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On the zero set of semi-invariants for tame quivers

Christine Riedtmann and Grzegorz Zwara

Abstract. Let d be a prehomogeneous dimension vector for a finite tame quiver Q. We show
that the common zeros of all non-constant semi-invariants for the variety of representations of Q
with dimension vector N - d, under the product of the general linear groups at all vertices, is a
complete intersection for N > 3.
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1. Introduction

Let &k be an algebraically closed field, and let Q = (Qo, @1,t, k) be a finite quiver,
i.e. afinite set Qo = {1, ..., n} of vertices and a finite set Q)1 of arrows o : tav — hay,
where ta and ha denote the tail and the head of «, respectively.

A representation of @) over k is a collection (X(i); ¢ € Q) of finite dimensional
k-vector spaces together with a collection (X (o) : X(ta) — X(ha);, a € Q1) of
k-linear maps. A morphism f : X — Y between two representations is a collection
(f(i): X(i) = Y(i)) of k-linear maps such that

f(ha)o X(a) =Y (a)o f(ta) for all @ € Q1.

By o(X) we denote the number of pairwise non-isomorphic indecomposable direct
summands occurring in a decomposition of X into indecomposables. According
to the theorem of Krull-Schmidt, o(X) is well-defined. The dimension vector of a
representation X of @ is the vector

dim X = (dim X (1),...,dim X (n)) € N%°,

We denote the category of representations of @ by rep(Q), and for any vector
d=(dy,...,d,) € N9

rep(Q7 d) = H Mat(dhoc X dtou k)
acQy
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is the vector space of representations X of @ with X (i) = k%, i € Qo. The group
Gl(d) = [ Gl(ds, k)
i=1

acts on rep(Q, d) by

(91, - > gn) * X)(@) = gna - X(@) - g5

Note that the Gl(d)-orbit of X consists of the representations Y in rep(Q, d) which
are isomorphic to X.

We call d a prehomogeneous dimension vector if GI(d) * 1" is an open orbit for
some T in rep(Q, d). Such a representation 7" is characterized by Exté(T, T)=0
[9]. If @ admits only finitely many indecomposable representations, or equivalently
if the underlying graph of @ is a disjoint union of Dynkin diagrams of type A, D
or E [6], every vector d is prehomogeneous. Indeed, any representation is a direct
sum of indecomposables and therefore rep(Q, d) contains finitely many orbits, one
of which must be open.

Let d be prehomogeneous, and let f1,..., fs € k[rep(Q, d)] be the irreducible
monic polynomials whose zeros Z(f1),...,Z(fs) are the irreducible components
of codimension 1 of rep(@, d) \ GI(d) x T, where Gl(d) x T" is the open orbit. It is

easy to see that
g-fi=xi9) fi

for g € Gl(d), where x; : Gl(d) — k* is a character. A regular function with
this property is called a semi-invariant. By [11], any semi-invariant is a scalar
multiple of a monomial in fy,..., fs, and fq,..., fs are algebraically independent.
We denote by

ZQ,d - {X € rep(Q,d)7 fz(X) = 07 1= 17"'78}

the closed subscheme of rep(Q,d) of common zeros of all non-constant semi-
invariants. Obviously we have codim Z5 4 < s, and equality means that Zg g
is a complete intersection.

Let Ty, ..., T, be pairwise non-isomorphic indecomposable representations of
@ such that Exté?(T@7 T;) = 0 for any 4,7 < r. In [8] we showed that there is a
positive integer N such that Zg g is a complete intersection and irreducible for
any dimension vector d = Y7, A\, dimT; with A\; > N, i = 1,2,...,r. Now our
goal is to prove that N is quite small in case () is tame; i.e., every connected
component A of @ is either a Dynkin quiver or an extended Dynkin quiver. Our
methods are completely different.

Assume that @ is tame, and set

N(Q) = max N(A),
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where A ranges over the connected components of @@ and where
1 if |A] = Ay, or Ay,
N(A) =2 if |A| =D, Es E; or Eg,
3 if |A| :]]N)m7IE6,E7 or Eg,

and |A| denotes the underlying non-oriented graph of the quiver A. Note that
N(K) < N(Q) for any subquiver K of Q.

Theorem 1.1. Suppose Q is tame. Let Th,..., T, be pairwise non-isomorphic
indecomposable representations of Q) such that Exté(Ti,Tj) =0 for any i,j5 < r.
Choose positive integers Xy, ..., A, and set X\ =min\;, d =" | X\, dimT;. Then
ZQ,d %8

(i) a complete intersection provided A > N(Q),

(ii) érreducible provided A > N(Q)+ 1.

