ctftl and œ^v. Thus, after
independently establishing their validity in the case r\ (0N) and a particular j,
we want to show the functional forms

pc(i) / X/j)(??/a)^/(??/a)ß/(??/a), I e Iv and j e I with v c^rf),^ 1 ^w \0, otherwise l '

c{U=dP^xf{r1/a)AI{f1/a)BI{f1/a), v Cl{rj), (5.14)

with x^\ Ai and B/ as specified by (4.5), (4.2) and (4.11) respectively, satisfy
the recurrences (5.6) and (5.11) as appropriate.

Verification of the initial conditions

We require the expansion of z-% in terms of {Ev}. Any particular value of i
1,..., N is sufficient, although we will proceed with i arbitrary in this range.
From the recurrences (5.6) and (5.11) we can readily show

E(QkWN-k-i){z) zk+1 + ^Zfc+2 H 1- zn)-

Thus the expansion of {EçQkiQN-k-i^}, k 0,..., N — 1, in terms of {zi} has a

triangular structure. This makes the task of inverting the formulas straightforward,
provided we start with zn and then compute the expansion of zn-\ etc.. We findE()EE()

a + Nl (5.15)
On the other hand for v ci{QN), I G J(o^) and i G / we see from (3.18) that

the only possibilities are v (0J* 110Ar J") with j > i so that (5.13) gives

N

Zi=^2cy>E(03-iWN-3)(z) (5.16)
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for some constants c- The general structure of (5.16) is in agreement with (5.15).
To check that the coefficients agree we note from (3.18) that for / G J(o"), we must
have / {1, 2,..., j} and tt I (I 1,... ,j). Noting also that with r) (0N),
fji -(i - 1), we see that (4.5), (4.2) and (4.12) give

1

j — 1 + a
J - 1 + a

Substituting (5.17), together with the evaluations

d(oN) ~ e(oN) — 1; e(O3-1ioJV-3) a + N — 1, d(Oi-i1ON-j} a +j — 1

from (2.8) and (2.7), in (5.13) we see that the coefficients in (5.16) are as required
by (5.15).

Verification of the recurrences

Consider (5.6). Prom the definitions (2.2) and (2.12) we can check

(*v)i (fi)i+i, ^N ($ri)N (f})i+a. (5.18)

With $(/) defined by (5.3) and / {t1;... ,ts}, making use of (5.18) it follows
from the definition (4.2) that

M=J J

x 'n a(($»7)tu-i/a, ($»7)tu+1-i/a), *i 1

M 2

s-1

II a(Vtu/a,Vtu+1/a) a{fitja - 1, %/a) A/(?y/a). (5.19)
«=i

Similar calculations show

W Ê il'n/o) x?+1)(fj/<*), (i 1,...,N - 1),

These formulas together with the appropriate formula from (2.13) immediately
imply (5.6) is satisfied by (5.13).
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The recurrences (5.11) are not so straightforward. One complication is that
the cases

(i)i,i+l(£I (ii) * G /, i+1 <£ I (iii) i <£ /, i + 1 G / (iv) i, i + 1 G / (5.20)

must be treated separately, in addition to the division of cases depending on the
value of (j). Independent of the division of cases (5.20), the fact that ätf), 0 for
v <£ In,iVI\ used in (5.11) gives

^,„ 0, vj=a{rj), /eJ, and v =£ siCl{rj), /eJ,. (5.21)

For (5.21) to be consistent with (5.13) we must show

c/'(sjî?) c/(?y) or c//(sj?y) SjC/(?y) for some / G J^. (5.22)

The validity of this statement will be verified for each of the cases separately.

First suppose /' G ISi The definitions (3.18) and (3.19) give that this

is equivalent to the statement that /' /,/ G
ï,ï+iei

and

Suppose next /' G Js.^

The second is /' 7\{{}, / G

In the case /' G

/el with

iV) sjC/(î?). (5.23)

Then there are two possibilities. The first is

with

Sit]) SiCj(ri). (5-24)

with

l) CM- (5.25)

the only possibility is /' (/ U {«})\{* + 1},

)\{t+i}(siV) SiCiivi). (5.26)

Then we can have /' / U {%}, / GThe remaining case is /' G Js.^

with
-l£l,i£I

These results together verify (5.22). Thus we can restrict attention to the cases

v cj(r/), v SjC/(?y), (/ G J^). (5.28)

