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Asymptotique des nombres de Betti, invariants l2
et laminations

N. Bergeron et D. Gaboriau

Abstract. Let K be a, finite simplicial complex. We are interested in the asymptotic behavior
of the Betti numbers of a sequence of finite sheeted covers of K, when normalized by the index of
the covers. W. Lück, has proved that for regular coverings, these sequences of numbers converge
to the I2 Betti numbers of the associated (in general infinite) limit regular cover of K.

In this article we investigate the non regular case. We show that the sequences of normalized
Betti numbers still converge. But this time the "good" limit object is no longer the associated

limit cover of K, but a lamination by simplicial complexes. We prove that the limits of sequences
of normalized Betti numbers are equal to the I2 Betti numbers of this lamination.

Even if the associated limit cover of K is contractible, its I Betti numbers are in general
different from those of the lamination. We construct such examples. We also give a dynamical
condition for these numbers to be equal. It turns out that this condition is equivalent to a former
criterion due to M. Färber. We hope that our results clarify its meaning and show to which extent
it is optimal.

In a second part of this paper we study non free measure-preserving ergodic actions of a

countable group F on a standard Borel probability space. Extending group-theoretic similar
results of the second author, we obtain relations between the I2 Betti numbers of F and those of
the generic stabilizers. For example, if b^ ' (F) ^ 0, then either almost each stabilizer is finite or
almost each stabilizer has an infinite first I2 Betti number.

Mathematics Subject Classification (2000). 55NXX (58J22), 37A15 (57R30)

Mots clés. Betti numbers, finite covers, laminations, I2 -Betti numbers, measure preserving
actions.

Introduction

0.1. Asymptotique des nombres de Betti

Un complexe simplicial compact K possède des invariants topologiques numériques

: ses nombres de Betti (usuels) bn(K), qui sont les dimensions des espaces
vectoriels Hn(K,WL) d'homologie en dimension n.

On considère dans tout cet article une action libre cocompacte (L,T) d'un
groupe dénombrable discret F sur un complexe simplicial L.
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Ses nombres de Betti l2 notés 5„ (L, F) sont les dimensions généralisées (au

sens de von Neumann) des espaces hilbertiens Hn (L, F) d'homologie ï2 réduite en
dimension n. Les nombres de Betti ï2, introduits par M. Atiyah dans un contexte
analytique [Atï76], ont connu un vaste développement, notamment dans le cadre
des feuilletages mesurés (par A. Connes [Co79]), dans le cadre général des

actions topologiques quelconques de groupes dénombrables (J. Cheeger et M. Gro-
mov [CG86]), ou suivant l'approche de W. Lück qui fait rentrer cette théorie
dans un cadre homologique classique par une extension de la notion de dimension

généralisée [Luc98a, Luc98b]. L'article de B. Eckmann1 [EckOO] constitue une
excellente introduction aux nombres de Betti ï2. Une question récurrente dans le

domaine consiste à établir leurs liens avec les nombres de Betti usuels.

Lorsque F est un groupe fini, la dimension généralisée au sens de von Neumann
n'est autre que la dimension usuelle divisée par le cardinal |F| de F. Dès lors, si le

complexe simplicial L ci-dessus est lui-même compact (et donc F fini), alors

D'où il résulte, si A est un sous-groupe normal d'indice fini de F, que les nombres
de Betti ï2 de l'action du groupe fini A\F sur le complexe compact K\L coïncident
avec les nombres de Betti usuels normalisés de A\L :

^. (1)

On appellera tour de sous-groupes d'indices finis de F toute suite décroissante

(Fj)j£N de sous-groupes d'indices finis de F telle que Fo F. Il lui correspond

- la tour de revêtements L —> ¦ ¦ ¦ Fj+i\L —> Fj\L —> Fj_i\L —>•••—> Fo\L
- en chaque dimension n, la suite des nombres de Betti usuels (6n(Fj\L))îeN
Si les sous-groupes Fj sont de plus d'intersection triviale (n^oTj {e}), alors

la tour de revêtements (Tt\L)t "semble converger" vers le revêtement L, et on
cherche à comprendre le comportement asymptotique de la suite des nombres
de Betti usuels, ou plus précisément au vu de la formule (1), de ces nombres

normalisés : "rp f 1 )»ew- Un argument fort en faveur de cette normalisation est

que la caractéristique d'Euler, ainsi normalisée est constante dans une tour de

revêtements.
D. Kazhdan, dans une étude sur les variétés arithmétiques [Kaz75] a essentiellement

obtenu la comparaison suivante, lorsque les sous-groupes d'indices finis Tt
sont de plus normaux et d'intersection triviale :

1 C'est d'ailleurs B. Eckmann qui le premier a introduit une structure euclidienne sur
l'espace des chaînes d'un complexe, pour obtenir une décomposition de Hodge (voir [Eck45]). Il est
également remarquable que l'une des premieres applications (voir [Eck49]) de cette décomposition
de Hodge simpliciale concerne la théorie des revêtements, application dont la preuve contient en

germes les idées de M. Atiyah conduisant aux nombres de Betti ï2 dans le cas d'un revêtement
galoisien fini.
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Inégalité de Kazhdan.

^^i2>). (2)

M. Gromov [Gro91, p. 13, p. 153] est ensuite amené à poser la question :

l'inégalité ci-dessus est-elle une égalité? En 1994, W. Lück, dans un article
remarqué démontre ce résultat.

Théorème (Lück [Lüc94]). Soit (Fj)îeN une tour de sous-groupes d'indices finis
de F. Si les sous-groupes Fi sont de plus normaux dans F et d'intersection triviale,
alors

Observons que dans l'énoncé original de l'article [Luc94], le complexe simplicial
L est supposé simplement connexe, mais que cette hypothèse est superflue. Du
coup, on peut aussi supprimer l'hypothèse de trivialité de l'intersection des I\, à

condition de remplacer alors dans la conclusion, et seulement dans le terme de

droite, le groupe F par le quotient F := F/ f\eN I\ et L par L := C\te^Ft\L.

Alors que le membre de gauche de (1) repose sur l'existence d'une action de

A\F et donc sur le fait que A est distingué dans F, le membre de droite a un sens
même lorsque A n'est pas distingué dans F. Cette question est discutée dans la
section introductive 2.1.

Une généralisation du théorème de W. Lück à des revêtements non galoisiens a

néanmoins été proposée par M. Färber, qui est amené à introduire une hypothèse
d'apparence technique.

Critère de Färber. Soit nt le nombre de sous-groupes distincts de F qui sont
conjugués à Fi et, pour chaque g ÇzF, soit ni(g) le nombre de ceux-là qui contiennent

g.

VgeF\ {e}, lim r^- 0. (4)

Théorème (Farber [Far98]). Soit (Fl)ie^ une tour de sous-groupes d'indices finis
de F d'intersection triviale. Si le critère (4) est vérifié, alors

Observons que ce critère entraîne que F est résiduellement fini.
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Dans la partie 4, on présente des exemples où ce critère n'est pas satisfait et où
la conclusion est mise en défaut, et où même l'inégalité de Kazhdan (2) se trouve
violée. Voici par exemple une spécialisation du théorème 4.1.

Soit A un complexe simplicial compact de groupe fondamental infini et résiduellement
fini. Soient K un complexe obtenu en lui^attachant un cercle par un point, F ~
ivi(A) * Z le groupe fondamental et L K le revêtement universel de K.

Théorème 0.1. Pour tout jâq G [0,1[, il existe une tour (Fj)jeN de sous-groupes
d'indices finis de F, d'intersection triviale, telle que, Fî+i est normal dans Tt

et pour n^2, limwoo ^f^ /J,obn(T\L) + (1 - fj,0)b£\L, F),

et pour n=\, limwoo bl^] f*.obi(T\L) + (1 - Vo)bf\L, F) - fj,0.

Rappelons que &i(F\L) 1 + b^A) et bf\L,T) 1 + b^\Ä, tti(A)), et que

bn(T\L) bn(A) et &i2)(L,F) bi?\Ä, iri(A)), pour n > 2. Du coup, tout corn-
(2) ~

plexe A pour lequel 6n(A) 7^ 6„ (A, tti(A)) (n ^ 2) conduit à un contre-exemple.
Par exemple, pour construire des exemples qui ne vérifient pas l'inégalité de

Kazhdan, on prend pour A le tore Tp de dimension p, alors L est contractile,
F ~ W *Z, 6i(F\L) =p+ 1, 6i2)(L,F) 1 et, pour n > 2, 6n(F\L) C™ tandis

que tous les 6„
-1

(L, F) sont nuls.
Cet énoncé permet également de produire des exemples où cette fois l'inégalité

de Kazhdan se trouve fortement vérifiée (avec une inégalité stricte). Prenons A
homéomorphe à une variété M de dimension 4 compacte acyclique à b\{M)
0 et groupe fondamental résiduellement fini (on peut penser à un faux CP2 ou
CP2 d'homologie [Mum79] ; tti(M) est alors un réseau de SU(2,1)). On a alors :

6^2)(L, F) > b2(T\L). En effet, par dualité de Poincaré, 64 b0 1, &i b3

0 b{p &[,2) et 6(12) bf) et donc b2(A) + 2 X{A)

Si l'on se contente d'un exemple avec n 1, une égalité &i(A) 6^ (Â, t
suffit, qu'on peut obtenir avec une sphère d'homologie A (&i 0) de dimension 3

et hyperbolique (b\ =0). C'est encore plus simple si l'on se satisfait d'exemples
non acycliques ou avec de la torsion.

Après ces préliminaires, voici le premier résultat général que nous obtenons avec
des sous-groupes non nécessairement normaux. On ne connait pas d'autre preuve
de cet énoncé. La suite considérée n'est, en général, ni monotone, ni sous-additive.

Théorème 0.2. Soit (Fj)îeN une tour de sous-groupes d'indices finis de F. Pour
tout entier n, la suite des nombres de Betti usuels normalisés "m h XgN es^

convergente.

