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In memory of my wife Kuralay and son Arman

Abstract. The N-commutator
sN(X1,..., XN)= Y signo Xoay - Xon)
ceG N

is conjecturally a well-defined nontrivial operation on W(n) = Der K|z| for z = (21,...,2y) if
and only if N = n? + 2n — 2. This is proved for » = 2 and confirmed by computer experiments
for n < 5.

Under 2- and 5-commutators the algebra of divergence-free vector fields in two dimensions is
an sh-Lie (strong homotopic Lie) algebra in the sense of Stasheff. Similarly, W (2) is an sh-Lie
algebra with respect to 2- and 6-commutators.
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1. Introduction
1.1. Notations

Let K =R or C. By Z, we denote the set of nonnegative integers.

Let U = K[z] for z = (x1,...,2y,) and W(n) = Der K[z] be the Lie algebra
of polynomial vector fields and Diff(n) = Sy(W(n)) the associative algebra of
differential operators with smooth or polynomial coefficients. When Diff(n) is
considered with the commutator rather than juxtaposition as the product, we
write Diff(n); other products will also be used.

A vector space A is called a k-algebra with multiplication w and denoted A =
(A,w), if w is a polylinear map A® ---® A — A with k > 2 arguments. Usually,
multiplication is as a bilinear map and instead of w(a,b) one writes aob or a - b.
In such cases we will call A just algebra and write A = (A,0) or A = (A4,-).
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1.2. W(n) with right-symmetric multiplication

On W (n), let o be the multiplication (9; = 9/dz;)
ud; 0 vd; = v0;(u)0;.

Recall that the multiplication o is right-symmetric if it satisfies the right-symmetric
identity
(X1, X2, X3) = (X1, X3, X2),

where
(Xl,XQ,Xg) = X1 o (Xg OXg) = (X1 OXQ) OXg

is the associator. Right-symmetric algebras are called also pre-Lie, Vinberg, or
Vinberg—Koszul [1], [12], [17].

Main example. (W(n),o) is right-symmetric.

Observe that usually the action of a vector field on a function is denoted by
X(u), but considering right-symmetric algebras (W (n), o) and the associated Lie
algebras we denote such action by (v)X. Therefore, the commutator given above
for W(n) and the commutator in the Lie algebra obtained from right-symmetric
algebra (W (n), o) differ by a sign.

1.3. Problem formulation

The subspace W (n) C Diff(n) is not a subalgebra with respect to composition. If
X = u;0;, Y = v;0; are differential operators of first order, then their composition

X Y= vjaj(ui)ai + ’U;i’l)jaiaj

is a differential operator of second order. It has nontrivial quadratic differential
part u;v;0;0;. But W(n) C Diff(n) is a Lie subalgebra: it is closed under commu-
tator since 9;0; = 0;0;. This well-known fact has the following interpretation in
terms of skew-symmetric polynomials. Let &, be a permutation group. Let

sE(t1, ... tg) = Z sign oty 1y - to(r)
oGy
be the standard skew-symmetric polynomial. Then instead of ¢; we can substitute

any differential operator from Diff(n).
Clearly, s2(X,Y) = [X,Y] € W(n) for any X,Y € W(n). Does there exist k >

2, such that s, is also a well defined operation on W(n)? Since X; = > ;05,1 =
j=1

1,2,...,k, are first order differential operators, X, (1) - -+ Xo(z) is, in general, a k-th
order differential operator and so is si (X1, ..., Xz).

Surprisingly, for some special k = k(n) it might happen that all higher degree
differential parts of si(Xy, -+, Xg), like quadratic differential part of s9, can be
cancelled for any Xy, ..., Xy € W(n), but the first order part remains.
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Let us consider W (2). We prove that sg is a well defined non-trivial 6-linear
map on W(2) :

s6(X1,...,Xg) € W(2) for any Xy,...,Xs € W(2),

and

s6(X1,...,Xg) #0 for some Xy,...,Xge€ W(2).
The number 6 here is unique:
sp(Xyq,..., Xg) =0, forany Xy,...,X; € W(2) and any k > 6

and sg(X1q,..., Xg) has a non-trivial quadratic differential part for some Xy, ...,
X, € W(2) and any 2 < k < 6.

Consider S(2) C W(2), the Lie subalgebra of divergence free vector fields. We
will prove that on S(2) the unique analog of the above is the 5-commutator:

s5(X1,...,X5) € 5(2) for any Xy,...,Xs € 5(2)

and
s5(X1,...,X5) # 0 for some Xi,..., X5 € S(2).

Moreover,
k>5= s;(X1,...,Xg) =0 for any Xq,..., Xi € 5(2).

If 2 < k <5, then s;(X1,...,Xg) has a non-trivial quadratic differential part for
some Xi,..., X, € 5(2).

So, the vector space W (2) can be endowed with a Lie algebra structure with
respect to sg, usually denoted by [, ], and the 6-commutator sg. Similarly, S(2)
can be endowed by a structure of Lie algebra under 2-commutator s and the
5-commutator ss. These commutators have the following nice properties.

1.4. 5- and 6-commutators and right symmetric products

Let A =W(2) or S(2) and X,Y, X1, X5,... € A. It is well known that the right
adjoint representation ad X, defined by (Y)ad X = [Y, X], for any X,Y € Ais a
derivation. The commutator [X, Y] can be represented in terms of right-symmetric
multiplication: XY —-Y - X = XoY —Y o X. These facts have analogies for 5-
and 6-commutators.

The following Leibniz rule holds: for any X, Xi,..., X5 € S(2) we have

(X, s5(X1,. ., X5)] =) s5(Xu, ., X, [X, Xl Xiga, 0, Xs).
i=1

To calculate the 5-commutator of Xi,..., Xs, one can use right-symmetric
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multiplication:

Z sigho X, (1) - Xo)  Xo(3) - Xow@) - Xo(5)
oGy

= > signo (Xeqy © Xo@) © Xog@) © Xo1)) © Xog)-

[ ASIGT
In other words,
85()(17 .. .,X5) = SgSym'T(Xh e 7ng,) for any X4,..., X5 € 5(2)

Usage of right-symmetric multiplication simplifies calculation of 5-commutators.
The 5-commutator satisfies the following 4-left commutativity identity:

Z sign o s5(X o1y, Xo2), Xo @), Xo), $5(Xo(5), Xo(6)) Xo(r), Xo(8), Xo0)) =0
ceGs

for any Xo, X1,...,Xs € 5(2).
Similar results are true for 6-commutator. One can calculate 6-commutator by
right-symmetric multiplication:

Z sigho Xo(1) - Xo2) - Xo3) - Xo@) - Xo) - Xo(6)
ceBGg

=) signo (Xo(1) © Xo@) © Xo@) © Xo@) © Xogs)) © Xogs),
ASCT
for any Xy,..., X¢ € W(2). The 6-commutator is 5-left commutative:
Z sign o s6(Xo(1), Xo(2), Xo(3): Xo), Xo(5),

ceGo
36(Xo(8), Xo(r): Xo(8): Xo(0), Xo(10), X0)) =0

for any Xo, X1,...,X10 € W(2).

A property that the 5-commutator on S(2) has, but the 6-commutator on W (2)
does not, is as follows. It is not true that the a composition of adjoint derivations
is a derivation. Well known that ad is a Lie algebra homomorphism:

[ad X,adY] = ad[X,Y] forany X,Y € W(n).

In general, it is also false that s;(ad Xq,...,ad X},) is a derivation. However, for
S(2) and k=5 it is:

ss(ad X1,...,ad X5) = ad s5(X1,...,X5) for any Xy,..., X5 € 5(2).
A similar result for a 6-commutator is no longer true. For example,
F = sg(ad dy,ad 0y, ad 2101, ad 2201, adx10s, ad 2905) € End W(2),
as a linear operator on W (2) is defined by

(u181 + ’IJ,QaQ)F = 6(8182(’11,1) -+ 65(7@))81 — 6(8% (’11,1) -+ 6162(u2))82.
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We see that I has nontrivial quadratic differential part, so it is not even a deriva-
tion of the Lie algebra (Vect(2),[, ]).

Note also the following relation between 5 and 6-commutators and divergences
of vector fields:

8
s6™ (X1, .., Xe) = D (1) (Div X;) s (X1, ..., Xy, -, Xe),
i—1
for any Xi,...,Xs € W(2). Here one can change on the right hand s;"™" to sz,

despite of the fact that sz is not well defined on W(2).

The quadratic differential part of the 5-commutator can be represented as a
sum of three determinants (see lemma 7.4). All quadratic differential terms of s5
are cancelled in taking alternative sum:

6
Sgsym.r(Xl, FEY 7X6) = Z(—l)“rl(DiVXi) S5(X17 perg .7X¢, ceey X6)7
i=1
for any Xi,..., Xs € W(2). Recall that ss = s5™™" on W(2).
Notice that here 6 and 5 can not be changed to smaller numbers. For example,

35(01, 02, 101, 201, 102) — Div(2101)84(01, 02, 2201, 102)
— 30,0, £ 0.

Notice that these results, valid for 5 and 6-commutators, are not valid for lower
degree commutators. Namely, s3, s4 for S(2) and ss, s4, s5 for W(2) have no such
properties. One can state some weaker versions of these statements.

Let gl, K? be the semi-direct sum of gl, and the identity module. For exam-
ple, if k = 3,4,5, then

k
[X7 stym'r(xh * o 7Xk)] - Z stym'T(Xh SERT Xi*l? [X7 X’L]7 Xi+17 * o 7Xk)

i=1

for any X € gl, DK?, and X1,..., X, € W(2).

1.5. Strongly homotopic (sh-) algebras, n-Lie algebras, and (n — 1)-left
commutative algebras

For vector spaces M and N set TH(M,N) = Hom (M®k N) if k& > 0, let
TOM,N)= N and TH*(M,N) =0 if k < 0.

Let T*(M, N) = @;T*(M, N). Let AFM be the k-th exterior power of M. Set
CH(M,N)=Hom (A*M, N) C T¥(M,N), let C°(M,N) = N, and C¥(M, N) =0
if k< 0. Set C*(M,N) = @C*(M,N).

Let Q = {wq,ws,...} be a set of polylinear maps w; € C*(A, A). Let (A4,Q)
be an algebra with vector space A and signature Q [13] which means that A is
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endowed with the 7-ary multiplication w;. Call A an Q-algebra and in case where
Q= {wl} set A = (A7 wi).
An algebra (A,w) is called an n-Lie [8], Filipov or Nambu algebra, if

W@ty .oy On_1,w(Gn,...,6m_1)) =

n—1

Z w(a”’M st (.d(a17 sy Gn—1, an+i)7 (RS PR a2n71)§
=0

(A,w) is (n — 1)-left commutative if

Z Signgw(aa(1)7 0 5 g aa(nfl)yw(aa(n% <oy Qo (2n—2), a2n71)) =0,
cEGan—2

and n-homotopy Lie if

Z Signaw(ao’(l)v sy Ao (n—1)s w(aa(n)7 <o Qg (2n—2), ao’(2n71))) =0,
cEGan—1

for any a1,...,a9,_1 € A.
Finally, an algebra (A, ), where Q = {wy,ws, ...} is called a strongly homotopy
Lie or sh-Lie [14], if

> (1) Visign o w(wi(ao(1)s - - - » B (i))s Qo (itt)s - - - » Ao (itg1)) = O,
itj=kt1, i,j>1

for any k =1,2,..., and any ay,...,a;4;-1 € A.

In particular, an n-homotopy Lie algebra is an sh-algebra if € consists of only
one non-zero multiplication, wy,.

Suppose now that Q consists of two elements wy and w,,. Then the condition
that (A, Q) is sh-Lie means that (A, ws) is a Lie algebra, (A, w,) is a n-homotopy
Lie and wy, is a n-cocycle of the adjoint module of the Lie algebra (A, ws).

In [5] it is established that, over the field of characteristic 0, any n-Lie algebra
is (n—1)-left commutative and any (n—1)-left commutative algebra is n-homotopy
Lie. Here we prove that (S(2),ss) and (W (2), sg) are 4- and 5-left commutative,
respectively. Hence, (S(2), s5) 4s 5-homotopy Lie and (W(2), sg) 4s 6-homotopy
Lie.

The algebra S(2) endowed with multiplications w1y, we, ws, .. ., such that w; = s;
for i = 2,5 and w; = 0 for ¢ # 2,5, is an sh-algebra. In particular, ss is a 5-cocycle
of the adjoint module of the Lie algebra S(2). Moreover, the following relations
hold for any Xi,...,Xs € S(2):

> ()X, X)L X Xy X
1<i<j<6
3 (1Y%, ™ (X, Xiy ., Xe)] =0.
1<i<6
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1.6. Primitive commutators

For any two vector fields their commutator is once again a vector field. One can
repeat this procedure k — 1 times and construct from any k& vector fields a new
vector field. This can be done in many ways. One can get a linear combination
of such commutators. So, in general there are many ways to construct invariant
k-operation on S(n) or W(n). We call the invariant operations obtained in such
ways standard. Call any k-linear invariant non-standard operation on W (n) or its
subalgebra a primitive k-commautator. We prove that the 5-commutator and the
6-commutator are primitive.

S(2): Any divergence free vector field in two variables can be represented in
terms of the generating function « as a Hamiltonian vector field

Hu == 81(%)82 — ag(u)al

Let w = (uy,u9,us,us,us), and Du = (Duy, Dug, Dus, Duy, Dus) be term-wise
derivative along the field D; let 019 = 9105. Set

81u
agu
[u] = det | O%u
algu
d3u

We find that the formula for the 5-commutator on S(2) is rather simple:
85(Hu1 ) Hu27 Hu;w HU47 Hu5) - _SH[u] .
W(2): Let X; = w; 101 + u; 000 € W(2) for i = 1,...,6. We will show that

the 6-commutator sg(X1, ..., Xg) can be presented as a linear combination with
integral coeflicients of fourteen 6 x 6 determinants of the form

U] UL UL UL ] U5 UG
U1 Uz U2 Uso Us2 Us2 | O
* ok k% k%

where i = 1,2. The exact formula for 6-commutator is given in theorem 11.1.

I know similar formulas for n» = 3 and 4. Perhaps, in better notations, they can
be presented as understandable ones, but at the moment they look too lengthy
and incomprehensible.

1.7. Related results

Left identities of W (n) as a right-symmetric algebra was considered in [4]. There
are many works about identities of W (n) as a Lie algebra (see references in [15]).
Identities of W (2) as a Lie algebra was described in [11].
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2. Main results

Theorem 2.1. Let N = n? + 2n — 2. Then

(i) s = .Y on W(n), for any k > N. In particular, sy is well defined on
W(n), if k> N.

(ii) s = 0 is an identity on W (n) for any k > N + 1.

(iii) (W(n),sn) is (N — 1)-left commutative. In particular, (W (n), sy) is N-
homotopy Lie.

(iv) ad X € Der (W(n), si) for any X € W(n) and for any k > N.

(v) ad X € Der (W (n),si) for any X € W(n) such that 9;0;(X) = 0,4,5 =
1,...,n. Here k is any integer > 0.

Theorem 2.2. (i) s5 # 0 on S(2).
(ii) s5 s a 5-commutator on S(2).
(iii) sg = 0 is an identity on S(2).
(iv) 5-commutator sg on S(2) is primitive.
(v) s5 = 8™ on S(2).
(vi) ad s5(X1,...,X5) = ss(ad X1, ...,ad X5) for any X1,..., X5 € S(2).
(vii) (S(2),s5) is a 4-left commutative algebra.
(viii) (S(2), {s2, s5}) 4s an sh-Lie algebra.

Theorem 2.3. (i) sg 0 on W(2).
(ii) sg 4s a 6-commutator on W (2).
(iii) sy = 0 is an identity on W(2).
(iv) 6-commutator sg on W (2) is primitive.
(v) s6 = s5/™" on W(2).
(vi) For any X4, ..., X € W(2),

s6(X1,..., Xe) = D _(—1)"MDivX; s5(Xy,..., X;, ..., Xe).

(vii) (W(2), s6) is a 5-left commutative algebra.

(viii) (W (2), {s2, s6}) is an sh-Lie algebra.

A natural question arises: Is it possible to construct nontrivial N- commutators
on W(n) for n > 27 If N =n?+2n—2, then sy is a well defined N-commutator
on W(n),n > 1 (theorem 2.1, (i)).

Conjecture. sy(X1,...,Xn) #0 for some Xq,..., Xy € W(n).

We have checked this conjecture by a computer for n = 2, 3, 4.
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3. k-commutators by right-symmetric multiplications

The aim of this section is to prove that for any n there exists N = N(n) such that
for any k > N, s, = 5. on W(n).

3.1. The Lie algebra of polynomial vector fields

By setting degz; = 1 for all ¢ we endow U with the standard grading U = @,>0U;
and a filtration Us = @, Uy, so

U=U 22U DU D ---.
These grading and filtration induce a grading and a filtration on L = W (n):

L= @5271]457 Ls = <xa8i | a e F;:7 |a| =s+1,i= 17~~~7”>7
L=L1DLy DL D, Lp=®:>iLs.
These grading and filtration are compatible with the right-symmetric multiplica-

tion:
LsoLy C Ls+k7 LsoLy C £k+57

for any k, s > —1. In particular, they induce grading and filtration on W(n) as a
right-symmetric algebra and as a Lie algebra.
Since W (n)"s¥™ is graded,
LooLs C L for any s > —1.
In particular, Lo is a right-symmetric subalgebra of L = W (n)"*¥™. Hence, it is a
Lie subalgebra of W(n); clearly, Ly C W (n)"*¥™ is associative and isomorphic to
the matrix algebra Mat,,, whereas Lo C W (n) as a Lie algebra isomorphic to gl,,.

3.2. D-invariant polynomials

Let f = f(t1,...,%x) be an associative noncommutative polynomial,
f= Z X85 iy 7357803
Ry
i.e., f is a linear combination of monomials #;y = t;, ...%;, where 41,...,4 run
through elements 1, ..., k, possibly repeated. Later on we replace ¢; with elements

of some 2-algebras. Since our algebras may be non-associative, we assume that
every monomial ¢(;y has a left-normed bracketing, i.e., ¢y = (- -+ (3,3, )ts,) - ),

Let A = (A,0) be an algebra with multiplication o. Suppose that B is a
subspace of A. Since f is a linear combination of monomials of the form #;y, one
can substitute instead of ¢; elements of B and calculate f using the multiplication
of the algebra A. So, we obtain a map fp : B® - - ® B — A defined by

fB(b17"'7bk) :f(b177bk)
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Sometimes we endow A by several multiplications. In such cases, we will write
fp instead of fp when A is considered with multiplication o. Notice that B may
be not closed under multiplication o. Whenever it is clear from the context, we
reduce the notation fp to f.

We endow the space of differential operators Diff(n) by three multiplications: -,
oand [, ] stand for composition, right-symmetric multiplication and commutators.
We will sometimes write fW(n) = f and fYC/)V(n) = frevmer,

Define a multiplication e : Diff(n) ® Diff(n) — Diff(n) by setting

ud® o v0® = Z (ﬁ>v8ﬁ7(u)8°‘+7, for any o, 3 € Z7}..

YEZY yF#0 4

Let us extend the right-symmetric multiplication o from the space of first order
differential operators to the space of all differential operators by setting

ud® 0 v0” = vdP(u)0*.

Let D = L_;. A polynomial f = f(t1,...,tx) or, more precisely, fpig(n), D-
invariant if
k

(X, Xe) 0] = 3 F(X, o, Ko, (X, O], Xaya, -, X)

s=1

for any Xi,...,X, € Diff(n) and i = 1,...,n. Here we do not specify what
multiplication in Diff(n) we use in the calculation of fpig(,) because

[X,0]=X -0; —9;- X =X 00; —9; 0 X, for any X € Diff(n).

By this observation, D-invariance of fbiﬁ(n) and fBiH(n) are equivalent notions.

For X = > «,0% € Diff(n), where u, € U, set
QCT—+

| X | = the highest degree with respect to d

and
[|X|| = the lowest degree with respect to 9.

Obviously,
X + Y] >min{|X],[Y[}, [|X+ Y] <max{||X]|,[|Y]]} for any X,Y € Diff(n).
For any X,Y € Diff(n) we have
X-Y=XoYt+XeY, |XeV|>|X|ifXeY 0. (1)
Lemma 3.1. Let Xy,..., X, € Diff(n) be such that | X;| > s foranyi=1,2,...,k
and ||sk(X1, ..., Xp)|| < s. Then
sk(X1, ., Xig) = pro(s”™ " (X, X)),

where prs is the projection onto the space (ud® | o € ZI7, || = s).
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Proof. By formula (1) we can express the composition X,(1)-...- Xy(z) as a linear
combination of elements of the form X/ = (... (X,1)0Xo(2)) - - .) 0 X5 (1), without
any e, and elements of the form X! = (... ((X,q) * X5(2))...) * Xo(ky, Where
* = o or e and the number of the o’s is at least one. Notice that | X e Y| > |X| if
| X @ Y| # 0. Therefore,

| X/ > s, if XJ#0.

Since
sp(Xe,...,Xp) = Z XL X2
ceGy
[|sa( X1, ..., Xp)|| < s, ‘ Z signo X' | > s, ‘ Z signo X| > s,

ccBy ccBr

it follows that
sk (X1s o, Xl = [s6( X1, .., Xi)| = s

and
Sk(X17 : ..7Xk) :pTS(SZSym'T(Xh e ,Xk))

Corollary 3.2. Suppose that s, (X1,...,Xi) € W(n) forany Xy, ..., X}, € W(n).
Then

Sk(Xl, 5% 7Xk) = SZSym'T(Xl, T 7Xk)

Lemma 3.3. Let s, = 579" on W(n) and D a derivation of (Diff(n),-) that
preserves W(n). Then D is a derivation of the k-algebra (W(n), s;"™"), i.e.,

k
D(sp™ (Xy, ., Xk)) = sy ™ (X, Xicy, D(XG), Xign, -5 Xa)
i=1

for any Xy, ..., Xy € W(n).
Proof. We have
PETE A & CTRS £ |

(corollary 3.2)
= D(sg(Xy, ..., Xi)) =

(since D € Der Diff(n))

- Zsk(Xh iws )Xi71>D(Xi)7Xi+17 ¥4 § 7Xk)
i=1

Since D(W (n)) € W(n) by hypothesis,
Sk(X17 e CEE ¥ D(Xi)7Xi+17 °r .7Xk) & W(?’L)
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for any X4,..., Xy, € W(n). Thus by corollary 3.2,
sp( X, .o, Xio1, D(X3), Xiv1, oo Xi)
=5, " (X, oo, Xim1, D(XG), Xigt, - Xi)-
Hence, for any Xy, ..., X;, € W(n) we have

k
D(s™ (X, ., X)) = D si ™ (X, o, Xy, D(XG), X, X,
=11

Corollary 3.4. Let s, = s.°Y""" on W(n). Then for any X € W(n) the deriva-
tion ad X generates also a derivation of (W(n),s;”Y"™"). In particular, ad X is
a derivation of the algebra (W (n), sp2i0n_2). Similarly, ad X is a deriwation of

(S(2), s5) for any X € S(2).

4. How to calculate L_;-invariants
4.1. (L,U)-modules

Let L =W (n) and U = C[zy, ..., zy] with the standard grading and M a graded
L-module. The subspace of L_j-invariants, My = MY~ = (m € M | (m)8; = 0),
has a natural structure of an Lo-module. Make M; into an Lo-module by setting
LMy = 0. Call the Lo-module My the base of the L-module M.

Let M an (L, U)-module, if M is a right U-module such that

(mu)X = mu, X] + (mX)u, for any me M,ue U X € L.

Let M be an (L, U)-module. Call M an (L, U)-module with base My = M1
if M, as a U-module, is a free module with base M,.

The main construction of (L, U)-modules ([16]) is the following. Let My be an
Lo-module such that MyLq = 0. Set

M = Hom7 ¥ (U(L), Mo) ~ U & M.

Clearly, M = T?°" (M) is the space of tensor fields with polynomials coefficients
with fiber M.

Examples. U = TP (K), where K is the trivial Lo-module, is the space of func-
tions; (L, U)-module L itself has base L_1, the dual to the identity representation
of Lo.

If L = S,_1, then the adjoint module has no structure of an (L, U)-module.

We will use realization of (L, U)-modules given in [2]. Notice that our construc-
tion is general than Rudakov’s construction. For example, in case of two-sided Witt
algebras (L, U)-modules in our sense can not be obtained as a co-induced modules.
The algorithm how to calculate L_q-invariants [2] is given below.
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4.2. Escorts and supports

Let ¢, = (0,...,0,1,0,...,0) € Z™ (all coordinates except i-th are 0). Let £ be
the root system on W (n) with respect to Cartan subalgebra spanned by {z;0;|i =
1,...,n}and at,...,af € £ Then

n

So, we can identify any root with n-tuple @ = (a,...,an) = Y, o€, where
i=1

-1 <, forall i =1,...,n. For a € £ denote by

Lo = (x°t%8,)i =1,...,n)

its root space.
Assign to any ¢ € T*(L, L) a polylinear map esc(¢)) € T*(L, L_1), called the
escort of 1, by the rule

ese (w)(Xh .- >Xk) = ¢(X17 @ & '7Xk)7
1 k

if X; € Lyi, and o' 4+ - 4+ af = —¢, for some s = 1,...,n. Here al,... o are
some roots from &. If a! + .-+ of # —e¢, for any s € {1,2,...,n}, then set

esc (¢P)(Xq,..., X)) =0.

So, having defined esc (¢)(X1, ..., Xg) for root elements Xi,..., X we extend
esc (¥)(X4,...,Xy) by polylinearity to any Xi,...,X;. We see that esc(¢)) €
T(L,L_4) if and only if ¢ is of degree 0.

Observe that —e, can only be represented as a sum of k roots in finitely many
ways. Therefore, the space

Supps = @041,4..,o¢k€€,o<1+..4+ock:—es LOzl X ® Loz’“:
called the s-support of 4 or just s-support, is finite dimensional for any s &€
{1,...,n}. Call
SUpp = @ 1Supp;

the support. So, the escort of any D-invariant &-graded map ¢ € T*(L,L) of
degree 0 is uniquely defined by the restriction to its support.

Let V(L) be the monomial basis of L = W(n) consisting of the vectors of
the form z%d;, where oo € Z" and 7 € {1,...,n}. Denote by V the basis of supp

obtained by tensoring the basis vectors of V(L). We will write (ay, ..., a;) instead
of a1 ® -+ ® ag. So,

V= U?Zl %7
where

Ve=A{(a1,...,ar) | €V (Ly), o' €&, where o' +...+a" = —¢,,1=1,...,k}.
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As was shown in [2], any &-graded D-invariant map can be uniquely recovered
by its escort. Namely,

O(Xy, LX) = Y Eay(X1)o Eay(Xi)esc () (ay, .. ak),  (2)
(a1,...,aR)EV

where
9%(v)

ol

Eyap, (v0;) = 055

4.3. Cup-products

Given an algebra A with multiplication %, define the cup-product on the space
T*(A, A) by setting

Y — ¢(a1,...,0541) = Z Sign o Y(ag(1y; - - -5 Go(k)) * P(Co(kt1)s - - - > Go(kti))
ccGr,
for oy € T*(A, A) and ¢ € T'(A, A) then define ¢ — ¢ € TFT(A, A), where
Gpi={0e€Gu|ol)< - <alk), olk+1)<---<alk+1}.

Suppose that A has an associative multiplication - and a right-symmetric mul-
tiplication o. Denote by -~ and - cup-products induced by multiplications - and
o correspondingly.

If B is a subspace of A then one can consider cup-products

1 C*(B, A) x C*(B, A) — C*(B, A).

We use the cup-products for A = Diff(n) and B = W (n) or S(n). Sometimes
the cup-product of ¢» € C*(A, B) and ¢ € C'(A, B) lies in C**/(B, B). Such
fortunate situations occur in calculating of sy, for sufficiently large k + L.

5. Sufficient condition for a D-invariant form with skew-symmet-
ric arguments to be zero

Lemma 5.1. Consider the following problem of linear programming

=1, 0<z; <, i=-1,0,...,m—1,
=1
¢ m
fla_1,z0,.. . 2m) = > iz; — min
i=—1

Then



530 A. S. Dzhumadil’daev CMH

and this value is attained for x_1 =l 1,20 = lo,. .., Zm—1 = l;m—1 and z,, =
m—1

r— E ll
i=—1

m—1
Proof. Since z,, =r — > z;, it follows that

i——1
m—1
f($_17$07 4 58 -7xm) =mr— Z (m - Z)xl
i=—1
Thus,
m—1
f($,]_,$0,...,$m) <mr— Z (m _z)lz
i=—1
and the inequality can be converted to equality if z; = [;,¢ = —1,0,...,m — 1,
m—1
and zp, =7 — >, L

=il

Theorem 5.2. Let A = @;>_1 A; be graded algebra, D = A_y, and M = @;>qM;
be D-graded module,
A*lMi g M’L‘*ly { Z q,

such that AP = A_y and MP = M,. Suppose that ¢ € T*(A, M) is a O-graded

polylinear map and skew-symmetric in r arquments. Let ig be number such that

Z dim 4; <r < Z dim A;.
If
ktq<r(io+2)— > (io+1—i)dim 4;
—1<i<io

and 1 is D-invariant then ¢ = 0.

Proof. We prove that esc (¢) = 0. Suppose that it is not true and ¢ # 0. Then
there exist homogeneous ai,...,ar € A such that ¥(ay,...,a;) # 0 and |a1| +
-++ 4 |ag| is minimal. We have

YeTHA M)?P =

Oiplas, ..., ar) = Y _w(as, ... aj-1,0(a;), aji1, ..., ax).

=

—

As |ai| + ...+ |ag| is minimal with property ¢ (a1, ...,ax) # 0 and
lar] + -+ lag] > far] + - - a1+ |8i(ay)] + |ajia] + -+ lax],
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we obtain that
0+# ¢(ay,...,ax) € MP = M,.

Since ) is graded with degree 0, this means that we can choose homogeneous
elements aq,...,a, € A such that

Y(at,...,a) #0, |ag|+ - +|ag| = [P(a1,. .., ax)| = q.

As 1 is skew-symmetric in 7 arguments, the set {ai, ..., a;} should have at least
r linear independent elements. Denote them by a;,,...,a;,..
Suppose that among a;,, ..., a;, there are [; elements of A;. Then
i>—1

and

do+1
Since r < > l;, from (3) it follows that

i=—1

L,=0, i>ig+1

and
i1
i=—1
So, among elements a;, , ..., a;, there are [_; elements of degree —1, [y elements

of degree 0, etc, [;, elements of degree iy and finally » — ZO: li>r— 202 dim A;

i=—1 i=—1
elements of degree ig + 1. Since |a;| > —1 for any i € {1,...,k}, we obtain that
k r
|¢(a17 e oy ak)| - Z |a”b| 2 (_1)(k - T) + Z |a”is| 2 f(l*17l07 e gy li0+1)7
=l s=—1
where
i0+1
f(lfl7l07"'7lio+1) :r_k+ E Zl’L
i=—1
According to lemma 5.1 and our condition,
i0+1
min f(l—lalOw-wlig«{»l) =r—k+ (Zo+ 1)7" — Z (Zo+ 1 —Z)dlm A; > q.
i=—1

Therefore,
[Y(ar, ..., ar)] > q.
In particular,

1/)(@17 . .7ak) ¢ MD,

which is a contradiction.
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Corollary 5.3. Let ¢ € T°(S(2),5(2)) be a D-invariant 0-graded form with 8
skew-symmetric arguments. Then ¢ = 0.

Proof. Recall that S(2) denotes the subalgebra of W (2) consisting of derivations
with divergence 0. Let A = S(2). Then dim A_; = 2,dim Ay = 3,dim A; =
4, since A_1 = <81,82>, Ao = <$182735181 — $282,$281>7 A1 = <$%81,$%81 —
2[131:17282713%32 — 2131:13281,17%62>. Thus7

In other words, ig = 0 for » = 8. Furthermore, for k = 9,q = —1,r = 8,ig = 0.
We see that

k+q=8<9=r(ig+2)— > (io+1—i)dim A =80+2)—2-2-1-3.
—1<i<ig

Therefore, all conditions of theorem 5.2 are fulfilled and ¢ = 0 for A = 5(2).

Corollary 5.4. Let ¢ € TYH (W (2),W(2)) be a D-invariant form with 10 skew-
symmetric arguments. Then ) = 0.

Proof. Take A = W(2). Then dim A_; = 2,dim Ay = 4,dim A; = 6, since
A,1 = <81,(92>, AO = <:Elaj . Z,j = 172>, A1 = <:Eixj(95 N i,j,s = 1727i S j> For
r=10,k =11, = —1 we see that

dimA,1+dion:2+4§r:10<dimA,1+dimAo+dimA1:2+4+6.
Hence ig = 0, and

k+q=10<12=r(ig+2)— > (io+1—i)dim A, =10(0+2)-2-2-1-4.
—1<i<io

Therefore, by theorem 5.2, ¢ =0 on A = W(2).
Corollary 5.5. s, = 0 is an identity on W (n), if k> n® + 2n.

Proof. Let A =W(n).
We have dim A_; = n,dim Ag = n°,dim A; = n?(n + 1)/2. We see that for
r=k>n’+2n,
dim A_; +dim Ag=n+n’> <r.

Therefore ip > 0. Hence, if ig = 0 then
k+qg=r—1<r4+r—2n—n>=7r0+2)—2dim A_; — dim Ap.
If ig9 >0, n > 1, then 2dim A_; < dim A; and

r(io+2)— > (io+1—i)dim A
—1<i<io
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=r—2dimA_;+ »  idimA;i+(io+D(r— > dim 4;)
1<4<4q —1<i<iq

>r—2dimA_;+ > idimA; >7r—1.
1<i<iq
Notice that s are graded D-invariant of degree 0. Let ) be a composition of
s with the projection onto M =< ud®, |a| = g > . We see that ¢ and M obey
the hypotheses of theorem 5.2, if n > 1.
If n =1, it is easy to check that s3 =0, and s = 0, for any k£ > 3.
So, we have proved ¢ =0 for A = W(n).

Corollary 5.6. Let ¢ € T2"2+4"*5(W(n)7W(n))7n > 1, be skew-symmetric in
7 > (3n2 + 6n — 5)/2 arguments. Then ¢ =0. In particular, (W (n), 8210, 1) is
(n? + 2n — 3)-left commutative.

Proof. Let A =W(n). For g = —1,k = 2n? + 4n — 5,7 > (3n? + 6n — 5)/2, it is
easy to see that ip > 0.
Check that the case 79 > 0 is impossible. If n = 2 then we obtain a contradic-
tion with the conditions
r<k=11

and
dimA_; +dimAg +dimA; =12 < r.

Let n > 2. Then we will have
dimA | +dimAg +dimA; =n+n? +n2(n+1)/2 <r <k=2n%+4n -5,

and
nd—n? —6n+5<0.

For n > 3,

ng—nz—6n+522n2—6n+5>07

and again obtain a contradiction.
So, ip = 0. Then
k+g=2n>+4n—6 <20’ +4n—5<2r —2dimA_; — dim A4,.
Hence, the condition of theorem 5.2 is satisfied. Thus, ¢ =0 for A = W(n).
Notice that 2(n? + 2n — 3) > (3n® + 6n — 5)/2 if n > 1. Therefore, the

(n? + 2n — 3)-left commutativity condition, as a condition for a D-invariant form
with 2(n? + 2n — 3) skew-symmetric arguments, is an identity on W(n).

6. Invariant N-operation on vector fields

Let mq,...,m,_1 are fundamental weights of si,,. Let R(vy) be irreducible si,-
module with highest weight ~.
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Lemma 6.1. The sl,,-module \"~?(R(271)® R(m,_1)) does not contain R(2m, 1)
as a submodule.

Proof. I am grateful to R.Howe for the following elegant proof of this lemma.

One can argue that the full (n —2) tensor power of R(2m1)® R(m,_1) does not
contain R(27m,—1). Indeed, the (n —2) tensor power of this tensor product is equal
to the tensor product of the (n — 2) tensor powers of each factor.

The representation R(2m) corresponds to the diagram with one row of length
two. The representation R(m,_1) corresponds to the diagram with one column of
length n — 1. So, the question then becomes, does the Young diagram with n — 3
columns of length n, and two columns of length n — 1, appear in the indicated
tensor product?

Since the diagram of R(w,_1) has only one column, all of the components of
its (n — 2) tensor power will have at most (n — 2) columns. Since the diagram of
R(271) has only one row, all the components of its (n—2) tensor power will contain
at most n — 2 rows. Now taking the tensor product of these two representations,
we can say that all components of the tensor product will have diagrams which fit
in an I'-shaped region with (n — 2) columns and (n — 2) rows. But the diagram of
the representation we are asking about does not fit in to this region, so it cannot
be a component.

Corollary 6.2. s,2,9, o has no quadratic differential part on W (n).

Proof. Since, as sl,-modules,
L1 2 R(2ry + mp—1) ® R(my) = R(2m1) @ R(my—1),
we obtain an isomorphism of sl,-modules
ALy = AF(R(271) @ R(mn_1)).
Consider the homomorphism of sl,,-modules
Ph,s /\1“"27"[/1 — R(smp_1),

induced by
p(X1 ozl kan27n)

= prs(sk,Diff(n)(alv A ~:8n7x1817 MR xn817 . '7x18’n7 . ~7xnan7 X17 vEeE Xk7n2fn))7

where prs : Diff(n) — (0% : || = s) = R(sm,—_1) is the projection map.

Since A"L_1 ® AP’ Lo = C, it is clear that p,2. 9, 52 should give a homomor-
phism of A" 2(R(71)® R(my +7,_1)) to R(27,_1). By lemma 6.1 this homomor-
phism is trivial. Thus,

5n2+2n72(X17 $1E5 Xn2+2n72) € W(n) for any Xq,..., Xn2+2n72 S W(’I’L)



Vol. 79 (2004) N-commutators 535

Lemma 6.3. If k =n>+2n—2 and k = n’> +2n—1, then sx(X1,...,X;) € W(n)
for any Xq,..., X, € W(n).

Proof. For k = n? + 2n — 2 this follows from corollary 6.2. For k = n? 4+ 2n —1 we
see that esc(sy) has support A"L_| ® A "1Lo® A" 1L and sk(01, ...y On,ay,

vy Ap2 1, X1, ..y Xno1), where ay,...,an2 1 € Lo, X1,...,Xn—1 € Ly, never
gives quadratic terms, as

|8k(817 N 737“(117 .. .7an,17X17 .. .7Xn,1)| = —1.

7. The quadratic differential parts for k-commutators in two vari-
ables

Let Diffs(n) be the subspace of differential operators of order s, and pr; : Diff(n) —
Diffs(n) the projection.

Lemma 7.1. For any X1,...,X; € W(2),
pm(sk(Xl,...,Xk)) :0,
if 1>2.

Proof. If k > 6 then by corollary 5.5 and lemma 12.1, s; = 0 is an identity. If
k = 6, then sy y(2) has only a linear part. If k& <5 then s, can be decomposed into
a cup-product of so and sx_5. We know that s; can only give differential operators
of first order. So, s3 = s9 — s1 and s4 = 82 — so can give differential operators
at most second order. As far as s; = s3 — s9, the following reasoning shows that
the differential operators of third order can not be represented as s5( Xy, ..., Xs)
for any Xi,..., X5 € W(2). For L = W(2), support for an escort map of pr;ss
with a maximal [ should contain {9y, 92, 2201, a,b, c}, where a,b,c € Lg. Easy
calculations then show that [ <2 if k£ = 5.

Remark. One can prove that if [ > n then pr;(s;(Xy,..., X;)) = 0 for any &
and Xq,..., X, € W(n).

Lemma 7.2.
pra(s3(Xy, Xo, X3))

(z1) Xy (z1) X5 (z1)X3
=—| (22)X1 (72) X2 (z2) X3 |07
A ((21)X1) da((21)X2) a((21)X3)

(

(1) X1 (1) X5 (z1)X3

+| (@)X (z2)X2 (22)
( ( (

X3 8,8,
(1) X2) O1((z1)X

3)
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(z1)X1 (z1)X2 (z1)X3
—| (®2)Xy (22) X (22) X3 | 0109
((22)X1) 92((22)X2) Oa2((22)X3)
(z1) Xy (1) X (z1)X5
+| (22)Xy (z2) X (22)Xs |03,
d1((z2) X1) 01((22)X2) 01((z2)X3)

for any X1, X9, Xs e W

oSS

2).

Lemma 7.3.

pT2(84(X1 ..... X4))
(z0)X1  (z)X2  (2)Xs  (21)X4
Lol (@)X (22)X2  (22)Xs  (22)Xs | o
N ((z1)X1) 01((x1)Xa) 01((21)X3) I1((w1)Xa) |
Oa((21)X1) Oa((21)X2) Aa((21)X3) Da((w1)X4)
(z1)X1 (z1)X> (z1)X3 (z1)X4
_o| (@2)Xi (z2) X2 (72)X3 (z2) X4 9.0,
O1((z1)X1) 01((z1)X2) O1((21)X3) d1((21)X4a)
Do((22)X1) Oa((22)X2) Oa2((w2)X3) Oz((w2)X4)
(z1)X1 (z1)X (z1)X3 (1) X4
| (@2)Xi (w2) X2 (22)X3 (@2) X4 |5 5
01 ((z2)X1) 01((z2)X2) 01((z2)X3) O1((w2)Xa) |7
A ((z1)X1) a((21)X2) Oa((21)X3) Ia((21)X4a)
(z1) Xy (1) X (z1)X3 (1) X4
(z2) X1 (z2) X2 (z2)X3 (z2)Xa | 5o
A1 ((w2)X1) 91((w2)Xa) 91((w2)X3) 01((wa)Xa)|
05((22)X1) Oa((22)X2) Oa((22)X3) Oa((22)X4)
for any Xq,..., X4 € W(2).
Lemma 7.4.
pT2(85(X1 ..... X5))
(z1) X1 (71)X>5 (21)X3 (21)X4 (1) X5
(z2)X1 (z2) X2 (z2) X3 (z2) X4 (22)Xs
= —10:1((z1)X1) 01((z1)X2) 01((z1)X3) 01((z1)Xa) O1((z1)X5) |05
da((22)X1) Oa((22)X2) Oa2((22)X3) Oa2((22)X4) O2((72)X5)
A ((21)X1) da((21)X2) a((21)X3) da((21)Xa) Ia((21)X5)
(1) Xy (1) X2 (z1)X3 (1) X4 (1) X5
(z2) X1 (w2) X (29)X3 (20) X4 (29) X5

B DiVXl DiVXQ DiVXg DiVX4 DiVX5 8182
& ((z1)X1) 9a((21)X2) 2((21)X3) a((21)X4) Ia((21)X5)
A ((z2)X1) O1(( 01((22)X3) 01((22)Xy4) 01((22)X5)

~
~
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(z1)X1 (z1) X2 (z1)X3 (1) X4 (z1)Xs
(z2) X1 (z2) X2 (z2) X3 (z2) X4 (z2) X5
— | 01((x1)X1) 01((z1)X2) d1((x1)X3) 91((w1)Xa) O1((x1)X5) | 53,
9 ((22)X1) 9a2((22)X2) 9a2((22)X3) Da((22)X4) Oa((22)X5)
O1((z2)X1) 01((z2)X2) 91((22)X3) 01((22)X4) O1((22)X5)

for any Xq,..., X5 € W(2).

To prove these statements one needs to calculate their escorts. A sufficient
number of examples of similar calculations will be given below.

8. Exact formula for 5-commutator
Theorem 8.1. Let U be an associative commutative algebra with two commuting
derivations 01 and Oy. Then

s5(D12(u1), D1a(uz), Dia(us), Dia(us), D1a(us)) = —=3D1a([uy, us, us, ug, us)),
for any uy, ... ,us € U, where

Oruyr  Orug  O1uz  Orus  Orus

Ouy  Ogug  Gous  oug  Oous

[u17u2,u3,u47U5] = G%ul a%ug G%ug 8%u4 8%’115
010quy 010ruy O10quz 010uy O10qus

8§u1 a%UQ a%ug 822"LL4 E)§u5

(md Dlg (u) = 81(71,)82 — Bg(u)(‘)l

Proof. By polynomial principle [6] we can assume that U = Z[x1, z2| with 81 = 8—‘21
and 8, = -2

dws *
Let L; be graded components for S(2) = (X € W, : DivX = 0) and a,b,c €
Lo, X € Ly. Notice that
Sgsym'r(aﬁ a7X) = [8@70/] o X + [a7 X] o al =+ [X7 al] ca
= —a00; X +Xoda€ Ly.

Therefore,
35(817 827 a, b7 X)

= —s5"V" " (81,b, X) 0 Ba(a) + 857" (82,0, X) 0 B1(a)
+857"7 (01,0, X) 0 93(b) — 5577 (02, @, X) 0 01(b)
=+4+(bo0d X —X001b)odsa —(bo 3 X — X 0dhb) o dia
+(Xodia—ao0d1 X)odb— (X oda—aodyX)odih
=—(a001 X —Xo0ia)odhb+ (a0 0 X — X 00ga)o b
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F(bohX —Xo0db)odra— (bo X — X 0d9b) o dia
= —a 0|01 X, 9] + [X, Dob] 0 O1a + a o [02X, 01b] — | X, 01b] 0 Oaa
+bo 01X, 0sa] — [X, Dga]l 0 91b —bo [0, X, D1a] + [X, dya] o Dgb.
We see that non-zero components for esc (s5) are
s5(01, 02, xo01, 2101 — x2827x%32) = 60o,
35(01, 09,001, 2101 — 35282,30%81 — 2x1x90) = 601,
s5(01, 827952817951827:1:%31 — 2x1x009) = —60s,
s5(01, ('92,@81795182795%62 — 2x1x001) = —601,
85(01, 0y, 2101 — x2827x1827x§82 — 2z12901) = —60s,
55(01, 9, 101 — X209, 100, 2301) = —60;.
It is easy to check, that
esc (s5™™ ") (D12 (u1), ..., D1a(us)) = —=3pr—y Dia([uy, ..., us]),

for any ui,...,us € C[zy, 23], such that |uq|+ -+ |us| = 11.

It remains to use (2) for D-invariant form s£*¥™" and use lemma 7.4.

9. 5-commutator of adjoint derivations

Lemma 9.1. Let U be {01, 05 }-differential algebra, i.e., an associative commuta-
tive algebra with two commauting derivations 01,04, and S(2) be the subspace of
vector fields without divergence of W (2). Then

ad35(X1, - .,X5) = 35(adX17 N 7adX5)7
for any X4,..., X5 € S(2).

Proof. Consider a multilinear polynomial f with 6 variables defined by

Flto, b1, ost5) = (to)s8%(t1, . ts) = Y signo [ [[to, ton) ta]; -]
ceGy

We see that f is polylinear and skew-symmetric in all variables except the first
one. Important properties for us are: fg(s) is D-invariant and £-graded. Therefore,
f can be uniquely restored from its escort. We see that

supp = supp(f) = L1 ® A’L_1 ® A’Ly ® Ly
& L1®ANL1®Li®ANL
& L1®L1®ANLi® Ly
& Lo®ANL1®NLo® Ly
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@& Li®A2L_;® A3L,.

Here by L; we denote the graded components for S(2) = (X € W(2) : DivX = 0).
Let (a7 b, C) = (xgah z101 — :E28271182). Then

F = s2%dy, 0, a,b,¢) € EndW (n),
is defined by
(101 4 und2)F = 6(0195(uq) + 603 (u2))01 — 6(uq + 0109us)ds. (6)
In other words,
(w101 + u202)F = —6D19(01 (u1) + 9a(us)).

Set s¢%(Xy,...,Xk) = sp(ad X1, ...,ad X)), where ad : L — End L.
Let us prove (6). We have

F=F+F+F;,
where
Fy = s5%(01, a,b)-ad]dy, | + s54(d1,b, ¢)-ad[s, a] + s5%(d1, ¢, a)-ad[ds, b],
Fy = —s84(0y, a,b) - ad|dy, ¢] — s34(Da, b, ¢) - ad|y, a] — s34(Dy, ¢, a) - ad[dy, b,
Fy = $3%(dy,0,a) - ad b, c] + s3%(8y, Do, b) - ad[c, a] + s3%(dy, s, ¢) - adla, b].

Further,
Fl - —Sgd(817b7 C) ' al + sgd(ah ¢, a’) ' 627

F2 — sgd(027 @, b) : 82 + Sgd(827 C, CL) . 817
Py = —25%481,09,0a) - adc — s3%(dy, D2, b) - adb — 253%(1, 0o, ¢) - ad a.

It is easy to see that
I3

=2(01 - 0qa) - adc — 2(dy - O1a) - ad ¢
(81 - Bob) - adb — (8 - Ob) - adb
+2(01 - O2¢) - ada — 2(0s - 01¢) - ad a
=2(01-01) -adc—(01-02) - adb — (92 - 31) - adb —2(0y - &a) - ada
=207 -adc—2(010y) - adb — 203 - ad a.

Note that
((u181 -+ ugag)a%)adc

= [07(u1)01 + 8 (u2)B2, 2105] = =7 (u1)Da,
(u181 + uzag)(alag . adb)
= [0102(u1)01 + 0102(u2)0a, 2101 — 202 = 0,
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((u181 +u282)3§)ada
=i [ag(ul)al —+ 8%(@)82,95281] = —(922(71,2)81.

Therefore,

(w101 +u902) F3
= —28%(%1)82 -+ 283 (’U,Q)al.

Similarly,
(w101 + w2 02)(Fy + Ih)

= 48182(%1)61 — 48%(71,1)82 + 485(’&2)81 — 43182 (u2)82.

From these expressions of Fi, I, and F; we obtain (6).
So, by (6), F'=0 on S(2). In particular

esc (f)(X, 01, 02, ®201, 2101 — 202, 2102) = 0,

for any X € L.
Similar calculations show that non-zero components for esc(f) are

f(2201,01, 02, 2201, 2101 — 2209, D1a(x3)) = 180,
f(@ady, 01,89, 2001, 210, Dig(atas)) = 60,
fx201, 01,09, 2101 — 290,102, Dya(z123)) = —60),
(@181 — 209, 81, Do, 201, £101 — w202, D1ag(a3)) = —180,,
f(2101 — 2209, 8y, 8o, 2201, 2101 — 2982, D1a(aias)) = -6y,
f(9€131 — 909, 01,09, 7101 — 1905, 7109, Du@ﬂ%)) = 60,
f(z101 — 2209, 01, B9, 2101 — 290, 2109, D1a(23)) = 180y,
f(2102, 01, 0, 2201, 2102, D1a(w123)) = —60s,
f(2109, 01,09, 2901, 2101 — 202, Dia(z]22)) = —60s,
f(2102,01, 09,3101 — 220,102, D12(23)) = 1804,

and
f(O1,01, 02,2001, 2101 — w905, D1a(21)) = —720,

f(81,01, Do, 301,101 — 90y, D1o(a3a4)) = 180,
f(01,01, 02,2201, 2102, D1a(atzs) = —180s,
f(1,01, 89, 2201, 105, Dyp(2323) = 120,
f(01,01, 02, 2101 — 2905, 2102, D1o(x]23)) = 120,
F(01,01, 09, 2101 — 290, 109, Dis(x123)) = —180),
F(01,01, 2201, 101 — 220,102, D1s(x3)) = —1804,
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F(01, 01,2001, 2101 — 290,218y, Dia(w7ws)) = 60y,
F(01,09, 2001, 2101 — 2285, 218y, Dys(aias)) = —60,
J(01, 02,2201, 7101 — 1202,210s, D12($1$g)) = 601,
f(81,01, Ba, 901, D1s(x3), Dia(2322)) = —720s,
F(81, 01, 82,901, D1a(a}), Dia(z123)) = 3601,
f(01,01, 02,2101 — 2202, D12(23), Dig(z123)) = 7205,
F(01,01, 09,2101 — 20, D1a(2%), D12(23)) = —1089y,
F(91,01, By, 2102, D1a(2329), D1a(23)) = —3601,
f(81, 81, B, 2109, Dig(x3x9), Dig(z123)) = 240s.

Other components of the form f(01,01,09,a,b,X), f(01,0:,a,b,¢,Y), and
f(01,01,05,a,Y,Z) are equal to 0, where a,b,c € Lo, X € Ls,Y,Z € Ly and
i = 17 2. To find f(az, (917 827 a, b7 X)7 f(ah 8¢7 a, b7 c, Y) and f(827 81, 827 a, K Z)
one should use the involutive automorphism of W (n) induced by changing of vari-
ables (z1,z9) — (z2,21).

Using lemma 9.1 we see that

esc(f) =esc(g),
where D-invariant map g : S(2) ® A°S(2) — S(2) is given by
g(Xl,Xl, - ,X5) = [XO7 Sgsym.r(Xh - 7)(5)].

It remains to use (2), theorem 8.1 for D-invariant forms f and g to obtain that
5¢% = ad s5 for S(2).

10. Exact formulas for the 6-commutator

In this section we prove that 6-commutator sg on W (2) can be given as a sum of
fourteen 6 x 6 determinants.

Theorem 10.1. Let U be associative commutative algebra with two commuting
derivations {01,002}, X; = u3101 + u; 2002 € W(2), us1,u30 € U, fori=1,...,6
and

s6(X1,. .5 Xo) = Fi(X1,..., Xe)01 + Fo( X1, . .., Xg)0a,

where Fs(X1,...,Xs) € U,s = 1,2. Then the polynomial Fy is a sum of seven
6 x 6 determinants:



542 A. S. Dzhumadil’daev CMH
wil o U210 U3l U4l U1 U1
U9 U292 U322 UL U5 U2

Oouq 1 Opupq Oqus i Ogug g
D1uyn Orug s Orusg Orugs
gty n Ogug 9 Ogus s Doy o
d3u19 O3ug s O3us s O3ug s

Orus 1 Ogug 1
Ous 2 Orue
hus 9 Daug o
8%74572 822u6,2

w11 U2l U1 U4l U1 Ug L
U1z U22 U2 U4z US2 UG
| Orurn Orugy Orugy Orua Orusy Orug
Oaui Oaun 1 Oous i Ogugq Oausi Oous
82U1,2 a2102,2 a2103,2 a2u4,2 32“5,2 a2U6,2
Ofuy 1 Bugy OFugy OFua 1 Ousy Otug,
U1 U2, 1 us 1 U411 Us 1 Ug,1
U1z U2z U2 U4 U5 U2
| Orur Orugy Orus s Orugy Orusy Oruey
dauyy Ogugy Oguzy Ogugy Osusi Ogue
Orut2 Oruz o Oruza Orusn Oruss Oiusp
a§U1,2 a%Uz,z a22103,2 8§u4,2 a§U5,2 822%,2
w11 U1 U3l U4l US1  Usl
Uy .2 U2 9 us,2 U4 2 us,2 Ug,2
Oauyy Oousy Oguzy Oougy Oousy Oougy
Ourn Orugn Oruss Oiuan Orusa Orusp
Gouyy Oougn Oauzn Oougs Oouso Gougp
O1au1,1 Oraua,1 O1aus 1 O1aus 1 O12us 1 O12ue 1
wil o w21 w3l U4l Us1 UG
w12 U2 U3 U4z US2  UGQ
31u1,1 a1”&2,1 a1103,1 a1104,1 a1”&5,1 a1'&6,1
Gruyy Oousy Oguzy Oougy Oous;y Ooug
Ourn Orugn Oruss Oiuan Oruss Orusp
O1ouy1 Oraug Orous 1 Oroug 1 Jigus 1 Orouey
w11 U1 U3l U4l US1 Us
uia  uzp U3 U4 U2 UGQ
Orury Orugy Orusy Orugq Orusy Orug
a2u1,1 C72“2,1 32“3,1 32u4,1 a2u5,1 82'“671
Oourg Oauss Oaugn Oausn Orusa Oausp
O1out 2 Oraug o O1aus o O1ausg O1aus o Oroug
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w11 U1 w31 U4l Us1 Us,1
wip  w2n U39 U4n  Us UG
O1uq,1 Orugq Orusy Oruaq Orus1 Orus
D1uyp Orus g Orus s Orusn diuso diug
gy 9 Dgug g Dgus o Ogug s Ogus s Oyug o
D3uyy O3usy O3usy OFuay OFus O3us

Here 9190 = 010. Other seven matrices for the dz-part Fo(X1, ..., Xg) are obtained
from these matrices by interchanging all the indices 1 with 2.

-3

Proof. By polynomial principle [6] we can assume that U = Z[x1, z2] with 81 = 8—21
and dy = 8%2.

Let X1 = 817X2 = (927 al = $1817(I2 = Z‘Qal,ag a 51718270,4 — :Czaz. Let V be
the set of 6-tuples of the form (X1, X2, a1,...4d;,...,a4, Xg), where ¢ = 1,2,3,4
and Xg runs over the basic elements of Wy with order | Xs| = 1.

We see that supp is generated by elements X1 ® Xo®a1 ®- -+ @; ® - - ®as® Xg,
where (Xl,X27 Ay ey Oy en ey 0,4,X6) eV.

One calculates that

s6(01, 02, 03, 190y, w102, 2101) = —20s,
(01,02, 05, £201, 210, 12201 ) = 201,
s6(01, 02, 7;0;, 2201, 2102, 12905) = 205,
36(817 827 3’57;87;, 12817‘%18271%82) = _2817

S6

for i = 1,2 and
s6(01, 02,2101, 2201, 2209, 1701) = —20)4,

(
s6(01, 02, 101, 2201, 220, 212202) = 201,
56(01, 09, ©101, 2201, 290, 2102) = —60s,
s6(01, 09, 2101,7102, 2209, 212201 ) = 205,

(01, Do, 2101, 2109, 2909, 2301) = —601,
s6(01, Oz, £101, 2109, 909, 2309) = =204,

For other (Xy,...,X5) €V,

S6

86(X17 25 .7X6) =0.

Calculations here are not difficult, but tedious. We perform them in one ex-
ample. Let us calculate sg(Xy,. .., Xg) for

X = 31,X2 = 32,X3 = 952817)(4 =101 — :’72827)(5 - x1827X6 - x%@y
Since [sg(X1,...,Xs)| = —1,

se(X1,...,Xe) = Z signo s5°Y" (X, (1), Xo(2), Xo(3)) © 83(Xo(a), Xo(5), Xo(6))-
0'663,3
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Recall that &35 is the set of shuffle permutations, o(1) < 0(2) < o(3), 0(4) <
o(5) < o(6). So,

86(X17 o .7X6) — Sé(Xh - .7X6) - 8/6/(X17 : @ .7X6)7

where
s = S S
sp = s5°¥" 2 (quadratic differential part of s3).
Then
Sg(Xh e @ g X57 x%al)
= 2(3270) + 2212202) 0 0102 + 2212901 0 03 = 40s.
We see that
sV (X1, X3, Xo) = 83(01, 2201, 2301) = 22201 02101 =0,
and
Sgsym(Xl) XS)X6) @ Sgsym(X27 X47 X5) =0.
Furthermore,
5™ (X1, X1, Xo) = 5™ (91,101 — 2205, 5301
= 2(;5181 — ;1,'262) O$181 i $%81 o] 81 = 2:Elal - 255181 = 07
and
s5 /" (X1, X4, Xe) 0 85" (X2, X3,X5) = 0.
At last,
S5V (X1, X5, Xo) = s57V™(Oy, w10, 2301)
= 235'182 (o] :Elal — f%al o} 82 - 2:13182,
sgsyM(X27 X37X4) _ gg“gym(827x2817x181 = 517282)
= —2901 00y — (2101 — 2202) 0 0 = =204,
and
V™ (X, X5, Xo) 0 85V (X, Xa, Xy) = —40.
Similarly,
s57V" (Xq, X3, Xg) = 85" (g, w01, 2101) = —2301 0 0y = =221,
SEV (X, X, Xa) = 5577 (0,101 — a0, 100)
— (ZE]_a]_ — $282) [e] 82 — fL']_@Q o 81 - _2827
and
Sgsym(XZ) X3)X6) @ sgsym(Xh X47 X5) =0.
‘We have:

s5 " (Xa, X4, Xo) = 557" (0, 2101 — @20, 2101)
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= x%@l 0dy =0,

and

Sgsym(XQ, X4,X6) o Sgsym(Xh )(37 X5) = 0.
Finally,

5V (X, X5, Xo) = 57 (02, 2102, 2101) = 0,

and

SgSym(XQ, X5,X6) o SgSym(Xh )(37 X4) =0,
Thus,

Sé(Xh .. .7X57:c§61) = Sgsym(X17X57X6) o Sgsym(X27X37 X4) = —482.
Hence
86(X1, .. .7X57:c%81) = Sé(Xl, oo, X, :E%@l) -+ Sg(Xh - ,X5,:E%81)
= —409 +409 = 0.

So, we have constructed esc (sg 5 ). A reconstruction of sg°%"" by its escort
2 VY2 s ¥V2

(see (2)) gives us the formula for sg. By lemma 6.3, s = s5°"™" on W (2).

11. s¢ = 0 is an identity on S(2)
Lemma 11.1. sg = 0 4s an identity on S(2).

Proof. Set
X1 =01,X0 =00, X3 =901, X4 = 2101 — 2202, X5 = 100,
V ={(X1,Xs,...,Xe) : | Xs| =1, X5 € S(2)}.

Since supp = supp(sg) is generated by elements X, ®- - -® Xg, where (X4, ..., Xg) €
V', we need to check that sg(X1,...,Xs) =0, for all (Xq,...,Xs) € V. By lemma
6.3,

rsym.r __
Sg = 8g-

We have,

8¢ — 83 — S83.

Let (le7 53 .7X6) €V and F = 86(X17 i3 .7X6).

We see that, sg(X1,...,Xs) is the alternating sum of elements of the form
83(Xo(1), Xo2), Xo3)) - 83(Xo(4), Xo(5), Xo(6)), Where o € &3 3 are shuffle permu-
tations, i.e., o(1) < 0(2) < 0(3), 0(4) < o(5) < o(6). Moreover,

86()(17 % 3 .,Xe)

= Z sign o [s3(X (1), Xo(2): Xo(3)), $3(Xo(4), Xo(5), Xo(6))]-
€G3 3,0(1)<a(4)
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Since |s6(X1,...,X6)| = —1,
86(X17~~~7X6) = <az>7

for some i = 1,2. Therefore, in calculating F' = sg(X1,...,Xs) we can make
summation only in ¢ € 83 3 such that

83(Xo (1) Xo2), Xo(a)) € (u0; : Ju| = 1,2),
83(Xo(4), Xo(5), Xo(6)) € (07 |a] = 1,2).
Since
s3( X1, X9, X) = 53(01,09,X) = [99, X| - 01 + | X, D4] - 0o,

there are two possibilities:
e if 1,2¢ {o(1),0(2),0(3)} or 1,2 € {0(4),0(5),0(6)} then (o(4),0(5),0(6)) =
(1,2,s), and (o(1),0(2),0(3)) = (gq,7,6), where {q,7,s} = {3,4,5}, and g < r.
e if each of the following subsets {¢(1),0(2),0(3)} and {¢(4),0(5), o(6)} contains
exactly one element s € {1,2}.

Therefore,
86(X17 o .7X6) — Sé(Xh - .7X6) -+ Sg(Xh - .,ng)7

where
Sé(Xh o oo iy X6)

= 53" (X1, X3, Xe) 0537 (X2, X4, X5) — 537" (X1, X4, X) 0 55" (X2, X3, X5)
+55™ (X1, X5, Xo) 0 55" (X2, X3, Xa) — 857 (X2, X3, X5) 0 85™™ (X1, X4, X5)
+55°Y™ (X2, X4, Xo) 085" (X1, X3, X5) — 53" (X2, X5, Xe) 055"V (X1, X3, X4),
sp(Xq,...,Xs)
= —s3""(Xy, X5, Xo) 0 83(X1, X2, X3) + 55°Y" (X3, X5, Xg) 0 s3( X1, X2, X4)
—55"Y" (X3, X4, Xo) 0 53(X1, X2, X5).

. . 1 1
Here we use notation s3™¥™ instead of s"*¥™" or s3°¥™" because s"¥"" = g3°¥™

for any right-symmetric algebra.
Notice that
s3(01,02,2101) = 010,

$3(01, 02, 001) = =07,
s3(01, 09, 2109) = 83,
33(81782,$282) — _8182‘

Therefore,
Sg(Xh P 7X6)

= Sgsym(xlal — 12627 .771627 X@) o 8% + 23§Sym(x2817x1827 X6) © 0109 (7)
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—55"Y"" (2901, 2101 — 2200, Xs) © 83.
Now calculate s (X1, ..., Xg) for Xg = 2795. By (7) we have
st X1, ..., X5, 2709)
- 237%82 00102 + (4$%a1 =t 6:!71{17282) o ag =0.

Check that s5(X1,..., Xg) = 0 for Xg = 278s.
Let a,b,c e <ZE2817 101 — :E28271182> Notice that

85" (04, a, X6) = ao[Xe, 0;] + X5 0 [0, 0q]
= a0 8;(Xg) — Xgo0(a),
85" (0;,b,¢) = bo[c,d5] + co [0;,b] = bo dj(c) — cody(b).
By these formulas, it is easy to calculate that
857V ( X1, X3, Xg) = 83(01, 2201, :c%(fig) = 22901 0 2109 = 23104,
857" (Xg, X4, X5) = 83(02, 2101 — 2002, 2102) = 2109 0 99 = 0,

and
557" (X1, X3, Xe6) 0 53(Xo, X4, Xs5) =
Furthermore,
S5V X1, Xu, Xg) = s5°V7 (81, 2101 — 2200, 2705)
= 2(:13181 — .77282) [e] 1’132 - x%ag [e] 31
= —2:17182 — 2:12182 = —4.771627
857" (Xo, X3, X5) = s5°™(0p, 201, 2100) = —210p 0 0y = —0o,
and
sy " (X1, Xy, Xg) 0 3(Xo, X3, X5) =0
Finally,
53V (X 1, X5, Xg) = s3(01, 2105, 2702)
= 2x10y 0210y — x%@z 00y =0,
and
TSym(Xl, X5,X6) o] SgSym(XQ, Xg, X4) =0.
Similarly,

557" (X g, X3, Xg) 0 857" (X1, X4, X5) =0,
557" (X o, X4, Xo) 0 857V (X1, X3, X5) =0,
557V (X g, X5, X6) 0 857V (X1, X3, X4) = 0.
So, we have established that s4(X1,..., Xg) =0 for Xg = 299. Thus,

86(X1, s .,X5,:E%82) = Sé(Xh sim ,X5,ZE%82) + Sg(X17 s .7X57x%62) =0.

547
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Similarly, one can calculate that
s6(X1,..., X5, X6) =0,
for any Xg = 2701 — 2212989, 2305 — 2212901, 238;. In other words,
esc(sg)(Xy,...,Xg) =0, for any (Xy,...,Xg) € V.
Therefore, by (2) ss = 0 is an identity on S(2).

12. s7 =0 is an identity on W (2)
Lemma 12.1. sy = 0 4s an identity on W(2).

Proof. We see that esc(s7) is uniquely defined by the homomorphism of sls-
modules f: Ly — L_4 given by

F(X) = s7(01, 02, 2101, ®202, 2101, 2202, X).

Notice that
Ly = R(my) © R(2my + m).

This isomorphism of sly-modules can be given by divergence map,
Div: Ly — U,
Li={X:DivX =0} =2 R2m +m), L ={DivX:X e L} R(m).
Thus f(X) = A Div(X) for some A € C. Using the decomposition s;°¥™" =

o]
s,°Y™T 2 53, one can calculate that

87(817 827$1817$2827$1817$2827$%81) =0.

Therefore, A = 0 and sy = 0 is an identity on W (2).

13. 5- and 6-commutators are primitive

Assume that g = g(¢1,. .., %) is a skew-symmetric multilinear polynomial. We call
g a k-commutator on a class of vector fields, if for any k vector fields X1,..., X
of this class g(X1, ..., X) is again a vector field of this class.

Suppose that f is a Lie polynomial with left-normed brackets. Let (A,[, ])
be a Lie algebra. As we have explained above, fl[ﬁl’ Foa ®---®A— Ais amap
obtained from f by substituting elements of A as arguments ¢; and using the
commutator |, | for the product.

Suppose now that (A,[, |) is a Lie algebra of vector fields. Then fz[éx’] is the
standard k-commutator for any vector field algebra A. We call the k-commutator
g primitive on A if g, can not be represented as fif | for any left-normed polyno-
mial f.
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Lemma 13.1. There does not exist a Lie polynomsal f = f(t1,...,15) such that
s5(X1,...,X5) = f(X1,...,X5), for any X41,..., X5 € S(2). Similarly, one can
not represent a 6-commutator on W (2) in the form sg(X4, ..., Xg) = g(X1, ..., Xg),
for any X4, ..., Xe € W(2), where g a is Lie polynomial in 6 variables.

Proof. Let L be a Lie algebra, U(L) its universal enveloping algebra and
A:UL)—-UL)oUL), AX)=X®1+12X, VX el,

a comultiplication. For any X4,..., X, € L,
k
A(Xy .- X)) = Z 2 Xa(l)""" 'Xg(l)®XU(l+1) : ~~~'Xo(k)~
=0 €6,k

Thus, for any Xq,..., X} € L,

k
A(Sk(Xl,,Xk)):Z Z SZ(XL~'7Xl)®3k—l(Xl+17~'7Xk)»
I=00€6;,,_1

Therefore, if s, is the standard k-commutator, i.e., if s, is obtained from Lie
polynomial, then [10]

k—1

Gk = Z Sl(Xl, §% .,Xl) X Sk—l(Xl+17 4 o4 7Xk)
=1

should be identically 0 for any Xy,..., X, € L. Here L = W(2) if k = 6, and
L=5(2)if k=5.

In a calculation of Gy below we use formulas for quadratic parts of & commu-
tators (lemmas 7.2, 7.3, 7.4).

Consider the case of 5-commutators. Take

(X1, X2, X3, X4, X5) = (01, 02,2101 — 2202, 2201, 210).

One can calculate that
Gs

= —401 ® Oy — 409 ® J1 — 20 ®$18% — 40y ® 90109 + 40109 ® 2104
—40109 ® 1909 + 41101 ® 0109 — 2:1718% ® O — 42909 @ 0109 — 4190109 ® O
20.

So, s5 on S(2) can not be obtained from any Lie polynomial.
Consider now the case of 6-commutator. Take

(X17X27X37X47X57X6) - (81)827x16171}28173918273:%81).
We see that
83(X17X27 Xg) % 83()(47 X57X6) = 0109 ® (313%61 + 2212909 +$?a% + 2:17%:1328182)7
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Therefore, Gg has the term of the form 919, ® x?@% Collect all terms of Gg of
the form A\ 918, ® x$0?. Then their sum, denoted by R, should be 0 if sg is
standard 5-commutator. As a differential operator of second order, 397 can not
appear in s2(X;, X;). Direct calculations then show that the elements of the form
si(Xjy, oy Xj,)yd1 < -+ < gi, I = 3,4,5, may have the part p 2397, p # 0 only in
one case: | = 3, (§1,72,43) = (4,5,6). So, R = 910, @ 2397 # 0. This contradiction
shows that 6-commutator on W (2) is primitive.

14. s; and sg are cocycles

Let d: C*(L, L) — C*t1(L, L) be the coboundary operator. Then
dyp = d'yp +d"4p,

where
dP(X1, ., Xeyr) = D (DX, X1, X, Xay o, Xy Xeg),
i<j
k1 4
AKX, K1) = S (=D X 6(Xn, -, Ky X))
i=1
Lemma 14.1. d's;”™" =0, if k is even and d's;”"™" = —s\7/"7, if k is odd.

Proof. This follows from induction in n and the following relation

k+1
ST = Y AT R B sy B
=1

Lemma 14.2. (2d' + d")sy, =0, for any k > n? + 2n — 2

Proof. By corollary 3.4, ad X € Der(W(n), sy,), if k > n® + 2n — 2. Therefore,

A

[Xi7 Sk(X17 e ,Xﬁ . 7Xk+1)]

i—1
Z 1+j8k Xz,X] ...7Xi7...7Xj7...7Xk+1)
j=1
k+1

+ Y (U se([Xe X Xy X Xer),
j=i+1

and

d’si(X1,. ., Xey1)
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= —22(—1)i+jsk([X¢7Xj]7 s .X¢7 % 3 ,Xj, e ,Xk+1).

i<j

In other words, d’s;, = —2d's,, if k > n® 4 2n — 2.

Corollary 14.3. dss =0 on S(2).

Proof. By corollary 3.2 and theorems 8.1 and 11.1 s5 = s.°¥™" and sg =
55 V™" = 0 are identities on S(2). Therefore, ds, = d'ss + d”s5 = —d's5 = s =0
is an identity on S(2).
Corollary 14.4. dsg =0 on W(2).
rsym.r rsym.r

Proof. By corollary 3.2, lemma 6.3 and lemma 12.1 sg = sg4 and sy = s
is an identity on W (2). Therefore, by lemma 14.1 and 14.2 ds, = d'ss +d"sg =
—d'sg = 0 is an identity on W(2).

Remark. One can prove that (L, {ss, s;}) is also sh-Lie, for [ = n” + 2n — 2, if
L=W(n)and [ =n?+2n -3, if L = S(n).

Our results can be formulated in terms of generalized cohomology operators.
There are two ways to do it. In the first way one saves the index of nilpotency
d> = 0, but changes the grading degree. In the second way one saves grading
degree, but changes the index of nilpotency from d?> =0 to d¥ = 0. A cohomology
theory for d¥ = 0 was developed in [7].

Let us show how to do it for left multiplication operators. Let L = W (n) be
the right-symmetric algebra of vector fields, r, right multiplication operator and
I, left multiplication operator, (b)r, =boa, (b)l, = aob. Define a linear operator
d: A*(L,L) — A*(L, L) by

ds OXL,B)— O¥ (LY,
dplar, ... akin) = Y signo (- ($(asmitys - taterm)lasa,)  Maso-

7€Gnk

Then the condition d?> = 0 follows from theorem 3.3 of [4].
In the second case we need to consider a coboundary operator with grading
degree +1,
dy : N*(L, L) — N*(L, L),
dy - AB(L, L) — AFTY(L, L),

k+1

dlw(a’h s g akJrl) = Z(_l)l(lb(ah - '7d’i7 ey ak+1))lai'

L,
Then di™ = 0.
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One can construct similar coboundary operators corresponding to right-mul-
tiplication operators. For example,

dy - N*(L,L) — A*(L, L),
dr : AF(L, L) — AMTH(L, L),

k41

dﬂﬁ(al, sag ak+1) = Z(—l)i('w(al, R Cii, GRS ak+1))7"ai.

i=1

has the property d:}2+2"*1 =0.
These constructions have some other modifications that include the case of
more general right-symmetric algebras and their modules.

15. Proofs of main results
Proof of theorem 2.1. This follows from lemmas 6.3, 5.6 and corollary 5.5.

Proof of theorem 2.2. This follows from lemmas 5.3, 9.1, 11.1, 13.1 and corollary
14.3.

Proof of theorem 2.3. This follows from lemmas 12.1, 13.1, 5.4 and corollary 14.4.
We have proved that W (3) has nontrivial 10-commutator. Its restriction to S(3)
is also nontrivial. So, W(3) has two well-defined nontrivial N-commutators: 13-
commutator si3 and 10-commutator si1g. Divergenceless vector fields subalgebra
S(3) has only one nontrivial N-commutator: 10-commutator sig.
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