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Varieties of pairs of nilpotent matrices annihilating each other

Jan Schroer

Abstract. We classify the irreducible components of the varieties

V(n,a,b) = {(A,B) € M (K) x M, (K) | AB= BA = A* = B> = 0}.

Mathematics Subject Classification (2000). 14M99, 16G10.

Keywords. Nilpotent matrix, irreducible component, Gelfand—Ponomarev algebra, string mod-
ule, band module.

1. Introduction and main results

Let M,,(K) be the set of n X n-matrices with entries in an algebraically closed
field K. The study of affine varieties given by matrices or pairs of matrices,
which satisfy certain relations, is a classical subject. One fundamental question
is the decomposition of these varieties into irreducible components. Consider the
varieties

N(n,1) = {M e M,(K) | M' =0}
and
Z(n) = {(A, B) € M,,(K) x M,,(K) | AB = BA = 0}.

The variety N(n, ) is irreducible by [Ge] and [H], and the irreducible components
of Z(n) are
{(A,B) € %(n) | (K(A) < n — i, k(B) < i}

for 0 < ¢ < n. For n,a,b > 2 define
V(n,a,b) = {(A,B) e M,,(K) x M,,(K) | AB=BA = A® = B* =0}
= (N(n,a) x N(n,b)) N Z(n).

Our main result is the classification of irreducible components of V(n,a,b). This
question appears for a = b = n as an open problem in [K, Problem 3, p. 208]. In
this special case, we get the following surprising result:
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Theorem 1.1. The irreducible components of V(n,n,n) are
{(A, B) € V(n,m,m) | (k(A) < n— i, 1K(B) < i}

for1 <i<n—1. Each component has dimension n®> —n + 1.

Thus each irreducible component of V(n,n,n) is the intersection of an irre-
ducible component of Z(n) with N(n,n) x N(n,n). The case a = b = 2 and n
arbitrary was studied in [M].

A partition of n is a sequence p = (py, - ,p;) of positive integers such that
Z;lpi =n and p; > pi1 for all 4. Let [(p) = ¢ be the length of p. The set of
partitions p of n with p; < a for all 4 is denoted by P(n,a).

By < we denote the usual dominance order on P(n,a), see Section 5 for a
definition.

The conjugacy classes of matrices in N(n,a) are parametrized by P(n,a).
Namely, for a matrix M € N(n,a), let J(M) be its Jordan normal form, and
set p(M) = (p1,-- -, p:) where the p; are the sizes of the Jordan blocks of J(M),
ordered decreasingly. Clearly, we have p(M) € P(n,a). For p € P(n, a) let

C(p) = {M € N(n,a) | p(M) = p}

be the corresponding conjugacy class in N(n, a).
There are two projection maps

V(n, a,b)

N(n, a) N(n,b)

where 71 (A, B) = A and m2(A, B) = B. For a € P(n,a) let
Ala) = 1(C(a)).
In general, A(a) is not irreducible. Only if a = b = n, these sets have nice
properties:
Theorem 1.2. For each a € P(n,n) the set A(a) C V(n,n,n) is locally closed
and irreducible. We have
A(l, 71)CA(2717 71)7

and if a## (1,---,1), then

A(a) Cc A(b)
if and only if a <b and l(a) =[(b).
For the study of the general case, define the standard stratification of V(n,a,b)

as follows: Let

P(n,a,b) =P(n,a) x P(n,b).



398 J. Schroer CMH

For (a,b) € P(n,a,b) let
A(a,b) = ' (C(a)) Ny ' (C(b))
be the corresponding stratum of the standard stratification. Unfortunately, these

strata are in general not very well-behaved:

e A stratum might be empty;
e Strata are not necessarily irreducible;
e The closure of a stratum is in general not a union of strata.

However, the socalled ‘regular strata’ have nice properties. Observe that for
(A, B) € V(n,a,b) the inequality
rk(A) +rk(B) < n

holds. This follows already from the condition AB = 0. We call (A, B) regular if
rk(A)+1k(B) = n. An irreducible component of V(n, a, b) is regular if it contains a
regular element, and we call (a,b) € P(n, a,b) and also its corresponding stratum
A(a, b) regular if A(a,b) contains a regular element.

For a partition p = (p1, -+ ,p:) # (1,---,1) define

p_lz(p1—1> 7p7’_1)
where r = max{1 < i <t |p; > 2}. For example,
(3,2,2,1) =1 =(2,1,1).

The following result determines which strata are regular.

Proposition 1.3. For (a,b) € P(n,a,b) the following are equivalent:
(1) (a,b) is regular;
(2) l{a)+ (b)) =n and l(a—1) =1I(b—1).

In this case, all elements in A(a, b) are regular.

If p is a partition, then let
i € pl
be the number of entries of p which are equal to . The next theorem yields a
classification of all regular irreducible components.

Theorem 1.4. If (a,b) € P(n,a,b) is regular, then A(a,b) is locally closed and
irreducible. In this case, the closure of A(a,b) is an irreducible component of
V(n,a,b) if and only if the following hold:

(1) a has at most one entry different from 1,2 and a;

(2) b has at most one entry different from 1,2 and b;

3)lla—1)<|a€al+|beb|+1.

Next, we determine when all irreducible components of V(n,a,b) are regular.
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Proposition 1.5. The set of reqular elements is dense in V(n,a,b) if and only if
n<a+b—2o0orn=a-+b.

The classification of the non-regular irreducible components of V(n, a, b) is more
complicated and needs more notation. We state and prove the result in Section 8.

The paper is organized as follows: In Section 2 we repeat some basics on
varieties of modules. In particular, we recall Richmond’s construction of a strati-
fication of these varieties, which we will use throughout. We regard V(n,a,b) as a
variety of modules over a Gelfand—Ponomarev algebra, and we use module theory
to classify the irreducible components of V(n,a,b). Section 3 is a collection of
mostly known results on Gelfand—Ponomarev algebras. Richmond’s stratification
turns out to be finite for V(n, a,b). This is studied in Section 4. In Section 5 we
prove that all regular strata are irreducible. This is used in Section 6 to prove The-
orem 1.1. The classification of all regular components of V(n,a,b) can be found
in Section 7. Theorem 1.2 is proved at the end of Section 7. The main result of
Section 8 is the classification of all non-regular components of V(n,a,b). Finally,
some examples are given in Section 9.

Acknowledgements. The author received a Postdoctoral Fellowship from the
DAAD, Germany, for a stay at the UNAM in Mexico City, where most of this
work was done. He thanks Christof Geifl and Lutz Hille for helpful and interesting
discussions.