Plus précisément, nous donnons une interprétation "dynamico-géométrique" de

cette limite et nous montrons en quel sens le critère Färber (4) est optimal, ce qui,
on l'espère, clarifie sa signification. Pour cela, nous considérons une construction
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associée à la donnée de la tour de sous-groupes d'indices finis (Fj)j£n de F et de

l'action (L, F) :

Pour tout entier positif {, on introduit l'espace de probabilité (Xt,/jt) égal
à l'ensemble (fini) des classes (à droite) F/Fj de F modulo Fj, que l'on munit
de la mesure de comptage normalisée. Les applications de réductions successives

Xj_|_i F/Fj+i —> Xi F/Fi permettent de considérer l'espace de probabilité
limite projectwe

C'est un espace borélien standard. On peut le voir comme le bord (à l'infini) d'un
arbre enraciné. C'est aussi un espace topologique homéomorphe à un espace de

Cantor (si la suite des indices [F : Fj] tend vers l'infini). L'action naturelle de F sur
les Xi fournit une action de F sur [X, jj), préservant la mesure jj. Cela ne dépend

que de la tour.
L'action diagonale de F sur XxL donne par passage au quotient une lamination

transversalement mesurée qu'on appellera une (L, Y)-lamination :

C{X,L,T) :=F\(X x L).

Ses feuilles en sont les composantes connexes par arcs (lorsque L est connexe).
Chacune est isomorphe au quotient de L par le stabilisateur d'un point de l'action
(X,T).

Les nombres de Betti ï2 d'une telle lamination (pour la mesure transverse

provenant de jj) ont été considérés par le second auteur [GabOl]. Nous les noterons

ßn(X,L,T).
Les définitions seront rappelées en section 2. On peut les voir comme une version
simpliciale des nombres de Betti des feuilletages de A. Connes.

On est alors capable de donner un sens, en termes de laminations, au membre
de gauche "6„ (A\L, A\F)" de l'égalité (1) même lorsque A n'est pas normal :

/3n(F/A, L, F). Et cette égalité reste valide (voir section 2.1). Plus généralement,
nous obtenons le résultat suivant, qui est central dans cet article :

Théorème 3.1. Soit (Fj)jgN une tour de sous-groupes d'indices finis de F. Pour
tout entier n,

où ßn(X,L,T) est comme ci-dessus.

On dit que l'action (X, jj, F) est libre si l'élément neutre est le seul élément de

F à avoir un ensemble de points fixes de mesure non nulle. On a alors :

Théorème [GabOl, Th. 3.11]. Si l'action (X,/j,T) est libre, alors
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Si les Fi sont normaux dans F et d'intersection triviale, alors X hérite d'une
structure de groupe (profini), F est un sous-groupe et son action est par multiplication

à gauche dans X. Elle est alors libre et le théorème 3.1 se spécialise en le

théorème de W. Lück. Quant au critère de Färber (4), il signifie précisément que
l'action est libre. En effet,

Proposition 2.6. Dans (X,/x, F), l'ensemble des points fixes de g £ F est de

mesure exactement lim^oo n^. ¦

On doit observer que ni le théorème de Färber, ni notre théorème 3.1 ne
fournissent une nouvelle preuve du théorème de Lück, puisque dans un cas comme
dans l'autre, il s'agit d'adapter les arguments de [Lüc94].

0.2. Actions boréliennes non libres

Le théorème 3.1 décrit les limites possibles des nombres de Betti normalisés
dans les tours des revêtements finis. Un contrôle sur la combinatoire des tours
de revêtements finis est donc imposé par l'action [X, F) et la (L, F)-lamination
associée. Il est naturel de chercher à comprendre ces actions et plus précisément
à trouver des restrictions sur les stabilisateurs des points pour des actions non
libres [X, /x, F), préservant la mesure, d'un groupe dénombrable F sur un borélien
standard de probabilité.

Les nombres de Betti ï1 de (L, F) sont des invariants homotopiques, si bien

que lorsque L est p-connexe, les nombres de Betti l2 de l'action 6„ '(L,T), pour
n ^ p deviennent des invariants du groupe F lui-même. On les appelle alors les

nombres de Betti ï1 de F et on les note 6„ (F). Plus généralement, J. Cheeger et
M. Gromov [CG86] ont introduit les nombres de Betti ï2 pour tous les groupes
dénombrables discrets, même ceux ne possédant pas de K(T, 1) à p-squelette fini.

Dans la section 5, nous démontrons :

Théorème 5.4. Soit (X, /x, F) une action ergodique, préservant la mesure, d'un
0 \

groupe dénombrable F sur un borélien standard de probabilité sans atome. Si b\ ' (F)
est non nul, alors

• ou bien T(x), le stabilisateur de x dans F, est un groupe fini pour /^-presque
tout x G X ;

• ou bien le premier nombre de Betti P, b\ (T(x)), est infini pour /^-presque
tout x G X.

Si de plus, la relation induite par l'action de F sur X est moyennable, seul le

deuxième cas est possible. Tandis que dans le premier cas, pour /x-presque tout x,
les sous-groupes T(x) sont conjugués deux à deux et il sont presque normaux, au
sens où chacun n'a qu'un nombre fini de conjugués distincts dans F.
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II est intéressant de rappeler deux énoncés en lesquels ce théorème se spécialise,
chacun d'eux étant une généralisation dans une direction différente d'un théorème
de O. Schreier :

Théorème (O. Schreier [Sch27, p. 162]). Un sous-groupe normal non trivial et de

type fini d'un groupe libre est d'indice fini.

D'un côté, les stabilisateurs des points dans l'action [X, /x, Y) peuvent être
considérés d'une certaine façon comme des généralisations de sous-groupes
normaux (penser par exemple à une action où tous les points ont le même
stabilisateur : c'est alors un sous-groupe normal). La remarque de D. Sullivan selon

laquelle "there is no measurable way to pick a point in a leaf" impose des conditions

fortes sur certaines (L, F)-laminations. Rappelons que dans [Ghy95], E. Ghys
a montré comment déduire de cette remarque une classification topologique des

feuilles génériques des laminations usuelles de dimension 2. Sous-jacent à ses idées,

on peut trouver l'énoncé suivant :

Théorème 5.2. Soit Y un groupe libre et (X, /x, Y) une action libre ergodique

préservant la mesure de probabilité \i sans atome sur le borélien standard X. Alors,
pour jjj-presque tout point x G X, le stabilisateur de x est soit trivial soit de type
infini.

D'un autre côté, un groupe libre non cyclique est un exemple de groupe à

premier nombre de Betti ï1 non nul, et le second auteur a étendu le théorème de

O. Schreier à tous les groupes du même genre (consulter [GabOl] pour références
à des résultats antérieurs notamment de J. Cheeger, M. Gromov et W. Lück) :

Théorème [GabOl, Th. 6.8]. Soit Y un groupe dont le premier nombre de Betti
P, b\ (Y), est non nul. Si N est un sous-groupe normal de Y qui a un premier
nombre de Betti l fini (par exemple si N est de type fini) alors N est ou bien fini
ou bien d'indice fini.

La preuve dans cette généralité fait d'ailleurs appel à une action libre du groupe
F sur (X, /x) et à la notion de nombres de Betti ï1 des laminations.

Pour démontrer le théorème 5.4 (ainsi que 5.6 ci-dessous), nous serons conduits
à prouver le résultat suivant, intéressant en lui-même, bien que pas franchement
surprenant puisque les nombres de Betti ï1 des stabilisateurs sont définis explicitement

sans recours à l'axiome du choix.

Théorème 5.7. Soit (X, /x, Y) une action préservant la mesure d'un groupe dé-

nombrable Y sur un borélien standard de probabilité sans atome. Alors, la fonction
X —> R+ U {oo}7 x i—> b„ (Y(x)), qui associe à x le n-ème nombre de Betti P
de son stabilisateur, est mesurable. En particulier, si l'action de Y est ergodique,
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alors cette fonction est presque sûrement constante.

Concernant les nombres de Betti l2 de dimension supérieure, nous obtenons

une généralisation du théorème 6.6 de [GabOl]. Rappelons qu'une action mesurable

est hyperfinie si la relation d'équivalence engendrée est réunion croissante
de relation d'équivalence mesurables à classes finies. Par le théorème de Connes-
Feldman-Weiss [CFW81], cela équivaut à la moyennabilité de la relation au sens
de R. Zimmer.

Théorème 5.6. Soit (X,/x, F) une action ergorMque hyperfinie, préservant la

mesure, d'un groupe dénomhrahle F sur un horélien standard de probabilité sans
atome. Si pour un certain n G N7 le n-ème nombre de Betti l de presque tout
stabilisateur est fini (bn (F(x)) < oo \i-p.s), alors 6„ ^(F) 0.

Pour l'ensemble de cette section, on se permettra de supposer une certaine
familiarité avec le contexte de l'article [GabOl].

Bruno Sévennec a lu attentivement une version préliminaire de cet article et
nous a signalé quelques corrections. Nous l'en remercions.

1. Rappels sur les nombres de Betti l2 d'une action de groupe

Soit (L, F) une action simpliciale libre et cocompacte et q : L —> K := T\L
le revêtement associé. Quitte à prendre des subdivisions barycentriques, on peut
supposer que l'espace K a une structure de complexe simplicial. On confondra
un complexe simplicial et sa réalisation géométrique. On se donne une orientation
sur les simplexes de K (et donc aussi sur ceux de L) et on appelle Kn (resp.

Ln) l'ensemble des simplexes de dimension n de K (resp. de L). L'ensemble Ln
est muni d'une action libre de F qui est simplement transitive sur l'image inverse
q~1(a) de chaque simplexe a de Kn.

On note C4 {L) l'espace des n-chaînes ï1 de L : c'est l'espace de Hubert dont
une base hilbertienne est Ln. Il vient avec une représentation tt„ de F. Les appli-

(2)
cations bord s'étendent par continuité en des opérateurs bornés dn : C„ (L) —>

C^\(L). Ils vérifient dndn+1 0 et V7 G F, 7rn_!(7)9n dnirn(~f).
Soit ©„ un domaine fondamental (partie qui rencontre une fois et une seule

chaque orbite) pour l'action de F sur Ln. La liberté de l'action permet alors d'identifier

Ln avec 0n := |@n| copies de F : Ln Usge^Fs. Cette identification induit
un isomorphisme

CfHL)= 0/2(FS)^ 0/2(F) (5)

sE6„ sE6„

qui donne à C„ '(L) une structure de Ar(F)-module de Hubert, où A^(F) est

l'algèbre de von Neumann de F.
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On dispose alors d'un complexe de Ar(r)-modules hilbertiens :

0 ^_ C^(L) A- C?\L) £- &- CQ\L) H1

On appelle homologie £2 réduite de L la suite d'espaces

Hyn'(L):=Keidn/lmdn+1,
où H est l'adhérence de H. Ces espaces ont une structure de Ar(F)-module de

Hubert et se plongent naturellement dans C4 '(L) comme supplémentaire orthogonal
de Im dn+\ dans Ker (dn). L'image de ce plongement est par définition l'espace,
noté Hn(L), des n-chaînes harmoniques £2 de L. Un calcul immédiat montre qu'il
est par ailleurs égal au noyau de l'opérateur laplacien An := d*ßn + <9n+i<9^+1.