The case i, i -\- 1 £ I
Because à^l requires j G / to be non-zero, while we are considering the case

i,i + l £ I, the second and third equations in (5.11) give a£-ri,v 0 and âsJî,J 0,
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which is consistent with (5.13). Thus we can restrict attention to the first equation
in (5.11). Also, if v-% z/j+i with i,i+ 1 £ I then we must have r\% r\i^\. Since
in the induction procedure it suffices to consider only the cases ?yi+i > rji we can

suppose Vi ^Vi+\.
Suppose v ci{rj). The assumptions that i,i + 1 <£ / and ru ^ Vi+i

together with (5.23) imply there is no /' G J^ such that ci>{rj) SjC/(?y) and thus

arises 0. Also in this case it follows from the definition (2.11) that Sici^ öhV.

Substituting these formulas in the first equation of (5.11) gives

a (5.29)

This is consistent with (5.13) because (5.23) and the surrounding sentence implies
there is no /' G Js.^ such that c/'(sj?y) ci{rj).

According to (5.28) the remaining possibility for a non-zero value is v SjC/(?y).

From the above reasoning we know from this choice of v, àfj^ 0, while (2.11)
gives Si,SzCI(n) —Si^- Thus the first equation in (5.11) reduces to

JVM + 1 /€
From (5.23) and the surrounding text we know that SiCi{rj) ci{siTj) with / G

We note in general from (2.2) that

I iT ' ^>*ü ^
(5.31)

Using (5.31), we see from the definitions (4.2), (4.11) that for / G !„

while from (4.5) we see that

Hence (5.13) satisfies (5.30).
The case i e I, i+l ^ I

We note that in this case SjC/(?y) ^ c/(?y). Consider the first equation in (5.11)
and suppose v c/(?y). We can check from the definitions (3.18) and (3.19) that

for /eL
SiCi{rj) cIU{l+1}('i]) (5.32)

so the value of à^SiU on the right hand side of the first equation in (5.11) is

non-zero. Noting from (2.11) and the definition (3.18) of c/(?y) that
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this equation reads

" '/î+1 (5.33)
1 1

The equation (5.32) allows the quantities AVl Bv and x^), I' I U {1 + 1},

king up à^ N to be related to the corresponding q

we can check from the définitions (4.2) and (4.11) that
making up à^ N to be related to the corresponding quantities in o^3' >. Thus

- {cdv))t)

(vi+i - (cdv))i)
,—r^\Vi+i ~ (ci(v))i + 1

X?\f)M, 3 + i, i + 1. (5.34)

When multiplied together according to (5.13) to form à s ^ and substituted in
(5.33) we find all terms on the right hand side cancel giving the result

«SL(,)=0' 3¥=i,i+l- (5-35)

Consider now the second and third equation equations in (5.11) in the case

v ci(rj). The requirement in (5.13) that a c
¦. ^ 0 only if j G /, while we are

assuming 1 G I, « + 1 ^ I, means the equations read

+ Kv^Xlir,) C1 - h^tliuv+iyW + K^tliM

where use has also been made of (5.32). To simplify the right hand sides of these

equations we note from (4.5) that

1- 1 \ Vi

Use of these equation, together with the first two equations of (5.34) allows us to

express âJ,L{t+1}(,) and 4'ïu^+i}^) in termS °f ^vldvY Doing this shows the

right hand side is equal to zero in both cases and so for all j 1,..., N

&{j) 0. (5.37)
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For SjC/(?y) ^ c/(?y) the result (5.37) is consistent with (5.13) because the result

(5.24) implies that for / G JL there is no /' G Js.„ such that c/'(sj?y)

We now proceed to consider the equations (5.11) in the case v SjC/(?y),

/ G I,; Proceeding as in the derivation of (5.35) we find that in this case

the first equation of (5.11) reads

(i) _
(V V+ )fa+ {{i)\) (j)

n i) (^ _î?.+1)(î?.+ 1 -(C/(,y))- + 1) '-

j ^ {, { + 1

(5.38)

where the second equality follows after use of (5.13) to substitute for ce3'c ^ and

use of the definitions (4.2), (4.11) and (4.5). An analogous calculation, involving
the second and third equations of (5.11), gives

äW n 0 (5.39)

as well as the equation (5.38) in the case j i + 1. Recalling (5.24) we see the
equations (5.38) and (5.39) are consistent with (5.13).
The case i <£ I, i + 1 G /

