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Abstract. We show that every connected real Lie group can be realized as the full automorphism
group of a Stein hyperbolic complex manifold.
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1. Introduction

Saerens and Zame, and independently Bedford and Dadok proved that, given a
compact real Lie group K there always exists a strictly pseudoconvex bounded
domain D C C" such that Aut(D) ~ K. By the theorem of Wong-Rosay (which
states that every strictly pseudoconvex bounded domain with non-compact auto-
morphism group is isomorphic to the ball) it is clear that an arbitrary non-compact
real Lie group can not be realized as the automorphism of a strictly pseudoconvex
bounded domain in C™. However, as we proved in an earlier paper [16], for any
connected real Lie group G there does exist a complex manifold X on which G
acts effectively. Moreover, X can be chosen in such a way that it enjoys several of
the key properties of strictly pseudoconvex bounded domains. Namely, X can be
chosen such that it is both Stein and hyperbolic in the sense of Kobayashi.

The purpose of the present note is to prove that it is possible to rule out
additional automorphisms, i.e. it is possible to achieve Aut(X) ~ G.

Theorem 1. Let G be a connected real Lie group. Then there exists a Stein, com-
plete hyperbolic compler manifold X on which G acts effectively, freely, properly
and with totally real orbits such that Aut(X) ~ G.

The idea is to follow the strategy of Saerens and Zame: Construct the desired
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manifold as an open subset of a larger Stein manifold in such a way that the given
group acts on this open subset. Ensure that every automorphism of this open
subset can be extended to the boundary, then modify the boundary in such a way
that this C'R-hypersurface simply has no automorphisms other than those from
the given group. The latter can be done using the fact that a C'R-hypersurface
(unlike a complex manifold) does have local invariants. A principal difficulty in
this approach is to obtain an extension of automorphisms of the open subset to the
boundary. If one is concerned only with compact Lie groups, then one can work
with a strictly pseudoconvex bounded domain D. For such a domain it is evident
that for every automorphism ¢ of D there exists a sequence x,, € D such that both
zn, and ¢(zy,) converge to a strictly pseudoconvex point in the boundary. This is
the starting point for the extension of the automorphism ¢ to the boundary dD.

Now, our goal is to obtain a result for arbitrary connected Lie groups, which
are not necessarily compact.

This lack of compactness assumption creates some difficulties.

There are two main problems: First, an arbitrary non-compact Lie group is
not necessarily linear. For instance, the universal cover of SLo(R) cannot be
embedded into a linear group. Second, as already mentioned, the theorem of
Wong—Rosay implies that in general a non-compact Lie group can not be realized
as the full automorphism group of a strictly pseudoconvex bounded domain with
smooth boundary. Thus we have to work with domains which are not bounded or
where the boundary is not everywhere smooth. The trouble is that it is therefore
no longer clear that for every automorphism ¢ there exists a sequence x,, in the
domain such that both z,, and ¢(z,,) converge to a nice point in the boundary.

In [15] a result similar to ours is claimed for certain Lie groups with a rather
sketchy outline of a possible proof.

The first of the aforementioned two problems is dealt with by assuming the
group G to be linear while the second problem is simply ignored. Since the second
problem is in fact a serious obstacle, the proof sketched in [15] can not be regarded
as complete.

We proceed in the following way: To deal with the first problem, we note that
every Lie algebra is linear by the theorem of Ado. Therefore, in a certain sense,
every Lie group is linear up to coverings and the first problem can be attacked by
working carefully with coverings.

For the second problem, we use bounded domains whose boundaries are smooth
outside an exceptional set E which is small in a certain sense. Exploiting this
smallness we prove that for every automorphism ¢ there must exist a sequence
zy, such that both z,, and ¢(z,) converge to a boundary point outside the “bad
set” E.

Once this has been verified, we can prove (using arguments similar to those used
in[13], [2]) that ¢ extends as holomorphic map near lim(z,,), and use the theory of
Chern—Moser-invariants to deduce that ¢ was in fact given by left multiplication
with an element of G.
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1.1. Disconnected Lie groups

The result of Bedford and Dadok resp. Saerens and Zame is valid for all compact
groups, not only connected ones. However, compactness implies that in this case
there are no more than finitely many connected components.
We conjecture that our main theorem is valid for arbitrary real Lie groups,
including those with finitely or countably infinitely many connected components.
As a first step regarding disconnected Lie groups, we proved in [17] that the
statement of our main theorem does hold for countable discrete groups.