On cherche à "estimer la taille" de cet espace de Hubert Hn(L). En dimension
finie, la dimension d'un sous-espace est donnée par la trace d'un projecteur sur ce

sous-espace.
Ici, la trace2 (de von Neumann) d'un opérateur a de /2(F) qui commute avec

N(T) est donnée par le produit scalaire

Trw(r)(«) := {aöe\öe),

où Se est la fonction caractéristique de l'identité de F. De même, grâce à l'isomor-
0 \

phisme ci-dessus (5), la trace d'un opérateur a de C„ '(L) commutant avec N(T)
est donnée par

TrAr(r)(a)

La Ar(F)-dimension dimAr(r)(^) d'un sous-espace fermé Ar(F)-invariant H de

Cn (L) est alors donnée par la trace du projecteur orthogonal sur ce sous-espace.

Définition 1.1. Les nombres de Betti l2 de l'action (L,F) sont les Ar(F)-dimen-
sions des Ar(F)-modules Hn(L) :

6i2)(L,F) := dimr(Hn(L)) TrN{r)(pn) J2 ^n(s)\s). (6)

sE6„
(2)où pn est le projecteur orthogonal de C„ (L) sur Tin(L).

Si L est le revêtement universel de K, on appelle aussi parfois ces nombres les

nombres de Betti l de K.
Ces nombres sont des invariants d'équivalence homotopique, si bien que lorsque

L est p-connexe, les p premiers nombres de Betti l2 de (L, F) deviennent des

invariants du groupe : les nombres de Betti l2 de F, notés 6„ (F), pour n
0,1,-. ,p.
2 II peut être éclairant de penser à a comme une matrice (infinie) par rapport à la base privilégiée
(<59)9gr '¦ & {ag.h) {{a{àg)\àh)) pour remarquer que les termes diagonaux {o,(Sg)\Sg) sont
constants, vu la commutation de a avec N(T). La trace est alors l'un quelconque de ces termes
diagonaux.
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2. Nombres de Betti l2 d'une (L, F)-laminâtion

On rappelle dans cette section la notion de nombres de Betti l2 d'une lamination
dans l'esprit de [GabOl, sect. 3].

Soit [X, jj,, F) une action mesurable du groupe F sur le borélien standard X,
préservant la mesure de probabilité jj. On note F(x) le stabilisateur du point
x G X. Soit d'autre part (L, F) une action libre cocompacte de F sur le complexe
simplicial connexe L.

On regarde l'espace X x L, avec la lamination par feuilles {x} x L. L'action
diagonale de F préserve cette lamination et définit par passage au quotient ce

qu'on appelle une (L, F)-lamination transversalement mesurée

£(X,L,Y) :=T\(X x L).

Nous allons rappeler la définition des nombres de Betti de la lamination sous

l'hypothèse que Y\L est un complexe simplicial fini, dans ce cas chaque ©„ est

fini.
L'image de la feuille {x} x L est isomorphe à F(x)\L. Sur X, on dispose du

champ mesurable de sous-groupes x i—> F(x). Cela permet de définir le champ
mesurable C de complexes simpliciaux

x^Zx T(x)\L

sur lequel le groupe F agit encore : 7.(x, T(x)t) (jx,^T(x)t) (j
puisque F(7x) ^r(x)^/ 1. C'est un complexe simplicial (hautement non connexe)
équipé d'une application "fibration" sur X, dont les fibres sont les feuilles (au-
dessus de x G X, la feuille Cx). Ses Simplexes seront notés (x, F(x)s), où x G X
et s G L. Pour chaque dimension n, l'espace de ses n-simplexes forme un espace
borélien standard C On dispose aussi d'une application mesurable

Q:XxL^~C (7)

qui est un revêtement fibre à fibre

qx:{x}xL^£x=r(x)\L.
À l'action de F sur X est associée la relation d'équivalence

(8)

où les points x et y de X sont dans la même classe s'il existe un élément 7 dans F

tel que y 7X.
La relation 1Z possède une action sur le champ de complexes simpliciaux C :

{x, y) G TZ définit un isomorphisme Cy —> Cx donné par l'isomorphisme naturel

Y{x)\L
\ Y (y) s » (x,y)-Y(y)8 Y(x)'r8 ' (9)

où s G L et 7 G F vérifie x jy, i.e. F(x) 7F(y)7 l. Bien entendu, si 7' G F
est un autre tel élément, alors F(x)7' F(x)7. De plus, (x, x) induit l'identité.
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Remarque 2.1. Si L est muni d'un point base *, alors les espaces Cx héritent
d'un pointage *x qx{*) qui n'est pas préservé par l'isomorphisme ci-dessus. De

plus, l'image dans la lamination C(X,L,T) de ce champ de pointages permet de

retrouver l'espace X comme transversale et fixe donc un choix de mesure transverse
invariante (et non à un multiple près).

Cette action possède un domaine fondamental mesurable en chaque dimension

n,

(J Q(X x {s}) (J {(x,T(x)s) :xeX} (10)
sEÖ„ sEÖ„

où ©„ est toujours un domaine fondamental pour l'action de F sur Ln. Soit en
effet (x, T(x)s') Q((x,s')) un simplexe de £. Il existe s G ©„ et 7 G F tels

que que s' 7s. Alors (x, F(x)s') (x,T(x)js) (x,jT(j~1x)s) (x,7~1x) ¦

(7^1x,F(7^1x)s). Ainsi, l'ensemble £ des Simplexes de dimension n de £ peut
s'identifier avec 9n := |@n| copies de 1Z.

On considère le champ d'espaces de Hubert

Chaque simplexe s G Ln y fournit un champ de vecteurs, que nous noterons
s : x 1—> sx, (donné par le champ de Simplexes x 1—> (x,F(x)s)). Le champ de

familles génératrices (s)sei,r, lui donne sa structure mesurable.

On dispose aussi du champ mesurable d1 opérateurs bord d* : C'A (£x) —>

Cr„_1(£x). On définit C4 (C) et Dn comme intégrales :

Ci2)(Z) := f Ci2\£x)dn(x) et Dn := f dxnd^x).
Jx Jx

Rappelons simplement qu'un vecteur u de C„ (£) est un champ de vecteurs

x 1—> mx mesurable et de carré intégrable, au sens où les fonctions x 1—> (m^Is^)
sont mesurables pour chacun des champs donnés par les Simplexes s G L, et
Jx \\ux\\2diJ,(x) <oo.

On dispose alors du complexe :

0 ^_ C^2)(£) ^- Cf )(£) ^ ^ C(2)(£) ^i1 (11)

Le n-ème groupe d'homologie l réduite Hn (£) Ker Dn/lm Dn+\. Il est

isomorphe à l'espace des n-chaînes harmoniques l2 de £ : le supplémentaire orthogonal

=Kei Dn e lin Dn+1.

Définition 2.2. Les nombres de Betti l2 du 7^-complexe simplicial £ ou de la
(L, F)-lamination £(X, L, F) sont définis par :

ßn{C)=ßn{X,L,T) := 53 (Pns|s>, (12)
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(2) — (2) —
où Pn est le projecteur orthogonal de C„ (£) sur TLn (£), qu'on évalue sur les

champs de représentants s pour s G @n.

L'identification 72.-équi variante de £ avec 6n copies de 72. construite à l'aide
du domaine fondamental (10) induit un isomorphisme qui donne à Cn (£) une
structure de Ai-modules de Hubert :

Cr(2)(£) 0 cW(n ¦ Q(X x {s}) ~ 0 L2^, „), (13)
sEÖ„ sEÖ„

où AI est l'algèbre de von Neumann de la relation 72.. On rappelle [FM77, GabOl]
que l'espace 72. C X xX est un borélien standard pour la tribu induite (BxB)P\lZ,
où B est la tribu de X, et pour tout C G (B x B) D 72., la mesure z/ est définie par

v{C) J
avec Tri : 72. —> X projection sur la première coordonnée. Si on désigne par R7
et i?0 les opérateurs de L2{1Z,v) donnés pour 7 G F et </> G L°°{X,jj) par
Rjf(x,y) f(x,-f~1y) et iî0/(x, y) 4>{y)f{x,y), alors A4 est l'algèbre des

opérateurs de L2(1Z, v) qui commutent avec tous les i?7 et iî^. Le complexe (11)
est alors un complexe de Ai-modules hilbertiens et l'isomorphisme entre le n-ème

groupe d'homologie ï1 réduite et l'espace des chaînes harmoniques ï1 de C est un
isomorphisme de Ai-modules.

La trace d'un opérateur A de L2(1Z, v) qui commute avec Al est donnée par la
formule

où y>o est la fonction caractéristique de la diagonale de X x X. De même, grâce à

l'isomorphisme (13), la trace d'un opérateur A de Ck (£) qui commute avec AI
est donnée par

1tM(A) := ]T (Pns|s>. (14)
see„

La Al-dimension d'un sous-espace fermé Al-invariant H de Ck (£) est alors
donnée par la trace du projecteur orthogonal sur ce sous-espace. Les nombres de

Betti ï2 du 72.-complexe simplicial £ ou de la (L,r)-lamination C{X,L,T) sont

donc les Al-dimensions des Ai-modules Hn (£) :

/?„(£) /3n(X, L, F) dimM W£2)(£) TrM(Pn)

où Pn est le projecteur orthogonal de Cn (£) sur TLn (£).
Comme rappelé dans l'introduction, lorsque l'action de F sur X est libre (au

sens de la mesure), on peut montrer, [GabOl, th. 3.11], que pour tout entier n,
/?„(£) &i2)(L, F).