Note that the case of a Dynkin quiver of type A,, has been treated by Chang
and Weyman in [5].

In case k is the field C of complex numbers, the fact that Zg g is a complete
intersection implies that rep(Q, d) is cofree as a representation of the subgroup
Si(d) = [I;_,Sl(d;) of GI(d); i.e., Clrep(Q,d)] is a free module over the ring
(C[rep(Q7d)]Sll(d> of SI(d)-invariant polynomials [13, §17], [8].

Example. Let us consider the quiver

1 2 3 4
6.5 a3
o N M
5
11 11
3
There is an indecomposable representation T} in rep(Q, e), whose orbit is open.

The complement of the open orbit of T' = T in rep(Q,d) has 4 components of
codimension 1, defined by

det (X(al) ;X ferg) ~X(a4)) —0,

with the dimension vector d = A-e, A € N and e = as an example.

Jj = 1,2,3,4, where the hat means “omit X(«;)”. Using the results developed
later, we know that X belongs to Zg 4 if and only if X either contains the simple
projective Ps or else the direct sum @?:1 P; of the two-dimensional projectives
associated to the vertices 1,...,4 as a direct summand. It is easy to check that

® Zg.e is irreducible of codimension 2,
Z3q 2¢ has two irreducible components of codimension 3 and 4, respectively,
Z0.3e has two irreducible components of codimension 4,
Zn.a-e Is irreducible of codimension 4 for A > 4.
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2. Notations and preliminaries

The varieties considered in this paper are locally closed subsets of a k-vector space.
If A C B are two such varieties and B is irreducible, we denote by codimg A the
codimension of A in B. In case B = rep(Q, d), we omit the subscript B.

We will assume throughout that the representation 7' = @2:1 T@/\ is sincere,
i.e,, T(l) # 0 for any [ € Qp. As the full subquiver K of ¢ which supports T is
still tame with N(K) < N(Q), this is no restriction. The assumption excludes
oriented cycles as subquivers of ). Indeed, a sincere representation of an oriented
cycle cannot have an open orbit.

The Euler form of Q is the Z-bilinear form on Z%° defined by

<d7 e> = Z diei - Z dtozehoz-
1EQo aEQr
For X erep(Q,d), Y € rep(Q, e) it can be computed as
<d7e> - [X7 Y] - 1[X7Y]7
where
[X,Y] = dim; Homg(X,Y) and X, Y] = dimy, Extég()ﬂ Y).
The quadratic form
q(d) = (d, d)

associated with the Euler form is the Tits form of Q. It is positive semi-definite as
Q) is tame and positive definite if ) does not contain extended Dynkin diagrams.

We follow Schofield [12] in order to describe the semi-invariants of rep(Q, d):
For a representation U of Q, the right perpendicular category U~ is the full sub-
category of rep(Q)) whose objects are

{Y; [U,Y]="[U,Y]=0}.
Dually, LU has as objects
(2; 2,01 ="[2,U] = 0}.

Note that U+ = +(7U), where 7 is the Auslander-Reiten translation for all non-
projective indecomposable direct summands of U and 7(F;) = I}, where P, and [,
are the projective and injective indecomposable representations associated to the
vertex | € Qo, respectively. If 1[U,U] = 0, the category U~ is equivalent to the
category of representations of a quiver with n — o(U) vertices.

Thus T contains n — r simple objects if 7' = D, Tf‘i is a representation of
Q@ as in the statement of the theorem. If S is one of them, the set

{X e rep(Q, d); [X, 5] # 0}
is a component of codimension 1 of the complement

rep(Q,d) \ Gl(d) T
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Non-isomorphic simple objects lead to distinct components, and all components
of codimension 1 are obtained in this way. Thus Zg q is the zero set of n —r (alge-
braically independent) polynomials. From now on, we will denote the underlying
reduced variety of Zg g by the same symbol. This will cause no confusion since
we are only interested in the irreducibility and the dimension of Zg 4. We have
the following descriptions:
Zoa =1{X erep(Q,d); [X, 5] # 0 for all simple objects S e T}
= {X erep(Q,d); [S/,X] +# 0 for all simple objects S’ € *T7}.

The material presented here can be found in [12]; compare also [8]. In order to
obtain part (i) of our theorem it suffices to prove codim Zg 4 > n —r.