2. Linearization

Given a real Lie group G, we look for a bounded domain on which this group acts.
For this purpose we use the theory of hermitian symmetric spaces.
We will need the following:

Proposition 1. Let G be a simply-connected real Lie group.

Then there exists a natural number n and a Lie group homomorphism & : G —
Sp(2n,R) such that the following conditions are fulfilled:

(1) € has discrete fibers.

(2) The image £(G) is closed in Sp(2n,R).
Proof. By Ado’s theorem there is an injective Lie algebra homomorphism Lie(é) —
Lie GL(m,R) for some m € N. Since G is simply-connected, this induces a Lie
group homomorphism &y : G — GL(m,R) with discrete fibers. Let V = R™ and
W =V @ V* where V* is the vector space dual of V. Then W carries a natural
symplectic structure given by

(1}7 )‘) : (7)/7 >‘/) - )\(1}/) - )‘/(7})

which is evidently preserved by the natural diagonal action of GL(V) on W. Hence
there is an embedding 7 : GL(m,R) — Sp(2m,R).

Let {4 =io0& : G — Sp(2m,R), H = £(G) and H' its commutator group.
Then H' is already closed in Sp(2m,R). The quotient group H/H' is a connected
commutative real Lie group, hence H/H' ~ (S1)* x (R) for some k,l € NU {0}.
It is easy to see that there is a closed embedding 57 : H/H' — Sp(2m/,R) for
some m’ € N . Furthermore there is an embedding ¢ : Sp(2m,R) x Sp(2m/,R) —
Sp(2n,R) with n = m+m’. Now let 7 : H — H/H’ denote the natural projection
and define ¢ : G — Sp(2n,R) by

§(g9) = C(&1(9), 5(T(&1(9))))- [
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3. Hermitian symmetric domains

For basic facts on symmetric spaces, see e.g. [9].

Let S = Sp(2n,R) and let K denote a maximal compact subgroup. Then
the quotient manifold Dy = S/K can be endowed with the structure of a her-
mitian symmetric domain. Furthermore there exist open embeddings (“Cayley
transform”)

Dy —>CYN > Q

such that
(1) Dy is relatively compact in CV,
(2) Q is a projective manifold (the “compact dual of D”) and
(3) the Sp(2n, R)-action on Dy extends to an Sp(2n,C)-action on Q.

Lemma 1. Let Q) be a complex manifold on which a compler Lie group Sc acts
holomorphically and Dy C @ a non-empty open subset.

Then there exists a natural number m € N and points p1,...,pm € Do such
that

Miz1{g € Sc : g(pi) = pi} = {e}.

Proof. We choose a sequence of points p; € Dg recursively. First p; is chosen
arbitrarily. When py, ..., py are already chosen, we define I, = {g € S¢ : g(p;) =
pi, 1 <4 < k}. Then we proceed as follows: If dim(/;) > 0, we choose pj 4
such that there is an element ap4; in the connected component I,g such that
ak+1(Prt1) # pr+1. This ensures dim Iy < dim ;. If dim I = 0, then [ is
countable. Thus
A=Uger\ig{z e Q:g(x) ==}

is a countable union of nowhere dense analytic subsets of Q. It follows that A
is a set of measure zero for any Lebesgue class measure on (. In particular
AN Dy # Dy and we can choose pr+1 € Do\ A. By the definition of A this choice
enforces I y1 = {e}. O

Proposition 2. Let G be a simply-connected real Lie group. Then there exists a
discrete central subgroup I' such that for G = é/F the following properties hold:

There exists a natural number N, a bounded domain D C CV, complex analytic
subsets E C CN, Z C D and a G-action on Z such that

(1) There is a G-invariant non-empty open subset Q of Z such that G acts

freely, properly, and with totally real orbits on €.