Rappelons qu'inspiré par l'approche de Cheeger et Gromov [CG86], on peut
définir (voir [GabOl]) la notion générale de nombres de Betti l2 d'un 72.-complexe
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simplicial général sur une relation d'équivalence donnée 72.. Dans [GabOl], une
invariance homotopique de ces nombres de Betti l2 est démontrée. Cela permet de

définir les nombres de Betti l2 de la relation 72..

2.1. Exemple : revêtements finis

Dans l'introduction on a rappelé la remarque (1) selon laquelle si A est un
sous-groupe distingué d'indice fini dans un groupe F agissant librement et co-

compactement sur un complexe simplicial L, alors (le groupe A\F agit librement
sur A\L et) pour tout entier n,

6i2)(A\L,A\r) ^M. (15)

Dans cette égalité (15), le membre de droite conserve un sens même lorsque le

revêtement n'est pas galoisien autrement dit même lorsque le sous-groupe A n'est

pas distingué dans F. Le membre de gauche quant à lui n'a plus de sens, néanmoins
considérons sa définition "concrète", donnée par la formule (6)

6i2)(A\L,A\F) := ]T (pn(s)\s),
sectn

où Qn est l'image d'un domaine fondamental ©„ pour l'action de F sur Ln (et
donc un domaine fondamental pour l'action (A\Ln, A\F)). Elle conserve toujours
un sens mais sa valeur dépend du choix du domaine fondamental ©„ i. e. du choix
d'un point de vue. Une solution consiste à faire la moyenne de tous ces points de

vue. On va détailler cela avec comme double but d'illustrer la construction de la
section 2 et de préparer à la section 2.2.

Soit F un groupe agissant librement et cocompactement sur un complexe sim-
plicial L. Soit A un sous-groupe d'indice fini de F, k := [F : A] et q : L —> A\L le

revêtement correspondant.
Soit X l'ensemble fini F/A muni de la mesure de comptage normalisée : /x({x})

^. L'action de F sur X est transitive, donc la relation d'équivalence 72. est celle
où tous les points sont équivalents. La mesure v est la mesure qui donne à chaque
point de 72. X x X le poids K L'espace de Hubert L2(72., v) est l'espace vectoriel
dont les points de X x X forment une base, sont de norme ^ et deux à deux
orthogonaux.

La (L,F)-lamination C{X, L,T) := T\{X x L) n'est constituée que d'une seule

feuille isomorphe à A\L. Le champ de complexes simpliciaux C est formé de k
complexes simpliciaux Cx := T(x)\L, indexés par x G F/A, où IX7A)
isomorphes deux à deux par la formule (9).

Les espaces de chaînes l2 sont alors
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avec comme produit scalaire (u\v) ^2xeX ^{ux\vx).
Les nombres de Betti l2 de cette lamination sont alors obtenus à l'aide de la

formule (12) :

où Pn est le projecteur orthogonal de Cn (£) sur TLn (£), qu'on évalue sur les

champs de représentants s pour s G @n.

Remarquons que l'algèbre de von Neumann Ai de TZ est isomorphe à l'algèbre
MK des matrices k x k. Son action sur L2(TZ,iy) identifié avec les matrices A
(Ax,y)x,yGX se fait alors par multiplication à gauche. La trace Ttmk est alors la
trace usuelle des applications linéaires, divisée par k.

Par définition de l'opérateur "bord" Dn, pour cn G Cn (£), on a cn_i
DnCn si et seulement si cn_i(x) d*cn(x) pour /x presque tout x dans X. On
en déduit que Pn est un opérateur decomposable Pn 0iElj)^ où x i—> p^ est

le champ (mesurable) d'opérateurs projections orthogonales p^ : C4 (F(x)\L) —>

/?„(£)=

où F(x)s est vu comme une n-chaîne dans Cn '(T(x)\L).
Mais l'isomorphisme de la formule (9) entre T(y)\L et T(x)\L induit une

isométrie entre les espaces Cn (T(y)\L) et Cn (T(x)\L) qui entrelace les

projections pvn et p%. Ainsi, pl°(T(xo)-fs) p1~lx° (r(7"1x0)s) et avec x0 A G T/A
et 7i, 72, •• -, 7k des représentants des classes à gauche de A\F,

Par ailleurs, U-=j7;6n constitue un domaine fondamental pour l'action de A sur
Ln. C'est-à-dire, U*=5iA7j©n A\Ln, dont les élément constituent une base de

l'espace vectoriel de dimension finie Cn (A\L). Si bien que, avec tr(pn) la trace
usuelle de l'opérateur pn,

ßn(x,L,r) -=-J2J2
1
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Les "changements de point de vue" évoqués plus haut consistent donc à remplacer

le domaine fondamental ©„ par ses divers translatés %Qn. Une autre manière
de dire consiste à "oublier le groupe A" : considérons un revêtement fini d'indice

k, non nécessairement galoisien, L —> K. Choisissons un point base * dans L, son
image * dans K puis ses k relevés *i, *2, • • • *« dans L. Chacun des revêtements
pointés (L, *) —> (L,*i) nous fournit un sous-groupe Aj de F. Ils sont deux à deux
conjugués. Passer de l'un à l'autre constitue un changement de point de vue.

Nous avons donc démontré :

Proposition 2.3. Si (L,T) est une action libre cocompacte sur un complexe sim-
plicial, si A est un sous-groupe d'indice fini, et X F/A est muni de la mesure de

comptage normalisée, alors les nombres de Betti l2 de la lamination £(X, L, F)
F\(X x L) coïncident avec les nombres de Betti normalisés :

R(XLT)- y k 1 •

La (L, F)-lamination C(X,L,T) n'est constituée que d'une seule feuille isomorphe
à A\L qui est recouverte par les projections des 7©n où On est un domaine
fondamental pour la Y -action dans Ln et 7 décrit un système de représentants
quelconque des classes à gauche de F modulo A. De plus, ces nombres de Betti l2

peuvent se voir comme une moyenne selon les points de vue :

ßn(x,L,r)
'

7êA\t see„

Remarque 2.4. À ce stade, une petite précision s'impose. Si l'on considère un
sous-groupe strict F' tel que A < F' < F et l'action restreinte (L, F'), alors les

nombres de Betti usuels normalisés *m/.\i ne sont plus les mêmes, tandis que la

lamination C{X, L, F') ~ K\L est la même en tant qu'espace laminé L'explication
tient au fait que la suite des nombres de Betti l2 d'une lamination transversalement
mesurée n'est bien définie qu'à une constante multiplicative près qui dépend du
choix d'une normalisation de la mesure transverse invariante. Dans notre situation,
ce choix est précisé lorsqu'on décide que l'espace (X, /x) est un espace de probabilité
(voir remarque 2.1).

2.2. (L, F)-lamination associée à une tour de revêtements finis

On appelle tour de sous-groupes d'indices finis de F toute suite décroissante

F Fo D Fi D D Fm D de sous-groupes d'indices finis de F. Il lui
correspond la tour de revêtements finis au-dessus de T\L :

L -+ ¦ ¦ ¦ Fl+1\L -+ Tt\L -+ rf_i\L -+ > Fo\L.
Pour tout entier positif {, on introduit l'espace de probabilité (Xl,/^l) égal

à l'ensemble (fini) des classes (à droite) F/Fj de F modulo Fj, que l'on munit
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de la mesure de comptage normalisée. Les applications de réductions successives

pt : Xt F/Fj —> Xj_i F/Tj-i permettent de considérer l'espace de probabilité
limite projective

C'est un espace borélien standard. On peut le voir comme le bord (à l'infini) d'un
arbre enraciné, où les sommets sont les éléments des Xi et les arêtes données par
les applications Xj+i —> Xi). C'est aussi un espace topologique (homéomorphe à

un espace de Cantor, si la suite des indices [F : Fj] tend vers l'infini). L'action
naturelle de F sur les Xi fournit une action de F sur [X, jj), préservant la mesure
/x. Cela ne dépend que de la tour.

Définition 2.5. L'action diagonale de F sur X x L donne par passage au quotient
la (L, Y)-lamination associée à la tour (Fj)j£n :

C{X,L,Y) :=F\(X xL).
Au vu du théorème 3.1, il est important, pour comprendre l'asymptotique des

nombres de Betti normalisés d'une tour de revêtements finis, de comprendre l'action

de F sur l'espace de probabilité X. On en isole quelques propriétés élémentaires
dans la proposition suivante :

Proposition 2.6. 1. Un point x Çz X est une suite (xj)j£n de classes X{ G Y/Y{
telles que pl{xl) xj_i. Si % est un représentant de xj dans Y, alors on obtient

pour stabilisateurs F(xj) 7jFj7- et F(x) C\iem'~fiYi'~fî

2. Pour tout point x G X et pour tout sous-complexe compact C de L, il existe

un entier «o ^ 0 tel que pour tout i ^ iq, et tout représentant jt de x-% dans
Y le projeté de 7-

1 .C dans Yt\L soit simplicialement équivalent aux projetés
de C dans Y(x)\L et^Y^^L.

3. L'action de Y étant transitive sur chaque Xi, on en déduit que l'action de

Y sur X est ergodique : tout ensemble borélien invariant est de mesure 0 ou
1. En particulier, l'ensemble des points de X à stabilisateur trivial est de

mesure 0 oui.
4. Pour tout élément g dans Y, la mesure dans X de l'ensemble des points fixes

de g dans X vaut :

l,(Fixx(g))= lim ^M,
+ n

où ni désigne le nombre de sous-groupes de Y conjugués à Yt et nt(g) le

nombre de sous-groupes de Y conjugués à Fj et contenant g.