2. Varieties of modules

Let A be a finitely generated K-algebra. Fix a set aq,--- ,an of generators of A.
By mod(A, n) we denote the affine variety of A-module structures on K". Each
such A-module structure corresponds to a K-algebra homomorphism A — M,,(K),
or equivalently to a tuple (M, --- , M) of n X n-matrices such that the M; satisfy
the same relations as the a;. The group GL, (K) acts by simultaneous conjugation
on mod(A, n), and the orbits of this action are in 1-1 correspondence with the
isomorphism classes of n-dimensional A-modules. An orbit O(X) of a module
X has dimension n? — dim End4(X). If O(X) is contained in the closure of an
orbit O(Y'), then we write ¥ <gep X. It is well known that ¥ <., X implies
dim Homa (Y, M) < dim Homa (X, M) for all modules M, see for example [Bo].
If

0—X —Y —7—0

is a short exact sequence, then ¥ <4o; X @ Z. If there exists a module Z and a
short exact sequence

0—X —>YapZ—7—0,
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then it is proved in [Rie] that ¥ <4es X. The converse is also true by [Z]. Short
exact sequences of this form are called Riedtmann sequences. We call a module X
a minimal degeneration if there exists no module Y with ¥ <g4ep X.

Now, let A be a finite-dimensional K-algebra, and let Z4(n) be a set of rep-
resentatives of isomorphism classes of submodules of A™ which have dimension
n(d — 1) where d = dim (A). The modules in ZT4(n) are called the index modules
of A. For each L € T4(n) let S(L) be the set of points X € mod(A,n) such that
there exists a short exact sequence

0 —L—A"—X—0

of A-modules. Such a set S(L) is called a stratum. Note that mod(A,n) is the
disjoint union of the S(L) where L runs through Z(n). The following theorem
can be found in [R].

Theorem 2.1 (Richmond). Let A be a finite-dimensional K-algebra. Then the
following hold:

(1) For each L € Ta(n) the stratum S(L) is smooth, locally closed, irreducible
and has dimension

dim Homu (L, A™) — dim End4(L);

(2) Let LM € Tu(n). If S(L) is contained in the closure of S(M), then
M Sdeg L;
(3) Let LM € Ta(n). If M <geg L and
dimHom4 (L, A) = dim Hom4 (M, A),

then S(L) is contained in the closure of S(M).

Unfortunately, the converse of the second part of this theorem is usually wrong.
So it remains a difficult problem to decide when a stratum is contained in the
closure of another stratum. Another problem is, that the set 7 4(n) is often infinite.
Following [R] an algebra A is called subfinite if T 4(n) is finite for all n.

3. Gelfand—Ponomarev algebras

We identify V(n, a,b) with the variety of n-dimensional modules over the algebra
A= Aa,b - K[$7 y]/(xy, $a>yb)'

We call A a Gelfand—Ponomarev algebra.
The group GL,(K) acts on V(n,a,b) = mod(A,n) by simultaneous conjuga-
tion, i.e.

g (A,B)=(gAg ', gBg").
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The orbits of this action are in 1-1 correspondence with the isomorphism classes
of n-dimensional A-modules. By O(M) we denote the orbit of an element M €
V(n,a,b).

In the following we repeat Gelfand and Ponomarev’s classification of inde-
composable A-modules (by a ‘module’ we always mean a finite-dimensional right
module). As a main reference we use [GP], but see also [BR].

A string of length n > 1 is a word ¢ - - - ¢, with letters ¢; € {z, y} such that
no subword is of the form 2 or y*. Additionally, we define a string 1 of length 0.
Set 20 = y¥ = 1.

The length of an arbitrary string C is denoted by |C|. Let C' = ¢;---¢, and
D = dy---d, be strings of length at least one. If CD = ¢y - -cpdi---dy, is a
string, then we say that the concatenation of C and D is defined. For an arbitrary
string C' let 1C =C1=C.

For each string C we construct a string module M (C) over A as follows: First,

assume that n = |C| > 1. Fix a basis {z1, -, zny1} of M(C). Given an arrow
a € {z,y} let
ziv1 fa=¢g=yand 1<:i<mn,
Zira=<z 1 fa=c¢ 1=zand 2<i<n+1,
0 otherwise.

For C = 1 let S = M(C) be the one-dimensional module with basis {z;} such
that 21 -2 = 21 -y = 0. This is the unique simple A-module. The z; are called the
canonical basis vectors of M(C).

For example, let C = zzyzy. Then the string module M (C) looks as in Figure
1, where 21, - - - , 25 are the canonical basis vectors of M (C), and the arrows indicate
how the generators = and y of A operate on these basis vectors. Set (A, B) =

z3 z5
z2 z4 26
e
2

Fia. 1. The string module M (zzyzy)

M (zzyzy). We have
(A, B) e n7H0(3,2,1)) N7y 1(O(2,2,1,1)) = A((3,2,1),(2,2,1,1)).

A string C' = ¢ - - - ¢, of length at least one is called a band if all powers C™ are
defined. Next, we associate to a given band B = by - - - b,,, and some n > 1 a family

{M(B, A, , ) | e K51 <i<n}
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of band modules. Fix a basis {z15, -+ ,2m; | 1 <j <n} of M(B,A,---,A\n). For
a € {z,y} define

295 if a =b1 =y,
) NzZmgt2mi1 ifa=by=zand 2 <75 <n,
A% My if ¢ —byp—zandj—1,
0 otherwise,
and let
Zm—1j ifa=by, 1=z,
)Nzt 2z fa=b,=yand 2 <5 <n,
i VP if @ =B, =g andj =1,
0 otherwise.

For2<i:i<m-—1and 1 <j <n we define

zipyy fa=b =y,

Z@j = Ziflj ifa:bi,1 =,
0 otherwise.
The z;; are called the canonical basis vectors of M(B, A1, -+, Ay).

For example, let B = zazyzy. Then the band module M (B, A1, A2) looks as in
Figure 2. The arrows in Figure 2 indicate how the generators z and y of A operate

Z21 Z31 Z41

x Y
222 " 232 — ™ 242

‘ (Y, A2) ‘

zZ12 v = %52

/

Z11 Z51
(¥, M)

Fia. 2. The band module M (zazyzy, A1, A2)

on the canonical basis vectors of M (B, A1, A2). For example, z51 -y = 1211,
250 - Y = Aaz12 + 211, 232 - Y = z42 etc.
The next lemma is proved by straightforward base change calculations.

Lemma 3.1. Let M(B, A1, -+ ,\n) be a band module. If Ay # A1 for some l,
then M (B, A1, , \y) is isomorphic to

M(B, A, -+, A1) @ M(B, g1, 0+, An).
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If A; = A; for all 4 and j, then define M (B, A\,n) = M (B, A1, ,Ay), compare
[BR].

A band B is called periodic if there exists some string C' such that B = C™
for some m > 2. A band is called primitive if it is not periodic. For primitive
bands B and B define By ~ By if B; = BB’ and By = B’B for some strings
B and B’. Let S be the set of strings, and let B be a set of representatives of
equivalence classes of primitive bands with respect to the equivalence relation ~.
The following theorem is proved in [GP].

Theorem 3.2 (Gelfand-Ponomarev). The modules M(C) and M (B, n) with
CeS, BeB, Ae K* andn > 1 is a complete set of representatives of isomor-
phism classes of indecomposable A-modules.

The next lemma follows from the construction of string and band modules and
from Theorem 3.2.

Lemma 3.3. If (A, B) € V(n,a,b), then
n — s =rk(A) + rk(B),

where s is the number of string modules in a decomposition of (A, B) into a direct
sum of indecomposable modules.

Corollary 3.4. An element in V(n, a,b) is regular if and only if it is isomorphic
to a direct sum of band modules.

Let By, ---, B,, be bands. For positive integers py,--- , pm, set

P= ZP’H
=1
m
i=1

FP={( A\, -, ) € KP | Xy # X #0 for all i # j}.
Define a morphism of varieties

GL,(K) x FP — V(n, a,b)

(97 ()\117' o 7>\p117' o 7)\17717"' 7)\pmm)) = g- @M(Bj7)‘lj7 7)\pjj)

j=1
The image of this morphism is denoted by
‘F - F((Bl’p1)7 Tty (Bmypm))
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We say that F is a p-parametric family. In case p; = 1 for some ¢, we write also
just B; instead of (B;, p;). It follows from [Kr] that dim O(y) is constant for all y
in a given family F. The following lemma is straightforward.

Lemma 3.5. Any p-parametric family F is constructible, irreducible and has di-
mension p + dim O(y) where y is any point in F.

Lemma 3.6. Fach direct sum of band modules is contained in the closure of some

family F.

Proof. A band module M (B, A, n) is obviously contained in the closure of the set
of all band modules M (B, A1, -+, \,) where the \; are pairwise different. O

For a string C define
P(C)={(D,E,F)| D,E,F € S and DEF = C}.

We call (D, E, F) € P(C) a factor string of C if the following hold:
(1) Either D=1 or D =d; ---d,, where d,, = z;
(2) Either F=1or F'= fi-- f, where f1 =y.
Dually, we call (D, E, F') a substring of C' if the following hold:
(1) Either D=1 or D =d; ---d,, where d,, = y;
(2) Either F=1or F = f;--- f, where f; = z.
Let fac(C) be the set of factor strings of C, and by sub(C) we denote the set of
substrings of C. For strings C1 and Cs let
.A(Cl, CQ) = {((Dl, El,Fl), (D27 E27 FQ)) = fac(Cl) X sub(Cg) l E1 = EQ}

For example, if C1 = zay and Cy = zyzxx, then

A(C1, C2) = (w3, 1,9), (1, 1, zyza)), (2, 1, ), (2, 1,2)),
(L zz,y), (zy, zz, 1)), ((z, =, y), (zy, 2, 2)), ((z, 2y, 1), (1, 2y, 22)) }.
For each a = ((Dy, E1, Fy), (D4, Es, F3)) € A(C1, C3) we define a homomorphism
fa : M(C1) — M(Cs)
as follows: Define
fa(#Dy|+i) = 2Dy +i

for 1 < i < |F1]|+ 1, and all other canonical basis vectors of M(Cy) are mapped
to 0. Such homomorphisms are called graph maps. The following theorem is a
special case of the main result in [CB].

Theorem 3.7 (Crawley-Boevey). The graph maps {f, | a € A(Cy,Cs)} form a
K-basis of the homomorphism space Homp (M (C1), M(Cs)).



Vol. 79 (2004) Pairs of nilpotent matrices annihilating each other 405

There is the following multiplicative behaviour of graph maps: Let f, : M(Cy)
— M(Cy) and fp : M(Cy) — M(C3) be graph maps. Then the composition
Salo : M(Cy) — M(C3) is either 0 or a graph map.

4. Index modules of Gelfand—Ponomarev algebras

A module M is called biserial if it is isomorphic to

m

P M(='y?)

i=1

where 0 <7 <a—1and 0 < 7 <b—1. For example, A regarded as a module

over itself is isomorphic to the biserial module M (z*~'y?~1). Note also that any

projective A-module is isomorphic to A™ for some n > 1.

Lemma 4.1. Gelfand—Ponomarev algebras are subfinite, and all their index mod-
ules are biserial.

Proof. Any Gelfand—Ponomarev algebra A is a monomial algebra. Thus by [ZH,
Lemma 3], if U is a submodule of a projective A-module, then

(U-z)yn(U-y)=0.

It follows from the description of indecomposable A-modules that the biserial mod-
ules are the only A-modules which have this property. O

A case by case analysis shows the following:

Lemma 4.2. A biserial A-module

L=s™ae@M@a)"a@My)™ & P M('y)™s

i>1 j>1 i,j>1
is isomorphic to a submodule of A™ if and only if the following hold:

My 70 = i < a—2,
My; 70 = j <b—2,
mip—1 720 = i=a—1,
Ma—1; 70 = j=b—1,
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E My + E mi; < n,
i>1 ig>1
> my;+ Y mi; <,
j>1 3,521
merE mm‘JrE Myj + 2 E miy; | < 2n.
i>1 i>1 ij>1

The dimension of L is

ms Y mai(i+ 1)+ > my(+ 1)+ Y my(i+5+1).

i1 jz1 4,521

Lemma 4.3. Let L € Ta(n) and assume that L is the direct sum of m indecom-
posable modules. Let p be the number of indecomposable projective modules among
these direct summands. Then we have

dim Hom(L,A) =n(d—1)+m —p
where d = dim(A).
Proof. We have dim Hom(A, A) = dim(A) = d and so dim Hom(P,A) = dim (P)

for any projective module P. Each indecomposable non-projective direct summand
of L is of the form M (z'y?) with 0 <i <a—2and 0 <j <b—2. We have

dim M (z*y?) =i + 5 + 1,
dim Hom(M (z'y?),A) =i +j + 2.
This can be checked directly or by applying [CB]. Since dim(L) = n(d — 1), the

result follows. O

Lemma 4.4. If 0<p<i<a—1and0<qg<j<b-—1, then

M(ziyq) & M(zPy?) <aeg M(xlyg) @ M (zPy?).

Proof. One can easily construct a short exact sequence

0 — M(z'y’) — M(z'y?) & M(aPy’) — M(aPy?) — 0. O

A degeneration of the same form as in the previous lemma is called a flip
degeneration. (We ‘flip’ ¢ and j.) An index module L is called flip minimal if it is
isomorphic to a direct sum of the form

L
AP @ @ M(xcz'ydt—i+l)
i=1
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such that ¢; > ¢, d; > dip1, 0 < s <a—2and 0 < d; <b—2forall 5. It
follows from the previous two lemmas that for any index module L there exists a
chain

Ll Sdeg LQ Sdeg t Sdeg Lt =L

of flip degenerations of index modules with L; being flip minimal and
dim Hom(/Z;, A) = dim Hom(Lq, A)

for all 4.

Lemma 4.5. If 1 <p<i<a—2and0<q,7<b—1, then
M(a:”lyj) o M(a:pflyq) <deg M(xlyj) @ M (aPy?).

Proof. One can construct a short exact sequence

0 — M(aty?) — M(z"'y?) @ M(aP'y?) — M(a'y?) — 0. O

A degeneration of the same form as in the above lemma is called a box move
degeneration. The modules over K[z]/(z™) correspond to partitions, or equiva-
lently to Young diagrams, and the degenerations of these modules are given by
moving boxes of the Young diagrams. We are in a similar situation here. Note
that Lemma 4.5 has an obvious dual version, exchanging the roles of x and y.

5. Regular strata are irreducible
For a partition p = (p1,--- ,p:) let Y(p) be its corresponding Young diagram,

which has p; boxes in the ith column. For example, the Young diagram Y(3,2,2, 1)
looks as in Figure 3. For a partition p = (p1,- - ,p:) the dual partition is defined

F1a. 3. The Young diagram Y'(3,2,2,1)

as p* = (r1,--,rp, ), where the r; are the number of boxes in the rows of the
Young diagram Y (p), ordered decreasingly. For example,

(3,2,2,1)" = (4,3,1).

Now let A € N(n,a) with p = p(A). Then the boxes of the Young diagram
Y (p) can be considered as a certain basis of K™, and A can be considered as
an endomorphism of K™. If b is a box such that there is a box b’ below b, then
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A maps b to ¥/, and b is mapped to 0, otherwise. Figure 4 illustrates this for
p(A) = (3,2,2,1), where the arrows indicate how A acts on the boxes. Now let

|
Y

|
Y
0O 0 0 O
Fia. 4

p* = (r1, -+ ,Tm) be the dual partition of p. Then r1 = dim Ker(A), r1 + 12 =
dim Ker(A?) etc.
If p and q are arbitrary partitions, then define p < q if

! 1
Sopi<D g
i=1 =1

for all [, where we set p; = 0 and g; = 0 for all 4 > [(p) and j > [(q). This partial
order is usually called the dominance order. The proof of the following proposition
can be found in [Ge], see also [H].

Proposition 5.1. For p € P(n,l) we have

t

dim C(p) =n* =) 1}

i=1

where p* = (ry, -+ ,7¢),
k
C(p) = {Ae N(n,1) | tk(A*) =n—> r;,1 <k _t}
=1

and
k
C(p) = {A e N(n, 1) | rk(A*) <n — er,l <k St}.
j=1

In particular, if p,q € P(n,l), then C(p) C C(q) if and only if p < q.

Recall that we defined two maps
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with m1(A, B) = A and m(A, B) = B, and for (a,b) € P(n,a,b) we set
A(a) =1 (C(a)),
A(a,b) = 71 (C(a)) N7y (C(b)).

Thus, as a consequence of Proposition 5.1 we get

k
Ala) = {(AB) € V(n,a,b) | tk(A*) :n_zmj,1 <k< r}

and

k
A(a,b) = {(A7B) € V(n,a,b) | rk(A") :n—ij71 <k<r,

g=L

1
k(B :n—an,l << s}
j=1
where a* = (my,--- ,m,) and b* = (ny,--- ,n,). In particular, A(a) and A(a,b)
are locally closed in V(n,a,b).
The following lemma is an easy exercise.

Lemma 5.2. If M € N(n,!l), thentk(M) =n — l{(p(M)).

Proof of Proposition 1.3. Let (A, B) € V(n,a,b), and set
(a,b) = (p(4),p(B)) € P(n,a,b).

Assume that (A, B) is regular, i.e. tk(A) + rk(B) = n. By Lemma 5.2 this is
equivalent to n = {(a) 4+ I(b). Thus, if A(a,b) contains a regular element, then all
elements in A(a, b) are regular. We know that (A, B) is isomorphic to a direct sum
of band modules. But any band is (up to equivalence) of the form z1y® ... gy
with ¢;,d; > 1 for 1 < i <t¢. This implies that the number of entries which are at
least 2 in a is equal to the number of entries which are at least 2 in b. In other
words, l(a—1) = (b — 1). Conversely, if (a,b) € P(n,a,b) with l(a) + {(b) = n,
lla—1)=lb-1),a—1= (¢, ,¢) and b—1={(dy,---,d;), then set

(A7B) - M(qudl o 'thydt7 >‘)

Clearly, we have p(A) = a, p(B) = b, and (A, B) (and therefore also (a,b)) is
regular. This finishes the proof. (Il

Altogether, we get that for a regular (A, B) € V(n,a,b) the following are
equivalent:
e dim top(A, B) = p;
¢ dim soc(A4, B) = p;
e dim (Ker(A) N Ker(B)) = p;
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o dim (Im(A) NIm(B)) = p;
o l(p(A) - 1) = p;
o l(p(B) —1) =p.

Example. Let (A, B) = M(zzyzy, A). Then p(A) = (3,2) and p(B) = (2,2,1).
Thus, (p(A) — 1) =1(2,1) =2 and {(p(B) — 1) = {(1,1) = 2. It is also clear that
M (zzyzry, A) has a 2-dimensional socle and a 2-dimensional top. As an illustration,
see Figure 5.

x Y
221 ¢ 231 — " 241

Z11 Y .~ %51
(¥, N)

Fia. 5. The band module M (zzyzy, \)

The next lemma follows directly from the construction of projective covers of
indecomposable A-modules. These covers are easy to construct.

Lemma 5.3. Assume that S(L) C V(n,a,b) conlains a reqular element (A, B).
Then L is a direct sum of n indecomposable modules, and exactly n—dim top(A, B)
of these are projective.

A A-module is called a diamond module if it is isomorphic to M (z*y?, \) for
some 1 <i<a-—1and1l<j<b-—1. Thus the diamond modules are the band
modules with simple top (and therefore also with simple socle). We now associate
to any regular element (a,b) a diamond family F(a,b) which consists of direct
sums of diamond modules.

Let (a,b) € P(n,a,b) be regular. Thus, {(a—1) = {(b —1) by Proposition 1.3.
Assume that a—1=(c1, - ,c;) and b —1=(dy, -+ ,d;). Let

F(a,b) = F(xclyd”7xcgydt*17 e 7:cctydl).

Thus every module in F(a,b) is isomorphic to

t
B Mg, x)
i=1

for some pairwise different A;. For example, a module in
F((4,3,2,1),(3,2,2,1,1,1))

looks as in Figure 6, where the points are just the basis vectors of the module.

Note that F(a, b) C A(a,b).
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x I (y 1) / i .X
i @ i (yv >\2) @ x .
>\ x‘ A A3)

Fia. 6. An element in F((4,3,2,1),(3,2,2,1,1,1))

Proposition 5.4. If (a,b) € P(n, a,b) is regular, then F(a,b) s dense in A(a, b)

and has dimension
8

T
n? — me —an +l(a—1)?
=1 i=1

where (a—1)* = (myq, -+, my) and (b—1)* = (nq, -+ ,ns). In particular, A(a,b)
is irreducible.

Proof. Let (A, B) € A(a, b) be regular. Thus (A4, B) is in some stratum S(L) with
L a direct sum of n indecomposable modules, and exactly n —[(a— 1) of them are
projective, see Lemma 5.3. By Lemma 4.3 we get,

dim Hom(L,A) =n(d — 1) +1(a—1)

where d = dim(A). Assume a — 1 = (¢q, - ,¢) and b —1 = (dy, -+ ,d;). By
Proposition 1.3 each module in A(a,b) is isomorphic to a direct sum of band
modules, and one checks easily that L = (F, F') with

p(E)=(e1, - ,er)=(a—ct—l,a—c—1— 1, ;a—cy — 1)
and

p(EY=(f1,, fi)y=0b—di —1,b—dy_1—1,--- ;b—dy —1).
Define ,

L(a,b) = A" & @D M(a"y ).
i=1
We apply a sequence of flip degenerations to L and get
L{a,b) <qeg L
with
dim Hom(L(a,b),A) = dim Hom(L, A).

Then Theorem 2.1, (3) vields that the stratum S(L(a, b)) is dense in A(a,b). By
2.1, (1) we get that A(a,b) is irreducible. Observe that

F(a,b) C S(L(a,b)).
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We have
dimF(a,b) =n®> => "mi => nl +ia—1)°
i=1 i=1
where (a — 1)* = (my,---,m,) and (b —1)* = (ny, - ,ns). This follows from

Lemma 3.5, the dimension formula for orbits and [Kr]. Using the dimension for-
mula in Theorem 2.1, (1) and applying [CB] we get

dimS(L(a,b)) = dim F(a, b).
This implies that F(a,b) is dense in A(a,b). O

Thus, from the above proposition we get the remarkable result that the diamond
families form a dense subset in the set of all regular elements in V(n,a, b).

6. The nilpotent case
The following is easy to prove.

Lemma 6.1. For u € {z,y} and strings C and D the following hold:
(1) If CuD 1is a string, then
M(C) ® M(D) € OUM(CuD));
(2) If Cu is a band, then

M(C) € F(Cu) = F(uC).

Lemma 6.2. If 1 <i<a—1,1<j5<b—1,andl >0 suchthat j+1+1<b-1,
then

M(z'y? \) @ M(yl) € F(xtystitl),
Proof. There exists a short exact sequence
0 — M(a'y’,A) — M(y’*'a") — M(y') — 0.

Thus
M(yj'*'l:ci) <deg M(xiyj,)\) D M(yl)

Then we use Lemma 6.1, (2). O

Lemma 6.3. Let (C, D) € V(n,n,n) with tk(C)+1k(D) < n and rk(D) < n—1.
Then (C, D) is contained in the closure of

{(A, B) € V(n,n,n) | tk(A) = tk(C), tk(B) = tk(D) + 1}.
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Proof. Set
C={(A, B) e V(n,n,n) | tk(4) = rk(C),rk(B) = rk(D) + 1},
and let s = n —1k(C) — rk(D). Thus (C, D) is isomorphic to a module

Ma EB M(Cy)
=1

where M = 0 or M is a direct sum of band modules. There are three cases to
consider: First, if s > 2, then

(C,D) € O(M @ M(C1yCy) ® M(Cs) @ ---@® M(C,)) CC.

Second, if s = 1 and C; # 4 for some [ > 0, then
(C,D)e M & F(Ciy) CC.

Finally, assume that s = 1 and C; = ' for some [ > 0. Since rk(D) < n — 1, this
implies [ < n — 1 and thus M # 0. Using Proposition 5.4 we can assume without
loss of generality that M is a direct sum of diamond modules. Let M (z'y?, \) be
one of these direct summands, thus M = M’ @ M (x%y?, \) for some M’. Then we
use Lemma 6.2 and get

(C,D) € M’ @ F(ziyititl) CC.

Note that we used several times our assumption a = b = n by assuming that certain
words in z and y are actually strings, i.e. that they do not contain subwords of
the form 2z or y®. This finishes the proof. |

Corollary 6.4. Let (A, B) € V(n,n,n) with tk(A) <n — i and rk(B) < i. Then
(A, B) is contained in the closure of

{(A,B) € V(n,n,n) | tk(A) = n —i,tk(B) = i}.
Lemma 6.5. If uy,ug,vi,v9 > 1, u1 +ug <a—1and vy +vy <b-—1, then
Mz 92yt X\ X)) <deg M(2™y" A1) & M(2"2y"?, As).

Proof. 1t is straightforward to construct a short exact sequence

0 — M((z"y", \) — ]\/I(:lculJ“uzyulyh7 —A1Ag) — M(z"2y"2, ) — 0. O

Proof of Theorem 1.1. Let (a,b) € P(n,n,n) be regular with
a_]‘:(ch'” 7Ct)

and
b—1=(dy, - ,ds).
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The diamond family F(a,b) is dense in A(a,b) by Proposition 5.4, and each
module in F(a,b) is of the form

t
D Mayh =+, )
j=1

for some \;. Since a = b = n, we know that 2"y

Now we use Lemma 6.5 and get that

F(a,b) C A(a,b) C F(zniyt),

isastring forall 1 <i<n-—1.
where
and

This implies
{(A,B) € V(n,n,n) | tk(A) = n —i,tk(B) = i} C Flzn—iyi).
Then Corollary 6.4 implies
Fla ) = {(A, B) € V(n, n,n) | k(4) < n— i,rk(B) < i}.
By Proposition 5.4 we get
dim F(z" " 'y") = dim F(z"—iyt) = n? —n + 1.
This finishes the proof. O

7. Classification of regular irreducible components

If (a,b),(c,d) € P(n,a,b) with a < ¢ and b < d, then we write (a,b) < (c,d).
This defines a partial order on P(n,a,b).

Lemma 7.1. If (a,b),(c,d) € P(n,a,b) are regular with (a,b) < (c,d), then
I(a) = I(c) and I(b) = I(d).

Proof. For all regular pairs (e, f) we have l(e) + [(f) = n. Since a < ¢, we have
{(a) > l(c), and from b < d we get [(b) > I(d). This implies {(a) = {(c) and
I(b) =U(d). O

The next lemma is a consequence of Proposition 5.1.
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Lemma 7.2. Let (a,b),(c,d) € P(n,a,b). If

A(a,b) N Alc,d) # 0,
then (a,b) < (c,d).

Let
Pl reg = Pireg(nsa,b) = {(a,b) € P(n, a,b) | l(a) = i,I(b) =n — 1,
lla—1) =p},
and
VP iee = Viie(mab)= | Alab).
(a,b)eP?

This implies
VP ={(4,B) € V(n,a,b) | tk(A) = n —4,tk(B) = 7, dim top(4, B) = p}.

i,reg

In particular, V¥ ___(n, a,b) is locally closed.

i,reg
Proposition 7.3. Let (a,b),(c,d) € PF__ (n,a,b). Then

i,reg

A(a,b) C Alc,d)
if and only if (a,b) < (c,d).

Proof. If (a,b) < (c,d) does not hold, then we apply Lemma 7.2 and get

A(a,b)n A(c,d) = 0.
Next, assume that (a,b) <l (c,d) holds. By Lemma 5.3 each element in V?

i,reg
belongs to some stratum of the form S(L) with L a direct sum of n indecom-
posables, and exactly n — p of these are projective. Since (a,b) < (¢,d) and
(a,b), (c,d) € P} o, (n,a,b), there exists a chain

L(C:d) = Ll Sdeg L2 Sdeg co Sdeg Lt = L(a7c)

of box move degenerations between index modules such that dim Hom(Z;, A) is
constant for all L; in this chain. Now we use the same arguments as in the proof
of Proposition 5.4, and finally we apply Theorem 2.1, (3). This finishes the proof.