Fix a sink z € Qq; i.e., a vertex z which is the head of some arrows «; : y; — 2,
J=1,...,s, but the tail of none. The vertices yi, ..., ys need not be distinct. Let

E be the simple projective supported at z. By @ we denote the full subquiver of
Q with @y = Qo \ {#} and by d the restriction of d to Q,. Note that the orbit

= i = . = = . .
of the restriction T = @;_, T;" to Q is open in rep(Q,d). As E is the simple
projective supported at z, we have

E* = {X erep(Q); X(2) =0},

which we identify with rep(Q). There is a short exact sequence
05 E* ST >T—0.

Considering the long exact sequence of Hom’s and Ext'’s from it, we find that
ELNTL=FinT =T7
We decompose Zg g as a disjoint union
29a=25aY 254,
where
Zéad = {X < Zde; [X7 E] = 0} and Zéé,d = {X € ZQ,d; [X, E] 7é O}

We will estimate the codimensions of Z/Q,d and Z&d in rep(Q, d) separately.

Throughout the article, T' = &;_, Tf will denote a sincere representation of
a tame quiver @, and we set A=min A; > 1 and dim7T = d.

3. The variety Z) 4

Proposition 3.1. A representation X in Zg q belongs to Zé a o and only if
(i) the restriction X to Q lies in Z54
and

(ii) rank(X (1) - X(as)) < d..
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In particular,
8
codim Z¢) 4 = codim, ., 3) Z5 g + max (07 (Z dyj> —d, + 1) .
j=1

Proof. The second condition just says that F is a direct summand of X, or equi-
valently that [X, F] # 0. A representation X = X’ @ E belongs to Zg g4 if and
only if

[X,S] = |X',S]+[E, S| >0

for any simple object S € T"-. Equivalently,
(X', 5] >0

holds for any simple representation S € T+ with [F,S] = dim S(z) = 0. These
: : ; il
are precisely the simple objects of T" 2, and moreover we have

(X', 8] = [X7, 5] = [X, 5] >0

since S(z) = 0.
As for the statement about codim Zég a» observe that, in case d, > 25‘:1 dy,,
any d, X 22:1 dy,-matrix has rank less than d., whereas for d, < Z;Zl dy,, the

subvariety
Ng = {A € Mat (dz X Zd?!j); rank A < dz}
j=1
is of codimension <Z;:1 dyj) —d, +1. O

Corollary 3.2. Suppose that A > N(Q) and that F is not a direct summand of T'.
(i) We have

codim 2 4 —n +o(T) > codim Z5 g — (n = 1) + o(T).
(ii) If moreover d, < 2;:1 dy,, we have
codim 27 g —n +o(T) > codim Z5 5 — (n — 1) + a(T)+ X — N(Q).

In order to prove this result, we need some information about the number o (7T)
of pairwise non-isomorphic indecomposables occurring as direct summands of 7.

We start by estimating o(U) for an indecomposable representation U:

Lemma 3.3. For an indecomposable representation U £ E of Q), we have

o(U) <1+ N(Q)- <<ZS;dimU(yj)> —dimU(z)>.
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Proof. As U is indecomposable, we may assume @ to be connected. We use the
following abbreviations:

dimU(z) =w, dimU(y;)=uj,j=1,...,s, o = (Z“J> - u.
j=1

Note that «' > 0 since U is indecomposable and U # E. If u = 0, U = U is

indecomposable and o(U) = 1. In case v/ = 0, the map
[U(en), -, Ulas)] : DU (y5) = U()
j=1

is an isomorphism, and again U is indecomposable. Thus we may suppose u > 0
and v > 0.

Recall that the value of the Tits form ¢(dim U) equals 0 or 1, as @ is tame.
We compute:
g(dimU — dim F) = ¢(dimU) + ¢(dim ) — (dim U, dim F) — (dim F/, dim U)

=q(dimU) + ¢(dimFE) + v —u <2+ v —w.

As g is positive definite or positive semi-definite in case @ is a Dynkin quiver or
an extended Dynkin quiver, respectively, we obtain:

" w +2 <2+ 1 if Qis an extended Dynkin quiver,
u
Tl +1 if @ is a Dynkin quiver.

Now clearly U has at most Z;:l u; indecomposable direct summands, and thus

o(T) < zsjuj R 1+ Su: %f Q ?s an extgnded .Dynkin quiver,
= 1424 if @ is a Dynkin quiver,

which proves the lemma except in case |Q| = A, or |Q| = An_1.