Démonstration. Seuls les points 2 et 4 demandent une explication.
Preuve du point 2 : II n'existe qu'un nombre fini g\,g2, • • • ,9k d'éléments de

F qui envoient un simplexe de C dans C. Pour «o assez grand et pour tout j
1, • • • k, on a gj G F(x) si et seulement si gj G F(xj). Pour tout 1 ^ io, les projetés
de C dans F(x)\L et F(xj)\L sont simplicialement équivalents. L'isomorphisme (9)
entre Fj\L et F(xj)\L qui envoie Fj7- 1C sur F(xj)C permet de conclure.
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Preuve du point 4 : Soit fi(g) le nombre de points fixes de l'action de g sur Xt.
Alors :

fi(g) _ rii(g)
[1 : 1 i\ nt

En effet, le groupe F agit sur Xi et par conjugaison sur l'ensemble des conjugués
de Fj dans F. L'application

J Xi —> {conjugués de Fj dans F}
P : { x >-? Fixr(x)

est F-équivariante pour ces deux actions. Chaque fibre de p est donc de cardinal

ai \{x&Xi: Fixr(x)=Fi}|,
égal à l'indice de Fj dans son normalisateur ./Vr(Fj). Ainsi, avec les notations de la

proposition, [F : Fj] nt x at et le nombre de points fixes de l'action d'un élément

quelconque g G F sur Xi est égal à rii{g) x a^. D'où l'on conclut à l'égalité (16).
En passant alors à la limite (la suite tj^t est décroissante, puisque fi+i(g) ^

[Fj : ri+i]fi(g)), on obtient par définition de /x, l'égalité annoncée du point 4.

3. Asymptotique des nombres de Betti

On peut maintenant énoncer et démontrer le théorème principal de cet article.
Soient L un complexe simplicial et F un groupe agissant librement et cocom-

pactement sur L. Soit (Fj)j^o une tour de sous-groupes d'indices finis dans F. Soit
£ C(X,L,T) := F\(X x L) la (L,F)-lamination associée (déf. 2.5).

Théorème 3.1. Pour chaque entier n, la suite des nombres de Betti normalisés

"[r-r 1 n conver9e et sa limite est égale au n-ème nombre de Betti P de la

(L, Y)-lamination associée : ßn(X,L,T).

Démonstration. Fixons un entier n positif. Soit Cn(L) l'espace des n-chaînes
entières de L. C'est un Z[F]-module fmiment engendré, dont la famille ©„ introduite

section 1 fournit une base. Soit ü une application positive autoadjointe des

n-chaînes de L dans elles-mêmes (on peut penser au laplacien) donnée par une
matrice à coefficients dans Z[F] (dont l'action se fait par multiplication à droite).
Autrement dit, avec 6n |@n| :

ü : Cn(L) -? Cn(L), ü G Z[F] <g) Mat(é»n x 0n,Z).

Pour que ü commute avec A^(F), il faut y penser comme une matrice agissant par
multiplication à droite sur ®j-=i l (r).

Observons que si A est un sous-groupe de F, alors ü induit par passage au
quotient un opérateur sur les n-chaînes entières de A\L qui s'étend en un opérateur
borné sur les chaînes l2.
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Pour chaque i ^ 0, considérons Xj F/Fj muni de sa mesure de comptage
normalisée /xj. Pour chaque i ^ 0 et pour chaque point Xj G Xj, l'application
ü induit une application C-linéaire uXi sur Cn(Cx.) C„ '(£x.), l'espace des

n-chaînes de la feuille simpliciale £^ F(xj)\L au-dessus de xj dans la (L, F)-
lamination £* F\(Xj xL) (dans ce cas la lamination Cl n'a en fait qu'une feuille).
Par intégration contre la mesure /xj on obtient un opérateur u4 de C„ (£ dans
lui-même.

De même, pour chaque point x G X, l'application ü induit une application
C-linéaire ux sur Cn(Cx) qui s'étend en un opérateur borné, encore noté ux, sur
Cn {C-x)i l'espace des n-chaînes l2 de la feuille simpliciale Cx F(x)\L au-dessus
de x dans la (L, F)-lamination £. Par intégration contre la mesure \i on obtient

un opérateur u de C„ (£) dans lui-même.
Soit Q(z) un polynôme à coefficients réels. Pour tout x G X, xt G Xt, on a

Q(u)a; Q(u*) et Q(u,)^ Q(uf-).
Rappelons que si s est un simplexe dans ©„ il induit un champ de vecteurs s

(resp. s{) dans la (resp. les) (L, F)-lamination(s) £ (resp. £ donné par : (x i—>

Fait 1. Soit x (xj)j un point de X. Pour i suffisamment grand et s G ©„,

Les champs mesurables d'opérateurs x i—> Q(u)x sur £ (resp. xj i—> Q(uj)x* sur

£ ne sont autres que x i—> Q(ux) (resp. xj i—> Q(u?*)). Le fait f découle alors

simplement des définitions et de la proposition 2.6 (point 2).

La norme d'opérateur de Uj est bornée uniformément par rapport à i par une
constante N (on peut prendre comme valeur pour N le produit de 9n par la somme
des coefficients des éléments de F dans la matrice Ü, cf. [Lüc94] Lemma 2.5). Du
théorème de convergence dominée de Lebesgue, on déduit donc :

TrM(Q(u))

seenJx
lim

lim
x

ä s L
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lim V (Q(ui)(si)|si>.
see„

Autrement dit :

lim TrMi(Q(u,)), (17)
î^+ OO

où A4i est l'algèbre de von Neumann de la relation d'équivalence sur Xi engendrée

par l'action transitive de F, i.e. A4t est l'algèbre des matrices |Xj| x |Xj|, munie
de la trace normalisée Tr^, qui est la trace usuelle divisée par \Xt\.

Soit maintenant {P(A)/A G [0, N]} la famille spectrale continue à droite de u.
Notons

F : [0, +oo[-> R+; A ^ TrM(P(X)).

Fait 2. Soit Q^ une suite de polynômes réels qui, sur l'intervalle [0, N], converge
simplement vers la fonction caractéristique X[o,a] de [0, A] et reste uniformément
bornée sur [0, N]. Alors

k\hn^TrM(Qk(u)) F(X).

En effet, toujours à l'aide du théorème de convergence dominée de Lebesgue et
des propriétés standard des traces (de von Neumann) on a :

lim TrM(Qfc(u)) lim Ttm / Qk(X)dP(X)

^m^ / Qk(X)dF(X)

f lim Qk(X))dF(X)
«/ U \ ' /

/ X[o,x]dF(X)
Jo

F(X).

Fixons un réel A > 0. Pour tout k ^ 1, soit

{R
—> R

fl + f si^A
»7 ^ < l + |-fc(??-A)siA<?7<A+i

On a X[o,A](??) < fk+i(v) < fk(v) et /fc converge simplement vers x[o,a] sur [0, +oo[.
Pour chaque k, choisissons un polynôme Q^ tel que X[o,x](v) < Qk(v) < fk(v)
pour tout rj G [0, N]. Soit Ei(X) l'ensemble ordonné des valeurs propres r\ de u^
inférieures à A et comptées avec multiplicités.
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h

A

Figure 1. La fonction

Fait 3.

: r,]

En effet :

Et on conclut alors grâce à un petit calcul, cf. [Luc94] pp. 468-469.

Comme dans la démonstration du théorème de Lück, le lemme "clef" de la

preuve du théorème est :

Lemme de Lück [Lüc94]. Soit g : V —> W une application linéaire entre deux

espaces de Hubert de dimensions finies. Soit p(t) =det(tid — gg*) le polynôme
caractéristique de gg*. On écrit p(t) tkq(t) où q est un polynôme ne s'annulant
pas en zéro. Soit A un réel supérieur à 1 tel que A ^ ||<?||2 et soit C un nombre
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réel positif tel que C ^ |</(0)|. Soit E(X) l'ensemble des valeurs propres r/ de gg*
vérifiant r/ ^ A et comptées avec multiplicités. Alors pour 0 < A < 1 :

-log(C) log(A)
dimc(Vr)(-log(A)) -log(A)'

Soit e un réel strictement positif.
Dorénavant ü est le laplacien A <9n+i<9^+1 + d^dn. On a alors :

-rp—771 PnC-) — PnC- — PnC-)

(\EM\ \EiW\\ f\Ej(X)\ _

+ (TTM(Qk(A)) - F(X)) + (F(X) - /?„

Pour alléger les notations on notera ces cinq parenthèses : IIi, II2,..., II5.
Puisque la famille spectrale {P(A)/A G [0, N]} est continue à droite, la fonction

F l'est aussi. Or, puisque ü désigne dorénavant le laplacien, F(0) /?„(£). On
peut donc supposer que A est suffisamment petit pour que \H^\ ^ |.

On peut appliquer le lemme de Lück en prenant g An. Puisque An est défini
sur Z, la constante C peut-être prise égale à 1 (un entier strictement positif est

toujours supérieur ou égal à 1). La conclusion du lemme de Lück s'écrit alors (avec

\Et(X) - Et(0)\ <
\T:Tt] " -log(A) '

si A < 1. Donc quitte à diminuer A, on peut supposer que |IIi| ^ |.
D'après le fait 2, on peut alors choisir k de manière à ce que |3TE«41 |
En passant à la limite en 1 et pour k fixé dans l'inégalité du fait 3, à l'aide

de (17), on obtient :

EiW\ (A)) l^(A+i)l 1

Vu
h+oo 1 ^ lr((4fc(A)) ^ mn^+œr 1h r,[i 1 i\ [i : 1 jj k

pour tout entier k strictement positif. En particulier, en passant cette fois à la
limite en A; à l'aide du fait 2, pour tout r\ > 0 :

Ainsi la continuité à droite de F permet de conclure que quitte à augmenter k, il
existe un entier «o positif tel que pour tout 1 ^ îq, III2I ^ |.
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Enfin d'après (17), quitte à augmenter io, on peut supposer que pour tout
*>*o, |n3Kf.

Finalement on obtient que pour tout réel e > 0, il existe un entier positif io tel
que pour tout « ^ «o,

rni' [F : F,]
' ^ "¦

Ce qui achève la démonstration du théorème 3.1.

4. Une famille d'exemples

Soient A et B deux complexes simpliciaux compacts, de points base respectifs
des sommets *A et *B. Soit K le complexe simplicial compact obtenu en ajoutant
à la réunion disjointe de A et B un simplexe a de dimension 1 en attachant ses

extrémités à *A et *B. On prend comme point base de K le point * milieu de a.

Soient YA := iti(A, *a) et YB := iti(B, *b) les groupes fondamentaux de A et
B, soit F := tti(K, *) YA * YB celui de K et soit L le revêtement universel de

K, avec un point base S qui relève *.