(2) The topological closure 0 of Q in CN is contained inside 7 U E.

(3) QnkE={}.

(4) dimc(Q) > 3.

Proof. By prop. 1, there is a discrete central subgroup I' of G such that G =
G/T" can be embedded into some Sp(2n,R) as closed Lie subgroup. Let Dy =
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Sp(2n,R)/K be the associated hermitian symmetric space and Q and S¢ =
Sp(2n,C) as described in the beginning of this section.

By lemma 1 there is a natural number m and a point p € D = Df* such that the
diagonal Sc-orbit in Q™ through p is free. Now let £/ = {z € Q™ : dim Sc(z) <
dimSc}, Z' = Sc(p) and Z = Z' N D. Because the Sc-action on Q™ is algebraic,
the Sg-action on Q™ is algebraic as well. In particular every Sc-orbit in Q™ is
Zariski open in its closure. This implies in particular that Z/ ¢ Z' U E.

Now G is closed in Sp(2n,R) and Sp(2n,R) is closed in Sp(2n,C) = S¢. We
obtain a fiber bundle 7 : S¢ — G\S¢, where G\ St denotes the quotient of S¢
by the left action of G. Let U C G\S¢ be a relatively compact open contractible
subset and Q = {g-p:g € 7 (U)}.

Then Q has the desired properties. (Concerning property (4), observe that
dim¢(€Q) = dime(Se) > 3 by our construction.) O

4. Chern—Moser-invariants
4.1. Chern—Moser-invariants

For every real-analytic strictly pseudoconvex CR-hypersurface M in a complex
manifold X and every point p € M there is a system of local coordinates

(w;2) = (w215 <+ <y 2n)

(w,z; € C, n+ 1 =dimg(X)) such that M can be written as M = {p < 0} where
p is a real-analytic function whose power series development is given as

p(w;2) = S(w) + 121> + D Fepr(R(w), 2, )
k,1>2

where I, ;, is a polynomial of bidegree (k,!) in z and z and degree r in R(w).

A point p € M is called umbilical if F»29 = 0. For non-umbilical points we
define scalar invariants Ky, (for k,1 > 2,7 € N) given by Ky ; , = ||Fk,l7r||2 where
|| || denotes the euclidean norm, i.e., the norm induced by the scalar product for
which the monomials in the coordinates R(w), z;, z; constitute an orthonormal
basis.

If z,y are non-umbilical points on M such that the C R-hypersurface germs
(M, z) and (M, y) are isomorphic, then all these invariant Ky ;, must assume the
same values at x and y.

For convenient application later on, we define K; = ZkH:d Kj 0 for d > 4.

4.2. Jet bundles

We recall the notion of jets (see [8]): For manifolds X and Y and points z € X,
y €Y, the set of k-jets J¥(X, Y.,y is the set of equivalence classes of map germs
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where two real-analytic map germs are equivalent iff their respective Taylor series
developments agrees up to order k. J*(X,Y) is the disjoint union of all J*(X,Y),,,
(with # € X and y € Y). There is a natural manifold structure on J*(X,Y) for
which we obtain a fiber bundle ( “source map”) o : J*(X,Y) — X.

4.3. Transversality

We will need the multijet transversality theorem ([8], thm. 4.13). Let X () denote
the space of those s-tuples (z1,...,25) € X* where the z; are all distinct elements
in X. Let

JMX)Y) = {(fi,.. . f) € (JMX, V) : a(f),...,a(fs) € XN

Then each f € C*(X,Y) induces a map j%(f) : X — J¥(X,Y) in a natural
way.

Let W be a submanifold of codimension ¢ in J5(X,Y).

Then the multijet transversality theorem implies that the function space
C>(X,Y) contains a residual subset A such that (jf(f))f1 (W) is of codimension
at least ¢ in X(*).

Remark. (1) In the statement on the codimension, the codimension of the empty
set is to be understood as +oo0.

(2) A subset of a topological space V is called residual if it is the intersection
of countably many open dense subsets. If V has the Baire property, then every
residual subset of V' is dense. The function spaces C*°(X,Y) and C*(X,Y) have
the Baire property (for any pair of manifolds (X, Y)).

