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Asymptotique des nombres de Betti, invariants 12
et laminations

N. Bergeron et D. Gaboriau

Abstract. Let K be a finite simplicial complex. We are interested in the asymptotic behavior
of the Betti numbers of a sequence of finite sheeted covers of K, when normalized by the index of
the covers. W. Liick, has proved that for regular coverings, these sequences of numbers converge
to the [2 Betti numbers of the associated (in general infinite) limit regular cover of K.

In this article we investigate the non regular case. We show that the sequences of normalized
Betti numbers still converge. But this time the “good” limit object is no longer the associated
limit cover of K, but a lamination by simplicial complexes. We prove that the limits of sequences
of normalized Betti numbers are equal to the 2 Betti numbers of this lamination.

Even if the associated limit cover of K is contractible, its {2 Betti numbers are in general
different from those of the lamination. We construct such examples. We also give a dynamical
condition for these numbers to be equal. It turns out that this condition is equivalent to a former
criterion due to M. Farber. We hope that our results clarify its meaning and show to which extent
it is optimal.

In a second part of this paper we study non free measure-preserving ergodic actions of a
countable group I' on a standard Borel probability space. Extending group-theoretic similar
results of the second author, we obtain relations between the 2 Betti numbers of I" and those of
the generic stabilizers. For example, if b(12)(f‘) # 0, then either almost each stabilizer is finite or
almost each stabilizer has an infinite first /2 Betti number.

Mathematics Subject Classification (2000). 55NXX (58J22), 37A15 (57R30)

Mots clés. Betti numbers, finite covers, laminations, [2-Betti numbers, measure preserving
actions.

Introduction
0.1. Asymptotique des nombres de Betti

Un complexe simplicial compact K possede des invariants topologiques numé-
riques : ses nombres de Betti (usuels) b, (K), qui sont les dimensions des espaces
vectoriels H,,(K,R) d’homologie en dimension n.

On considére dans tout cet article une action libre cocompacte (L,T") d'un
groupe dénombrable discret I sur un complexe simplicial L.
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Ses nombres de Betti [ notés bg)(L I') sont les dimensions généralisées (au

sens de von Neumann) des espaces hilbertiens ﬁg)(L, I') d’homologie {? réduite en
dimension 7. Les nombres de Betti {2, introduits par M. Atiyah dans un contexte
analytique [Ati76], ont connu un vaste développement, notamment dans le cadre
des feuilletages mesurés (par A. Connes [Co79]), dans le cadre général des ac-
tions topologiques quelconques de groupes dénombrables (J. Cheeger et M. Gro-
mov [CG86]), ou suivant I'approche de W. Liick qui fait rentrer cette théorie
dans un cadre homologique classique par une extension de la notion de dimen-
sion généralisée [Liic98a, LiicI8b]. L article de B. Eckmann® [Eck00] constitue une
excellente introduction aux nombres de Betti [2. Une question récurrente dans le
domaine consiste a établir leurs liens avec les nombres de Betti usuels.

Lorsque I' est un groupe fini, la dimension généralisée au sens de von Neumann
n’est autre que la dimension usuelle divisée par le cardinal |T'| de I'. Des lors, si le
complexe simplicial L ci-dessus est lui-méme compact (et done I" fini), alors

bn (L)

b2 (L,T) = i

D’otu il résulte, si A est un sous-groupe normal d’indice fini de T", que les nombres
de Betti (? de 'action du groupe fini A\I" sur le complexe compact A\ L coincident
avec les nombres de Betti usuels normalisés de A\L :

bn(A\L)

M ANL, M) = oo 1)

On appellera tour de sous-groupes d’indices finis de I" toute suite décrois-
sante (I';);cw de sous-groupes d’indices finis de T" telle que 'y = T". 11 lui correspond
—la tour de revétements L — - - T, \L = T;\L = T,_1\L — --- = To\L

— en chaque dimension n, la suite des nombres de Betti usuels (b, (I';\L))ien.

Si les sous-groupes I'; sont de plus d’intersection triviale (N;>oI'; = {e}), alors
la tour de revétements (I';\L); “semble converger” vers le revétement L, et on
cherche a comprendre le comportement asymptotique de la suite des nombres
de Betti usuels, ou plus précisément au vu de la formule (1), de ces nombres
normalisés : (%)%N. Un argument fort en faveur de cette normalisation est
que la caractéristique d’Euler, ainsi normalisée est constante dans une tour de
revétements.

D. Kazhdan, dans une étude sur les variétés arithmétiques [Kaz75] a essentiel-
lement obtenu la comparaison suivante, lorsque les sous-groupes d’indices finis I';
sont de plus normaux et d’intersection triviale :

1 est d’ailleurs B. Eckmann qui le premier a introduit une structure euclidienne sur Pes-
pace des chaines d’un complexe, pour obtenir une décomposition de Hodge (voir [Eck45]). Il est
également remarquable que I'une des premiéres applications (voir [Eck49]) de cette décomposition
de Hodge simpliciale concerne la théorie des revétements, application dont la preuve contient en
germes les idées de M. Atiyah conduisant aux nombres de Betti {2 dans le cas d’un revétement
galoisien fini.
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Inégalité de Kazhdan.

b, (I \L
lim sup g

N

M. Gromov [Gro91, p. 13, p. 153] est ensuite amené & poser la question :
I'inégalité ci-dessus est-elle une égalité 7 En 1994, W. Liick, dans un article re-
marqué démontre ce résultat.

Théoréme (Liick [Liic94]). Soit (I';)ien une tour de sous-groupes d’indices finis
de I'. Siles sous-groupes I'; sont de plus normauz dans I' et d’intersection triviale,
alors

lim —b"(ri\L)

S A &

Observons que dans I’énoncé original de ’article [Liic94], le complexe simplicial
L est supposé simplement connexe, mais que cette hypothese est superflue. Du
coup, on peut aussi supprimer ’hypothese de trivialité de I'intersection des I';, a
condition de remplacer alors dans la conclusion, et seulement dans le terme de
droite, le groupe I" par le quotient I' := I/ Mye I'; et L par L := Nyenli\ L.

Alors que le membre de gauche de (1) repose sur 'existence d’une action de
A\T et donc sur le fait que A est distingué dans I', le membre de droite a un sens
méme lorsque A n’est pas distingué dans I". Cette question est discutée dans la
section introductive 2.1.

Une généralisation du théoreme de W. Liick a des revétements non galoisiens a
néanmoins été proposée par M. Farber, qui est amené a introduire une hypothese
d’apparence technique.

Critere de Farber. Soit n; le nombre de sous-groupes distincts de I' qui sont
conjugués a T'; et, pour chaque g € T, soit n;(g) le nombre de ceuz-la qui contien-
nent g.

vgeT\ {e}, im 29 (4)

i—00 N

Théoréme (Farber [Far98]). Soit (I';);en une tour de sous-groupes d’indices finis
de T' d’intersection triviale. Si le critére (4) est vérifié, alors

lim bu(LiAL) (L \L)

= b2N(L,T).

Observons que ce critere entraine que I' est résiduellement fini.
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Dans la partie 4, on présente des exemples ol ce critére n’est pas satisfait et ol
la conclusion est mise en défaut, et oli méme I'inégalité de Kazhdan (2) se trouve
violée. Voici par exemple une spécialisation du théoreme 4.1.

Soit A un complexe simplicial compact de groupe fondamental infini et résiduellement
fini. Soient K un complexe obtenu en lui attachant un cercle par un point, I' ~
7m1(A) * Z le groupe fondamental et L = K le revétement universel de K.

Théoréme 0.1. Pour tout g € [0, 1], il existe une tour (I';);en de sous-groupes
d’indices finis de I, d’intersection triviale, telle que, I'; 11 est normal dans I';

et pour n > 2, lim;_, o % = pob, (T\L) + (1 — uo)b&”(L, ),

et pour n =1, lim;_, % = pobt (T\L) + (1 — uo)b(12)(L, ) — o

Rappelons que by (T\L) = 1 + b1(A) et b(lz)(L7 N=1+ b(lz)(fl, m1(A)), et que
b (T\L) = b, (A) et bgg)(L, = bg)(fL 71(A)), pour n > 2. Du coup, tout com-
plexe A pour lequel b, (A) # bg)(fl, 7m1(A)) (n > 2) conduit & un contre-exemple.

Par exemple, pour construire des exemples qui ne vérifient pas l'inégalité de
Kazhdan, on prend pour A le tore T? de dimension p, alors L est contractile,
D ~7ZP«Z, by(T\L) =p+1, b(lz)(L,F) =1 et, pour n > 2, b,(I'\L) = C} tandis
que tous les bg)(L, I') sont nuls.

Cet énoncé permet également de produire des exemples ol cette fois I'inégalité
de Kazhdan se trouve fortement vérifiée (avec une inégalité stricte). Prenons A
homéomorphe & une variété M de dimension 4 compacte acyclique a by(M) =
0 et groupe fondamental résiduellement fini (on peut penser & un fauzr CP? ou
CP? d’homologie [Mum79]; 71 (M) est alors un réseau de SU(2,1)). On a alors :
B (L,T) > by(T'\L). En effet, par dualité de Poincaré, by = by = 1, by = bs =
0 = b2 = 5P et b = b et done by(A) + 2 = x(A) = xP(A, 71(4) =
b5 (A, m1(4)) = 26{7(A, 1 (4)).

Si I'on se contente d’un exemple avec n = 1, une égalité b1 (A) = b(lz)(fl, m1(A))
suffit, qu’on peut obtenir avec une sphere d’homologie A (by = 0) de dimension 3
et hyperbolique (b§2> = 0). C’est encore plus simple si ’on se satisfait d’exemples
non acycliques ou avec de la torsion.

Apres ces préliminaires, voici le premier résultat général que nous obtenons avec
des sous-groupes non nécessairement normaux. On ne connait pas d’autre preuve
de cet énoncé. La suite considérée n’est, en général, ni monotone, ni sous-additive.

Théoréme 0.2. Soit (I';)icw une tour de sous-groupes d’indices finis de I'. Pour
bn(T\L)

[T:T] >i€N est

tout entier n, la suite des nombres de Betti usuels normalisés (
convergente.

Plus précisément, nous donnons une interprétation “dynamico-géométrique” de
cette limite et nous montrons en quel sens le critére Farber (4) est optimal, ce qui,
on l'espere, clarifie sa signification. Pour cela, nous considérons une construction
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associée & la donnée de la tour de sous-groupes d’indices finis (I';);cn de I et de
Paction (L,T) :

Pour tout entier positif ¢, on introduit I’espace de probabilité (X, u;) égal
a l'ensemble (fini) des classes (& droite) I'/T"; de I' modulo T';, que I’on munit
de la mesure de comptage normalisée. Les applications de réductions successives
Xiv1 = T/Tip1 — X, = T'/T; permettent de considérer ’espace de probabilité
limite projective

(X, ) :=limproji>o(Xi, ps)-

C’est un espace borélien standard. On peut le voir comme le bord (& I'infini) d’un
arbre enraciné. C’est aussi un espace topologique homéomorphe & un espace de
Cantor (si la suite des indices [I" : T';] tend vers I'infini). L’action naturelle de T" sur
les X; fournit une action de I" sur (X, ), préservant la mesure p. Cela ne dépend
que de la tour.

I’action diagonale de I" sur X x L donne par passage au quotient une lamination
transversalement mesurée qu’on appellera une (L,T")-lamination :

L(X,L,T) :=T\(X x L).

Ses feuilles en sont les composantes connexes par arcs (lorsque L est connexe).
Chacune est isomorphe au quotient de L par le stabilisateur d’un point de I’action
(X,I).

Les nombres de Betti [? d'une telle lamination (pour la mesure transverse
provenant de p) ont été considérés par le second auteur [Gab01]. Nous les noterons

Ba(X, L, T).
Les définitions seront rappelées en section 2. On peut les voir comme une version
simpliciale des nombres de Betti des feuilletages de A. Connes.

On est alors capable de donner un sens, en termes de laminations, au membre
de gauche “bg)(A\L7 A\I')” de Iégalité (1) méme lorsque A n’est pas normal :
Bn(T/A, L,T). Et cette égalité reste valide (voir section 2.1). Plus généralement,
nous obtenons le résultat suivant, qui est central dans cet article :

Théoréme 3.1. Soit (I';)icn une tour de sous-groupes d’indices finis de I'. Pour
tout entier n,

o bn(TAL)
llifglo W = Bu(X, L,T).

ot By (X, L,T') est comme ci-dessus.

On dit que Paction (X, u,I") est libre si I’élément neutre est le seul élément de
I" & avoir un ensemble de points fixes de mesure non nulle. On a alors :

Théoréme [Gab01, Th. 3.11]. Si laction (X, u,I') est libre, alors
Bn(X,L,T) =b@(L,T).
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Si les I'; sont normaux dans I' et d’intersection triviale, alors X hérite d'une
structure de groupe (profini), I" est un sous-groupe et son action est par multipli-
cation & gauche dans X . Elle est alors libre et le théoreme 3.1 se spécialise en le
théoreme de W. Liick. Quant au critere de Farber (4), il signifie précisément que
I’action est libre. En effet,

Proposition 2.6. Dans (X, p, '), Uensemble des points fizes de g € T est de
mesure exactement lim;_, oo ";—(g).

On doit observer que ni le théoréeme de Farber, ni notre théoreme 3.1 ne four-
nissent une nowwvelle preuve du théoreme de Liick, puisque dans un cas comme
dans 'autre, il s’agit d’adapter les arguments de [Liic94].

0.2. Actions boréliennes non libres

Le théoreme 3.1 décrit les limites possibles des nombres de Betti normalisés
dans les tours des revétements finis. Un controéle sur la combinatoire des tours
de revétements finis est donc imposé par I'action (X,T") et la (L,I')-lamination
associée. Il est naturel de chercher a comprendre ces actions et plus précisément
a trouver des restrictions sur les stabilisateurs des points pour des actions non
libres (X, u, I'), préservant la mesure, d’un groupe dénombrable I" sur un borélien
standard de probabilité.

Les nombres de Betti > de (L,T") sont des invariants homotopiques, si bien
que lorsque L est p-connexe, les nombres de Betti {2 de action bg)(L, I'), pour
n < p deviennent des invariants du groupe I' lui-méme. On les appelle alors les
nombres de Betti {2 de T et on les note bg)(F). Plus généralement, J. Cheeger et
M. Gromov [CG86] ont introduit les nombres de Betti I pour tous les groupes
dénombrables discrets, méme ceux ne possédant pas de K (I, 1) & p-squelette fini.

Dans la section 5, nous démontrons :

Théoréme 5.4. Soit (X, u, ') une action ergodique, préservant la mesure, d'un

groupe dénombrable I' sur un borélien standard de probabilité sans atome. Si b(12>(F)
est non nul, alors

e ou bien I'(z), le stabilisateur de x dans T, est un groupe fini pour u-presque
tout x € X ;

o ou bien le premier nombre de Betti 12, b(lz)(F(z)), est infini pour p-presque
tout z € X.

Si de plus, la relation induite par 'action de I'" sur X est moyennable, seul le
deuxieme cas est possible. Tandis que dans le premier cas, pour p-presque tout =z,
les sous-groupes I'(z) sont conjugués deux a deux et il sont presque normauz, au
sens ol chacun n’a quun nombre fini de conjugués distincts dans I".
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Il est intéressant de rappeler deux énoncés en lesquels ce théoreme se spécialise,
chacun d’eux étant une généralisation dans une direction différente d’un théoreme
de O. Schreier :

Théoréme (O. Schreier [Sch27, p. 162]). Un sous-groupe normal non trivial et de
type fini d’un groupe libre est d’indice fini.

D’un c6té, les stabilisateurs des points dans Daction (X, u, ") peuvent étre
considérés d’une certaine facon comme des généralisations de sous-groupes nor-
maux (penser par exemple & une action ol tous les points ont le méme stabi-
lisateur : c¢’est alors un sous-groupe normal). La remarque de D. Sullivan selon
laquelle “there is no measurable way to pick a point in a leaf” impose des condi-
tions fortes sur certaines (L, I')-laminations. Rappelons que dans [Ghy95], 2. Ghys
a montré comment déduire de cette remarque une classification topologique des
feuilles génériques des laminations usuelles de dimension 2. Sous-jacent a ses idées,
on peut trouver I’énoncé suivant :

Théoréme 5.2. Soit T' un groupe libre et (X, p,T') une action libre ergodique
préservant la mesure de probabilité v sans atome sur le borélien standard X . Alors,
pour p-presque tout point x € X, le stabilisateur de x est soit trivial soit de type

D’un autre c6té, un groupe libre non cyclique est un exemple de groupe a
premier nombre de Betti {?> non nul, et le second auteur a étendu le théoreme de
O. Schreier a tous les groupes du méme genre (consulter [Gab01] pour références
a des résultats antérieurs notamment de J. Cheeger, M. Gromov et W. Liick) :

Théoréme [Gab01, Th. 6.8]. Soit ' un groupe dont le premier nombre de Betti
2, b(lz)(f‘), est non nul. Si N est un sous-groupe normal de I qui a un premier
nombre de Betti I fini (par exemple si N est de type fini) alors N est ou bien fini
ou bien d’indice fini.

La preuve dans cette généralité fait d’ailleurs appel a une action libre du groupe
I" sur (X, i) et & la notion de nombres de Betti [? des laminations.

Pour démontrer le théoréeme 5.4 (ainsi que 5.6 ci-dessous), nous serons conduits
a prouver le résultat suivant, intéressant en lui-méme, bien que pas franchement
surprenant puisque les nombres de Betti 12 des stabilisateurs sont définis explici-
tement sans recours a I’axiome du choix.

Théoréme 5.7. Soit (X, p,T') une action préservant la mesure d’un groupe dé-
nombrable I' sur un borélien standard de probabilité sans atome. Alors, la fonction
X — Rt U {0}, z — bg)(F(x)), qui associe a x le n-éme nombre de Betti I°
de son stabilisateur, est mesurable. En particulier, si l'action de I' est ergodique,
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alors cette fonction est presque sirement constante.

Concernant les nombres de Betti [* de dimension supérieure, nous obtenons
une généralisation du théoreme 6.6 de [GabO1]. Rappelons qu'une action mesu-
rable est hyperfinie si la relation d’équivalence engendrée est réunion croissante
de relation d’équivalence mesurables & classes finies. Par le théoreme de Connes—
Feldman—Weiss [CFWS81], cela équivaut & la moyennabilité de la relation au sens
de R. Zimmer.

Théoréme 5.6. Soit (X, u,I") une action ergodique hyperfinie, préservant la me-
sure, d’un groupe dénombrable I' sur un borélien standard de probabilité sans
atome. Si pour un certain n € N, le n-éme nombre de Betti I> de presque tout
stabilisateur est fini (b (D(x)) < 00 p-p.s), alors b$2 (I") = 0.

Pour I’ensemble de cette section, on se permettra de supposer une certaine
familiarité avec le contexte de l’article [Gab01].

Bruno Sévennec a lu attentivement une version préliminaire de cet article et
nous a signalé quelques corrections. Nous I’en remercions.

1. Rappels sur les nombres de Betti /2 d’une action de groupe

Soit (L,T") une action simpliciale libre et cocompacte et ¢ : L — K :=T\L
le revétement associé. Quitte a prendre des subdivisions barycentriques, on peut
supposer que l'espace K a une structure de complexe simplicial. On confondra
un complexe simplicial et sa réalisation géométrique. On se donne une orientation
sur les simplexes de K (et donc aussi sur ceux de L) et on appelle K™ (resp.
L™) D’ensemble des simplexes de dimension n de K (resp. de L). L’ensemble L"
est muni d’une action libre de I qui est simplement transitive sur l'image inverse
g (o) de chaque simplexe o de K™.

On note C,(LQ)(L) I'espace des n-chaines (? de L : c’est I’espace de Hilbert dont
une base hilbertienne est L™. Il vient avec une représentation 7, de I'. Les appli-
cations bord s’étendent par continuité en des opérateurs bornés 9, : 7(12)(1)) —
C,(i)l(L). Ils vérifient 9,0,,11 =0 et Vy € T, my_1(7)0n = Onmn (7).

Soit ©,, un domaine fondamental (partie qui rencontre une fois et une seule
chaque orbite) pour action de I' sur L". La liberté de I’action permet alors d’iden-
tifier L™ avec 6, := |©,| copies de I : L™ = Usce, I's. Cette identification induit
un isomorphisme

cONL)= P P(rs)~ € 1) (5)

SEO, SEO,

qui donne & C’,@(L) une structure de N(I')-module de Hilbert, o N(T') est
I’algebre de von Neumann de I
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On dispose alors d’'un complexe de N(T')-modules hilbertiens :
0 Py & Py & & c@py 2
On appelle homologie €2 réduite de L la suite d’espaces
HS)(L) = Ker 9,,/Im 8, 1,

ot H est ’'adhérence de H. Ces espaces ont une structure de N (I')-module de Hil-

bert et se plongent naturellement dans C’,(LQ)(L) comme supplémentaire orthogonal
de Im 9,1 dans Ker (8,,). L’image de ce plongement est par définition I’espace,
noté Hy, (L), des n-chaines harmoniques £> de L. Un calcul immédiat montre qu’il
est par ailleurs égal au noyau de l'opérateur laplacien A, = 80, + 09,1105, 1.

On cherche & “estimer la taille” de cet espace de Hilbert H,,(L). En dimension
finie, la dimension d’'un sous-espace est donnée par la trace d’un projecteur sur ce
sous-espace.

Ici, la trace® (de von Neumann) dun opérateur a de [*(I') qui commute avec
N(T") est donnée par le produit scalaire

TrN(p)(a) = <CL55I(55>7
ol &, est la fonction caractéristique de l'identité de I'. De méme, grace a 'isomor-

phisme ci-dessus (5), la trace d’un opérateur a de C’,(LZ)(L) commutant avec N(T')
est donnée par

Tryryla) = Y {a(s)]s).
SEO,
La N(I')-dimension dimyy(H) dun sous-espace fermé N(I')-invariant H de

7(12)(1)) est alors donnée par la trace du projecteur orthogonal sur ce sous-espace.

Définition 1.1. Les nombres de Betti 1> de l’action (L,T") sont les N(I')-dimen-
sions des N(T')-modules H,, (L) :

BB (L,T) == dimp (Hn (L)) = Tryy(pa) = D (pnls)ls). (6)

SEQ,

ol p,, est le projecteur orthogonal de C,(LZ)(L) sur H,,(L).

Si L est le revétement universel de K, on appelle aussi parfois ces nombres les
nombres de Betti I de K.

Ces nombres sont des invariants d’équivalence homotopique, si bien que lorsque
L est p-connexe, les p premiers nombres de Betti (> de (L,I') deviennent des

invariants du groupe : les nombres de Betti I de T, notés bg)(f‘)7 pour n =
07 17 Y 28

2 11 peut étre éclairant de penser & a comme une matrice (infinie) par rapport a la base privilégiée
(0g)ger : @ = (ag,n) = ({a(dg)|0n)) pour remarquer que les termes diagonaux (a(dg)|dy) sont
constants, vu la commutation de @ avec N(I'). La trace est alors 'un quelconque de ces termes
diagonaux.
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2. Nombres de Betti (> d’une (L, ')-lamination

On rappelle dans cette section la notion de nombres de Betti {2 d’une lamination
dans ’esprit de [Gab01, sect. 3].

Soit (X, u, ") une action mesurable du groupe I" sur le borélien standard X,
préservant la mesure de probabilité p. On note I'(z) le stabilisateur du point
z € X. Soit d’autre part (L,T") une action libre cocompacte de I" sur le complexe
simplicial connexe L.

On regarde 'espace X x L, avec la lamination par feuilles {z} x L. ’action
diagonale de I' préserve cette lamination et définit par passage au quotient ce
qu’on appelle une (L, T')-lamination transversalement mesurée

L(X,L,T) == \(X x L).

Nous allons rappeler la définition des nombres de Betti de la lamination sous
I’hypothese que T'\L est un complexe simplicial fini, dans ce cas chaque ©,, est
fini.

L’image de la feuille {z} x L est isomorphe & I'(z)\L. Sur X, on dispose du
champ mesurable de sous-groupes x + I'(z). Cela permet de définir le champ
mesurable £ de complexes simpliciaux

x = Ly =T(x)\L

sur lequel le groupe T" agit encore : v.(z,['(2)7) = (yz,7T(2)7) = (yz,T(yx)yT)
puisque I'(yz) = 4I'(z)y . C’est un complexe simplicial (hautement non connexe)
équipé d’une application (“fibration”) sur X, dont les fibres sont les feuilles (au-
dessus de = € X, la feuille £,). Ses simplexes seront notés (x,I'(z)s), ot x € X
et s € L. Pour chaque dimension n, l’espace de ses n-simplexes forme un espace
borélien standard £ . On dispose aussi d'une application mesurable

Q:XxL—>L (7)
qui est un revétement fibre a fibre
¢z :{z} x L — L, =T(2)\L.
A Daction de I' sur X est associée la relation d’équivalence

R :={(z,y) : Tz =Ty}, (8)

ol les points z et y de X sont dans la méme classe s'il existe un élément v dans I'
tel que y = ya.
La relation R possede une action sur le champ de complexes simpliciaux £ :
(z,y) € R définit un isomorphisme Zy — L, donné par I'isomorphisme naturel

Ly)\L — I(2)\L
< L(y)s = (z,y) - T(y)s = F(x)'ys> 9)

ol s € L et v € I" vérifie z = vy, i.e. I'(x) = 4T'(y)y~!. Bien entendu, si v € I'
est un autre tel élément, alors I'(z)y’ = I'(x)y. De plus, (z, z) induit I’identité.
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Remarque 2.1. Si L est muni d’un point base ¥, alors les espaces L, héritent
d’un pointage #, = ¢, (¥) qui n’est pas préservé par l'isomorphisme ci-dessus. De
plus, I'image dans la lamination £(X, L,T") de ce champ de pointages permet de
retrouver ’espace X comme transversale et fixe donc un choix de mesure transverse
invariante (et non & un multiple pres).

Cette action possede un domaine fondamental mesurable en chaque dimen-
sion n,

U @x x{s}) = | {(@T(@)s) :z € X} (10)
SEO, SEO,
ol ©,, est toujours un domaine fondamental pour ’action de I' sur L™. Soit en
effet (z,1(z)s’) = Q((x,s')) un simplexe de L. Il existe s € ©,, et v € I tels
que que s’ = «s. Alors (z,I'(z)s’) :_gbx,f‘(w)'ys) = (2,9 (y"1x)s) = (z,v lz) -
(v ta,T(y '2)s). Ainsi, 'ensemble £ des simplexes de dimension n de £ peut
s’identifier avec 6,, := |©,,| copies de R.
On considere le champ d’espaces de Hilbert

z = CN(L,) = CP(D(2)\L).

Chaque simplexe s € L™ y fournit un champ de vecteurs, que nous noterons
3 x +— 3 (donné par le champ de simplexes = +— (z,I'(z)s)). Le champ de
familles génératrices (3)scpn lui donne sa structure mesurable.

On dispose aussi du champ mesurable d’opérateurs bord 0F : C,S”(Zz) —
C’fﬁjl(zz). On définit Cy(Lz)(Z) et D,, comme intégrales :

D
AT / CO(L)du(z) et D, == / AT dp(z).
X

Rappelons simplement qu’un vecteur « de C’,(LZ)(Z) est un champ de vecteurs
z — uy mesurable et de carré intégrable, au sens ou les fonctions = — (uy[3y)
sont mesurables pour chacun des champs s donnés par les simplexes s € L, et

Jx Nlug|Pdp(z) < oo
On dispose alors du complexe :

0 (L) B o) & . B cO(p) Tt L (11)

Le n-éme groupe d’homologie [* réduite FELZ)(Z) = Ker Dy,/Im Dy 1. 1l est
isomorphe & l'espace des n-chaines harmoniques [ de L : le supplémentaire ortho-

gonal
HP(L) =Ker D, oIm D, 1.

Définition 2.2. Les nombres de Betti 1> du R-complexe simplicial £ ou de la
(L,T)-lamination £(X, L,T") sont définis par :
Bn(L) = Bu(X, L,T) = Y (Pu3]s), (12)

SEO,
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ou P, est le projecteur orthogonal de C’,(LQ)( L) sur H ( L), qu'on évalue sur les
champs de représentants s pour s € O,,.
L’identification R-équivariante de " avec 0, copies de R construite a l'aide

du domaine fondamental (10) induit un isomorphisme qui donne & C,(IQ)(Z) une
structure de M-modules de Hilbert :

COE) = P CPR-QX x {s}) = ) L*(R,v) (13)

SEO,, SEQ,
ol M est ’algebre de von Neumann de la relation R. On rappelle [FM77, Gab01]
que l’espace R C X x X est un borélien standard pour la tribu induite (Bx B)N7R,
ou B est la tribu de X, et pour tout C € (B x B) NR, la mesure v est définie par

€)= [ I (@) 1 Cldu(o)

avec m; : R — X projection sur la premiére coordonnée. Si on désigne par I,
et R, les opérateurs de L?(R,v) donnés pour v € T' et ¢ € L>®(X,u) par

Ryf(z,y) = f(z,v 'y) et Ryf(z,y) = ¢(y)f(z,y), alors M est 1'algebre des
opérateurs de L?(R,v) qui commutent avec tous les R, et R4. Le complexe (11)

est alors un complexe de M-modules hilbertiens et 'isomorphisme entre le n-eme
groupe d’homologie {? réduite et ’espace des chaines harmoniques [ de £ est un
isomorphisme de M-modules.

La trace d’un opérateur A de L?(R,v) qui commute avec M est donnée par la
formule

Trp(A) = (Pgoleo),
ol ¢y est la fonction caractéristique de la diagonale de X x X. De méme, grace a

I’isomorphisme (13), la trace d’un opérateur A de C’,@(Z) qui commute avec M
est donnée par

Tra(A) = Y (P3[5). (14)

SE@,

La M-dimension d’un sous-espace fermé M-invariant H de Cr(LZ)(Z) est alors
donnée par la trace du projecteur orthogonal sur ce sous-espace. Les nombres de
Betti I> du R-complexe simplicial £ ou de la (L,T")-lamination £(X, L,T") sont

donc les M-dimensions des M-modules H(2>( L):
Ba(L) = Ba(X, L,T) = dimpg HP(L) = Trpa(Pr)

ol P, est le projecteur orthogonal de C(Z)( L) sur 'H(2>( L).

Comme rappelé dans 'introduction, lorsque P’action de T" sur X est libre (au
sens de la mesure), on peut montrer, [Gab01, th. 3.11], que pour tout entier n,
Ba(L) = b (L, ).

Rappelons qu’inspiré par I’approche de Cheeger et Gromov [CG86], on peut
définir (voir [Gab01]) la notion générale de nombres de Betti [ d’'un R-complexe
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simplicial général sur une relation d’équivalence donnée R. Dans [Gab01], une
invariance homotopique de ces nombres de Betti [2 est démontrée. Cela permet de
définir les nombres de Betti {? de la relation R.

2.1. Exemple : revétements finis

Dans lintroduction on a rappelé la remarque (1) selon laquelle si A est un
sous-groupe distingué d’indice fini dans un groupe I" agissant librement et co-
compactement sur un complexe simplicial L, alors (le groupe A\I" agit librement
sur A\ L et) pour tout entier n,

bn(A\L)
b (A\L, A\l = ————=. 15
PANL M) = (15)

Dans cette égalité (15), le membre de droite conserve un sens méme lorsque le
revétement n’est pas galoisien autrement dit méme lorsque le sous-groupe A n’est
pas distingué dans I'. Le membre de gauche quant a lui n’a plus de sens, néanmoins
considérons sa définition “concrete”, donnée par la formule (6)

B (A\LAND) = D (pa(s)ls),

sEQ,

ou £y, est 'image d’un domaine fondamental ©,, pour I'action de T" sur L" (et
donc un domaine fondamental pour I'action (A\L™, A\I')). Elle conserve toujours
un sens mais sa valeur dépend du choix du domaine fondamental ©,, i.e. du choix
d’un point de vue. Une solution consiste a faire la moyenne de tous ces points de
vue. On va détailler cela avec comme double but d’illustrer la construction de la
section 2 et de préparer a la section 2.2.

Soit I' un groupe agissant librement et cocompactement sur un complexe sim-
plicial L. Soit A un sous-groupe d’indice finide I', k := [[': Al et ¢: L — A\L le
revétement correspondant.

Soit X ’ensemble fini I'/ A muni de la mesure de comptage normalisée : p({z}) =
%. L’action de I sur X est transitive, donc la relation d’équivalence R est celle
ol tous les points sont équivalents. La mesure v est la mesure qui donne a chaque
point de R = X x X le poids % L’espace de Hilbert L?(R,v) est I’espace vectoriel
dont les points de X x X forment une base, sont de norme % et deux a deux
orthogonaux.

La (L,T)-lamination £(X, L,T") :=T'\(X x L) n’est constituée que d’une seule
feuille isomorphe & A\L. Le champ de complexes simpliciaux £ est formé de x
complexes simpliciaux £, := I'(z)\L, indexés par = € I'/A, ot I'(yA) = vyAy~1,
isomorphes deux & deux par la formule (9).

Les espaces de chaines [? sont alors

<]
W@:Awmmm:@wmmm
zeX
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avec comme produit scalaire (u|v) = 3 _ ¢ £ (uy|vs).
Les nombres de Betti [? de cette lamination sont alors obtenus & ’aide de la
formule (12) :

/Bn(z) - Z <Pn§|§>7

SEO,

ol P, est le projecteur orthogonal de C(z)( L) sur H(z)( L), qu'on évalue sur les
champs de représentants s pour s € 9,,.

Remarquons que 1’algebre de von Neumann M de R est isomorphe a 1’algebre
M, des matrices x x k. Son action sur L?(R,v) identifié avec les matrices A =
(Asz y)wyex se fait alors par multiplication & gauche. La trace Trys, est alors la
trace usuelle des applications linéaires, divisée par k.

Par définition de l'opérateur “bord” D,,, pour ¢, € C’y(LQ)(Z)7 on a ¢,_1 =
Dy, si et seulement si ¢,—1(z) = 9%c,(x) pour p presque tout z dans X. On
en déduit que P, est un opérateur décomposable P, = @ . x py, o x — py est
le champ (mesurable) d’opérateurs projections orthogonales p¥ : C’,(lQ)(F(x)\L) —

DT @)\L).

@ = 3 Y s

sE@, zeX

:—ZZP z)s|0(2)s)

s€EOQ, xeX

ot I'(z)s est vu comme une n-chaine dans C’,@(F(z)\l}).
Mais l'isomorphisme de la formule (9) entre I'(y)\L et I'(z)\L induit une

isométrie entre les espaces C,(LQ)(F(y)\L) et C,(LQ)(F(x)\L) qui entrelace les pro-
jections p¥ et pZ. Ainsi, p= (I'(zo)ys) = p) *(I'(y z0)s) et avec 29 = A € ['/A

et 1,72, -+ , v« des représentants des classes & gauche de A\T,
Bn (Z Z Z <pn Av;s |A'Yz >
i=1s€Q,

Par ailleurs, Ul —%v,0,, constitue un domaine fondamental pour l’action de A sur
L. Clest-a- dlre UiZ5Av,;0,, = A\L", dont les élément constituent une base de

Pespace vectoriel de dimension finie Cy(LZ)(A\L). Si bien que, avec tr(py) la trace
usuelle de 'opérateur p,,,

Br(XLT) = 3 3 (i) |Ais)

i=1s€0,
= tr(pa) = ~ dime(HP P\ L)
.

A



376 N. Bergeron et D. Gaboriau CMH

Les “changements de point de vue” évoqués plus haut consistent donc a rempla-
cer le domaine fondamental ©,, par ses divers translatés v;©,,. Une autre maniere
de dire consiste & “oublier le groupe A” : considérons un revétement fini d’indice
%, non nécessairement galoisien, L, — K. Choisissons un point base ¥ dans L, son
image % dans K puis ses x relevés ¥;,%a, - , %, dans L. Chacun des revétements
pointés (L, ¥) — (L,*;) nous fournit un sous-groupe A; de I'. Ils sont deux & deux
conjugués. Passer de I'un a ’autre constitue un changement de point de vue.

Nous avons donc démontré :

Proposition 2.3. Si (L,T") est une action libre cocompacte sur un complexe sim-
plicial, si A est un sous-groupe d’indice fini, et X = T'/A est muni de la mesure de
comptage normalisée, alors les nombres de Betti I* de la lamination £(X,L,T) =
I\(X x L) coincident avec les nombres de Betti normalisés :
b (A\L)
Bn(X,L,T) = A
La (L,T)-lamination L(X, L,T") n’est constituée que d'une seule feuille isomorphe
a A\ L qui est recouverte par les projections des vO,, ot ©,, est un domaine fon-
damental pour la I'-action dans L™ et v décrit un systéme de représentants quel-
conque des classes & gauche de T modulo A. De plus, ces nombres de Betti 12
peuvent se voir comme une moyenne selon les points de vue :

Bu(X,L,T) [F—lA] S S alhys)|Ags).

YEA\T s€©,

Remarque 2.4. A ce stade, une petite précision s’impose. Si I'on considére un

sous-groupe strict T tel que A < TV < T" et I'action restreinte (L,I"), alors les
e
lamination £(X, L,T") ~ A\ L est la méme en tant qu’espace laminé! L’explication
tient au fait que la suite des nombres de Betti {2 d'une lamination transversalement
mesurée n’est bien définie qu’a une constante multiplicative pres qui dépend du
choix d’une normalisation de la mesure transverse invariante. Dans notre situation,
ce choix est précisé lorsqu’on décide que ’espace (X, p) est un espace de probabilité

(voir remarque 2.1).

nombres de Betti usuels normalisés

ne sont plus les mémes, tandis que la

2.2. (L,T')-lamination associée & une tour de revétements finis

On appelle tour de sous-groupes d’indices finis de I' toute suite décrois-
sante ' =19 D>I'y D ... DI, D ... de sousgroupes d’indices finis de I'. Il lui
correspond la tour de revétements finis au-dessus de T\ L :

L— Ty \L—-T\L—=T;_4\L —--- = To\L.

Pour tout entier positif 4, on introduit I’espace de probabilité (X, u;) égal
a l'ensemble (fini) des classes (& droite) I'/T"; de I' modulo T';, que I'on munit
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de la mesure de comptage normalisée. Les applications de réductions successives
pi: Xi=T/T; — X;,_1 =T /T";_1 permettent de considérer ’espace de probabilité
limite projective
(X, p) :=limproji>o(Xi, p:).-

C’est un espace borélien standard. On peut le voir comme le bord (& I'infini) d’un
arbre enraciné, oll les sommets sont les éléments des X; et les arétes données par
les applications X; 11 — X;). C'est aussi un espace topologique (homéomorphe &
un espace de Cantor, si la suite des indices [I" : T';] tend vers l'infini). L’action
naturelle de T" sur les X; fournit une action de I" sur (X, p), préservant la mesure
. Cela ne dépend que de la tour.

Définition 2.5. L’action diagonale de I" sur X x L donne par passage au quotient
la (L, T')-lamination associée & la tour (T'y);en :

£(X,L,T) :=T\(X x L).

Au vu du théoreme 3.1, il est important, pour comprendre I"asymptotique des
nombres de Betti normalisés d’une tour de revétements finis, de comprendre 1’ac-
tion de I" sur I'espace de probabilité X. On en isole quelques propriétés élémentaires
dans la proposition suivante :

Proposition 2.6. 1. Un point x € X est une suite (z;);cn de classes z; € T'/Ty
telles que p;i(x;) = xi—1. Si y; est un représentant de z; dans I, alors on obtient
pour stabilisateurs I'(z;) = 'yiFiy;l et T'(z) = ﬁieN'yiFi'yfl.
2. Pour tout point x € X et pour tout sous-complexe compact C de L, il existe
un entier ig > 0 tel que pour tout i = ig, et tout représentant v; de z; dans
T' le projeté de 'y;l.C dans T;\L soit simplicialement équivalent aux projetés
de C dans T'(z)\L et viTiy; '\L.
3. Laction de I étant transitive sur chaque X;, on en déduit que Uaction de
I' sur X est ergodique : tout ensemble borélien invariant est de mesure 0 ou
1. En particulier, U'ensemble des points de X a stabilisateur trivial est de
mesure 0 ou 1.
4. Pour tout élément g dans I, la mesure dans X de Uensemble des points fires
de g dans X wvaut :
u(Fizx (g)) = tim 49)

i—too Ny

ot n; désigne le nombre de sous-groupes de I' conjugués a T'; et n;(g) le
nombre de sous-groupes de I' conjugués a I'; et contenant g.

Démonstration. Seuls les points 2 et 4 demandent une explication.

Preuve du point 2 : Il n’existe quun nombre fini g1, g2, - - - , gr d’éléments de
I" qui envoient un simplexe de C' dans C. Pour iy assez grand et pour tout j =
1,---,k,onag; € '(x)si et seulement si g; € I'(x;). Pour tout ¢ > 4o, les projetés

de C dans T'(z)\ L et I'(z;)\ L sont simplicialement équivalents. .’isomorphisme (9)
entre I';\ L et I'(z;)\L qui envoie I';y, *C sur T'(x;)C permet de conclure.
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Preuve du point 4 : Soit f;(g) le nombre de points fixes de I’action de g sur Xj.
Alors :

En effet, le groupe I' agit sur X; et par conjugaison sur I’ensemble des conjugués

de I'; dans I'. L’application

X; — {conjugués de T'; dans T'}
p: ;
z — PFixp(x)

est I'-équivariante pour ces deux actions. Chaque fibre de p est donc de cardinal
a; = |{ZE e X;: FIXF(x) E— Fl}|,

égal & I'indice de T'; dans son normalisateur Ny (T';). Ainsi, avec les notations de la
proposition, [[" : T';] = n; X a; et le nombre de points fixes de ’action d’un élément
quelconque g € T sur X; est égal & n;(g) x a;. D’olt 'on conclut & 1’égalité (16).

% est décroissante, puisque fi+1(g) <

%

En passant alors & la limite (la suite
[ : Tix1]fi(g)), on obtient par définition de p, 1’égalité annoncée du point 4.

3. Asymptotique des nombres de Betti

On peut maintenant énoncer et démontrer le théoreme principal de cet article.

Soient L un complexe simplicial et I' un groupe agissant librement et cocom-
pactement sur L. Soit (I';); >0 une tour de sous-groupes d’indices finis dans I'. Soit
L=L(X,LT):=T\(X x L) la (L,T")-lamination associée (déf. 2.5).

Théoréme 3.1. Pour chaque entier n, la suite des nombres de Betti normalisés

(bn[l(“ljf“\]L))ieN converge et sa limite est égale au n-éme nombre de Betti 1> de la

(L, T)-lamination associée : B (X, L,T).

Démonstration. Fixons un entier n positif. Soit C,,(L) ’espace des n-chaines en-
tieres de L. C’est un Z[[']-module finiment engendré, dont la famille ©,, intro-
duite section 1 fournit une base. Soit @1 une application positive autoadjointe des
n-chaines de L dans elles-mémes (on peut penser au laplacien) donnée par une
matrice & coefficients dans Z[I'] (dont 'action se fait par multiplication & droite).
Autrement dit, avec 6, = |O,,] :

t: Co(L) = Cp(L), 1€ Z[l® Mat(6, x 0,,Z).

Pour que @ commute avec N(T), il faut y penser comme une matrice agissant par
multiplication & droite sur @f;l 12(1).

Observons que si A est un sous-groupe de I', alors 1 induit par passage au
quotient un opérateur sur les n-chaines entieres de A\ L qui s’étend en un opérateur

borné sur les chaines {2.
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Pour chaque i > 0, considérons X; = I'/T; muni de sa mesure de comptage
normalisée ;. Pour chaque 7 > 0 et pour chaque point z; € X;, l'application

i induit une application C-linéaire u®* sur C, (L, )= C(z)(ﬁ .), lespace des
n-chaines de la feuille simpliciale Z;, = I'(x;)\L au-dessus de z; dans la (L,T')-
lamination £ = T'\(X; x L) (dans ce cas la lamination £ n’a en fait qu'une feuille).

Par intégration contre la mesure p; on obtient un opérateur u; de C(Q)(ﬁ ) dans
lui-méme.

De méme, pour chaque point =z € X, I'application @ induit une application
C-linéaire u® sur C,,(£,) qui s’étend en un opérateur borné, encore noté u®, sur
(L), Vespace des n-chaines {2 de la feuille simpliciale Z, = I'(z)\L au-dessus
de z dans la (L,I')-lamination £. Par intégration contre la mesure p on obtient

un opérateur u de Cy(LQ)(Z) dans lui-méme.
Soit Q(z) un polynéme a coefficients réels. Pour tout z € X,z; € X;, on a

Q(u)* = Q(u”) et Q(u;)™ = Q(u7*).

Rappelons que si s est un simplexe dans ©,, il induit un champ de vecteurs s
(resp. 5;) dans la (resp. les) (L, T)-lamination(s) Z (resp. £ ) donné par : (z
(@, ).

Fait 1. Soit z = (z;); un point de X. Pour ¢ suffisamment grand et s € O,,,

(Q(w)*(5(2))[s(=)) = (Q(ws)™ (Ss(x:))[Se(:)).-

Les champs mesurables d’opérateurs = — Q(u)® sur £ (resp. z; — Q(u;)% sur
Z') ne sont autres que x — Q(u”) (resp. z; — Q(u¥*)). Le fait 1 découle alors
simplement des définitions et de la proposition 2.6 (point 2).

La norme d’opérateur de u; est bornée uniformément par rapport a ¢ par une
constante N (on peut prendre comme valeur pour N le produit de #,, par la somme
des coeflicients des éléments de T" dans la matrice u, cf. [Liic94] Lemma 2.5). Du
théoreme de convergence dominée de Lebesgue, on déduit donc :

Trp(Q(u)) = Z (Q(u)(3)[3)

- z))[3(z))dp()
% J :
— lim V7 (54 (4))[8s(24) ) dp()
5629 /)V('LH{»OO lu
- Z @Ll+moo/ (Qug) ™ (5i(q))|5s () dpu()

=i 32 (@t

z—>+oo
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= lim (Q(w)(3:)[54)-
ot e

Autrement dit :

Trad(QM) = lim_ Trag, (Q(w)) an)
ol M, est 'algebre de von Neumann de la relation d’équivalence sur X; engendrée
par action transitive de T', i.e. M; est I'algebre des matrices | X;| x |X;|, munie
de la trace normalisée Trp4,, qui est la trace usuelle divisée par | X;]|.

Soit maintenant {P(A)/A € [0, N]} la famille spectrale continue & droite de u.

Notons

F [0, +o0[— Ry A= Tra(P(A).

Fait 2. Soit Qj une suite de polynémes réels qui, sur lintervalle [0, N], converge
simplement vers la fonction caractéristique x5 de [0, A] et reste uniformément
bornée sur [0, N]. Alors

Jim T (Qu(w) = (V.

En effet, toujours a I’aide du théoreme de convergence dominée de Lebesgue et
des propriétés standard des traces (de von Neumann) on a :

N
lim Tra(Quw) = lim Tray ( / kadP(A))
k—+4o0 k——+o0 0
N
—dm [ Quar)
N
— /O (k lim Qk(A)) dF ()
N
= /o X[\ dF(A)
= F(A).
Fixons un réel A > 0. Pour tout £ > 1, soit
R—R
. 1+% sin< A
Y o — 1+ —kin—XNsiAx<n< A+ 1
1 si A+ ¢ <.

Ona xpox(n) < frr1(n) < fu(n) et fr converge simplement vers x|o x sur [0, +ool.
Pour chaque k, choisissons un polynéme Q tel que xpox(7) < Qw(n) < fr(n)
pour tout 7 € [0, N]. Soit F;(\) 'ensemble ordonné des valeurs propres 7 de w;
inférieures a A et comptées avec multiplicités.
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1+ 2
i
1 L
%
b At
Figure 1. La fonction f
Fait 3.
|E: (M) | B (A + %)I 0y,
£ ) i) < —,
Tory) S Tome(Qu(wa)) < =gy 2
En effet :
1
Tra (Qu(wg)) = I F‘]ch(Qk(uz'))

Et on conclut alors grace & un petit calcul, cf. [Liic94] pp. 468—469.

= [F:lFi] Z Qi (n).

nEE;(N)

381

Comme dans la démonstration du théoreme de Liick, le lemme “clef” de la

preuve du théoreme est :

Lemme de Liick [Liic94]. Soit g : V — W une application linéaire entre deux
espaces de Hilbert de dimensions finies. Soit p(t) =det(tid — gg*) le polynéme ca-
ractéristique de gg*. On écrit p(t) = tPq(t) ot q est un polynéme ne s’annulant
pas en zéro. Soit A un réel supérieur a 1 tel que A > ||g||? et soit C un nombre
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réel positif tel que C < |q(0)|. Soit E(N) Uensemble des valeurs propres n de gg*
vérifiant n < X\ et comptées avec multiplicités. Alors pour 0 < X <1 :
[EQ) - EQO)] _ —log(C) log(A)
Jme(V) S Fma(V)(=1ogl)) | —log0)’

Soit € un réel strictement positif.
Dorénavant 1 est le laplacien A = 0,419} 1 + 9;,0,. On a alors :

b (T\L) g -
~|E(0)] —
0y — Bnl£)

_(BO B | (B0

- (Fmi - o) +(Fing - Tae@a)
F(Tepg (QelA1)) = Terr(Qu(A))
(T Qu(A)) = FO) + (F) = B (ED)

Pour alléger les notations on notera ces cing parentheses : IIy, 1o, ..., IIs.
Puisque la famille spectrale { P(A)/X € [0, N1} est continue a droite, la fonction
F T'est aussi. Or, puisque 1 désigne dorénavant le laplacien, F(0) = 3,(£). On
peut donc supposer que A est suffisamment petit pour que [I15] < £.
On peut appliquer le lemme de Liick en prenant g = A,,. Puisque A,, est défini
sur Z, la constante C' peut-étre prise égale & 1 (un entier strictement positif est
toujours supérieur ou égal & 1). La conclusion du lemme de Liick s’écrit alors (avec

dime(CS(L1) = 0,1 : 1) -
[Ei(N) — Ei(0)] _ 26y log(N)
[Ty S —log(A)
si A < 1. Donc quitte a diminuer A, on peut supposer que [II;| < .
D’apres le fait 2, on peut alors choisir & de maniere & ce que [II4] < .
En passant a la limite en i et pour k fixé dans 'inégalité du fait 3, a Daide
de (17), on obtient :

o < Tr(Qu(A)) < hmw+oo[r,7p]k -

pour tout entier k strictement positif. En particulier, en passant cette fois a la
limite en k a ’aide du fait 2, pour tout n > 0 :

F) < hmﬁmw w <

Ainsi la continuité & droite de I’ permet de conclure que quitte & augmenter k, il
existe un entier ig positif tel que pour tout i > 7o, |Il2| < £.
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Enfin d’apres (17), quitte & augmenter ig, on peut supposer que pour tout
i > i, T3] < §.
Finalement on obtient que pour tout réel € > 0, il existe un entier positif ig tel
que pour tout i > i,
(AL,
[P : FZ] =

Ce qui acheve la démonstration du théoreme 3.1.

4. Une famille d’exemples

Soient A et B deux complexes simpliciaux compacts, de points base respectifs
des sommets x? et £ . Soit K le complexe simplicial compact obtenu en ajoutant
a la réunion disjointe de A et B un simplexe a de dimension 1 en attachant ses
extrémités a +? et *B. On prend comme point base de K le point * milieu de a.

Soient T4 1= 71 (A, *4) et T'F := 71 (B, +?) les groupes fondamentaux de A et
B, soit T' := m((K,*) = I'* «T'F celui de K et soit L le revétement universel de
K, avec un point base * qui releve x.

Théoréme 4.1. Supposons que les groupes fondamentauzr T4 et TP sont infinis
et résiduellement finis.

Alors pour tout ug € [0,1], il existe une tour décroissante de sous-groupes
(T';)ien d’indices finis dans T, telle que

1. T'iy1 est normal dans T';

2. Nienly = {6}

3. im0 % = piobn(A) + (1 — )b (A, T4+ b2 (B, TB), pour n > 2

4. Timy o0 BERE — iob (A) + (1 — po)b{ (A, T4) + 6 (B, TF) + (1 — o).
De plus, dans Uaction limite (projective) (X, p,T),

5. il existe un borélien Xo de mesure uo tel que l’ensemble des points fizes de

tout g € T4\ {e} soit evactement Xo,

6. le fixateur de p-presque tout point de X est un produit libre de conjugués
de 4,

L’énoncé du théoreme 0.1 est une spécialisation de celui-ci, avec B ~ T'. Dans
ce cas on pourra noter que la preuve se simplifie & plusieurs endroits.

On se donne une tour de sous-groupes normaux d’indices finis et d’intersection
i —=A =B
triviale (T; )ien (resp. (T; Jien) de I'A (vesp. I'B).
On va construire par récurrence une suite (I');cy (resp. (T2 )ien) telle que

: — A B
Condition Ci. chaque T{ (resp. T'F) est l'un des sous-groupes L'y (resp. I'; ) et
T4 (resp. T'B) est un sous-groupe strict de T, (resp. TE ,).

On appellera A; — A (resp. B; — B) les revétements galoisiens correspondants
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et a; = [[4: 4] (vesp. b; := [['B : T'F]) leurs indices. On aura encore Nyl =
{6}7 ﬁieNFiB = {6} et hmlﬂoo a; = hl’l’llﬂoo b, = Q.

On va construire par récurrence des revétements finis p; : K; — K d’indices
ki. Chaque K; sera un graphe d’espaces, constitué de x; arétes : les relevés de a,
et d'un certain nombre de sommets : les composantes connexes de p; '(A]] B)
auxquels on imposera les types suivants :

Condition Ci. p; '(A) est constitué de r; sommets isomorphes ¢ A et de s;
sommets isomorphes a A; ; p;I(B) est constitué de t; sommets isomorphes a B;.

L’indice du revétement vérifie alors
K =71 + 8;a; = tlbl

Notons qu’alors le graphe G; obtenu en écrasant en un point chaque composante
connexe (=sommet) de p; '(A]] B) est connexe et possede r; + s; -+ t; sommets
et r; arétes. Une application de la suite longue exacte de Mayer-Vietoris permet
alors de calculer :

bi(K;) = rib1(A) + 8ib1(Ay) + b1 (By) + (1 — (ri + s +:) + ki)
bo(K;) = 1.

On va faire en sorte que += — o en décroissant lorsque i — oo, alors “bj;ﬂ =
("FZ):“(A%') — ("z’;”i)bn(Ai) — (1 — po)b'P (A, T4), par application du théoréme

tzbn(B ) _ b b (B ) b(z)(B T'). Et enfin, = (m+sz+t JRs)

de Liick. De méme,
(—po +1). Cela permettra d’assurer les points 3. et 4. de I’énoncé du theoreme

Fait 1. On choisit dans chaque revétement A; un point base * qui releve *;4 1

et pour les autres relevés de |, on choisit un chemin le rehant a 1. On fait
de méme pour les revétements B;. On choisit aussi un arbre maximal dans G;.
Le groupe I'; = 7w1(K;, ;) s'écrit alors naturellement comme produit libre des
groupes fondamentaux des composantes connexes de p; 1(A]_[B) et du groupe
fondamental 71(G;, x;) du graphe G;. Il est donc formé comme produit libre d’un
certain nombre de groupes qu’on range en 4 types :

(1) t; fois w1 (B;,*P) =~ TP

(2) un groupe libre m(gl, x;) = Fj de rang (1 — (r; + s; +t;) + K;)

(3) 74 fois 7y (A, 4) ~T4

(0) s; fois my (A, +2) =~ T4

Construction basique. Le complexe K; i sera alors construit a partir de K;
par le procédé suivant :

On va choisir un certain nombre u; de facteurs de type m (m = 1,2,3 ou 0)
dans la décomposition en produit libre de 7y (K, ;). L’isomorphisme qu’ils en-
tretiennent chacun avec G; = Ff7Fi7FA ou FiA (selon que m = 1,2,3 ou 0)
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s’étend (trivialement sur les autres facteurs) en un homomorphisme surjectif h; :
71 (K, %;) = T'; — G;. On choisira alors un certain sous-groupe normal d’indice
fini G} de G;. 11 définit par image inverse un sous-groupe normal d’indice fini I';;
de I'; et un revétement galoisien associé K; 1 — K;. La préimage dans K, de
chaque partie de K; associée & un des facteurs choisis est alors un revétement
(connexe) d’indice [G; : G}], tandis que la préimage de chaque partie associée a
un autre facteur est constituée de [G; : G}] composantes connexes. L’espace K;1q
vient avec un point base ;1 qui reléve ;. L’indice du revétement (non galoisien)
K11 — K est donné par k,11 = [G; : Gi]k;.

Il reste a expliciter les conditions qui président a ces choix. On peut suivre les
premieres étapes sur la figure 2.

Ko
OCA
K,
A By
Ko
O‘O AQ A2
A B B,
By
A A
A

Figure 2. Amorce de la récurrence

e Pour 7 = 0, le complexe Ky = K a deux sommets A et B. On choisit le facteur
de type (1) pour obtenir I'homomorphisme hq : I'g := 71(Ko, ) — ['¥ = T'Z. On
choisit un sous-groupe de la tour (f].s) strictement plus petit qu’on notera I'P,

j
d’indice by dans I'? tel que
(1= po)b1 > 2. (18)

Alors k1 = by, le complexe Ky a 1 = k1 sommets de type A chacun relié par une
aréte & I'unique sommet de type B; = I'P \B . Le graphe Gy est un arbre avec un
sommet de valence ki et k1 sommets terminaux.

e Pour i = 1, on choisit un certain nombre w; de sommets de type A, i.e. de
groupes de type (3) dans la décomposition en produit libre de 71(K1,*1), avec
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po < ”;1“1 < po + H—ll, pour obtenir 'homomorphisme hy : Ty := 71 (K1, %1) —

' = 'Y, La condition (18) assure que u; > 2. On choisit n’importe quel sous-

groupe qu’on appellera T4 de la tour (Ff) contenu strictement dans I'*. Son
indice est appelé as. Alors K5 est un revétement d’indice ko = Kias9 comportant
ty = :—f sommets de type By = B, so = u; sommets de type A, = F?\A et
Ty = :—f(rl — uy) sommets de type A. On voit que la condition sur w; assure
72 > pip. Un caleul immédiat montre que le rang du groupe libre 71(Ga, *2) vaut
(w1 —1)(ag —1). Les conditions imposées entrainent donc qu’il n’est pas trivial, et

a partir de maintenant, aucun des G; ne sera un arbre.

e Apres cette mise en jambes et maintenant que la récurrence est amorcée, sup-
posons que la construction ait été avancée jusqu’a I'étape i > 2, satisfaisant aux
conditions Ci, C% et Condition C} : % > pp. On décrit selon la congruence
m = 2,3,0,1 de i modulo 4 les choix effectués dans la construction basique afin
de construire K, & partir de K.

e Pour i = 45 + 2 (m = 2). On considére le graphe G; et son groupe fonda-
mental (non trivial), le facteur de type 2 dans la décomposition en produit libre
de 71 (K, *;), pour obtenir ’homomorphisme h; : 71 (K;, *;) — Fj. Le graphe
G; posséde un revétement galoisien fini G; ¢ d’indice J; ol aucun des lacets (en
nombre fini) de longueur < 2 + 1 de G; ne se releve en un lacet, avec de plus la
condition suivante sur J; :

(biai)Hl -1
(bzal) -1
Le revétement K;y; — K, est alors défini a l’aide du sous-groupe normal de
F; correspondant. Il est d’'indice J; et sa décomposition en graphe d’espaces fait
apparaitre des sommets de type A, A;11 = A; et B;y; := B; en nombres r;;1 =
Jiri, siv1 = Jisy, tiv1 = Jit;. Les sous-groupes doivent donc valoir F{‘H = FZA et

I, =TP. Le graphe G, 1 est précisément G; 1, qu'on vient de considérer.

Fait 2. Le graphe G,.1 (obtenu lors de cette étape) ne comporte aucun lacet de
longueur < 2i + 1.

e Pour i = 45 4+ 3 (m = 3). Parmi les r; copies de A dans K;, on en choisit une
quantité w;, avec (r; — ripo) — 1 < w; < (r; — Kipo), en prenant en particulier
toutes celles dont la distance au point base *; est < 2i — 1. C’est possible car la
mystérieuse quantité & gauche dans I'inégalité (19) donne un majorant grossier
du nombre de sommets & distance < 2i — 1 = 2(4j + 2) + 1 du point base #4543,
tandis que la quantité de droite coincide avec la nouvelle valeur de (r; — k;p0) (Vu
le décalage des indices). On obtient alors ’homomorphisme h; : 71 (K;, #;) — T'4,
construit a ’aide des w; facteurs du produit libre, associés a ces copies de A et
on choisit comme sous-groupe normal dans I', le sous-groupe FlA. Les espaces

sommets de K;.1 sont donc de type A, A;11 = A; et Biy1 = B;.

Fait 3. Dans K, et dans tous les revétements postérieurs K;, [ > i+ 1, aucun
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des sommets & distance < 2 — 1 du point base ne sera donc de type A.

Fait 4. La condition imposée sur le nombre u; donne alors

Ty T — U 1
i+1 _ i < Lo Rl
Ri41 R4 Rj

ko <

et permettra d’assurer la convergence de la suite (£+) vers po.

e Pour i = 45 +4 (m = 0). On choisit toutes lés copies de A; pour obtenir
’homomorphisme h; : m(K;, ;) — ' et un sous-groupe I' | de la tour (F;q)
strictement contenu dans T'A. Cela permet de définir K, ;. La proportion ;—fl =
% reste inchangée.

e De méme, pour : = 45+ 5 (m = 1). On choisit toutes les copies de B; pour
obtenir I’'homomorphisme h; : m1(K;, ;) — I'Z et un sous-groupe Fﬁl de la tour

=B . . .
(I'; ) strictement contenu dans I'2. Cela permet de définir K; . La proportion

ZiEL — i peste inchangée.
Ki+1 Ki

Les conditions C¥T! €4 et CLT sont immédiatement vérifiée & chaque étape.
1o V2 3
Fin de la récurrence. Les points 1., 3. et 4. de I’énoncé du théoreme sont aussi
démontrés.

Fait 5. Un point base *; étant choisi dans K, au-dessus de *, le groupe fonda-
mental 71(K;, *;) est un sous-groupe I'; de w1 (K, ). Les autres relevés de * dans
K sont alors associés bijectivement aux classes & droite de I'/T";. Un élément v € I’
fixe une telle classe (dans I’action & gauche sur I'/T’;) si et seulement si un (tout)
lacet représentant v dans (K, ) se reléve en un lacet & partir de ce relevé.

Tout lacet dans A (resp. B) s’ouvre pour 7 assez grand lorsqu’on le reléeve dans
A; (resp. B;).

Ainsi, par exemple, un élément g de T4\ {e} € T = I'* %« T'B est représenté
par un lacet dans Ky = K constitué du chemin ¢ de * & **, suivi d’un lacet 7
dans A puis ¢~ 1. Il fixe donc une classe de I'/T'; associé au relevé ) de x dans K;
si et seulement si le relevé de ¢ & partir de «, aboutit & une composante connexe
de p,;” 1(A) ou le lacet 7 se releve en un lacet. Et donc pour ¢ assez grand, si et
seulement si ce relevé de ¢ aboutit & I'un des r; sommets de K; de type A. La
convergence % — o entraine alors le point 5. de I’énoncé, avec Xg le borélien de
la limite projective associé aux suites de points # qui vérifient cette condition.

Soit  un point de la limite projective X . C’est une suite z = (x});cn de sommets
«, de K, chacun relevant le précédent dans la tour K;11 — K; — K;—1. Il est
stabilisé par le groupe Stab(z) := Njenmi (K, x;). Lespace L, := Stab(z)\ L basé
en I'image %, de % vient avec les revétements f; , : L, — K; = m1(K;, %))\ L, qui
envoient *, sur *, et qui coincident avec la composition f; , : Ly fif K1 — K;.
C’est un graphe d’espaces (infini).

En restriction & une composante connexe de f; ;(3)7 chaque f; , définit un
revétement de 1'un des sommets de type B; dans K, On en déduit que ces com-
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posantes connexes sont donc simplement connexes et s’identifient & B. De méme,
5 -1 R oy "
si une composante connexe de fOJ(A) revet via f; ,, pour un certain ¢ > 2, I'un

des sommets de type A;, alors elle est simplement connexe et s’identifie & A. Sinon
(elle ne revét que des A) elle s’identifie & A. Les sommets du graphe d’espaces L,
sont done de type A, A ou B.

Considérons maintenant le graphe G, , obtenu en écrasant en un point chacune
des composantes connexes de fj_ ;(A [IB). Si 7 est un lacet de L, qui se projette
dans G » en un lacet sans aller-retour 7/, alors il n’emprunte aucun sommets de
type A (les sommets de type A sont en effet terminaux : une seule aréte y est
attachée). On en déduit que pour 7 > ig assez grand il se projette dans K; puis G,
en un lacet isomorphe & 7’. Mais il existe un nombre infini de valeurs de i (gréce
au fait 2) pour lesquelles G;1 ne comporte aucun lacet de longueur < 2i +1. On
en déduit que 77 est le lacet trivial et G , est un arbre.

Ainsi L, est un arbre d’espaces dont les sommets ont été décrits. Son groupe
fondamental 7((L,, *,) = Stab(z), comme sous-groupe de 7{ (K, %), est un produit
libre de conjugués de 7 (A, *4). Cela montre le point 6. du théoreme.

Il reste & montrer que N;enl; = {e}, z.e. que le stabilisateur du point z =
(z;)iem, associé a la suite de points base particuliers #;, est trivial. On raffine
Pargument précédent en ajoutant, & 'aide du fait (2), que pour 4 assez grand,
aucun des sommets & distance donnée < [ du point base *; dans K; n’est de type
A. Ainsi, aucun des sommets de L, ne peut étre de type A et 7w1(Lg, *,,) = Stab(z)
est le groupe trivial.

5. Actions boréliennes non nécessairement libres

Dans cette section, on considere un espace borélien standard de probabilité sans
atome, (X, p) et une action mesurable préservant p d’un groupe I dénombrable.

Un exemple particulier d’action non libre de I" est donné par une action libre
préservant p d’un groupe quotient I'/A sur (X, ), ot A est un sous-groupe normal
de T". Tous les points de X ont le méme stabilisateur A.

On peut constater assez rapidement par des méthodes classiques que des condi-
tions de finitudes imposées aux stabilisateurs ont des conséquences importantes :
si les stabilisateurs sont de type fini, alors on se trouve essentiellement a indice fini
pres dans le cas de I'exemple particulier. En effet :

Théoréme 5.1. Si laction de I est ergodique et les stabilisateurs de points sont
de type fini, alors X posséde une partition finie X = [[,.; Xi et T un sous-groupe
normal d’indice fini I tels que

sl

— presque tous les x € X; ont le méme stabilisateur T';, lequel n'a donc qu’un
nombre fini de conjugués

—pour tout 1€ I, I"X; = X;

— les actions de I sur les divers X; sont deuzr & deuxr conjuguées par des
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isomorphismes préservant la mesure L.

— Vaction de T sur X; posséde pour noyau un sous-groupe U qui est d’indice
fini dans T; et Paction de T [T} est libre.

Démonstration. Soit SGTF(T') ’ensemble des sous-groupes de type fini de I’ muni
de l'action par conjugaison de I'. C’est un ensemble dénombrable. L’application
') : X — SGTF(I'), x — I'(z) est mesurable et I'-équivariante. La mesure
image T'(.),p étant ergodique et invariante, elle charge seulement une T'-orbite
finie {T"; : 4 € I} et le noyau de action de I sur cette orbite est un sous-groupe
normal d’indice fini I'. La partition finie (& un ensemble de mesure nulle pres) de
X est obtenue par image inverse. Tout € X; a pour stabilisateur le sous-groupe
Iy et T :=T'NT; est le noyau de I'action de IV sur X;. C’est un sous-groupe
d’indice fini dans I';. Observons qu’il est donc aussi de type fini. Pour tout j € I,
il existe un v € I tel que vX; = X; qui fournit la conjugaison recherchée entre les
diverses actions de I,

Corollaire 5.2. Si ' est un groupe libre, si l'action est ergodique et si les stabili-
sateurs de points sont de type fini, alors Uaction est libre.

Démonstration du corollaire. En effet, chaque I', est un sous-groupe normal de
type fini du groupe libre I". S’il était d’indice fini, les I'-orbites des points de
X seraient finies. Le théoreme de O. Schreier rappelé en introduction permet de
conclure que T"; est le groupe trivial.

Plus généralement, en utilisant le théoreme 6.8 de [Gab01] également rappelé
dans l'introduction, on obtient :

Corollaire 5.3. Si laction de I' est ergodique, si les stabilisateurs de points sont

de type fini, et si de plus ng)(F) # 0, alors pour presque tout x € X, le stabilisateur
I(z) est fini.

Démonstration du corollaire. En effet, le sous-groupe d’indice fini I vérifie aussi
b(lz)(F/ ) # 0. Chaque sous-groupe normal I'} est de type fini. Il n’est pas d’indice
fini dans IV sinon les orbites seraient finies. Alors par [Gab01, th. 6.8], '} est fini.
Enfin, pour tout « € X;, I'} est d’indice fini dans I'(z).

Il nous semble intéressant et conforme & l'introduction de donner aussi une
preuve “géométrique” du corollaire 5.2. Soit (L, *) un arbre simplicial pointé sur
lequel le groupe libre I' agit librement. Considérons la (L,T")-lamination £ :=
I'\(X x L) et le plongement X de X comme transversale induit par X x {*}. Pour
tout x € X =~ X, la feuille £, est exactement I'(z)\L. Si ['(z) est de type fini,
alors cette feuille de la lamination a un cceur compact (le plus petit sous-graphe
connexe contenant toute la topologie), dont I'intersection avec X est formée d'un
nombre fini de points. Si tous les I'(x) sont de type fini, on est ainsi en mesure de
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choisir un nombre fini de points dans chaque orbite, et cette construction est assez
clairement mesurable. Cela n’est possible que si les orbites de I’action sont finies.

Plus généralement encore (en effet A de type fini entraine b(lz) (A) fini), voici le
résultat que nous obtenons :

Théoréme 5.4. Soit (X, u, ') une action ergodique, préservant la mesure, d'un
groupe dénombrable T sur wun borélien standard de probabilité sans atome. Si
b(lz)(F) £ 0, alors
e ou bien I'(z), le stabilisateur de x dans T, est un groupe fini pour p-presque
tout © € X (et alors le théoréme 5.1 s’applique) ;
e ou bien le premier nombre de Betti 12, b(lz)(F(x)), est infini pour p-presque
tout z € X.

Corollaire 5.5. Si (X, i, ') est une action ergodique, préservant la mesure, d'un
groupe dénombrable ' tel que b(lz)(F) #+ 0, et si les stabilisateurs sont moyennables,

ou s’ils ont la propriété (T) de Kazhdan, alors ils sont presque tous finss.

En effet, dans les deux cas, le premier nombre de Betti [2 des stabilisateurs est
nul [CG86]. On peut également dire que les groupes possédant la propriété (1) de
Kazhdan sont de type fini.

Concernant les nombres de Betti [? de dimension supérieure, nous montrons
aussi :

Théoréme 5.6. Soit (X, u, ') une action ergodique hyperfinie, préservant la me-
sure, d’un groupe dénombrable I' sur un borélien standard de probabilité sans
atome. Si pour un certain n € N, le n-éme nombre de Betti I> de presque tout

stabilisateur est fini g>(1“(x)) < 00 p-p.s), alors bﬁf)(r) =0.

Comme nous ’avons annoncé dans l'introduction, pour démontrer les théore-
mes 5.4 et 5.6, nous serons amenés a prouver le résultat suivant :

Théoréme 5.7. Soit (X, u,I") une action préservant la mesure d’un groupe dé-
nombrable I' sur un borélien standard de probabilité sans atome. Alors, la fonction
X — Rt U {0}, z — bg)(F(x)), qui associe a x le n-éme nombre de Betti [°
de son stabilisateur, est mesurable. En particulier, si Uaction de ' est ergodique,
alors cette fonction est presque sirement constante.

On repousse a la fin de cette section la preuve un peu technique de cet énoncé

5.1. Démonstration des théorémes 5.4 et 5.6

Commencons par “libérer” I'action de I" en lui associant une action libre. Soit
X’ un borélien standard muni d’une mesure de probabilité ' et sur lequel I' agit
librement. Alors, I'action diagonale v.(2/,z) = (y.2’,y.z) de T'sur Z = X' x X est
libre et préserve la probabilité produit . Soient RZ et R les relations produites
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par T' sur (Z,v) et T sur (X, u). Appelons 7 la projection de Z sur X et my la
projection de R% dans RY :

(@, 2), (y2',v.2)) = (2,7.2).

Notons 7% I'image inverse par 71 de la relation triviale sur X (celle ot les classes
sont les singletons). Deux points (z/,z) et (y',y) dans Z = X’ x X sont 7%-
équivalents si et seulement s’il existe un élément y € I'(z) tel que (v/,y) = v.(2/, x).
Cest-a-dire, les fibres de 7 sont 7 Z-invariantes et la restriction 7\5 de 77 ala fibre
X’ x {z} de z, munie de la mesure 1/ est donnée par une action libre préservant
la mesure de I'(z).

Par hypothese, la relation RY est & classes infinies.
Fait. La relation R contient une sous-relation hyperfinie H¥ & classes infinies
(consulter par exemple [Gab00, prop. I11.3]).

Soit HZ = m; }(HX) sa préimage dans Z. Elle contient 77,

(2)

Lemme 5.8. Sipour un certainn € N, les by, ' (I'(x)) sont presque tous finis égaux

a b, alors B3,(H?,v) = 0.

Démonstration. La relation HX étant hyperfinie, elle s’écrit comme réunion crois-
sante d’une suite de relations HX & orbites finies, qui possédent un domaine fonda-
mental borélien X; C X. Définissons par préimage le borélien Z; := 7~ 1(X;) C Z
et la relation H7 = m; (H).

Puisque Z; rencontre toutes les orbites de la relation HZ (et v(n 1(X;)) =
w(X;)) alors, le corollaire 5.5 de [Gab01] assure que

Bu(HE,v) = W Xi)Bu (M 7, 75), (20)

ol 7; est la restriction de v & Z; renormalisée en une mesure de probabilité, et
'HiZ‘Zi la restriction de HZ a Z;.

Puisque la restriction de H¥ & X; est la relation triviale, alors la restriction
HiZ‘ . coincide avec la restriction de TZ & Z;. Clest-a-dire, HiZ‘ . fixe chaque fibre
7 1 (z) et y est donnée par une action libre d’un groupe (& savoir I'(z)) dont le
n-eme nombre de Betti (% est égal & b.

On en déduit que 5n(HiZ‘ZZ,7V_i) = b et donc que le membre de gauche de
'égalité (20) tend comme pu(X;) vers 0 lorsque 4 tend vers infini. Mais H? étant
la réunion croissante des HZ, le corollaire 5.13 de [Gab01] assure que

Bn(HZ,v) < liminf 3, (HZ, v).

Ce qui démontre le lemme.

Le théoreme 5.6 s’en déduit puisque dans ce cas, on peut prendre HX = RX et
donc H? = R?. Le lemme s’applique par ergodicité de RX et par le théoréme 5.7.
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Pour démontrer le théoreme 5.4, travaillons par contraposition et supposons
(en utilisant Pergodicité de 1’action de T" sur X et le théoreme 5.7) que :

1. le groupe I'(z) est infini pour p-presque tout z dans X et,

2. le premier nombre de Betti b(lz)(l“(x)) = b, est fini pour p-presque tout z.

Soit € un réel strictement positif. Nous allons montrer que b(lz)(F) <e.

Tout d’abord, Iimage inverse 7% par 71 de la relation triviale sur X a presque
toute ses orbites infinies (puisque I'(z) est infini p-p.s.). La proposition 1 de [Lev95]
implique qu’il existe une suite (Z;) e de boréliens de Z qui sont de mesures < 55+
et qui chacun rencontre presque toutes les 7 %-classes.

Soit (v1,7v2,...,7, ) une famille génératrice de I'. On définit des isomor-
phismes boréliens partiels ¢; comme restriction de v; a Z;.

Fait. La plus petite relation d’équivalence contenant 772 et les graphes des ©vj
est égale & RZ, i.e. R% est la plus petite relation d’équivalence pour laquelle
2722 = 2~ 2 et 2 € Z; = 2z ~ @;(z). Autrement dit, avec la terminologie de
[Gab00, Gab01], RZ peut étre engendrée & partir de 7% en ajoutant le graphage
® = (¢;);-

Clairement, 7% v ® C RZ. Pour linclusion inverse, il suffit de montrer que
(2,7;.2) € (T% vV ®), pour tout ; et pour (presque tout) z = (2, z) € Z. Il existe
g € I'(z) qui envoie z dans Z; et g’ := 'ng’l'y;1 appartient & I'(y;.z). Les points
suivants sont (72 V ®)-équivalents : z et g.z grace 4 T, g.z et v49.2 grace a ® et
v;9.% et g'v;9.2 = ;.2 grace & TZ. Cela démontre le fait.

Soit maintenant ¥ un H%-complexe simplicial simplement connexe (chaque ¥,
est simplement connexe), d’ensemble de sommets ©.° ~ HZ et soit £; := HZ\2
la structure simpliciale sur HZ associée (cf. [Gab01, sect. 2.2.3]). L'image de la
diagonale de HZ ~ ¥° induit un plongement (encore noté Z) de Z comme trans-
versale totale dans £;. Maintenant, puisque H% C R?, la structure simpliciale £;
sur H”% peut aussi étre considérée comme une structure simpliciale Lo sur RZ.
Dans ce cas, les feuilles de £, sont des réunions de feuilles de £;. Elle ne sont plus
connexes : la feuille £5]z] de z € Z est la réunion des feuilles de £ qui sur la
transversale Z rencontrent la RZ-orbite de z. Les formules suivantes s’obtiennent
par la formule de réciprocité, [Gab01, sect. 5.2], par définition ([Gab01, Th. 3.13,
Déf. 3.14]) et grace au lemme 5.8,

B1(L2, R%) = p1(L1, H%)
= Bi(H?)
= 0.

Soit enfin L3 la structure simpliciale sur RZ obtenue & ’aide de cylindres
Z; x [0,1] feuilletés par {z} x [0, 1] recollés sur Ly par Z; x {0} ~ Z; via l'identité
et Z; x {0} ~ o;(Z;) via ;. Stricto sensu, pour éviter des arétes doubles et obtenir
des complexes simpliciaux, on peut étre amené & restreindre encore les ¢; & une
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partie de leur domaine. On obtient aisément :

B1(Ls, R7) < Bi(L2, R)+ > v(Z;)

<
<

Le fait ci-dessus montre que les feuilles de cette structure simpliciale sur RZ
sont connexes. Par ailleurs, RZ est donnée par une action libre de T, alors

Bi(T) = Bi(R?)
< Bi(Ls, R?).

Ce qui démontre I'inégalité annoncée (pour tout ¢) donc le théoreme 5.4.

5.2. Démonstration du théoréme 5.7

Notons 7 la relation 7% sur (Z,v) de la section précédente. Rappelons qu’elle
fixe les fibres de 7 et notons 7, la restriction de 7 & la w-fibre X’ x {z}. L’algébre
L>(X, 1) se plonge naturellement dans le centre de ’algebre de von Neumann
My de T, laquelle peut alors se décomposer sous la forme My = [, M7, du(z)
et sa trace Trr = [, Trz, du(x).

Si H est un M7-module de Hilbert, et p un projecteur orthogonal de H qui
commute avec M7, alors ils sont décomposables sous la forme H = f )f H.dp(z)

et p = f;f pudu(z), ou z — H, est un champ mesurable d’espaces de Hilbert,
pour p-presque tout x € X, H, est un Mz -module de Hilbert, z — p, est un
champ mesurable de projecteurs orthogonaux et p, commute avec M7, . On en
déduit que la fonction z — Trz, (p,), ou autrement dit z +— dimg, (Im (p,)) est
mesurable.

Soit ¥ un 7-complexe simplicial contractile et (3;):cn une suite croissante ex-
haustive de sous-7 -complexes uniformément localement bornés (ULB) (c¢f. [Gab01,
sect. 2|). Pour p-presque tout z € X, par restriction & X’ x {z}, le complexe ¥
fournit un 7,-complexe simplicial contractile ¥, et les complexes ¥; fournissent
une suite croissante de 7,-complexes simpliciaux ULB (¥, ;) exhaustive de 3.

Si Us* désigne (pour s < t) 'adhérence de I'image du morphisme naturel
de M7-modules de Hilbert Hff)(zsj, v) — ﬁf)(ﬁt,’f7 v), alors ces données
sont décomposables suivant X et la fonction 2 — dimy, (US") est mesurable. La
fonction f : x +— sup, inf;~s ¢—eo dimy, (US") Pest aussi. Maintenant, pour presque
tout = € X, f(z) coincide avec le n-me nombre de Betti [*> du 7,-complexe
simplicial 3, : f(z) = Bn(Bs, Tz, 1) (cf. [Gab01, sect. 3|, en particulier, prop. 3.9,
th. 3.13 et déf. 3.14).

Mais puisque 7, est donnée par une action libre de I'(x), alors par [Gab01,

cor. 3.16], u-presque stirement, f(z) = bg)(l“(:u)) (dans les notations de [Gab01],
il s’agit de 3, (I'(z))).
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