Théorème 4.1. Supposons que les groupes fondamentaux Y et Y sont infinis
et résiduellement finis.

Alors pour tout /xo £ [0,1 [7 il existe une tour décroissante de sous-groupes
(Fj)j£n d'indices finis dans Y, telle que

1. Fj-i-i est normal dans Yt
2. niemYi {e}
3. Hindoo "rp p\ ' ij>obn(A) + (1 — Mo)&n {À, YA) + 6„ '(B,YB), pour n ^ 2

4.

De plus, dans l'action limite (protective) (X, /x, F),
5. «7 existe un boréhen Xo de mesure /xo te/ gwe l'ensemble des points fixes de

tout g G FA \ {e} so«i exactement Xo,
6. /e fixateur de /^-presque tout point de X est un produit libre de conjugués

deYA.

L'énoncé du théorème 0.1 est une spécialisation de celui-ci, avec B ~ T1. Dans

ce cas on pourra noter que la preuve se simplifie à plusieurs endroits.

On se donne une tour de sous-groupes normaux d'indices finis et d'intersection

triviale (vf)îeN (resp. (vf )îeN) de FA (resp. YB).
On va construire par récurrence une suite (F^)îeN (resp. (Ff )jën) telle que

Condition C\. chaque YA (resp. Y?) est l'un des sous-groupes Y0 (resp. Y'3 et

YA (resp. YB) est un sous-groupe strict de F^L4 (resp. Tf_±).

On appellera Ai —> A (resp. Bi —> B) les revêtements galoisiens correspondants
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et ai := [TA : TA] (resp. bt := [TB : Vf ]) leurs indices. On aura encore nîeNr^
{e}, r\eNFf {e} et lim^oo at lim^oo bt oo.

On va construire par récurrence des revêtements finis pi : Ki —> K d'indices

Kt. Chaque Kt sera un graphe d'espaces, constitué de kj arêtes : les relevés de a,
et d'un certain nombre de sommets : les composantes connexes de p~1{A\\B)
auxquels on imposera les types suivants :

Condition C|. p~ (A) est constitué de r\ sommets isomorphes à A et de si
sommets isomorphes à At ; p~ (B) est constitué de tt sommets isomorphes à Bt.

L'indice du revêtement vérifie alors

slal =tibi.
Notons qu'alors le graphe Gi obtenu en écrasant en un point chaque composante
connexe (=sommet) de p~1{A\\B) est connexe et possède r\ + st + U sommets
et Kt arêtes. Une application de la suite longue exacte de Mayer-Vietoris permet
alors de calculer :

bn(Ki) nbn(A) + Sibn(Ai)+tibn(Bi) (n > 2)

b^Ki) rMA) + sMAi) + tM{Bt) + (1 - (rt + st+tt) + nt)

bo(Ki) 1.

On va faire en sorte que ^ —> (j,q en décroissant lorsque i —> oo, alors Sj ^ *'

(K^ad6;(A) (^f^)^^ -^ (1 - IM))b{n\Ä,rA), par application du théorème

de Lück. De même, *^il ^1 ^ b^{B, TB). Et enfin, ^-^+°^)+«-) ^
(— no + 1). Cela permettra d'assurer les points 3. et 4. de l'énoncé du théorème.

Fait 1. On choisit dans chaque revêtement Ai un point base *f qui relève *f_1
et pour les autres relevés de *f_ly on choisit un chemin le reliant à *A. On fait
de même pour les revêtements B-%. On choisit aussi un arbre maximal dans Qt.

Le groupe Fj tti(Kj,*j) s'écrit alors naturellement comme produit libre des

groupes fondamentaux des composantes connexes de P^l{A\\B) et du groupe
fondamental ir-i(Gi, *i) du graphe Gi- II est donc formé comme produit libre d'un
certain nombre de groupes qu'on range en 4 types :

(l)tifois7ri(Bi,*f)~rf
(2) un groupe libre -ki{Gi, *î) F; de rang (1 - (rt + st +tt) + nt)
(3) n fois^(A*A)-rA
(o) SifoisTnC^^-r^.

Construction basique. Le complexe Ki+\ sera alors construit à partir de Ki
par le procédé suivant :

On va choisir un certain nombre v,i de facteurs de type m (m 1,2,3 ou 0)
dans la décomposition en produit libre de tyi(K1,*1). L'isomorphisme qu'ils
entretiennent chacun avec Gt := Ff,Fi, TA ou TA (selon que m 1,2,3 ou 0)
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s'étend (trivialement sur les autres facteurs) en un homomorphisme surjectif ht :

7Ti(Xj,*j) Fj —> Gj. On choisira alors un certain sous-groupe normal d'indice
fini G^ de Gj. Il définit par image inverse un sous-groupe normal d'indice fini Fi+i
de Fj et un revêtement galoisien associé Xj-+i —> ifj. La préimage dans Xj-+i de

chaque partie de if^ associée à un des facteurs choisis est alors un revêtement
(connexe) d'indice [Gt : Gj], tandis que la préimage de chaque partie associée à

un autre facteur est constituée de [Gt : G-] composantes connexes. L'espace Xj-+i
vient avec un point base *i+\ qui relève *j. L'indice du revêtement (non galoisien)

ifî+i —> if est donné par kj+i [Gt : G^]^.
Il reste à expliciter les conditions qui président à ces choix. On peut suivre les

premières étapes sur la figure 2.

o-
A

-o
B

Figure 2. Amorce de la récurrence

• Pour i 0, le complexe Kq K a deux sommets A et S. On choisit le facteur
de type (I) pour obtenir l'homomorphisme ho : Fo := tti(Xo, *) —> T^ FB. On

choisit un sous-groupe de la tour (Tj strictement plus petit qu'on notera Ff,
d'indice b\ dans TB tel que

(l-/*o)6i > 2. (18)

Alors «i &i, le complexe ifi a ri «i sommets de type A chacun relié par une
arête à l'unique sommet de type B\ Tf\B. Le graphe Q\ est un arbre avec un
sommet de valence k\ et k\ sommets terminaux.

• Pour i 1, on choisit un certain nombre «i de sommets de type A, i.e. de

groupes de type (3) dans la décomposition en produit libre de tti(Ki, *i), avec
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ri~Ml ^ fj,Q + -£-, pour obtenir l'homomorphisme hi : Fi := 7Ti(ifi,*i) —>

F^ FA. La condition (18) assure que u\ ^ 2. On choisit n'importe quel sous-

groupe qu'on appellera F^ de la tour (F^ contenu strictement dans YA. Son

indice est appelé a^. Alors K-2 est un revêtement d'indice «2 ki«2 comportant
£2 ^r- sommets de type B-2 B\1 s-2 v,\ sommets de type A-2 TA\A et
T2 ^r-(r-i — mi) sommets de type A. On voit que la condition sur u\ assure

^- > i^o- Un calcul immédiat montre que le rang du groupe libre iti(G2, *ï) vaut
(«i — I)(a2 — 1). Les conditions imposées entraînent donc qu'il n'est pas trivial, et
à partir de maintenant, aucun des Gi ne sera un arbre.

• Après cette mise en jambes et maintenant que la récurrence est amorcée,
supposons que la construction ait été avancée jusqu'à l'étape 1 ^ 2, satisfaisant aux
conditions G\, C\ et Condition C\ : ^ > jj,q. On décrit selon la congruence
m 2, 3, 0,1 de « modulo 4 les choix effectués dans la construction basique afin
de construire Xj-+i à partir de Kt.
• Pour 1 4j + 2 (m 2). On considère le graphe Q% et son groupe
fondamental (non trivial), le facteur de type 2 dans la décomposition en produit libre
de TYi(Kl,*l), pour obtenir l'homomorphisme hi : TYi(Ki,*i) —> Fi. Le graphe
Gi possède un revêtement galoisien fini Gi+i d'indice Ji où aucun des lacets (en
nombre fini) de longueur ^ 2« + 1 de Gi ne se relève en un lacet, avec de plus la
condition suivante sur Jt :

h l —— < (n - k^o)^. (19)
(OjOj) - 1

Le revêtement Ki+\ —> Ki est alors défini à l'aide du sous-groupe normal de

Fi correspondant. Il est d'indice Ji et sa décomposition en graphe d'espaces fait
apparaître des sommets de type A, Ai+i := At et Bl+i := Bt en nombres rj+i
Jtrt, sl+i Jtst, tl+i Jltl. Les sous-groupes doivent donc valoir Tf-+1 Tf et

T?+1 Vf. Le graphe Gi+i est précisément Gi+i, qu'on vient de considérer.

Fait 2. Le graphe Gi+i (obtenu lors de cette étape) ne comporte aucun lacet de

longueur ^ 2i + 1.

• Pour i Aj + 3 (m 3). Parmi les r^ copies de A dans Kiy on en choisit une
quantité «j, avec (rt — Kt/^o) — 1 ^ Ui < (r% — «îMo)) en prenant en particulier
toutes celles dont la distance au point base *j est ^ 2« — 1. C'est possible car la
mystérieuse quantité à gauche dans l'inégalité (19) donne un majorant grossier
du nombre de sommets à distance ^ 2« — 1 2(4j + 2) + 1 du point base *4j+3,
tandis que la quantité de droite coïncide avec la nouvelle valeur de (rt — KjMo) (vu
le décalage des indices). On obtient alors l'homomorphisme hi : tti(Xj, *i) —> TA,
construit à l'aide des mj facteurs du produit libre, associés à ces copies de A et
on choisit comme sous-groupe normal dans TA, le sous-groupe TA. Les espaces
sommets de Ki+\ sont donc de type A, Ai+\ At et Bl+i Bt.

Fait 3. Dans i^+i et dans tous les revêtements postérieurs Ki, l > i + 1, aucun
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des sommets à distance ^ 2i — 1 du point base ne sera donc de type A.

Fait 4. La condition imposée sur le nombre u-% donne alors

n+i n - Ui 1

Mo < < Mo H

Ki+l Ki Ki

et permettra d'assurer la convergence de la suite (^) vers jjq.
• Pour i Aj + 4 (m 0). On choisit toutes les copies de Ai pour obtenir

l'homomorphisme h-% : tti(Xj,*j) —> TA et un sous-groupe F^_1 de la tour (Fj
strictement contenu dans TA. Cela permet de définir Kj+i. La proportion ^^
^ reste inchangée.