(3) Similar results hold for the function spaces of type C¥, i.e. real-analytic
mappings, which in fact can be deduced from the transversality results for C°°-
maps, using the fact that C“-maps are dense in C*°.

(4) In the real-analytic category, W does not need to be smooth, it suffices
if W is a (possibly singular) real-analytic subset. As explained in [13], this can
be verified using the fact that a real analytic subset W admits a stratification
W =Wy D Wy D Wy ... such that each Wy, \ Wy, is smooth.

4.4. A proposition

Let us now assume that there is a real Lie group G acting holomorphically on X
with totally real orbits. Let us furthermore assume that the action in proper. Then
orbits can be separated by invariant functions. Around any given point p € X, we
may choose local holomorphic coordinates z; in such a way that z;(p) = 0 Vi and

T, (G p) C T, ({z : R(z;) =0 Vi}).
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It follows that for a every real homogeneous polynomial P of degree k there is a
G-invariant real-analytic function f defined on some open neighbourhood of p in
X such that P(zq,...,z,) = f(z) + O(||z||*F'). As a consequence, we obtain the
statement below:

Lemma 2. Let G be a real Lie group acting holomorphically and properly on a
complex manifold X with totally real orbits. Assume dime(X) > 2.

Forze X, teR let Jf_(X, R)gt denote the set of all k-jets induced by germs
of G-invariant functions f for which the C R-hypersurface germ defined by f =t
is strictly pseudoconvex around x. Let Jf (X,R)¢ = LJ%E)(’teRin()(7 R)S,r

Then Ky = ... = Kj, = 0 defines a real-analytic subspace of codimension at
least k — 3 in J¥ (X, R)C.

Now we can prove the proposition given below.

Proposition 3. Let G be a real Lie group acting holomorphically and properly on
a complex manifold X with totally real orbits. Assume dime(X) > 2. Let p € X.
Then G - p admits an open G-invariant neighbourhood 0 such that:
(1) The inclusion map G - p — Q is a homotopy equivalence.
(2) The boundary 0L) is everywhere smooth, real-analytic and strictly pseudo-
conver.
(3) There erists a nowhere dense real-analytic subset 3 C 0Q such that for
every x,y € IQ\ Y. the CR-hypersurface germs (08, z), (0Q,y) are 4so-
morphic if and only if x = g -y for some g € G.

Proof. Let r = dimp(X) — dimg(G), B the open unit ball in R" and i : B — X
a real-analytic embedding with 4(0) = p which is everywhere transversal to the
G-orbits. Then W = G -4(B) is an open G-invariant neighbourhood of the G-orbit
G - p. Since the G-action on X is free and proper, we may and do assume that the
map G' x B — W given by (g,z) — g - i(x) is bijective.

We define py € C%(W) via po(g - i(v)) = |[v||? for g € G, v € B.

An easy calculation in local coordinates shows that

We={z e W :py(z) <€}

is strictly pseudoconvex for all sufficiently small ¢ > 0. We fix now a number
1 > § > 0 such that Wj is strictly pseudoconvex.

Then W; is a G-invariant open neighbourhood of G - p fulfilling conditions
(1) and (2) of the proposition. To achieve condition (3), we have to modify the
defining function pg — ¢ of the open domain W; using the theory of Chern—-Moser
invariants.

Every function on B =~ i(B) extends uniquely to a G-invariant function on W
this yields a bijective map

(:C¥(B) — C¥(W)°.
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Now let © be an open neighborhood of (¢~'(po),d) in C¥(B) x R such that
the following properties hold for all (f,t) € ©:

(1) {v € B : f(v) < t} is a contractible relatively compact open subset with
smooth boundary in B;

(2) The domain
{eeW  ((f—1)(z) <0} ={g-i(v): flv) <t,ve B,ge G}

is everywhere strictly pseudoconvex.