We distinguish the case

Ci(ti) (5.40)

from

SiCi(V)¥=ci(v). (5.41)

In the case (5.40) we can check that

(C/(j7))î+i fji - 1, (5.42)

while a feature of the case (5.41) is that there is no /' G J^ such that SjC/(?y)

c// {if) and therefore

&{j) 0. (5.43)

Consider first the equations (5.11) in the case (5.40) (as already noted, the
equations (5.11) are equivalent to the equations (5.12) for v Sj-c/(?y) cj(r])).
The equations read

=ä(i+Vv (5.44)
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To verify that (5.13) satisfies these equations we note that in the case (5.40)
the equation (5.27) is valid, so we should seek to express (5.44) in terms of

äwiuW0w)- Now (5-31)> (4-2)> (4-n) and (4-5) give

iu{i}(iV/) =fijVi ~ Vi+1

A / / n Vi Vi+1 f> i -Biu{i}(siV a) -, Bi(v
Vi~ Vi+i + 1

1

SS« /+i' (5-45)

Making use of these equations in the right hand side of (5.44) we find that for each

j l,2,...,N

{l {%Ê(-s-fî/a) (5.46)

which by virtue of (5.27) is consistent with (5.13).
Consider now the equations (5.11) with v ci{rj) in the case (5.41). Then

(3.12) holds, so (5.11) can be appropriately simplified. Furthermore, we can check

that the second and third members of (5.45) remain valid, while the remaining
equations are to be replaced by

X}u{î}(siV/u) -===- x\ '{{v/a). (5.47)
Vi+i ~ {ci(v))i+i

Using these equations to further simplify (5.11) again gives (5.46), which we know
is consistent with (5.13). It remains to consider the case v SjC/(?y), for which it
suffices to restrict attention to the subcase (5.41) as the subcase (5.41) is included
in the above working. We first simplify the equations (5.11) according to (5.43)
and then obtain the analogues of (5.45) for the quantities ^4(/u{i})\{i+i} (siV/a)
etc.. We find, for j ^ i + 1,

while
â(î+1) - 0

We see from (5.26) that these equations are consistent with (5.13).
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The case i, i -\- 1 G /
Analogous to the case i £ I, « + 1 G / we distinguish the case SjC/(?y) c/(sj?y)

from Sj-c/(?y) ^ c/^ry). In the latter case

(5.48)

This tells us that this case is the same as that with I'e !,,!€/', «+1^1', which
has already been dealt with. Thus we can restrict attention to the case SiCi(rf}
ci(siV)i when the equations (5.11) reduce to the equations (5.12). Obtaining the
analogue of (5.45) but for Ai\{ty(~s^rj/a) etc. we find, for j ^ i,

äwifo) X{I\{t}('s^i/a)AI\{l}(-s-fi/a)ÊI\{l}(-sifi/a)

while

%,«(,) 0-

By virtue of (5.25) these equations are consistent with (5.13).

This completes consideration of the choices of v (5.28) in all four cases (5.20).
In each case it was found (5.13) satisfies the recurrences (5.11), thereby completing

the demonstration that for general v (5.13) satisfies (5.11). Since the other
fundamental recurrence (5.6) has also been shown to be satisfied, as has the initial
condition, our inductive proof is complete.

6. An equivalent expansion formula

The formula (4.10) is the non-symmetric analogue of the Pieri formula (1.1) in
the case p 1. Here we will use this result and the formula (3.5) to derive the
analogue of (1.1) in the case p N — 1.

First we note that in the case p N — 1, analogous to the case p 1, the
set 3n,p appearing in (3.7) and (3.9) can be indexed by subsets / {ti,... ,ts} of
{1,..., N} with t\ < ¦ ¦ ¦ <ts. Each such subset corresponds to the element

v =: ci(r\)

where

ti VtB,

(c/(??))t„ =%„_!+1, m 2,..., s

=Vk + l, k£I (6.1)

(cf. (3.18)). Furthermore, to avoid duplication within the set Jn,n-i, as with the
description (3.18) of J^i, we must restrict / to maximal subsets with respect to
1], in this case specified by the requirements

Vj 7^Vts ~ 1, j 1, •••,*! - 1

Vj7^Vtu, j =tu + 1, ...,tu+i - 1 (6.2)
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for u 1,..., s with ts+i := N + 1. With this définition of maximal, analogous
to (3.22) we define

I,; {/ : / is maximal with respect to rf\.

According to (3.5)

Now c[^(lJV) is non-zero only if r\ + (lN) c/(z/), / G J„, ji G /. With /
{ti,... £s} we see from (3.18) that r\ + (1N) ci{v) gives

Vt, vh+1 - 1, j l,...,s - 1

% z/»- - 1, i<£I (6.4)

while from (3.20) the condition / G Iu gives

% ^ %„ j t« + 1, • • •, tu+i - 1 (6.6)

for u 1,..., s with tjy+i := N + 1. These are precisely the equations (6.1) with
v := ci{rj) and the equations (6.2) for / G J^, so we conclude

iff v c/(i

It remains to substitute for the explicit values in the right hand side of (6.3).
With t) + (lN) c/(z/), /eJ, and thus v c/(?y), / e j, we read off from (4.12)
and (2.9) that

drjev

where use has been made of the facts that Afv 7V^_|_(ijv) and X/ + c)/a)
XjJl) (rj/a) etc. for
(2.6) and (2.2) that

?1 (rj/a.) etc. for any constant c. This further simplifies by noting from (2.7),

1

y,N (- \ ]\T\

while (2.8) together with (5.31) and (2.2) implies

N

°" 3=1

Substituting these formulas in (6.7) gives

cT(v), / G 1, (6.8)
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(cf. (5.14)).
As in the derivation of (4.8) from (4.6), if follows from (6.8) that

eN^{z)En{z) -a-!- > —^ E&l{r)){z). (6.9)
a "()

7. The coefficient Affl of the Pieri type formula for general p

In this final section we will consider features of the coefficient Afftl in the expansion

(3.9) for general p. Our first result concerns the value of A^l for a particular value
of v. Denote by A4 the set of all sets of the form \j\,..., jp | 1 < j\ < • • • < jp < N}.
For a given Me Ai, let

Xm ((xm)i, (xm)2, • • •, (xm)n) where (xm), j Q' otherwise

and note that the pth monomial symmetric function can be written

ep(z)
MeM

Let M* be the particular member of A4 such that

f] + Xm <! 7] + xm*

for all M ^ M*. Noting from (2.5) that the coefficient of zri in Ev(z) is unity and
all other monomials are smaller with respect to the ordering <, it follows that we
must have

Moreover, with

/;({) := #{fc < i\r]k > w} + #{fc > i\nk > ru}

it follows from the définition of < that

rh + 1, l'r,(i)<p-l f79)
w>p (7-2)

The result (7.1) suggests an alternative way to write A^l in (3.9) for general
v. To see this, first observe that associated with (7.2) are the sets

Go := {{ G {1,..., N} : /;(») > p}, G, := {» G {1,..., N} : /;(») <p-l}.
(7.3)

An alternative characterization follows by noting that since r\ Ç r\ + xm* we have

r\ -< r\ + xm* and so from the définition of ¦<, for v 7] + xm*

Go :={i€{l,...,N}: v<3) -qj}, Gx := {{ G {1,..., N} : i/w(J) ^ + 1}.
(7.4)
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Let us now put

(7 5

Then it follows from the definitions (2.7) and (2.8), together with (7.1), that

d(p) TT Vj-Vk + l\f -r-r fjj - fjk + a - 1

B { 11 { 11

In the case p 1, comparison with the expression

which follows from (4.12), (4.7) and (7.5), we see that as written (7.6) is in fact
valid for all v c/(?y) with / consisting of a single element t\. More explicitly, we
then have

1

AI(r]/a) a(r]t1/a-l,r]t1) (7.8)
a

ti-l N

t-l

the factor (7.8) cancels with —a in (7.7) while the two products (7.9) correspond
with the two products in (7.6) respectively. The structure exhibited by (7.6)
suggests an extension with the property that for p 1 there is agreement with
(7.7). The extended form is

bCp) f TT Vj-Vk + 1\ f TT Vj-Vk+a-'

n
valid for p 1 and v ci(rj), I G J^.

The significant feature of (7.10) is that in the general p case, with v c/(?y) G

JjviP and / such that at most one part of r\ in the formation of v according to the

prescription below (3.16) move downwards, explicit small N calculations indicate
it remains valid. However we have no proof of this empirical observation.
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