• De même, pour i 4j + 5 (m 1). On choisit toutes les copies de Bj pour
obtenir l'homomorphisme ht : tti(Xj, *j) —> Ff et un sous-groupe F^ de la tour

(Tj strictement contenu dans Vf. Cela permet de définir Kj+i. La proportion
Iî±i. _ xi reste inchangée.

Les conditions C^+1, C^+1 et Cg+1 sont immédiatement vérifiée à chaque étape.
Fin de la récurrence. Les points 1., 3. et 4. de l'énoncé du théorème sont aussi
démontrés.

Fait 5. Un point base *j étant choisi dans Xj, au-dessus de *, le groupe
fondamental 7Ti(Xj, *i) est un sous-groupe Fj de iti(K, *). Les autres relevés de * dans

ifj sont alors associés bijectivement aux classes à droite de F/Fj. Un élément 76F
fixe une telle classe (dans l'action à gauche sur F/Fj) si et seulement si un (tout)
lacet représentant 7 dans (if, *) se relève en un lacet à partir de ce relevé.

Tout lacet dans A (resp. B) s'ouvre pour 1 assez grand lorsqu'on le relève dans

At (resp. Bt).
Ainsi, par exemple, un élément g de TA \ {e} C F TA * TB est représenté

par un lacet dans Kq K constitué du chemin c de * à *A, suivi d'un lacet t
dans A puis c^1. Il fixe donc une classe de F/Fj associé au relevé *[ de * dans Xj
si et seulement si le relevé de c à partir de *[ aboutit à une composante connexe
de p^1{A) où le lacet t se relève en un lacet. Et donc pour 1 assez grand, si et
seulement si ce relevé de c aboutit à l'un des rj sommets de Ki de type A. La
convergence ^ —> jj,q entraîne alors le point 5. de l'énoncé, avec Xq le borélien de

la limite projective associé aux suites de points *[ qui vérifient cette condition.

Soit x un point de la limite projective X. C'est une suite x (*-)jgn de sommets

*[ de Ki, chacun relevant le précédent dans la tour Xj-+i —> ifj —> ifj-i. Il est
stabilisé par le groupe Stab(x) := r\eN7ri(ifj, *0- L'espace Lx := Stab(x)\L basé

en l'image *a; de * vient avec les revêtements jlx : Lx —> Kt tyi(K1, *'t)\L, qui

envoient *x sur *^ et qui coïncident avec la composition f^x : Lx %-^> Kl+i —> ifj.
C'est un graphe d'espaces (infini).

En restriction à une composante connexe de fOx(B), chaque fix définit un
revêtement de l'un des sommets de type Bi dans Ki. On en déduit que ces com-
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posantes connexes sont donc simplement connexes et s'identifient à B. De même,
si une composante connexe de fOx(A) revêt via f^x, pour un certain i ^ 2, l'un
des sommets de type Ai, alors elle est simplement connexe et s'identifie à A. Sinon
(elle ne revêt que des A) elle s'identifie à A. Les sommets du graphe d'espaces Lx
sont donc de type A, A ou B.

Considérons maintenant le graphe Goo,x obtenu en écrasant en un point chacune
des composantes connexes de fOx(AY[B). Si r est un lacet de Lx qui se projette
dans Goo,x en un lacet sans aller-retour t', alors il n'emprunte aucun sommets de

type A (les sommets de type A sont en effet terminaux : une seule arête y est

attachée). On en déduit que pour i ^ «o assez grand il se projette dans Ki puis Gi

en un lacet isomorphe à t'. Mais il existe un nombre infini de valeurs de i (grâce
au fait 2) pour lesquelles Gi+i ne comporte aucun lacet de longueur ^ 2« + 1. On
en déduit que t' est le lacet trivial et Goo,x est un arbre.

Ainsi Lx est un arbre d'espaces dont les sommets ont été décrits. Son groupe
fondamental tti(Lx, *x) Stab(x), comme sous-groupe de 7ti(K, *), est un produit
libre de conjugués de 7Ti(A, *a). Cela montre le point 6. du théorème.

Il reste à montrer que Pi^nFj {e}, i.e. que le stabilisateur du point x
(xj)jën, associé à la suite de points base particuliers *j, est trivial. On raffine
l'argument précédent en ajoutant, à l'aide du fait (2), que pour i assez grand,
aucun des sommets à distance donnée ^ / du point base *j dans Ki n'est de type
A. Ainsi, aucun des sommets de Lx ne peut être de type A et tti(Lx, *x) Stab(x)
est le groupe trivial.

5. Actions boréliennes non nécessairement libres

Dans cette section, on considère un espace borélien standard de probabilité sans

atome, [X, /x) et une action mesurable préservant /x d'un groupe F dénombrable.
Un exemple particulier d'action non libre de F est donné par une action libre

préservant /x d'un groupe quotient F/A sur (X, /x), où A est un sous-groupe normal
de F. Tous les points de X ont le même stabilisateur A.

On peut constater assez rapidement par des méthodes classiques que des conditions

de fînitudes imposées aux stabilisateurs ont des conséquences importantes :

si les stabilisateurs sont de type fini, alors on se trouve essentiellement à indice fini
près dans le cas de l'exemple particulier. En effet :

Théorème 5.1. Si l'action de F est ergodique et les stabilisateurs de points sont
de type fini, alors X possède une partition finie X Yïiei ^ e^ ^ un sous-9rouPe
normal d'indice fini F' tels que

- presque tous les iéI, ont le même stabilisateur Y\, lequel n'a donc qu'un
nombre fini de conjugués

- pour tout i Çl I, T'Xt Xt
- les actions de F' sur les divers Xi sont deux à deux conjuguées par des
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isomorphismes préservant la mesure \i.
- l'action de F' sur Xi possède pour noyau un sous-groupe F^ qui est d'indice

fini dans Tt et l'action de F'/F- est libre.

Démonstration. Soit SGTF(T) l'ensemble des sous-groupes de type fini de F muni
de l'action par conjugaison de F. C'est un ensemble dénombrable. L'application
F(.) : X —> SGTF(T), x i—> F(x) est mesurable et F-équivariante. La mesure
image r(.)*/x étant ergodique et invariante, elle charge seulement une F-orbite
finie {F^ : i G /} et le noyau de l'action de F sur cette orbite est un sous-groupe
normal d'indice fini F'. La partition finie (à un ensemble de mesure nulle près) de

X est obtenue par image inverse. Tout x G Xt a pour stabilisateur le sous-groupe
Fj et T[ := V n Fj est le noyau de l'action de F' sur Xj. C'est un sous-groupe
d'indice fini dans iy Observons qu'il est donc aussi de type fini. Pour tout j G /,
il existe un 7 G F tel que 7X4 Xo qui fournit la conjugaison recherchée entre les

diverses actions de F'.

Corollaire 5.2. Si F est un groupe libre, si l'action est ergodique et si les
stabilisateurs de points sont de type fini, alors l'action est libre.

Démonstration du corollaire. En effet, chaque F^ est un sous-groupe normal de

type fini du groupe libre F'. S'il était d'indice fini, les F-orbites des points de

X seraient finies. Le théorème de O. Schreier rappelé en introduction permet de
conclure que F^ est le groupe trivial.

Plus généralement, en utilisant le théorème 6.8 de [GabOl] également rappelé
dans l'introduction, on obtient :

Corollaire 5.3. Si l'action de F est ergodique, si les stabilisateurs de points sont
de type fini, et si déplus b\ (F) ^ 0, alors pour presque tout x G X, le stabilisateur
F(x) est fini.

Démonstration du corollaire. En effet, le sous-groupe d'indice fini F' vérifie aussi
0 \

b\ (F') ^ 0. Chaque sous-groupe normal F^ est de type fini. Il n'est pas d'indice
fini dans F' sinon les orbites seraient finies. Alors par [GabOl, th. 6.8], F^ est fini.
Enfin, pour tout x G Xt, T't est d'indice fini dans F(x).

Il nous semble intéressant et conforme à l'introduction de donner aussi une
preuve "géométrique" du corollaire 5.2. Soit (L, *) un arbre simplicial pointé sur
lequel le groupe libre F agit librement. Considérons la (L, F)-lamination C :=
F\(X x L) et le plongement X de X comme transversale induit par X x {*}. Pour
tout x G X ~ X, la feuille Cx est exactement F(x)\L. Si F(x) est de type fini,
alors cette feuille de la lamination a un cœur compact (le plus petit sous-graphe
connexe contenant toute la topologie), dont l'intersection avec X est formée d'un
nombre fini de points. Si tous les F(x) sont de type fini, on est ainsi en mesure de



390 N. Bergeron et D. Gaboriau CMH

choisir un nombre fini de points dans chaque orbite, et cette construction est assez

clairement mesurable. Cela n'est possible que si les orbites de l'action sont finies.

Plus généralement encore (en effet A de type fini entraîne b\ '(A) fini), voici le

résultat que nous obtenons :

Théorème 5.4. Soit (X, /x, F) une action ergodique, préservant la mesure, d'un
groupe dénombrable F sur un borélien standard de probabilité sans atome. Si

bf\T) y^O, alors
• ou Men F(x)7 le stabilisateur de x dans F', est un groupe fini pour /^-presque

tout x G X (et alors le théorème 5.1 s'applique) ;

• ou bien le premier nombre de Betti î1, b\ (F(x))7 est infini pour /^-presque
tout x G X.

Corollaire 5.5. Si (X,/x, F) est une action ergodique, préservant la mesure, d'un
(2)

groupe dénombrable F tel que b\ (F) ^ 0, et si les stabilisateurs sont moyennables,
ou s'ils ont la propriété (T) de Kazhdan, alors ils sont presque tous finis.

En effet, dans les deux cas, le premier nombre de Betti ï2 des stabilisateurs est
nul [CG86]. On peut également dire que les groupes possédant la propriété (T) de

Kazhdan sont de type fini.
Concernant les nombres de Betti ï1 de dimension supérieure, nous montrons

aussi :

Théorème 5.6. Soit (X, /x, F) une action ergodique hyperfinie, préservant la

mesure, d'un groupe dénombrable F sur un borélien standard de probabilité sans
atome. Si pour un certain n G N7 le n-ème nombre de Betti l de presque tout
stabilisateur est fini (bn (F(x)) < oo \i-p.s), alors b\ (F) 0.

Comme nous l'avons annoncé dans l'introduction, pour démontrer les théorèmes

5.4 et 5.6, nous serons amenés à prouver le résultat suivant :

Théorème 5.7. Soit (X,/x, F) une action préservant la mesure d'un groupe
dénombrable F sur un borélien standard de probabilité sans atome. Alors, la fonction
X —> R+ U {oo}7 x i—> bn'(r(x)), qui associe à x le n-ème nombre de Betti l2

de son stabilisateur, est mesurable. En particulier, si l'action de F est ergodique,
alors cette fonction est presque sûrement constante.

On repousse à la fin de cette section la preuve un peu technique de cet énoncé

5.1. Démonstration des théorèmes 5.4 et 5.6

Commençons par "libérer" l'action de F en lui associant une action libre. Soit
X' un borélien standard muni d'une mesure de probabilité \a! et sur lequel F agit
librement. Alors, l'action diagonale 7-(x', x) (7.x', 7.x) de F sur Z X' x X est
libre et préserve la probabilité produit v. Soient 1ZZ et 1ZX les relations produites
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par F sur {Z,v) et F sur [X, jj). Appelons tt la projection de Z sur X et tti la

projection de 72.z dans 72.x :

Notons Tz l'image inverse par tti de la relation triviale sur X (celle où les classes

sont les singletons). Deux points (x',x) et (y', y) dans Z X' x X sont Tz-
équivalents si et seulement s'il existe un élément 7 G F(x) tel que (y', y) 7.(x', x).
C'est-à-dire, les fibres de tt sont Tz-invariantes et la restriction T,z de Tz à la fibre

X' x {x} de x, munie de la mesure // est donnée par une action libre préservant
la mesure de F(x).

Par hypothèse, la relation 1ZX est à classes infinies.

Fait. La relation 1ZX contient une sous-relation hyperflnie TLX à classes infinies
(consulter par exemple [GabOO, prop. III.3]).

Soit Uz := ir11(Hx) sa préimage dans Z. Elle contient Tz.

(2)Lemme 5.8. Si pour un certain n G N, lesb„ (F(xj) sont presque tous finis égaux
à b, alors ßn{TLz, v) 0.

Démonstration. La relation Hx étant hyperflnie, elle s'écrit comme réunion croissante

d'une suite de relations Hx à orbites finies, qui possèdent un domaine
fondamental borélien Xi C X. Définissons par préimage le borélien Z-% := tt^1(Xj) C Z
et la relation Tïf := ^{Hf).

Puisque Z-% rencontre toutes les orbites de la relation Jif (et z/(tt^1(Xj))
yu(Xj-)) alors, le corollaire 5.5 de [GabOl] assure que

ßn(H?, v) KXi)ßn(nflz„Vi), (20)

où vi est la restriction de v à Zi renormalisée en une mesure de probabilité, et

HZ\Z la restriction de Hz à Z%.

Puisque la restriction de Hx à Xi est la relation triviale, alors la restriction
T~LZ\Z coïncide avec la restriction de Tz à Z-%. C'est-à-dire, H?iz. fixe chaque fibre

7T^1(x) et y est donnée par une action libre d'un groupe (à savoir F(x)) dont le

n-ème nombre de Betti l2 est égal à b.

On en déduit que ßn{^^\z >^*) ^ e^ donc que le membre de gauche de

l'égalité (20) tend comme /x(Xj) vers 0 lorsque 1 tend vers l'infini. Mais TLZ étant
la réunion croissante des TLf, le corollaire 5.13 de [GabOl] assure que

Ce qui démontre le lemme.

Le théorème 5.6 s'en déduit puisque dans ce cas, on peut prendre TLX 1ZX et
donc TLZ 1ZZ. Le lemme s'applique par ergodicité de 1ZX et par le théorème 5.7.
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Pour démontrer le théorème 5.4, travaillons par contraposition et supposons
(en utilisant l'ergodicité de l'action de F sur X et le théorème 5.7) que :

1. le groupe T(x) est infini pour /i-presque tout x dans X et,
2. le premier nombre de Betti b\ '(T(x)) 6, est fini pour ^-presque tout x.

(2)Soit e un réel strictement positif. Nous allons montrer que b\ (F) < e.

Tout d'abord, l'image inverse Tz par tti de la relation triviale sur X a presque
toute ses orbites infinies (puisque T(x) est infini /x-p.s.). La proposition 1 de [Lev95]
implique qu'il existe une suite (Zj)jej$ de boréliens de Z qui sont de mesures ^ ^tt
et qui chacun rencontre presque toutes les Tz-classes.

Soit (71,72,..., 7j, •••) une famille génératrice de F. On définit des isomor-
phismes boréliens partiels <fj comme restriction de 7^ à Z3.

Fait. La plus petite relation d'équivalence contenant Tz et les graphes des <pj

est égale à 1ZZ, i.e. 1ZZ est la plus petite relation d'équivalence pour laquelle
zTzz' => z ~ z' et z G Zj => z ~ fj{z). Autrement dit, avec la terminologie de

[GabOO, GabOl], 1ZZ peut être engendrée à partir de Tz en ajoutant le graphage

Clairement, Tz V $ C 1ZZ. Pour l'inclusion inverse, il suffit de montrer que
(z, 'jj.z) G {Tz V $), pour tout 7^ et pour (presque tout) z (x\ x) G Z. Il existe

g G r(x) qui envoie z dans Zj et g' := 7J5r^17^1 appartient à T^j.x). Les points
suivants sont (Tz V $)-équivalents : z et g.z grâce à Tz, gr.z et 7^(7.-2 grâce à $ et

'Yjg.z et g'^/jQ.z ^3.z grâce à Tz. Cela démontre le fait.

Soit maintenant S un Wz-complexe simplicial simplement connexe (chaque Sz
est simplement connexe), d'ensemble de sommets S0 ~ Tiz et soit C\ := Tiz\Y1
la structure simpliciale sur Tiz associée (cf. [GabOl, sect. 2.2.3]). L'image de la

diagonale de Tiz ~ S0 induit un plongement (encore noté Z) de Z comme
transversale totale dans C\. Maintenant, puisque Tiz C 1ZZ, la structure simpliciale C\
sur Tiz peut aussi être considérée comme une structure simpliciale £2 sur 1ZZ.

Dans ce cas, les feuilles de £2 sont des réunions de feuilles de L\. Elle ne sont plus
connexes : la feuille £2^] de z G Z est la réunion des feuilles de £1 qui sur la
transversale Z rencontrent la 72.z-orbite de z. Les formules suivantes s'obtiennent

par la formule de réciprocité, [GabOl, sect. 5.2], par définition ([GabOl, Th. 3.13,
Déf. 3.14]) et grâce au lemme 5.8,

fh(Hz)
0.

Soit enfin £3 la structure simpliciale sur 1ZZ obtenue à l'aide de cylindres
Zo x [0,1] feuilletés par {z} x [0,1] recollés sur £2 par Zj x {0} ~ Zj via l'identité
et Zj x {0} ~ ifj (Zj via <fj. Stricto sensu, pour éviter des arêtes doubles et obtenir
des complexes simpliciaux, on peut être amené à restreindre encore les <fj à une
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partie de leur domaine. On obtient aisément :

< 0 + e.

Le fait ci-dessus montre que les feuilles de cette structure simpliciale sur 1ZZ

sont connexes. Par ailleurs, 1ZZ est donnée par une action libre de F, alors

Ce qui démontre l'inégalité annoncée (pour tout e) donc le théorème 5.4.

5.2. Démonstration du théorème 5.7

Notons T la relation Tz sur (Z, v) de la section précédente. Rappelons qu'elle
fixe les fibres de -k et notons Tx la restriction de T à la 7r-fîbre X' x {x}. L'algèbre
L°°(X, n) se plonge naturellement dans le centre de l'algèbre de von Neumann
M.T de T, laquelle peut alors se décomposer sous la forme A4j- Jx AiTœd/j(x)
et sa trace Ttt Jx TrTœdjj(x).

Si H est un A^T-module de Hubert, et p un projecteur orthogonal de H qui
commute avec A4t, alors ils sont décomposables sous la forme H Jx Hxd/j,(x)
et p Jx pxdfj,(x), oui h Hx est un champ mesurable d'espaces de Hubert,
pour /i-presque tout x G X, Hx est un .MTx-niodule de Hubert, ih^ est un
champ mesurable de projecteurs orthogonaux et px commute avec -M%.- On en
déduit que la fonction x i—> Trj-^ipx), ou autrement dit x i—> dim7-x(Im (px)) est
mesurable.

Soit S un T-complexe simplicial contractile et (T^t)teN une suite croissante
exhaustive de sous-T-complexes uniformément localement bornés (ULB) (cf. [GabOl,
sect. 2]). Pour /x-presque tout x G X, par restriction à X' x {x}, le complexe S
fournit un 7^-complexe simplicial contractile ~£x et les complexes Et fournissent
une suite croissante de 7^-complexes simpliciaux ULB (St.x) exhaustive de T,x.

Si Us'f désigne (pour s ^ t) l'adhérence de l'image du morphisme naturel
(2) (2)

de A^T-modules de Hubert Hn (SS,T, v) —> Hn (St,T,v), alors ces données

sont décomposables suivant X et la fonction x i—> dimTœ(Ux^) est mesurable. La
fonction /:ih sups ïnft^s t^oo dim-7-a.(C^'t) l'est aussi. Maintenant, pour presque
tout x G X, /(x) coïncide avec le n-ème nombre de Betti ï2 du 7^-complexe
simplicial Sx : /(x) ßn(£x,Tx, fj,') (cf. [GabOl, sect. 3], en particulier, prop. 3.9,
th. 3.13 et déf. 3.14).

Mais puisque Tx est donnée par une action libre de T(x), alors par [GabOl,

cor. 3.16], /i-presque sûrement, f(x) 6„ '(T(x)) (dans les notations de [GabOl],
il s'agit de ßn(r(x))).
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