Let J¥(B,R) = UyepterJ¥(B,R)y, where J¥(B,R),; denotes the set of
all k-jets induced by germs of functions f : (B,v) — (R,t) for which the CR-
hypersurface germ

{g-i(z):ge G,z eB, flz)=t}

is strictly pseudoconvex around i(v). For k € N, 4 < d < k we define functions Ky
on Jf_(B,R) as follows: If j is the k-jet at v € B for some map germ f : (B,v) —
(R,t), then K4(j) is defined as the scalar invariant Ky for the C R-hypersurface
{y e W (C(N)(y) =t} at i(v).

We define the “umbilical locus”:
Ur={j € JL(B,R) : Ku4(j) = 0}
and the “locus of coinciding scalar invariants”:
Ey = {(j1,52) € J¥(B,R)” : Kq(j1) = Ka(j2) V4 < d < k}.

Since J_f_(B,]R) is an open subset in J¢(B,R), U, and Ej can be regarded as
locally closed real-analytic subset in J¢(B,R) resp. J¢(B,R).

Fix k such that k—3 > 2dimp(B). Then lemma 2 implies that the codimension
of E}, exceeds the dimension of B x B.

The multijet transversality theorem implies that there is a residual set A C
C“(B,R) such that every f € A is transversal to both Uy and Fj.

Since A is residual, it is dense in C* (B, R). Therefore A x R intersects the open
set ©. Let (p1,t0) € (AxR)NO. Let ¥y C W be the set of all points z € W such
that the C R-hypersurface {y € W : ((p1)(y) = ((p1)(z)} is umbilical at . Then
transversality of p; with respect to Uy implies that >y is a nowhere dense, locally
closed real-analytic subset of W. As a consequence, we can find a real number ¢
close to tg such that (pq,¢) € © and such that @ = {y € W : {(p1)(y) < ¢} has the
following property:

“30 N is nowhere dense in Q.7

Now (p1,t) € © implies that conditions (1) and (2) are fulfilled for our choice
of Q. Furthermore transversality of p; with respect to Fj (in combination with
codimg (Ey) > dimg(B)) implies that © fulfills condition (3) of the proposition.
This completes the proof. (Il
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5. Privalov’s theorem

We are now in position to use the classical theorem of Privalov in order to show
that for every automorphism ¢ there is a sequence z,, such that both z,, and ¢(z,,)
converge to a point in the good part of the boundary.

Proposition 4. Let D be a bounded domain in CN, E C CN, Z C D closed
analytic subsets, Q) an open subset of Z, M its boundary in 7. Assume ENQ = {}.
Assume that M is everywhere smooth and that the closure of  in CN is contained
in QUM UE. Let Q) be the closure of Q in Z, i.e., ' =QUM.

Furthermore let Q denote the universal covering of Q and 7 : Q' — Q' and
M — M the corresponding coverings.

Then for every holomorphic automorphism ¢ € Aut(Q) there is a sequence
in Q and points q,q € M such that limz, = q and limé(z,,) = 7.

Proof. Fix ¢ € Aut(f)). Let A be the unit disk in C, A its closure in C and A
its boundary.

We choose a C° map ¢ : A — Q' such that

(1) ¢|a maps A holomorphically into €.

(2) ¢1(M) is a subset of positive Lebesgue measure in dA ~ ST,
Now we consider  : A — CV given by n = w0 ¢ o . Then 5 is a N-tuple of
bounded holomorphic functions. It follows ([10],[12]) that the non-tangential limit
exists almost everywhere on dA. For ¢t € 9A, let lim,,_,7(t) denote this non-
tangential limit. Evidently lim,,_;n(t) € Q' U E wherever defined. We claim that
A={t:lim, ¢n(t) € £} is a set of measure zero. Indeed ¢ € A implies that for
every holomorphic function f on CV which vanishes on E, we obtain

lim(f o n)(t) = 0.

If Ais not a set of measure zero, it would follow from Privalov’s theorem ([10]) that
fon would vanish for every such f. But this would imply n(A) C E, contradicting
n(A) C Q. Thus A must be a set of measure zero. It follows that there exists a
point ¢ € A N ¢~ (M) such that the non-tangential limit for 7 exists at ¢ and is
not in K.

Now fix a triangle T' C A with its three edges on dD one of which is ¢ (T denotes
the triangle with interior, i.e., the convex hull spanned by the three edges). By
the definition of the notion “non-tangential limit” we have a limit

: 1 N
zeflll’r;l_)qn(x) =veQ' CC
and thus a continuous map 77 : T'U {q} — Q' with 77| = 5. Let W be a simply-
connected open neighbourhood of v in €', and V' an open connected neighbourhood
of ¢ in 771(W). Observe that = : €/ — Q' is an unramified covering. Since
W is simply-connected, it follows that 7='(W) is a disjoint union of connected
components each of which is isomorphic to W. Connectedness of V' implies that
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#(¢(V)) is contained in one connected component of 7~ (W). Together with
limger 4z () = v this implies that there is a point ¥ € 7~ *(v) such that
li =0=4q.
peim  $(((2)) =T =g
For any sequence t,, in int(T) converging to ¢ we now obtain a sequence x, =
¢(tn) with convergent limits limz, = ¢ € M, lim¢(z,) = ge Q.
Finally we note that g cannot be in Q2: ¢ is an automorphism of €2 and therefore
limz,, & Q implies that ¢(xz,,) cannot converge inside of Q . Hence g € M. O

6. Extension through the boundary
We need the following well-known extension result.

Proposition 5. Let Q be an open subset in a Stein manifold 7. Assume that
there are points q,q € 0X), an automorphism ¢ € Aut(QY), and a sequence of
points x, € Q with limzx, = ¢ and lim ¢(z,,) = q. Assume in addition that 0 is
real-analytic and strictly pseudoconver near q and q.

Then there exists an open neighbourhood V' of q in Z and a holomorphic map
bV — Z such that Ploryv = dlanv-

Proof. First, [6] implies that ¢ can be extended to a continuous map ¢ on € near q.
Since ¢ is continuous and ¢|q is holomorphic, it is clear that ¢|sq is a continuous
CR-map. (For a not necessarily differentiable function the notion “C'R-map” is
defined via regarding derivatives in the sense of distributions. Then the condition
“C'R” translations into the vanishing of certain integrals involving test functions —
a closed condition; hence holomorphy of ¢|q = ¢ implies that ¢|sq is a C R-map.)

Thus [3] implies that this extension is already C* and finally [1] or [5] yield
that there is a holomorphic extension into some open neighbourhood. (Il

7. Rigidity

Lemma 3. Let Q be a strictly pseudoconver domain in o Stein manifold V. Let
f be a holomorphic function on V' such that f(0Q) C R.
Then f is constant.

Proof. By the assumption of Q being strictly pseudoconvex it follows that for every
point p € Q close enough to the boundary there exists a continuous map ¢ : A — V
such that

(1) ¢ is holomorphic on A,

(2) €(0) =p,

(3) ¢(0A) C 99
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Now the maximum principle applied to the plurisubharmonic function g(z) =
(Sf (x))?‘ implies that &f(p) = 0. Thus the real-analytic function S f vanishes in
some open subset of € and therefore (by identity principle) it vanishes everywhere.
Hence f is both holomorphic and everywhere real-valued and therefore constant.

O

Proposition 6. Let Q) be an open G-invariant subset of a complex manifold Z on
which G acts freely with totally real orbits. Assume that the boundary 0 is a
smooth C R-hypersurface.

Let ¢ be an automorphism of Q, g € IQ and V' an open neighbourhood of q in
Z such that ¢|ynq extends to a holomorphic map ¢ :V — Z.

Assume that for every x € V N 9Q both = and () are contained in the same
G-orbit.

Assume furthermore that 0S) is strictly pseudoconver near q.

Then there erists an element g € G such that g - © = ¢(z) for all z € Q.

Proof. Let go € G be such that ¢(q) = go - ¢. We may now replace ¢ by the
automorphism z — gg L. ¢(z) and thereby assume that ¢(g) = q. Now we have to
show that ¢ = idg.