O

An element (a,b) € P . (n,a,b) is called (i,p)-mazimal if it is maximal

i,re]

in PP _ (n,a,b) with respect to the partial order <I. Clearly, each non-empty

i,reg

Pipreg(n7 a, b) contains a unique (i, p)-maximal element.
It follows easily that an element (a,b) € PF . (n,a,b) is (i,p)-maximal if and

i,reg
only if the following hold:
e a has at most one entry different from 1, 2 and q;
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e b has at most one entry different from 1, 2 and b.
As a consequence of Propositions 5.4 and 7.3 we get the following:
Corollary 7.4. The set nyreg(m a,b) is locally closed and irreducible, and if it is
non-empty, then it contains F(a,b) as a dense subset, where (a,b) is the unique
(i, p)-mazimal element in P} .. (n,a,b).
Proof of Theorem 1.4. We characterize the (i, p)-maximal elements (a, b) such that
the closure of A(a,b) is an irreducible component. By the preceding results, these
are then all regular irreducible components. Assume that (a,b) is (4, p)-maximal.
Thus

a—1=((a—1)P""1a—v-1,17"

and
b-1=(b-1)P"*"1b—w-1,1%

where 0 < v <a—-2,0<w<b-2,0<rs<p—-1,v=0=7r =0 and
w = 0= s=0. By Corollary 7.4 we have

F(a,b) = Aa,b) = V7 ;.

We claim that the closure of F(a,b) is an irreducible component if and only if
r+s+1<p.

First, let r + s+ 1 > p. This implies that there exist wy, w9, v1,v2 > 1 such that
each module in F(a, b) has a direct summand isomorphic to

M(z"y" M) @ M(2"2y"?, A2)

where vy +ug < a—1 and v1 +v9 < b—1. Now we apply Lemma 6.5 and see that
F(a,b) is contained in the closure of some other family F(c,d). In particular, the
closure of F(a,b) cannot be an irreducible component. This proves one direction
of the statement.

Second, assume that r + s+ 1 < p. Since the function rk(—) is lower semicon-
tinuous, Vﬁ reg Cannot be contained in the closure of some V;{reg with ¢ # 7. It is
also clear that V} . cannot be in the closure of VI _ if p < ¢. Because in that
case, we have

dim Hom(M, S) = p < ¢ = dim Hom(N, S)

for all M € Vi, and all N € V{ . This is a contradiction to the upper

semicontinuity of the function dim Hom(—, 5).
Thus, assume that i = 7, p > ¢ and r + s+ 1 < p. Then the dimension formula
in Proposition 5.4 yields
dimV?P___ > dimV?

i,reg — j,reg*
Again this implies that Vﬁ reg CaNNOL be in the closure of V‘; reg- Lhus the closure

of V¥ _ must be an irreducible component. Finally, note that lla—-1) < |a€

a| +|b € b|+ 1 if and only if r + s + 1 < p. This finishes the proof. O
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Proof of Theorem 1.2. Let a € P(n,n) be a partition of n. Ifa= (1,---,1), then
A(a) is the union of the orbits of n-dimensional modules of the form

P My

i>0
and O(M(y" 1)) is dense in A(a). Thus A( ) is irreducible and
Ala) C Flzy 1) =A(2,1,---,1).

Next, assume that a = (1,---,1). Thus l( ) =i for some 1 < i <n—1. Then
there exists a unique maxunal (with respect to <) partition a® such that (a,a®)
is regular. Namely, we have a® = (rq,--- ,7r,_;) where

i—lla—-1)4+2 if j=1,
;=142 if 2<j<lla-1),
1 otherwise.

Here we use our assumption a = b = n. By Proposition 7.3, we know that for any
regular element (a, d) we have

Aa,d) C A(a,a°).
Now, assume that (a, c) is non-regular with A(a, c) non-empty. It follows from

Lemma 6.3 that
Aa,c) C A(a,d)

for some regular (a, d).
This proves that A(a) has A(a,a®) as a dense subset. Thus A(a) is irreducible.
Recall that for regular elements, (a,b) < (c,d) implies {(a) = {(c), see Lemma
7.1. Using Lemma 7.2, we get that

Aa) C A(c)
implies a < ¢ and {(a) = I(c). Conversely, assume a < ¢ and [(a) = {(c). This
implies a® < ¢ and [(a — 1) > {(c —1). We get

Aa) C A(c)

by applying Lemma 6.5 in case {(a — 1) > I(c — 1), or Proposition 7.3 in case
{(a—1)=1(c —1). This finishes the proof. O

8. Classification of non-regular irreducible components
The classification of irreducible components of V(n,a,b) with a < n and b < n is

less straightforward than for the case a = b = n. The main reason is that Corollary
6.4 does not hold in the general case.
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A module M is semi-projective (respectively semi-injective) if it is isomorphic

P mc)
i=1

where C; = 207 1Cly®~! for some string C} and all i (respectively C; = ¢~ 1Clz2~!
for some string C/ and all 7). The next two statements are clear.

to

Lemma 8.1. If M(C) is semi-projective and M (D) semi-injective, then CxDy
is a band. Thus,
M(C)® M(D) € F(CzDy).

Lemma 8.2. If M(C) is not semi-projective and not semi-injective, then there
exists some u € {x,y} such that Cu is a band. Thus,

M(C) € F(Cu).

The next lemma is again a consequence of the construction of projective covers
of string modules.

Lemma 8.3. Let M € V(n,a,b) be a direct sum of t string modules. If M is
semi-projective (respectively semi-injective), then M is in some stratum S(L) with
dim Hom(L, S) = n —t (respectively dim Hom(L,S) =n +1t).

Lemma 8.4. If M is a semi-projective module in V(n, a,b), then M is not con-
tained in the closure of the set of reqular elements in V(n,a,b).

Proof. Let

be semi-projective. We have M € S(L) for some index module L. By Lemma 8.3
we have

dim Hom(L,S) =n —t.

Now assume that S(L) is contained in the closure of some stratum S(L(a, b)) with
(a,b) regular. So L(a,b) <4 L. Since (a,b) is regular, we get

dim Hom(S(L(a,b),S) = n.

This is a contradiction because the function dim Hom(—, S) is upper semicontin-
uous. |

Lemma 8.4 enables us to determine when all irreducible components of V(n, a, b)
are regular, i.e we can prove Proposition 1.5.
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Proof of Proposition 1.5. If n < a+b—2 or n = a+ b, then there are no semi-
projective or semi-injective modules. So Lemma 8.2 implies the result. For the
other direction, it is sufficient to construct for each n > a+b+1 and for n = a+b—1
an n-dimensional semi-projective module. We leave this as an easy exercise to the
reader. Then Lemma 8.4 yields the result. |

Lemma 8.5. Let M(C) be semi-projective, and let B be a band of the form z°y.
Then there erists a semi-projective string module M(FE) such that

M(E) <aeg M(C)® M(B, ).

Proof Let B= 2y forsome 1 <c<a—1and1<d<b—1, and let
C: mClydl .. '$Ctydt

where 1 < ¢ <a—1land 1 <d;<b-—1foralli, ¢ =a—1andd;, =b-1.
Note that M (C) is semi-projective. Let m be the maximal i such that one of the
following hold:

(1) ¢ > ¢
(2) ci=cand d;—1 < d;
(3)i=1.

First, we assume that there exists some ¢ > m such that d; < d. Note that this
implies ¢+ < t. Then it follows from the definition of m that c¢;11 < ¢. Define

E o xclydl . ydixcydxci+1 . thydt.
Now it is easy to construct a short exact sequence
0— M(C)— M(E)— M(B,\) — 0.

This implies M (E) <geg M(C) @® M (B, X).
Second, we consider the case d; > d for all ¢ > m. Let [ be maximal such that

O = gty .. ydm-1gem—e(zeyd)l D
for some string D. Define
E = atyd .. ydm-1gem—e(geyd)tip,
Again, one can construct a short exact sequence
0— M(C)— M(F)— M(B,\) —0
which implies M (F) <geg M(C) ® M (B, A). This finishes the proof. O
Let P, (respectively Z,,) be the set of all semi-projective (respectively semi-
injective) modules in V(n, a, b). Observe that P,, and Z,, contain only finitely many

isomorphism classes of modules. The next corollary follows from Proposition 5.4,
Lemmas 8.1, 8.2 and 8.5.
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Corollary 8.6. Each non-reqular irreducible component of V(n,a,b) contains a
dense orbit O with O C P, UZ,.

Note that the duality D = Homg (—, K') induces an isomorphism
0:V(n,a,b) — V(n,a,b)
(4,B) — (A", B")

where M*' denotes the transpose of a matrix M. For example, if (A, B) is iso-
morphic to M(zzy), then (A, B) is isomorphic to DM (zzy) = M (yzz). The
restriction of & to P, yields an isomorphism P,, — 7,,.

Lemma 8.7. Let S(L) be a stratum containing a semi-projective module, and let
S(M) be a stratum containing a semi-injective module. Then

S(L) ¢ S(M) and S(M) ¢ S(L).

Proof. By Lemma 8.3 we get
dim Hom(L,S) =n—s

and
dim Hom(M,S) =n+1

for some s,¢t > 1. This implies M Z4eg L. Thus by Theorem 2.1, (2) the stratum
S(L) cannot be contained in the closure of S(M). Next, assume that S(M)
is contained in the closure of S(L). This implies that 8(S(M)) is contained in
the closure of 0(S(L)) with 6(S(M)) containing a semi-projective and 6(S(L))
containing a semi-injective module. But this is a contradiction to the first part of
the proof. O

Up to now, we established the following: To classify all non-regular irreducible
components of V(n,a,b), it is sufficient to decide which orbits in P,, are open.

Let X be indecomposable and semi-projective, and assume that X is contained
in a stratum S(L). We want to determine when O(X) is open. We can assume
that L is flip minimal, otherwise we could use flip degenerations and Theorem 2.1
to show that S(L) and in particular X is contained in the closure of some other
stratum S(M) with M being flip minimal.

Let (a,b) € P(n, a,b) such that the following hold:

e |lacal|lbeb|>1;

e l(a)+I(b)=n+1;

ella—1)=Ib-1).
Leta—1=(c1, - ,e), b—1=(dy, - ,d:), and define

P(a7b) _ M(xclydtxc2ydt—1 L ydzquch)
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and
t

L(a,b) = A" " @ (P M(a® %1yt~ desr2 1y,
i=2
Note that L(a,b) is an index module in Za(n), and P(a,b) is semi-projective and
contained in the stratum S(L(a,b)). Observe also that P(a,b) € A(a,b). The
index module L(a, b) is flip minimal. Furthermore, each flip minimal index module
L with S(L) containing an indecomposable semi-projective module is obtained in
this way.

Lemma 8.8. Under the above assumptions, the orbit O(P(a,b)) is dense in
S(L(a,b)).

Proof. Using the dimension formula in Theorem 2.1, (1) and Theorem 3.7, a
straightforward calculation shows that

dim O(P(a, b)) = dim S(L(a,b)).
Thus O(L(a,b)) must be dense in the stratum S(L(a, b)). O

As a consequence of the above results we get the following:

Lemma 8.9. The orbit O(P(a, b)) is open if and only if there is no module P(c,d)
with P(c,d) <aeg P(a,b).

Lemma 8.10. Let (a,b), (c,d) € P(n,a,b) such that
elacal|lbebllacc|, bed >1;
el(a)+I(b)=I(c)+l(d)=n+1;
ella—1)=Ib-1) andl(c—1)=1(d-1).

Then the following hold:

(1) If P(c,d) <4eg P(a,b), then (a,b) < (c,d);
(2) If (a,b) < (c,d) and l(a —1) = l(c — 1), then P(c,d) <4eg P(a,b).

Proof. The first part of the lemma is a direct consequence of Lemma 7.2. Next,
one easily checks that the conditions (a,b) < (¢,d) and {(a — 1) = {(c — 1) allow
a sequence of box move degenerations

L(C7 d) =1L Sdeg Lo Sdeg ce Sdeg L, = L(a7 b)

such that dim Hom(L;, A) = dim Hom(L1, A) for all 4. As before we use Theorem
2.1, (3) and get
S(L(a,b)) € ST(e, ).

Since P(a,b) and P(c,d) are dense in S(L(a, b)) and S(L(c,d)), respectively, this
implies P(c,d) <4eg P(a,b). This finishes the proof. O
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Theorem 8.11 (Classification of open orbits). Let X be an indecomposable A-
module. Then O(X) is open in V(n,a,b) if and only if X is isomorphic to M(C)
or DM (C) where C is of one of the following forms:
(1)
C = (:Eafly)r(xaflybfl)s(xybfl)t
where r,8,t >0, r+s>1and s+t > 1;
(2) ‘ ,
C = (mafly)r(xaflyz)a(xaflybfl)s(xjybfl)ﬁ(xybfl)t
where 1,8t >0,2<i<b—-22<j<a-2,0<a,8<1,a+82>1,
r+a+s>lands+p0+t>1;
(3) o
C = (a"""y) 2"y’ (zy" ")’
wherer,t > 1, 1 <i<a—2and 1 <j<b-2.
The open orbits in V(n, a,b) are exactly the orbits of the form

o (@ M(C¢)>

et

with O(M(C;)) open and Ext (M (Cy), M(C;)) =0 for all i # j in I.

If a string C belongs to one of the sets (1), (2) or (3) as defined in the theorem,
then we say that C is of type (1), (2) or (3), respectively.

Proof. We classify the open orbits O(X) with X indecomposable. By Lemma 8.2
we know that X has to be semi-projective or semi-injective. By duality, we can
assume without loss of generality that X is semi-projective. As a consequence of
Lemma 8.10, we can assume that X = M(C) = P(a,b) such that the following
hold:

e a has at most one entry different from 1,2 and a;

e b has at most one entry different from 1,2 and b.
Now we proceed similar to the proof of Theorem 1.4. We can assume that [(a) +

a—1=(a-1P"1a—v-1,17)

and
b-1=((b-1P"*1b—w-1,1°

where 0 < v <a—-2,0<w<b-2,0<rs<p—-1,v=0=7r =0 and
w = 0= s =0. Then by using Theorem 3.7, we get
dimO(P(a?b)):nQ—pQ—p—l—(a—v—Z)(p—r)2
—(b-—w—-2)(p—s) —vlp—r—-1)* —wp-s—1)°.
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By Lemma 8.9 the orbit of P(a,b) is open if and only if there is no P(c,d) with
P(c,d) <gqeg P(a,b).

If r+s+1<p, then

dim O(P(a,b)) > dim O(P(c,d))

for all P(c,d) with (a,b) < (¢, d). This follows from the above dimension formula.
So by Lemma 8.10 the orbit O(P(a, b)) must be open. Observe that C is of type
(1), (2) or (3) ifand only if r +s+1 < p.

Next, assume that r + s + 1 > p. By the definition of r and s, it follows that
a,b > 3 in this case. Then C is of the form

(@ ) (@' y) (@) (wy? ) (wy” )™
where k,m >1,1>0,1<i<a—2and1<j<b—2 If [ =0, then define
E - (xafly)kxiquyqul(xybflyn.
Otherwise, let
E = (a* ') (@ yy)(@y)' (@y?) (my® )™,

In both cases, we get M(FE) <geg M(C). This is proved by constructing a Riedt-
mann sequence

0— M(C) — M(E)® M(zy,1) — M(zy,1) — 0.
Thus, O(P(a, b)) cannot be open. This finishes the classification of indecompos-

able A-modules whose orbit is open. The rest of the theorem follows from [Z,
Theorem 3]. O

For modules X and Y let Hom(X,Y) be the space Hom(X,Y) modulo the
homomorphisms factoring through a projective module. By 7 we denote the
Auslander—Reiten translation. For indecomposable modules X and Y we have
the Auslander—Reiten formula

Ext'(X,Y) = DHom(7 'Y, X).

For the basics of Auslander—Reiten theory we refer to [ARS] or [Ri]. If M(C) is a
semi-projective string module, then define

7710 = 22 YyCxy® L.
Note that M(7~1C) is also semi-projective. It is proved in [BR] that
T~ IM(C) = M(v1C).
The next proposition is an application of the Auslander—Reiten formula and The-

orem 3.7.

Proposition 8.12. If M(C) and M(D) are semi-projective string modules, then
the following are equivalent:
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(1) Ext'(M(C), M (D)) =0;
(2) Each map f, with a € A(T~1D,C) factors through M(z% 1y*~1).

For deciding whether a graph map factors through another string module, one
uses the multiplicative behaviour of graph maps. Using this proposition and the
previous theorem, it is now easy to compute the semi-projective modules whose or-
bit is open. Using duality, we get all open orbits. This completes the classification
of irreducible components of the variety V(n,a, b).

Corollary 8.13. For an indecomposable A-module X the following statements are
equivalent:

(1) Ext' (X, X) =0;
(2) X is isomorphic to a string module M(C) or DM (C) with

C = (xafly)r(xaflybfl)s(xybfl)t

where r,8,t >0, r+s>1and s+t > 1.

9. Remarks and examples

We list all irreducible components of V(n,3,3) for n < 12. First, let us give the
list of all regular irreducible components and their dimensions.

For each regular (a,b) we constructed a family F(a,b) of modules which is
dense in A(a,b), see Proposition 5.4. Recall that these families are of the form
F((B1,p1), -+ s (Bm, pm))-

In Figure 7 we display the data (Bi,p1), -, (Bm,pm) in case the closure of
the corresponding family is an irreducible component. If p; = 1, then we just write
B; instead of (B;,p;).

In Figure 8 we give a list of all open orbits and their dimensions. Recall that
the closures of the open orbits are exactly the non-regular irreducible components.
Remember also that the open orbits are orbits of certain semi-projective or semi-
injective modules. For the sake of brevity we list only the strings C; occurring in
their direct sum decomposition. For example zzyy @ zzyy encodes the module
M(zzyy) & M(xzzyy). We only list the semi-projective modules whose orbits are
open. Thus one has to add the same number of semi-injective modules to get
all open orbits. Recall that there are no open orbits for n < a4+ b —2 = 4 and
n=a-+b=6.

Remark 1. If Ext!(M, M) = 0 for some A-module M, then by Voigt’s Lemma
one gets that O(M) is open. The converse does not hold. The smallest example of
this kind occurs for n = 9: Let M = M (zzyzyzyy) be in V(9,3,3). Then O(M)
is open but Ext! (M, M) # 0.
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2 | 3 | 4 | 5| 6
oy 3| xxy 7| xxyy 13 | zzy, 2y 20 | (v2y,2) 28
zyy 7 ryy,xy 20 | (wyy,2) 28
xxy, xyy 30
7] 8 | 9
zxyy, xzy 40 | (zzy,2),7y 51 (z2y,3) 63
zxyy,zyy 40 | (2yy,2), 2y 51 (zyy,3) 63

(zxyy,2) 52 | (xzy,2), zyy 67
xxy, xyy, vy 53 | (xyy, 2), zxy 67

10| 1| 12
(z2y,2), zxyy 81 (z2y,3),2y 96 (zxay,4) 112
(xyy, 2), zzyy 81 (xyy, 3),zy 96 (zyy,4) 112
rryy, TTY, TYY 83 (z2yy, 2), x2y 99 (zayy, 3) 117
(z2yy, 2), zyy 99 (z2y,3),2yy 118
(z2y, 2), zyy, zy 100 (zyy, 3), zxy 118

(zyy, 2), 22y, zy 100 | (22y,2), (zyy,2) 120

Fia. 7. The regular components of V(n, 3, 3) for n < 12

5 | 7 | 8 | 9
xxyy 20

rryyryy 52 (zxyy)? 66
rxyreyy 52 | rxyryryy 66

rxyryy 40

0| 1| 12
xryy & zaryy 80 | (xzy)?razyy 98 rryy & reyryy 117
(xzy)zyy 82 | xayy(zyy)? 98 (zzyy)?zyy 118
zxy(ryy)? 82 | rxyrryyryy 100 zry(rryy)? 118

(z2y)’ryryy 118
reyey(zyy)? 118

F1a. 8. The non-regular components of V(n, 3,3) forn < 12

Remark 2. Let a = b = 2 and n = 3. Then O(M(zy)) and O(M (yz)) are
both open orbits, since M (zy) is projective and M (yz) is injective. In particular,
A(2,1) and A((2,1),(2,1)) are both not irreducible.

Remark 3. The Gelfand—Ponomarev algebra A is a string algebra in the sense of
[BR]. Similarly to Lemma 4.1 one can show that all string algebras are subfinite,
and their index modules can be classified as in Lemma 4.2.

One should be able to classify the irreducible components of varieties of modules

over many other string algebras in the same fashion as in this paper.
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