If |Q| = Ay, we have u < 1 and hence o(U) < 1+ /. In case |Q| = A,_1,
the number of indecomposable (possible isomorphic) direct summands in a de-
composition of U is at most 1 + «’. This can be seen by inspecting the list of
indecomposable representations of ¢). Such representations are string or band
representations, and they are described by words (non-oriented paths) in @ (see

[4] for details). O
Proof of Corollary 3.2. We set
th = <Zdimn(yj)> —dimTy(z), i=1,...,r
j=1

and

t = it;.
=1
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Note that, by definition,

5

Zdyj> — .

Jj=1

zr:Ait; = (
i=1

Our lemma implies:

oT) < o) <r+N(@Q) -t <r+ (Z&té) —(A=N@Q)) ¢
i=1 i=1

o)+ (L) ~de - (A= NQ)-1.
j=1
Combining this with Proposition 3.1 we find that

codimZ5 4 —n+o(T) = codim, ., ~3) Z53 + (Z dyj> —d;+1—-n+o(T)
j=1
> codim, 54y Zga— (n—1) +o(T) + (A - N(Q)) -t
As ¢} > 0 for all 4, this yields part (i) of Corollary 3.2. Part (ii) follows from the
fact that Y., | A\it, = (Z;zl dyj) —d, > 0 implies ¢, > 0 for some i and hence
t' > 0. O

4. Reflection functors

We define two new quivers @ and Q’: @ is obtained from @ by adding a vertex
z' and arrows f3; : 2’ — y;, j =1,...,s. Deleting z and o, ..., a, in Q yields Q.
Note that Q' is tame as well. We denote by £’ the simple injective representation
of )’ supported at 2’.

We consider the reflection functor

F :1ep(Q) — rep(Q’)
associated with z. Recall that
X(7) i 2

FX)(i) = X(ay),.-., X(ag
(FX)(4) ker<®X(yj)[<> (a0)]

and that
(FX)(B) : (FX)(Z) = (FX) () = X(w)

is the inclusion of (FX)(2’) into @;:1 X(y;) followed by the projection to X (y;)
(see [1], [6]). The functor F restricts to an equivalence

F - (rep(Q))' — (rep(Q"))’
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from the full subcategory (rep(Q))’ of rep(Q) whose objects do not contain E as
a direct summand, or equivalently have no non-trivial morphisms to F, to the
full subcategory (rep(Q’))" of rep(Q’) whose objects do not contain E’ as a direct
summand.

Suppose that F is neither a direct summand of 7' nor an element of 7. This
implies that [T, E] = 0 and ![T, F] > 0 and thus the vector d’ € Z?, where Q)
denotes the set of vertices of Q’, defined by

d;m x 7é Z/
d =
“ (Z;_l dyj> —d,, z=2

has positive entries. Indeed, we have
= (Zdyj> = —(d,dimE) = —[T,E] + '[T,E] >0.  (4.1)

Note that in fact we have d., > X as ![T}, E] > 0 for some i implies [T, E] > \; >
A. We let d be the dimension vector for C~2 which coincides with d on Qg and with
d’ on Q.

As F is not a direct summand of T, the latter belongs to (rep@)’. Therefore
FT lies in (repQ’)’, and we have dim FT = d’, '[FT, FT| = 'Y[T,T] = 0, and
thus d’ is prehomogeneous. Choose 7" in the open orbit of rep(Q’,d’). As 1" is
isomorphic to FT', we have T" = @;_, (1})* with T} indecomposable, pairwise
non-isomorphic and (77, T7] = 0 for all ¢,j. Moreover, we know T C (repQ),
as I does not belong to T+, and (T")* C (repQ’)’, as d., = [T", E'] > 0. We
conclude that (77)" is equivalent to F(T), the category of representations of a
quiver with n — r vertices. Hence Zg/ g/ is given by n — r equations as well. We
decompose Z¢ a- as a disjoint union Z¢ ar = Wy 9o U W[y 4, where

Wég/’d/ = {.X/ [= ZQ/7d'; [E/,X/] - 0}

and
Wé/,d/ = {X/ € ZQ/,d/§ [E/7X/] o= O}

Proposition 4.1. Suppose F is neither a direct summand of T' nor an element of
TL. Then we have

(i) codim 24, 4 = codimepqr.any Wey ar
and
(ii) Zg q is irreducible if W, g, has this property.

Proof. By construction, X belongs to Z’ q ifand only if X is isomorphic to some
X' € WQ, as» but unfortunately the functor F cannot be made into a regular map
from

rep(Q,d)’ = {X €rep(Q,d); [X, E] =0}



Vol. 79 (2004) On the zero set of semi-invariants for tame quivers 359

to
rep(Q',d')’ = {X" e rep(Q’,d"); [E', X'] = 0}.

We use the following détour (compare [7] and Section 4.2 in [3]): The set

’

{X € rep(Q,d); 3 X(a))X(B;) = 0, [X(B1), ..., X(5.)]" injective,
j=1

[X(c1),..., X(as)] surjective}

/

is a principal Gl(d/,)-bundle over rep(@,d)’ and a principal Gl(d,)-bundle over
rep(@’,d’)’ via the projections 7 and 7’ deleting 2’ and z, respectively. Hence the
claim follows from 7—(2}, 4) = (7') "'V /) O

5. Proof of Theorem 1.1

We proceed by induction on the number n of vertices of ). We may assume the
theorem to be true for Z@H' First we treat the cases that

(i) E is a direct summand of T
and

(i) E belongs to T.
In both cases, we have that I is a direct summand of X for all X € Zg4; i.e,
25 4= Zq,a- Indeed, in case (i) this follows from the fact that Homg (£, T) # 0,
which is a closed condition. In case (ii), F is a simple object in 7.

As any direct summand 7; # F of T belongs to -E, we have

dimTy(z) = > dimTy(y;) = (dim T}, dim E) = [T;, E] — [T}, E] = 0.
j=1

By Lemma 3.3, T; is indecomposable, and therefore

o(T) = {r —1 in case (i),

T in case (ii).

The induction hypothesis together with Corollary 3.2 implies the first part of our
theorem. We conclude from Proposition 3.1 that Zg g ~ Z@E x Mg, where

8
Ng = {A € Mat (dz X Zd%); rank A < d,}.
j=1

The second part follows from the fact that the set Mg is irreducible in case d, >
Z;:l dy, -

(iii) Finally, suppose that E is neither a direct summand of T' nor does it
belong to T, or equivalently that d, < 25:1 dy,. Using Corollary 3.2 and its
dual, Proposition 4.1 and remembering that the codimension of any irreducible
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component of Zg q is at most n — r, we see that the theorem is true for Zg g if
and only if it holds for Zg 4.

In case either T contains a preprojective direct summand or T a preprojective
representation, we may apply a series of reflection functors until we reach the
situation that a simple projective either is a direct summand of T" or else belongs
to T, and we can reduce by (i) or (ii). This finishes the proof in case @ is of
finite representation type as any indecomposable representation is preprojective.

If @ is not representation finite, we are left with the situation that no prepro-
jective representation is a direct summand of T nor an element of 1. Dually,
we may assume T does not contain a preinjective direct summand either. Indeed,
suppose a simple injective representation I’ is a direct summand of T" or belongs
to LT, a situation we will reach after a series of (inverse) reflection functors. Then
apply the dual of the first or the second reduction step above; recall that Z 4 has
a dual description as

Zg.a={X €rep(Q,d); [9', X] # 0 for all simple objects S” € L1y,

The following lemma finishes the proof of Theorem 1.1.

Lemma 5.1. Let Q be an extended Dynkin quiver. Suppose T is a reqular repre-
sentation with an open orbit. Then T+ contains a non-zero preprojective repre-
sentation.

Proof. Consider a Bongartz completion T for T [2]; i.e., an exact sequence

0—kQ—T—PT1 -0
i=1
for which the induced map

Homg (Tl @Ti"i) — Exth (T}, kQ)
i=1

is surjective for [ = 1,...,7. There is a Z-linear map 8 : Z?° — Z, called defect,
such that any indecomposable representation Y of @) is preprojective, regular and
preinjective if and only if d(dim Y') is negative, zero and positive, respectively (see
for instance [10]). As T is regular, 8T = 9kQ < 0 and therefore T contains an
indecomposable preprojective direct summand Y, and Y € T, Indeed, we have
1T, Y] = 0 for all direct summands of 7' and [T, Y] = 0 since Y is preprojective
and 7' is regular [10, Theorem 3.6.5]. O

Example. Working out the following example, one can see that if @) is not tame,
it may happen that both T and T belong to the set of regular representations:

0- \\\L/'/° d:1 6 166 6 6.
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As g(d) = 1, there exists an irreducible T' € rep(Q, d) having an open orbit. The
simple objects in T have dimension vectors

31111 01110 01101 01011 00111
, , , and .

3 2 2 2 2

It is easy to check that these simple objects are regular representations of Q.
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