Let n = dim¢(Q) and d = dimp(G). Leti: B, 4=f{veC" 4 ||| <1} = Z
be an embedding such that 7(0) = ¢ and that i(B,,_4) is everywhere transversal to
the G-orbits. The G-action induces a real-analytic map ¢ : Lie(G) x Z — Z given
by (v, z) = exp(v) - . This extends to a holomorphic map ¢ : U — Z where U
is an open neighbourhood of (0, ¢) in (Lie(G)®C) x Z. By appropriately shrinking
V and U we may assume that I/ = N x V where N is an open neighbourhood
of 0 in Lie(G) ® C. Now we obtain a holomorphic map ¢ : B,_4 x N — Z via
C(w,v) = Pc(v,i(w)). Since B, _4 x N is an open domain in

Ch i x Lie(G)@C~C4xCd "
this map ¢ yields local holomorphic coordinates near ¢g. In these local coordinates
T=(21,...,2)— dlz) —

is a holomorphic map all of whose components are real-valued on V Nd<2. Because
99 is strictly pseudoconvex near g, it follows that this map is constant (lemma 3).
Since ¢(q) = g, constancy means that it is constant zero. Thus ¢ = idy. Finally,
by identity principle it follows that ¢(z) = = for all z € €, as desired. O

8. Reduction to the simply-connected case

Lemma 4. Let G be a connected real Lie group, G its universal covering and
I'=n t({e}) where 7w : G — G is the natural projection map.

Assume that there exists a simply-connected complez manifold X with Aut(X) o
G such that the T-action on X is free and properly discontinuous.
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Let X = X /. Then Aut(X) ~ G,

Proof. Every automorphism of X lifts to an automorphism of X, because X is
a universal covering space for X. Therefore the automorphism group of X is
isomorphic to N/T" where N denotes the group of all elements of Aut(f( ) which
normalize I'. But I is the kernel of a group homomorphism, hence normal. Thus

N = G and consequently Aut(X) ~ N/I' = G/I' ~ G. O

It remains to be shown that X can be constructed in such a way that X = X /T
will be Stein and completely hyperbolic. Complete hyperbolicity is easy, since X
being completely hyperbolic implies that X is completely hyperbolic, too.

The Stein property is more involved, since for an arbitrary unramified covering
X — X, Steinness of X does not imply that X is Stein, too.

Proposition 7. Let G be a real Lie group, © : G — G its universal covering,
I'=n"1(e), and X a complex manifold on which G acts properly and freely with
totally real orbits.

Letp € X.

Then there exists an open G-invariant neighbourhood nyé -pin X such that
for every G-invariant locally Stein open submanifold Q2 C U the compler quotient

manifold Q = Q/T is Stein.

(As usual, Q c U is called locally Stein iff every point = € U admits an open
neighbourhood V in U such that V N Q is Stein.)

Proof. Essentially, we follow the argumentation in [16].

Let Z denote the center of G. Then there exists a discrete cocompact subgroup
A in Z such that T' C A ([16], lemma 1). Let Gy = G/A and X; = X/A.

Let G¢ be the simply-connected complex Lie group corresponding to the com-
plex Lie algebra Lie(G)®C and j : G — Gg the natural Lie group homomorphism
induced by the Lie algebra embedding Lie(G) — Lie(G) ® C.

Let o : Lie(G) x X — X be the map induced by the group action via
o(v,z) = exp(v) - z. Then ¥y extends to a holomorphic map ¢ defined on some
open neighbourhood of Lie G x X in Lie G¢ x X. This open neighbourhood can be
chosen as product N x W where N is an open neighbourhood of Lie G in Lie G¢
and W is an open neighbourhood of p in X.

Let n = dimg(X) and d = dimp(G) = dime(Ge). Let i B, 4= {v e C* ¢
[lv|| < 1} — W be a holomorphic embedding such that i(0) = p and that i(B,,_4)
is everywhere transversal to the G-orbits.

We choose a small open neighbourhood Ny C N of 0 in Lie G¢ such that the
map ¢ : G x Ny x B — X given by ( : (g,n,z) — g-1(n, z) has the property that
C(g,m, 2) = C(g',n', ') only if there is an element v € Lie G such that ¢’ = g-exp(v)
and exp(—v) exp(n) = exp(n’). This is possible, because G acts freely with totally
real orbits.
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For € ¢(G x Ny x B) we define &(z) € Ad(Ge) by Ad(g - exp(n)) if z =
¢(g,mn,z). