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The representation theory of cyclotomic Temperley—Lieb al-
gebras

Hebing Rui and Changchang Xi

Abstract. A class of associative algebras called cyclotomic Temperley—Lieb algebras is intro-
duced in terms of generators and relations. They are closely related to the group algebras of
complex reflection groups on the one hand and generalizations of the usual Temperley—Lieb al-
gebras on the other hand. It is shown that the cyclotomic Temperley—Lieb algebras can be
defined by means of labelled Temperley—Lieb diagrams and are cellular in the sense of Graham
and Lehrer. One thus obtains not only a description of the irreducible representations, but also
a criterion for their quasi-heredity in the sense of Cline, Parshall and Scott. The branching rule
for cell modules and the determinants of Gram matrices for certain cell modules are calculated,
they can be expressed in terms of generalized Tchebychev polynomials, which therefore play an
important role for semisimplicity.

Mathematics Subject Classification (2000). 16G10, 16K20, 17B10, 18G20, 20C05, 20G05,
57M25, 81R05.
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1. Introduction

The Temperley—Lieb algebras were first introduced in 1971 in the paper [15] where
they were used to study the single bond transfer matrices for the Ising model. Later
they were independently found by Jones when he characterized the algebras arising
from the tower construction of semisimple algebras in the study of subfactors.
Their relationship with knot theory comes from their role in the definition of the
Jones polynomial. The theory of quantum invariants of links nowadays involves
many of research fields. Thus, many important kinds of algebras related to the
invariants of braids or links, such as Birman—Wenzl algebras [3], Hecke algebras
and Brauer algebras, have been of great interest in mathematics and physics.
They are all deformations of certain group algebras or other well-known algebras.
Recently, several interesting type of such algebras have emerged: the cyclotomic
Birman—Murakami—Wenzl algebras are introduced in [6] and cyclotomic Brauer
algebras are investigated in [14] (see also [6]), while the cyclotomic Hecke algebras
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were already introduced by Broué and Malle in [4], and independently by Ariki and
Koike for type G(m,1,n) in [1]. They are deformations of the unitary reflection
groups.

In the present paper, we focus our attention on the study of cyclotomic Temper-
ley—Lieb algebras, which are generalizations of the classical Temperley—Lieb alge-
bras. They are also subalgebras of cyclotomic Brauer algebras, which are closely
related to complex reflection groups. We first present the ring theoretic definition
of the cyclotomic Temperley—Lieb algebras in terms of generators and relations.
Then we show that our definition can be reformulated geometrically by means of
labelled Temperley—Lieb diagrams. Using this description we are able to prove that
the cyclotomic Temperley—Lieb algebras are cellular, a notion introduced in [7].
As a consequence, we obtain both, the classification of the irreducible representa-
tions of the cyclotomic Temperley—Lieb algebras, and a criterion for a cyclotomic
Temperley—Lieb algebra to be quasi-hereditary. For cell modules, the branching
rule is discussed, and also the discriminants of certain bilinear forms are calcu-
lated. This leads us to introduce the n-th generalized T'chebychev polynomials. It
turns out that a necessary condition for a cyclotomic Temperley-Lieb algebra to
be semisimple is that certain generalized Tchebychev polynomials do not vanish
on its defining parameters.

2. The ring theoretic definition of cyclotomic Temperley—Lieb al-
gebras

Throughout the paper, let R be a commutative ring containing an identity 1 and
elements o, 01, ...,0m—1. Let n,m € N be two positive integers. In this section,
we introduce the cyclotomic Temperley-Lieb algebra T'Ly, 1, (do, . . ., dm—1) of type
G(m, 1,n) over R. We shall prove that the R-rank of T'Ly, (00, ...,0m_1) is at

most ﬁu (2 )

Definition 2.1. The cyclotomic Temperley—Lieb algebra T'L,, ,,,(o, ..., 6m—1) (or
T Ly m for simplicity) is the associative algebra over R with generators 1 (the

identity), e1,..., €n_1,t1,...,ty subject to the following conditions:
(1) eejei=e; if |7 —i] =1,
(2) eiej =eje; if |j—i|>1,
(3) e =dge; for 1 <i<n—1,
(4) t"=1 for 1<i<n,
(5) tit; =tjt; for 1<i,j<n,
(6) eit'?ei =dpe; for 1<k<m-1,1<i<n—1,
(7) titiri1es =€, etitiv1 = e; for 1<ig<n—1,
(8) ety =tje; if g {i,i+1}.
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If m = 1, then TL,, ,, is the usual Temperley-Lieb algebra, which is denoted
by T'L,(dy) or T'L, for simplicity. This algebra was first introduced in [15] to
describe the transfer matrices for the Ising model and for the Potts model in

statistical mechanics (see also [12]). It is known that
1
dimp TL, = ——(*") if R is a field.
n+1"

The following lemma is due to Jones [8]. Recall that an expression of a monomial
w € TL,(d) (in the variables ey, e, ..., e, 1) is called reduced if the number of
e; in the expression is minimal.

Lemma 2.2. (1) Any monomial w € T'L,,(dy) has a reduced expression

(ejlejlfl c e’ﬂ)(ejéejz*l o 'ek2) t (ejpejpfl e ekp)7

where Ji11 > 73 2 ki, ki1 > ki forany 1 <i<p—1.

(2) For any n, there is an isomorphism of T L,,_1-modules
TLn(00) = TLp—1(d0) ® T Ln—1(d0)en—1T Ln—1(d0),

where T'Ly,—1(00) s the subalgebra of T'L,(d0) generated by 1,e1,...,en_9.

To obtain an upper bound on the rank of a cyclotomic Temperley—Lieb algebra,
we need the following lemma.
Lemma 2.3. For any n, the cyclotomic Temperley—Lieb algebra

TLn,m(50> cee >6m—1)

is spanned over R by the set

M, = {thieh> . thnghigl gl |0 Kkl K m— 1,1 < < myz € TL, ()}

n

Proof. We claim that the R-module Tme spanned by M,, is a left T'L,, ,,-module.
This claim implies Tme =T Ly m(d0,...,0m—1)since 1 € M,.

By the definition of M,,, we see that Tanm is stable under the left multiplica-
tion of ¢;, 1 < i < n. So we have to prove that for 1 < j <n —1,

() et tfral P A E T

Without loss of generality, we may assume that = is a monomial in ey, es,...,e,_1.
First, we consider the case j =n — 1. By Lemma 2.2,

T = (€j€j—1 " €k )(€ja€ia—1"""€ky) (€], €5,—1" €k, ).

By 2.1(8), #ty, = tnx if jp, # n — 1. It follows from 2.1(7) that

n n n—2 n—1
(1) - (T ([
i=1 =1 i=1 i=1
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Suppose j, = n — 1. If e, o does not occur in the expression e;, --- eg, -+ €;,_,
- €k,_,, then () follows from the following equality
knfl—kn kn*l_kn
en—1t," ] T =en— 1t en—1(ej, ek, )(en—2 - -ex,) = oz,
where k, 1 — k, = k (mod m). If e, 3 occurs in the expression of e, --- ¢; _,
© €k,_,, then e; _, = e, ». In this case, we have
kn—1—kn
en—1t," x

- (ejl co ekp72)(enfltﬁnikn_l6n726n71)(€n73 e 676,;71 )(6n72 o ekp)
kn—kn—
o5 T CREEC N, Pl WP SRS NS | W U SLLY N B

If e, 3 does not occur in e;, - -~ e,_,, then

b —kir b —kn
(6j1 T ekp—Z)t’n,— "= tn—Q 1(
and (x) follows. If e, 3 occurs in the expression of e; ---e; ,---eg, _,, then
€y = En—3. In this case, (%) follows from the argument similar to the case
€j,_1 = €n—2 together with an induction. Thus we have proved (x) in the case
j=n-—1.

For 1 < j < n — 2, we use induction on n. In this case, ejt,, = t,¢;. If
en—1 does not occur in the expression of z, then (x) follows from the induction
assumption on n—1. Now suppose that z = y(e,, 1€, 2+ ¢;) forsomey € T'L,, 4

1 1 _ —I _ —i _
and k£ € N. Note that €j+1€jtj+2 = (6j+1tj+2)€j = €j+1tj+1€j = 6j+1(tj+1€j) =

€1 - " Bk s

l _ l . . .
ejp1t e = tiej1e; for all [ and j. By a direct computation, we have
1 R | Ie—1  liy2 In Ie—lp+1
(**) en—l"‘ektf"‘tn *tll"’tk—ltk "'tnfgen—l"'ektk .

Again by the induction hypothesis on n — 1, we see that
n—1
; U1l
e H R (YRR ol R
i=1
can be expressed as a linear combination of the elements in M,_1. Now, (#x)
together with the 2.1(7)-(8) yields the desired form (). This completes the proof

of the result.

The following lemma gives more explicit information on the elements in A,
which leads to an upper bound on the rank of T'L,, ,,.

Lemma 2.4. For any x € TL,, the element w = (Hn t].“)x( I tlj) e M,

i=1Y j=11Y
with 0 < k;, l; < m—1 can be written as (Hle ti)x( H?:pﬂ téi) with 0 < ki, l; &

m— 1.

Proof. Without loss of generality, we may assume that

T = (€jy€j—1" " ks )(€jo€jo—1" " €ky) - (€5,€5,—1 - €k, ).
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Suppose j, # n — 1. Then € T'L,,_1 ,, and hence t,z = xt,,. Therefore,
n n n—1 n—1
(1) - ()T
i=1 j=1 i=1 j=1

By induction on n, the element ( [/, t5)x H;:ll t;j can be written as
P , n—1 ,
(Htf)x IT ¢ with 0 <kl <m—1.
i=1 i=p+1
This proves the result.
Suppose j, = n — 1. By (%),

n p—1 k—1 n—2
ki I; Lit2 le—li41
w=[Tt8 [Jlesesi—1--ew) [Tt TT 8 - (n1---erdt
i=1 =1 i=1  i=k
n—1 —1 E—1 n—2
o k; I live m—kpn Ie—lg41
= Hti (€ji€ji—1""" €k;) th‘ Hti by (en—1 ety :
i=1 =1 i=1 =k

Now the result follows immediately from the induction assumption, 2.1(8) and
(#%). This completes the proof of Lemma 2.4.

Let us remark that the proof of this lemma also shows that for a fixed € T'L,,,

when we write w as the form ( letfj)x(l—[?:p+1t;i) with 0 < ki, 0; < m -1,

the lower index sets {j1,...,jp} and {jp+1,...,Jn} depend only on z.

Corollary 2.5. If R is a field, then

m’ﬂ

dimp 7Ly < " ditmp TLy, =~

(-

In the next section, we shall show that over a commutative ring R the rank of

T Ly, m is equal to 77:}:1 (27?)

Finally, let us point out that the notion of B-type Temperley—Lieb algebras was
introduced by tom Dieck [16], whose approach was based on the knot theoretic
point of view and root systems. In fact, these algebras are completely different
from our cyclotomic Temperley-Lieb algebras since the dimension of the B-type
Temperley—Lieb algebra over a field is always of the form (27?) (see [16]). However,
the algebra T'L,, ,, is closely related to the complex reflection groups W, ,, of
type G(m, 1,n). Recall that W, ,, is generated by s, s1, ..., s,_1 satisfying the
relations (1) s? = 1 for 4 > 1 and the braid relations for sy,...,s,_1; (2) s7* = 1,
and (3) sps1sns1 = $1808180, S08; = ;80 for ¢ > 2. If we define t; = sq, t; =
8i—1ti—18;—1, then ¢ = 1. Thus, a deformation of the group algebra of W, .,
is the cyclotomic Brauer algebra, which is clearly related to cyclotomic Birman—
Wenzl algebra as mentioned in [6]. T'Ly, ,, is a subalgebra of the cyclotomic Brauer
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algebra. Thus it is related in this way to both, the complex reflection group W, ,,,
and the cyclotomic Brauer algebra.

As we know, Ariki-Koike algebras are deformations of the unitary reflection
groups. But these algebras can also be viewed as deformations of certain products
of cyclic groups and Hecke algebras. In this same way, the cyclotomic Temperley—
Lieb algebras are deformations of certain products of cyclic groups and Temperley—
Lieb algebras. On the other hand, it is known that there are nice relationships
between Temperley—Lieb algebra and the quantum group U,(sly) (see [12]).

3. The graphical definition of cyclotomic Temperley—Lieb alge-
bras

In this section, we shall redefine the cyclotomic Temperley—Lieb algebra in a ge-
ometrical way. This is motivated by knot theory. Let us denote by TLnym the
graphical cyclotomic Temperley—Lieb algebra. The main result in this section is
that the ring theoretic and the graphical definitions of cyclotomic Temperley—Lieb
algebras are equivalent, namely, T'L,, ,,, = Tme for any n and m.

First, we introduce labelled Temperley—Lieb diagrams. These are special cases
of dotted Brauer graphs introduced in [6]( see also [14]).

Definition 3.1. A labelled Temperley-Lieb diagram D of type G(m,1,n) is a
Temperley—Lieb diagram with 2n vertices in which the arcs are labelled by the
elements of Z,, := Z/mZ.

In the following a labelled Temperley—Lieb diagram D will simply be called a
labelled TL-diagram; if ¢+ and j are the endpoints of an arc in D), we shall simply
write {i,j} € D.

Graphically, we may represent a labelled TL-diagram D of type G(m,1,n) in
a rectangle of the plane, where there are » numbers {1,2,...,n} on the top row
from left to right, and there are another n numbers {1,2,...,n} on the bottom
row again from left to right. To indicate the label i € Z,, on an arc, we mark
the arc with a dot and write the label 7 in parentheses above or below the dot.
Sometimes we draw 4 dots directly on the arc. For example, the following is a
labelled TL-diagram of type G(m, 1,6) with m > 4.

2 3 4 5
Q o o o o
‘oo ¢ —J
(m—1)

,_\
.
o
3
ot
.
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An arc in a labelled TL-diagram is said to be horizontal if its endpoints both
lie in the top row or in the bottom row; and otherwise it is said to be vertical.

In order to have a graphical version of cyclotomic Temperley—Lieb algebras, we
need to define the multiplication of two labelled TL-diagrams. Here we follow the
definition in [6] (see also [14]).

From here onward, we make the following convention: Given a horizontal arc
{4,7} with i < j, we call ¢ (resp. j) the left (resp. right) endpoint of the arc {4, 5},
and always assume that all dots in a labelled TL-diagram are marked at the left
endpoints of the arcs. A dot marked at the left (or right) endpoint of an arc will
be called a left (or right) dot of the arc. For a vertical arc we do not define its left
endpoint and its right endpoint.

The rule for movements of dots. We allow dots to move along an arc from left
to right. They may also move to another arc.

(1) A left dot of a horizontal arc {i, j} is equal to m — 1 right dots of the arc
{%,7}, and conversely, a right dot of an horizontal arc is equal to m — 1 left dots.

(2) A dot on a vertical arc can move freely to the endpoints of the arc.

(3) Given two distinct arcs {4, 7} and {j, k}, we allow that a dot at the endpoint
j of the arc {4, 7} can be replaced by a dot at the endpoint j of the arc {j, k}.

The rule for compositions. Given two labelled TL-diagrams Dy and D» of type
G(m,1,n), we define a new labelled TL- diagram Dj o D5, called the composition
of D1 and D, in the following way: First, we compose D¢ and D, in the same way
as was done for Temperley—Lieb algebras. Thus we have a new Temperley—Lieb
diagram P (which is possibly not a labelled TL-diagram). Second, we apply the
rule for movements to relabel each arc in P, and thus obtain a labelled TL-diagram
graph, denoted by D1 o D.

The rule for counting closed cycles. For each closed cycle appearing in the
above natural concatenation of D{ and Dy we apply the rule for movements of
dots to relabel the cycle.

Note that the number of dots in each cycle lies in Z/(m). We denote by
n(i, D1, D3) the number of relabelled closed cycles in which there are i dots.

The following lemma can be proved easily.

Lemma 3.2. Given two labelled TL-diagrams Dy and Do, we define Dy - Dy =
17y 60 P12 D o Dy, Then (Dy-Dy)-Ds = Dy-(Dy-Ds) for arbitrary labelled

K3

TL-diagrams D1, Dy and Ds.

Definition 3.3. Let R be a commutative ring containing 1 and dg, ..., m—1. A
graphical cyclotomic Temperley—Lieb algebra (T'Ly, m,,-) is an associative algebra
over R with a basis consisting of all labelled TL-diagrams of type G(m,1,n). The

multiplication is given by D - Dy = Hﬁgl (5?(2’D1’D2)D1 o Dy,
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It is easy to see that TLn’m is the usual Temperley—Lieb algebra if m = 1 and
that Tme is a subalgebra of the cyclotomic Brauer algebra of type G(m, 1, n)
(see [6]).

Now let us illustrate this definition by an example. If

o o o o O 0 o 0

uwgo \\L‘ﬂﬁ/wu
— 7D2: )
D

' L €% €% % £ 6% o 6% €%

then we have a diagram

Now we relabel the closed cycles in D. By definition,

S

In this case, n((), Dl, Dg) = TL(L Dl, Dg) = 0and n(Z D17 Dg) == n(37 D17 Dg) =
1 form >4. Thus D, - Dy = 5%5§D1 o Dy for m > 4.

Now let us prove that the graphical definition and the ring theoretic definition
of cyclotomic Temperley—Lieb algebras coincide.

Theorem 3.4. Suppose that R is a commutative ring containing 1,0, ..., 0m—1.
Then TLy, y =2 TLy, , for any m and n. Therefore, T'Ly, 1, is a free R-module of

rank nm_+n1(%> In particular, if R is a field, then

: m" o,
dlmR TLm,’n = n—H (277, ) 2
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Proof. Let E; be the labelled TL-diagram in which {4,%+ 1} is an arc in the top
row and also an arc in the bottom row, and the other vertex j (# 4,4+ 1) in the
top row connects with the vertex 7 in the bottom row. Let T; be the labelled
TL-diagram in which the j-th vertex in the top row connects with the j-th vertex
in the bottom row for j = 1,2,...,n, and the i-th vertical arc carries one dot. If
we replace e; with F; and t; with T; and apply the three rules above, then we know
that all E; and T; satisfy the relations in Definition 2.1. This induces an algebra
homomorphism ¢ : TL,, ,,, — TLn’m with ¢(¢;) = T; and ¢(e;) = E;. Since TLn’m
is generated as an R-algebra by F; and T} with 1 <i<n—1,1 < j < n, the map
¢ is surjective.

We show that T'L,, ,, is a free R-module. Put r = n’"—;(?) By Lemma 2.4,
there is a surjective F-module homomorphism f : " — T'L,, ,,,. Thus, we have
a surjective R-module homomorphism ¢f from the free R-module R" to the free
R-module TLn’m of rank r. Let K be the kernel of ¢ f. Then we have a split exact
sequence of R-modules:

0—K-—R —R —0.

Here we identify the R-module TLnym with R”. This sequence also shows that K
is a finitely generated projective R-module. We claim K = 0.

Let p be a maximal ideal in R. Since localization preserves (split) exact se-
quences, we have a split exact sequence

0 — K, — (By)" — (Ry)” —0,

where M, stands for the localization of an R-module A at p. Thus (Ry)" ~ (R,)"®
K, as Ry-modules. Since 2, is a local ring and every finitely generated projective
module over a local ring is free, we see that the Ry,-module K, is free. Note
that any commutative ring with identity has the invariant dimension property. It
follows from (R,)" ~ (R,)" @ K, that K, =0, and therefore K = 0. (All facts on
localization used in the above argument can be found in standard text books on
commutative rings, for example [2].)

If K =0, then ¢f is an isomorphism of R-modules and f must be injective.
Thus T'Ly, ,, is a free R-module of rank » and ¢ is an isomorphism of R-modules.
This also implies that ¢ is an isomorphism of R-algebras. The proof is complete.

Finally, let us remark that in [13] the so called blob algebras are considered,
but those algebras have different defining relations and are therefore completely
different from our cyclotomic Temperley—Lieb algebras.

4. Cellular algebras

Now let us recall the definition of cellular algebras due to Graham and Lehrer.

Definition 4.1. (Graham and Lehrer [7]) An associative R-algebra A is called a
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cellular algebra with cell datum (I, M, C, 1) if the following conditions are satisfied:

(C1) The finite set [ is partially ordered. Associated with each A € I there is
a finite set M (X). The algebra A has an R-basis C3 ;. where (S, T) runs through
all elements of M(X) x M(X) for all A € I. ’

(C2) The map i is an R-linear anti-automorphism of A with 7> = id which
sends C§ 1 to C3 5.

(C3) For each A € I and S, T € M(\) and each a € A, the product aCg » can
be written as 7

aCir= Y. 1aU,S)Chr+7,
UeM(X)

where 7/ belongs to A<* consisting of all R- linear combination of basis elements
with upper index p strictly smaller than A, and the coefficients r,(U, S) € R do
not depend on T'.

In this paper, we call an R-linear anti-automorphism i of A with i = id an
wnwolution of A. The following is a basis-free definition of cellular algebras in [9)]
which is equivalent to that given by Graham and Lehrer.

Definition 4.2. Let A be an R-algebra. Assume there is an anti-automorphism
ion A with i = id. A two-sided ideal J in A is called a cell ideal if and only if
i(J) = J and there exists a left ideal A C J such that A is finitely generated and
free over R and that there is an isomorphism of A-bimodules @ J ~ A ®pg i(A)
(where i(A) C J is the i-image of A) making the following diagram commutative:

J 2 Aeg i(A)

zl lx®y|—> i(y) ®i(x)

J A R Z(A)

The algebra A (with the involution 4) is called cellular if and only if there is

an R-module decomposition A = J{ & J; @ --- @ J;, (for some n) with i(J}) = J;
for each j and such that setting J; = @&7_,.J/ gives a chain of two sided ideals of
A0=JycJyCcJyC--CJ, = A (each of them fixed by i) and for each
Jj (7 = 1,...,n) the quotient J; = J;/J; 1 is a cell ideal (with respect to the
involution induced by i on the quotient) of A/J;_;. (We call this chain a cell
chain for the cellular algebra A.)

Cellular algebras include a large variety of important algebras related to links
in knot theory such as cyclotomic Hecke algebras, Temperley—Lieb algebras [7] and
cyclotomic Brauer algebras [14] as well as Birman—Wenzl algebras [18].

Given a cellular algebra A with the cell datum (I, M, C,1), for each A € I,
one can define a cell module A(\) and a symmetric, associative bilinear form
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Py A(N) @r A(X) — R in the following way (see [7]): As an R-module, A()) has
an R-basis {C3 | S € M(\)} and the module structure is given by

aCs= > ralU,8)C,
UeM(\)
where the coefficients r,(U, S) are determined by (C3) in Definition 4.1.
The bilinear form ® is defined by

5(C3, C%)Cg},\/ = Cg\f,SCJ)\“,V (mod A<?),

where U and V' are arbitrary elements in M (\).

Let rad A(A) = {c € A(A) | Pr(e,¢/) = 0 for all ¢ € A(A)}. Then rad A(A)
is a submodule of A(A). Put L(A) = A(A)/radA(A). Then a complete set of
irreducible representations of A can be described as follows:

Lemma 4.3. (Graham and Lehrer [7]) Suppose R is a field. Then
(1) {L(X) | @ #£ 0} 4s a complete set of non-isomorphic irreducible A-modules.
(2) The algebra A is semisimple if and only if all cell modules are simple and
pairwise non-isomorphic.

In the following, we shall see an easy example of cellular algebras, which will
be used later on.

Let Gy, be the R-subalgebra of T'L,, ,,, generated by #1,%,---,%,,. Note that
Gy is isomorphic to the group algebra of the abelian group €., Z/(m).

Suppose that R is a splitting field of 2™ — 1. Therefore the relation ¢{7* = 1

implies that ¢7* —1 = [’ (t; —u;) = 0 for some wy, - ,upm € R. Let A(m,n) =
{(i1,09, - ,in) | 1 < i; < m}. We assume that in case n = 0 the set A(m,n)
consists of only one element . Now we define (41,49, -+, %) < (41,92, ,Jn) if
and only if i < ji for all 1 < k < n. For each i = (i1,49, -+ ,4,), define
n m
cii=11 TI & -w.
J=11=i;+1

(Here the product over the empty set is 1.) Note that {C}, | i € A(m,n)} is a
cellular basis for the algebra G, ,, with respect to the identity involution. Let us
remark that in this case each cell Gy, ,-module A(i) is one-dimensional. In fact,
this cell Gy, p-module corresponds to the subquotient GSL‘R /G;L‘n The simple
Gy, n-modules are parametrized by the following set.

Lemma 4.4. Suppose R is a splitting field of ™ — 1 with characteristic p.
(1) If p divides m, say m = p's with (p,s) = 1, then a complete set of non-
isomorphic simple G, ,-modules can be chosen as

{L(@) | i = (i1, 49,...,1,) with p’ divides i; for all 5}

its cardinality is s™.
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(2) If p does not divide m (for example, p = 0), then a complete set of non-
isomorphic simple Gy, n-modules is {L(1) | 1 € A(m,n)}. In this case, the algebra

G p 15 semisimple.

Proof. 1t is easy to check that

(t; —u) [ [ = we) = (wi —w) [T —we) + J] (&5 — ).
k>1i k>1i k>i—1

It follows from the above equality that
C},lcil = (H H (“ij - uk)) Ch (mod G;ln)
g=3l, k>i;

If p divides m, then we see that each root of the polynomial z° — 1 is a root of
2™ — 1 with multiplicity pf. But all roots of ® — 1 are simple roots. Hence we
may assume that (uy,ug,. .., um) = (1,...,1,&...,& ..., &7 .. &), where
¢ is a primitive s-th root of z® — 1. Thus (1) follows.

If p does not divide m, then the algebra Gy, ,, is semisimple, and therefore (2)
follows.

5. Irreducible representations of 1L, ,,

In this section, we assume that R is a splitting field of ™ — 1. We shall prove
that T'Ly, », is a cellular algebra in the sense of [7]. Using the standard results
on cellular algebras, we classify the irreducible representations of T'Ly, ,, over the
field R. Let us first introduce some auxiliary notions.

An (n, k)-labelled parenthesized graph is a graph consisting of n vertices {1, 2,
. ,n} and k horizontal arcs (hence 2k < n and there are n — 2k “free” vertices

which do not belong to any arc), and satisfying the following conditions:

(1) there are at most m — 1 dots on an arc,

(2) there are no arcs {1, 7} and {q,(} satisfying ¢ < ¢ < j <, and

(3) there is no arc {7,7} and free vertex ¢ such that i < ¢ < j. (Given an
(n, k)-labelled parenthesized graph, the vertices which do not belong to any arc
are called free vertices.)

Let P(n, k) be the set of all (n, k)-labelled parenthesized graphs and let V (n, k)
be the free R-module with P(n, k) as its basis. Recall that G, , is the R-
subalgebra of T'L,, ,, generated by t{,to,--- ,t,.

Lemma 5.1. There is an R-module isomorphism V(n, k)2 rV (n, k)R pGm n—2k =
M, ., where M, } is the free R-module spanned by all labelled TL-diagrams with
2n wvertices and 2k horizontal arcs.
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Proof. Given a labelled TL-diagram D, we can write it uniquely as Dy ® Dy ® z,
where D; is obtained from D in the following manner: After cutting all vertical arcs
and forgetting all dots on the vertical arcs, the top row is defined to be the D and
the bottom is the Dy. Suppose that in D; the free vertices are {i1,49,...,in_25}
and that in Dj the free vertices are {j1,72,...,Jn—2t}. Then in D the vertical

arcs are {41, 71}, - -, {in—2k, Jn—2k }. Suppose there are m, dots on the arc {is, js }.
Then we define z = ¢7"¢5"7 ...t:ﬁz’,fk € Gpn—2i. Conversely, given such an

expression Dy ® Dy ® z, we have a unique labelled TL-diagram D in M, ;. Hence
the result follows.

Thus we have the following equivalent description of the graphical basis of
TLy, 5. Usually, this basis is not a cellular basis.

Corollary 5.2. The set {v1®@uva®z |0 < k < [n/2],v1,v2 € P(n, k), x € Gy 2k}
is a basis of T Ly, p, .

In the following, we shall construct a cellular basis for T'L,, ,,,. Here we keep
the notation introduced in the previous section.

Let Ay, o = {(k,1) | 0 < k < [n/2],1 € A(m,n —2k)}. We define a partial order
on A, ,, by saying that (k,i) < ({,j) if k> {; orif k =l and i <j. Then (A,, , <)
is a finite poset. For each (k,i) € Ay m, let I(k,i) = {(v,1) | v € P(n,k)}. In the
following, we shall show that this datum defines a cellular algebra.

Theorem 5.3. Let R be a splitting field of 2™ — 1. Then TL, ,, is a cellular
algebra with respect to the involution o which sends v1 ® v9 ® x to v9 ® V1 ® x for
all vi,vs € P(n, k) and x € Gy p—oi, 0 < k < [n/2].

Proof. For any (k,i) € Anpn and vi,vs € P(n,k), we define Cf,]fj& = v ®
vy ® C} ). By 5.2, the set {Cé’le (k,1) € Apm,vi,v2 € P(n,k)} is a basis
of TLy, ,. We show that it is a cellular basis. Let us verify the conditions in
Definition 4.1. By definition, 4.1(C1)-(C2) follow. It remains to check the condi-
tion 4.1(C3). Take a labelled TL-diagram Dy ® Dy ® z with Dy, Dy € P(n, k)
and z = ¢y ...t:ﬁz‘ljk € Gpypn—2k- Suppose that iy,49,...,%,_9, are the
free vertices in D and that ji,72,...,7n_or are the free vertices of Dy, where
1 <is<nand 1 < js <nforall s=1,2,...,n—2k Then D1 ® Dy ® z =
X - (D1 ® Dy ® Z‘dnfgk) = (Dl ® Dy ® idn,Qk) -Y, where X = TZ“T;TZ o A2

in—2k

and Y = T7T702 .. T %% (see 3.4 for the definition of T;). Thus, for any

In—2k

labelled TL-diagram Dy ® Dy ® x,
(D1 ® Dy ®z)- YD e TLEED

where TLSEE’D is the free R-submodule spanned by Cé’ff;}ﬁ with (k1) < (k,1)
and vy, vy € P(n,k’). Suppose that (D; ® D ®x) Céf?z = TL%IT;;L% where TL%IT;;L)
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is the free R-submodule spanned by Cg’quﬂl with v1,v9 € P(n, k). Then
(D1® Dy ®z) - Cd) = Dl @ v ®2/CH |

v1,v2

for some D} in P(n,k) and some 2’ € G, ,_as, here 2’ does not depend on v,.
Write 2’ = H;:fkt?" for some 0 < k; < m—1,1 < j < n—2k By an easy
calculation, we know that

n—2k z

$/Ci,1 = H “ijch (mod G;Ll,nfwf)?

j=1

where G;i,n—zk is the free R-submodule spanned by C{l with j <i. Note also

that the coefficient H;:f k uZ’ is independent of v5. This implies that 4.1 (C3) is
true.

As a corollary of Theorem 5.3, we classify the irreducible representations of
cycolotomic Temperley—Lieb algebras.

Corollary 5.4. Suppose R is a splitting field of x™ — 1. Let p be the characteristic
of R. Then:
(i) suppose n is odd.
If m = p's with (p,s) =1 and t > 0, then the set

{L(k7 1) | 0< k < [n/2]71 = (i17i2> iy >in72k) € A(man - Qk)
with all 4; divisible by p*}

is a complete set of pairwise non-isomorphic simple T'Ly, ,,-modules.
(ii) Suppose n is even.
1) If not all §; are zero and if m = p's with (p,s) =1 and t > 0, then the
set
{L(k,1) |0 <k < [n/2],i= (41,42, .. ,0n—2k) € A(m,n — 2k)
with all 4; divisible by p*}

is a complete set of pairwise non-isomorphic simple T'Ly, ,,-modules.

2) Suppose all 6; are zero. If m = p's with (p,s) =1 and t > 0, then a com-
plete set of pairwise non-isomorphic simple T Ly, »-modules can be parametrized
by {(k,1) | 0 < k < [n/2],i= (i1,92, ..., in—2k) With all 4; divisible by p’}}.

Proof. For any Dy, Dy € P(n, k) and i € A(m,n — 2k), we have
(D1® Dy ®Ch )D1®@ Dy ®Ch 1) =Dy ® Dy®aCh | Chy, @€ Gk

If this product is not equal to zero, then C’ilCil # 0. Now suppose that n is odd.
If Dy = FE1FEs---Fo,_y and Dy = FoFy - - Eoy, then z = id. Hence statement (i)
follows from 4.4.

Assume that n is even. First case: there is some J; # 0 and p does not
divide m. Then for k = n/2 and i = ), the bilinear form & ; # 0. For the
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other (k,i), we take D; and D as above. This implies ®(;; # 0. Hence the
index set of non-isomorphic simple modules is A, ,,. Second case: there is some
d; # 0 and p divides m. By arguments similar to the above, we have that a
complete set of non-isomorphic simple modules is {(k,i) | 0 < k < [n/2],i =
(i1,42, . .., in—2k) With all 4; divisible by p*}.

Assume 0; = 0,0 < j < m — 1. In this case, 5 = 0 for &k = n/2
and i = . For k # n/2, our discussion will be the same as above, namely,
if m = p's, then index set of simple modules is {(k,i) | 0 < k < [n/2],i =
(41,992, ..., in—2r) with all 4; divisible by p’}; if p does not divide m, then the
index set of simple modules is Ay, », \ {(n/2,0)}.

The following result follows from the proof of Theorem 5.3.

Corollary 5.5. Let A(k,1) be the cell module corresponding to (k,i) € Ay m.
Then

dimp Ak, 1) = m"[(7) = (,"))]-

6. Quasi-heredity of T'L,, ,,

In this section, we shall characterize the parameters for which the cyclotomic
Temperley—Lieb algebras are quasi-hereditary in the sense of [5]. First, we recall
the definition of quasi-hereditary algebras.

Definition 6.1. (Cline, Parshall and Scott [5]) Let R be a field and let A be an R-
algebra. Anideal J in A is called a heredity idealif J is idempotent, J(rad (A))J =
0 and J is a projective left (or, right) A-module, where rad (A) is the Jacobson
radical of A. The algebra A is called quasi-hereditary provided there is a finite
chain 0 = Jo C Jy C Jo C --- C J,, = A of ideals in A such that J;/.J;_; is a
heredity ideal in A/J;_; for all j. Such a chain is then called a heredity chain of
the quasi-hereditary algebra A.

From the ring theoretic definition of cellular algebras, we see immediately that
there is a large intersection of the class of cellular algebras with that of quasi-
hereditary algebras. Typical examples of quasi-hereditary cellular algebras in-
clude Temperley—Lieb algebras with non-zero parameters [17] and Birman—Wenzl
algebras for most choices of parameters [18] as well as certain cyclotomic Brauer
algebras [14].

The main result in this section is the following theorem.

Theorem 6.2. Suppose R is a splitting field of the polynomial 2™ — 1. Then the
cyclotomic Temperley—Lieb algebra T'Ly, ,, is quasi-hereditary if and only if the
characteristic of R does not divide m and one of the following is true:
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(1) n is odd;
(2) n is even and 6; # 0 for some 0 < j <m — 1.

Proof. In [7, Remark 3.10] it is shown that A is quasi-hereditary if the index set
of the non-isomorphic simple modules over a cellular algebra A with cell datum
(I, M,C,4) is I. Conversely, A is not quasi-hereditary if there is a cell datum
(I, M, C,%) of A such that the index set of the non-isomorphic simple modules is
not [ [10, Theorem 3.1]. In other words, every chain of ideals in A is not a heredity
chain. Thus Theorem 6.2 follows immediately from Corollary 5.4.

For the cases which are not included in Theorem 6.2, we can get a quasi-
hereditary quotient of T'L,, ;,. In order to make T'L,, ,,, quasi-hereditary, we need
first to ensure that the group algebra G, ,, is semisimple. The following result
follows from the above fact and the definition 4.1.

Proposition 6.3. Suppose that R is a splitting field of z™ — 1 and p { m, 2|n
and 0; = 0 for all 0 < j < m — 1. Suppose J is the two-sided ideal of TL,, p,
generated by all (n,n/2)-labelled TL-diagrams. Then the quotient T'Ly, n/J is
quasi-hereditary.

7. Restriction and induction of the cell modules

In this section, we assume that R is a splitting field of 2™ — 1. The main result of
this section is the branching rule for the cell modules of T'L,, ,.

Recall that V(n, k) is the R-space spanned by all labelled parenthesized graphs
with & arcs. Let J; := @gn:/;] V(n,j) ®r V(n,j) ®r Gmn—25. Then we have a
chain

OCJ[n/Q] C "'CJ¢+1 cJ;C---CJe :Tme

of ideals in T'L,, ,, where ¢ is zero if n is even, and 1 if n is odd. For any
(k,1) € Ay, the cell module

A(k, i) = V(n, /€) Xp vo XR A(i),

where vg € P(n, k) is a fixed diagram and A(i) is the cell module of the algebra
G, With respect to i. In the sequel, we choose vy to be the (n,k)-labelled
parenthesized graph with arcs {1,2}, ..., {2k —1, 2k} and free vertices 2k+ 1, 2k +
2,...,n. Note that the subquotient V(n,j) ®g V(n,7) ®r Gpn2; is a T'L,, 1-
module and the cell module structure on V(n, k) ®pg vog ®g A(i) is induced from
this subquotient. We make the following convention:

Throughout this section we fix an m and the parameters dg,d1,...,d,,—1 and
consider the algebra T'L,,_1 ,, canonically as a subalgebra of T'L,, ,,, by adding the
vertical arc {n, n'} to the right side of each labelled TL-diagram in T'L,, 4 ,,,. This
embedding can be visualized as follows:
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TLnfl,m — TLnfl,m

on'

Note that the identity in T'L,,_1 », is sent to the identity of T'L,, ,,,. Thus every
TLy, m-module is also a T'L,,_1 y,-module via this embedding. The cell modules
V(n, k) ®p vo ®gr A(i) over TL, ,, will be denoted by A(n, k;iq,ia, ... 45,_25).
Then we have

Proposition 7.1. (a) For alln and 0 < k < [n/2], there is an exact sequence

00— A( n — 17k;i1,i27...7 in_gk_1) i> A(n7k;i1,i27 : ~»7in—2k) l

L @;n:?; V(TL -1, k— 1) Rpr vy PR A(’il,ig, .. ’7in*2k)t£z—2k+1 — 0,

where M | is the restriction of a T'Ly, y-module M to a TL,_1 ,,-module, and
A(ih 19, ..., in*yf)tif?k«l»l stands for A(ih 12, e Z'nfgk) R Rt"szszrl'

(b) If n=0C 1 C...C Ly, =R{n_2k+1) ts a cell chain of the group algebra
R{tn _opi1) = G 1, that is, I; is the free R-module generated by {H;’;S(tn,%ﬂ -
w) | 1 < s <3}, then there are m — 1 short exact sequences

0—-V(n—1,k—1) ®pvg@r Ali1,42 ..., in—2r) @ L;_1
L V(n—1,k—1)®pr vy ®r Al ..., in_2k) ® I
s Aln =1,k = 13,0, .. ., in_2k, 4) —= 0.

(¢) If T'Ly—1m is semisimple, then
A(n, ki, 02, . in—ak) |2 AR =1,k 01,02,y in—2k—1)®

m
@A(TL— 17k - 1;i17i27 R '7in72k7j)'
=g

Proof. It T'L,,_1 4, is semisimple, then every T'L,,_1 ,,-module is projective. There-
fore, each short exact sequence in (a) and (b) splits. Now the statement (c¢) follows
immediately from (a) and (b). The map v in (b) is the canonical injective map and
the map ¢ in (b) comes from the canonical projection I; — I;/I;_1. One can easily
prove that (b) is a short exact sequence of vector spaces. Obviously, both v and ¢
in (b) are T'Ly,—1 m-module homomorphisms. Now let us prove the statement (a).

Since we may consider A(n — 1, k; 41,49, ... ,9—2kr—1) as a subset of T'Ly_1 m,
the map « is just the restriction of the above embedding. It is obvious that « is
an injective map. Note that T'L,, ,, is generated as an algebra by {e;,t; | 1 <i <
n—1,1<j < n}. Toshow that e is a T'L,,—1 m-module homomorphism, it suffices
to prove that for D € {e;,t; |1 <i<n—2,1<j<n—1},

a(Dv ® vg ® C('L‘hizm.,’in—zk)) = Da(v® v ® C(il,ig,.‘.,in,Zk)).
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However, a vertex (£ n) in v is free if and only if it is free in v/, and {4, 7} is an arc
in v if and only if it is an arc in v/, where v’ is the (n, k — 1)-labelled parenthesized
obtained from v by adding the vertex n. By the multiplication of labelled TL-
diagrams in 3.2, we can see immediately that the above equation holds. Hence «
is a T'Ly,—1 m-module homomorphism.

Now let us define the map 3. Given an (n,k)-labelled parenthesized v €
P(n,k), we denote by @ the labelled parenthesized obtained from v by deleting
the vertex n and removing the arc connected with n if it exists.

Let v be in P(n, k). If the vertex n in v is a free vertex, then 3 sends v ® vy ®
C&’”""’“’r"k) to zero. If the vertex n in v is connected by an are in which there are
I dots, then /3 sends v®vo®C§li’”"“’““2k) to ﬁ®y0®0ﬁ’z2"”’“’2k)t;72k+17 where
vy is the (n—1, k—1)-labelled parenthesized with ares {1, 2}, {3,4}, ..., {2k—3, 2k—2}
and n — 2k + 1 free vertices.

In fact, we can extend 8 to a map from V(n, k)Quo®Gp, n—ar to V(n—1,k—1)
®vg ® Gy p—2k+1. This map 3 can be illustrated as follows:

1 j n 1 J
|@\ Q- Q |j |o o ... o |
B
\\ R N
1 2k 1 2k — 2 n—1

(The image of an (n, k)-labelled TL-diagram under the map £ is obtained from
the given (n, k)-labelled TL-diagram by deleting both the arc {2k — 1, 2k} and its
endpoints from the bottom row, and then shifting the vertex n from the top row
to the bottom row, and finally renaming the vertices at the bottom from left to
right.)

It is trivial that the sequence is an exact sequence of vector spaces. To finish
the proof, it remains to show that 3 is also a T'L,,_1 ;,-module homomorphism.
Since 3 restricted to the image of « preserves the module structure, we need only
to prove that /3 preserves the T'L,,_ p,-module structure on the elements of the
form a(v ® vo ® C}ii’h"”’i"‘%)L where a € {e;,t; |1 <i<n—21<j<n—1}
and the vertex n in v is not free. In the following, we show more generally that
the extended map f3 is a T'L,, 1 n,-module homomorphism.

Let v ® vg ® z with v € P(n, k) such that n is connected to j by an arc in v.
Suppose a =t or a = e, withr & {j—1, j}. In this case, by inspecting the picture,
it is easy to see that (3 preserves the module structure on the element a(v®vo®z).
Now suppose a = e¢s with s = 7 — 1 or s = j. In the latter case, since there are
no free vertices between j and » in v, the labelled TL-diagram S(e;(v ® vo ® z))
is just the graph e;3(v ® vg ® ). This is what we wanted to prove. In the former
case, if j — 1 is a free vertex in v, then ¢;_1(v ® vop ® ) lies in the image of «,
which is mapped to zero under 5. Moreover, the element ¢;_18(v ® vo ® z) is also
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zero since it contains one more arc. Now assume that 7 — 1 is adjacent to a vertex
sin v. Then s < j — 1. In this case, there are no free vertices between s and » in
v. Again by inspecting picture we see that f(e;(v ® vo ® z)) = €;8(v ® vy ® ).
This completes the proof.

The following result follows from Proposition 7.1 and Frobenius reciprocity.

Proposition 7.2. IfTL,, ,, is semisimple, then
A(n - ]-7 k7 i17 v 5 g in—?k—l)T = A(TL7 k + ]-7 il; i27 o g4 g in—Qk—Q)@

m

@A(T@ k7217 B AE] in72k717j)7
j=1

where A(n—1,k;i1, ..., in—2r—1) 1 stands for the T Ly, n,-module induced from the
TLn,llm—module A(n - 17 k‘7 i17 R in72k71)~

8. Gram matrices and their determinants

In this section, we assume that the field R contains a primitive m-th root of
unity (for example, if R is algebraically closed and of characteristic p which does
not divide m, then our assumptions are satisfied). The goal in this section is
to calculate the discriminant of the bilinear form @ ;) for certain (k,1i), where
0 < k < [%] and 1= (i17i27 ] 7in—2k)~

Recall that ®; ; is defined on the cell module A(k, 1) in the following way.

(1 ®@v1 ® Cil)(vg ® vy ® Cil) = P iy (v1,v2)01 Qg ® Ci,l (mod TL;(J;J))?

where TLZ(n’fji) is a free R-submodule spanned by C’S’f:{g) with (k,1) < (k,1) and
vy, 02 € P(n, k).

According to a general construction in [11], there is a bilinear form &) from
V(n, k) ®@r V(n, k) to Gp, n—ai such that the product can be written as

(v1 ® V1 ® Cil)(wg X vy ® C%,l) =11 Uy & d)q(JT:q]jQ)(tht% .. .7tn,2k)(011)2,
(mod TL{EV)Y,

where gi)q(ff’qu (t1,t2, ..., th—or) is an element in Gy, p_os.
Define a(k, 1) = TTj—" [T/%,, (us; — w). It follows that
q)(k,i) (1}17 UQ) = a’(k7 1)91)78?,’1’2 (uil y Uigy oo - 7u’ln—2k)>

where w1, ua, . .., u,, are the roots of 2™ — 1.

Now let us compute the matrix ¥(n,k) := ( S]j’;g) for the case k = 1. Let

v; be the element in P(n, 1) whose unique arc is {i,7 + 1} and let vi(j) be the
(n,1)-labelled parenthesis in which there are j dots on the arc {i,i + 1}. The
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elements in P(n,1) can be ordered as follows: vgo) = vy, vgl), . ,vgmfl),véo) =
va, oS0l O = o ™Y Thus:

A By

BT A By

B A Bs
\11(77/7 1) - » ’
A Bn72
BT, A

where B; is the matrix with the (s,¢)-entry ¢J~* for 1 < s,¢ < m, the matrix B]
stands for the transpose of B;, and

dg 01 -+ Om—1
8 89 -+ &
(5m71 (50 5m72
Let us look at a simple example. We consider the algebra T'L4 3)(do, 01, d2),
that is, » = 4 and m = 3. In this case we have ¢} = 1 for i = 1, 2. Thus

§061 6 1 t3¢ 0 0 0
8190300t 1t 0 0 0
5250(51t%t1 1 000
1ty t] 6081 00 1 13 o

\I/(ml)— t% 1 t1 (51 (52 (50 tg 1 t%
ty 421 89 09 8y 3 o 1
1ty t3 59 61 &2
1 t9 61 69 &p
ty t3 1 83 0o 61

e
el
o OO
~+
ININY

Suppose w1 is a primitive m-th root of unity. Define u; = ujl forj=2,...,m
and uy, = ug = 1. Then u, ' = upy_r. Let V = Vo (1,u1,...,un—1) be the
Vandermonde matrix of order m:

1 1 1

ul uQ ... um

V. (1 _ Uy ’U,% u2
m( y U1, '7(u’777/*1) - o
—1 —1 m—1

Uy U Uy

Since we shall evaluate each ¢; as some wu;,, when we calculate the value of
@1 5)(v1,v2), we may suppose that t; = w;; for all 1 < j < n — 2. Thus the



Vol. 79 (2004) Cyclotomic Temperley—Lieb algebras 447

matrix Bj is of the form

1 1
- J 1 —(m—1)y 7 m—1
By = : (Luij i = vom 3 R = (Lum,ij?...?um%j).
m—1 m—1
Ui i

Now we define Y; to be the matrix of order m with 1 at the (i;, m — i;)-position
and 0 otherwise. For i; = m, we define Y; to be the matrix with (m, m)-entry 1
and all other entries 0. Then B; = VY;V7T.

Let p(z) = doz™ * + 612™ 2 - + 01 € Rlz]. We write

5 1) 1)
o) B, % . Im
-1 x—u4 T—us T — Uy,

Since uy is a primitive m-th root of unity and u; # u; for ¢ # j, we have 5j —
p(ug)/ [z (ug — ug) for all j =1,2,...,m. Now we can rewrite o = >_7" Sjuk.
Note that the index k can be an arbitrary natural numbers and that §;, = 0 if [ =
k (mod m). Thus the matrix A can be written as (65+1)o<k,i<m—1. Furthermore,
we have A = VAVT where A = diag(d1,6s,...,6,,) is the diagonal matrix.

Since ™ —1 = (x —uy)(z —wa) - - - (£ — U, ), Wwe know that the k-th elementary
symmetric polynomial in wq, uo, . .., u,y, is zero for 1 < k < m — 1. Hence Newton’s
identities imply that

.7m i | m, ifk=m,
O'k(Ul,uQ,...,Um).—Zuj—{O ifl<k<m-—1
=1

?

Thus we have

mO ... 00
00---0m
vvT = 00 - m 0
Om--- 00

This implies that (det(V))? = (=1)m=Dm=2/2ym  Thus det(¥(n,1)) =
(—1)2(m=D(m=2)(n—1) ;ym(n—1)get (W (n, 1)), where

A Y
YT A Y,
Y A Yo
W(n,1) = ©
121 Yn72
YT, 4

Now let us calculate the determinant of W(n, 1). Since each matrix Y; is of special
form, we partition (2'17 Vs w0 ,Z'n,Q) into (2'1’17 i172, By Z'le,ig’l? Z'2727 ; 5y Z'QJ‘Z7 ; 5y iﬂjr)
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with 51 + 72 + --- + j» = n — 2 such that m divides ip 4 + ip 441 for all p with
1 < g < jp and that m does not divide iy 5, +ipi1,1 for all 1 < p <7. Thus

det(T(n, 1))

5%.1 l
1 05,0 1
- 1 6,1
318y .. By ) d b
— (} 2 )j — Hdet
szl((sm_ip,jp qp:1 (5in4) p=1 —
Let
X 1
1 le
1 xs 1
P(Ih .7$n) :det
Tp—1 1
1 s,
Then
Ny < n—1
det (T(n, 1)) = (—1)3mm=D-D ymin-t) (0132 Fm) x

H;:l((sm_i]?,jp tjlpzl gip,q)

T
X H P(gip,ugip,w "TET 51‘}7’].})).
p=1
We have proved the following proposition.

Proposition 8.1. Let R be a field containing a primitive m-th root of unity. Then
the determinant of the Gram matriz of the bilinear form ® (4 ;) 4s

mn_1) M (818y . 6"t

H;:l(gm*ip,jp lj]il Sip,q)

det By 5y = (—1)zmm=D=Dg(q i) x

¥

X HP(S’ip,175ip,27 iy
p=1

(=)

lp,jp)'

As a consequence of Proposition 8.1, we know that under the above assumption,
a necessary condition for 7'L,, ,, to be semisimple is that all the polynomials
P(0;,,,9 -, 04, ) are non zero.

ip,11 Yip,20 -

The following is a description of the polynomial P(z1,...,zy).
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Let I(n) := {n,n—2,n—4,...} C {0}UN and define I'(n, r) := {(41,92,...,%) |
1<ig <ip <+ <ip 0,45 =n (mod 2);ij41 =i + 1 (mod 2) for all 1 < j <
r—1} forall r € I(n). If & = (i1, 49,...,4,) € T'(n,r) we write z,, for z;, 2y, ... 24,.

r

Then
Pz, 29,...,2,) = Z Z (=12,
rel(n) acl(n,r)
This can be proved by induction on n and the recursive formula P(z1,z9, ..., z,) =
o P(x1,0,.. ., 2n_1) — P(z1,29,...,2y_2). In fact, the set I'(n,r) is a disjoint
union of {(41,40,...,4,_1,n) | 1 <4 < iy < -+ < 4 < n—1,4p 1 =n—

1 (mod 2);i11 =4; + 1 (mod 2) for all 1 < j <7 —2} and I'(n — 2,7). Thus this
decomposition of I'(n,r) corresponds just to the two summands in the recursive
formula of P(zy,za,...,zy).

Note that if m = 1 or if z; = 29 = .-+ = z,, then both det &
and P(z,z,...,z) are Tchebychev-type polynomials which play an important
role in the study of Temperley—Lieb algebras (see [7] and [17]). Hence we call

P(zy1,z9,...,2,) the n-th generalized Tchebychev polynomial. It follows from
the recursive formula that P(z1,z3,...,2y,) is irreducible in the polynomial ring
Rlz1,z9,...,zy,] with n variables z1,z9,..., 2y,

Acknowledgements. The authors are grateful to Yongjian Hu at BNU for useful
discussions on matrices; to Dieter Vossieck at BNU for useful conversations which
led to a vast improvement of the original statement in 3.4, and to B. Keller for
his help with English language. The research work of C. C. Xi was supported
by TCTPF of the Education Ministry of China while H. Rui is supported by the
Foundation for University Key Teachers by the Ministry of Education of China.

References

[1] S. Ariki and K. Koike, A Hecke algebra of (Z/rZ)16,, and the construction of its irreducible
representations, Adv. Math. 106 (1994), 216-243.

[2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley
Publishing Company, 1969.

[3] J. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans Amer. Math.
Soc. 313 (1989), 249-273.

[4] M. Broué and G. Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119-189.

[5] E. Cline, B. Parshall and L. Scott, Finite dimensional algebras and highest weight cate-
gories, J. reine angew. Math. 391 (1988), 85-99.

[6] R. Haring-Oldenburg, Cyclotomic Birman—Murakami—Wenzl algebras, J. Pure Appl. Alg.
161 (2001), 113-144.

[7] J. Graham and G. Lehrer, Cellular algebras, Invent. Math. 34 (1996), 1-34.

[8] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25.

[9] S. Kénig and C. C. Xi, On the structure of cellular algebras, in: I. Reiten, S. Smalg and
@. Solberg (eds.), Algebras and Modules II. Canadian Mathematical Society Conference
Proceedings 24, 365—-386, 1998.



450 H. Rui and C. C. Xi CMH

[10] S. Konig and C. C. Xi, When is a cellular algebra quasi-hereditary? Math. Ann. 315 (1999),
281-293.

[11] S. Koénig and C. C. Xi, Cellular algebras: inflations and Morita equivalences, Journal of the
London Math. Soc. (2) 60 (1999), 700-722.

[12] P. Martin, Potts models and related problems in statistical mechanics, World scientific,
Singapore, 1991.

[13] P. Martin and H. Saleur, The blob algebra and the periodic Temperley—Lieb algebra, Lett.
Math. Phys. 30, No. 3 (1994), 189-206.

[14] H. Rui, Representations of cyclotomic Brauer algebras, Preprint, 2000.

[15] H. N. V. Temperley and E. H. Lieb, Relations between percolation and colouring problems
and other graph theoretical problems associated with regular planar lattices: some exact
results for the percolation problem, Proc. Roy. Soc. London (Ser. A) 322 (1971), 251-273.

[16] T. tom Dieck, Knotentheorie und Wurzelsysteme 11, Math. Gdttingensis 44 (1993).

[17] B. W. Westbury, The representation theory of the Temperley—Lieb algebra, Math. Z. 219,
no. 4 (1995), 539-565.

[18] C. C. Xi, On the quasi-heredity of Birman—Wenzl algebras, Adv. Math. 154 (2000), 280—298.

Hebing Rui Changchang Xi

Department of Mathematics Department of Mathematics
East China Normal University Beijing Normal University
200062 Shanghai 100875 Beijing

P.R. China P.R. China

e-mail: hbrui@math.ecnu.edu.cn e-mail: xicc@bnu.edu.cn

(Received: May 2, 2002; revised version: April 15, 2003)

To access this journal online:
http://www.birkhauser.ch




	The representation theory of cyclotomic Temperley-Lieb algebras

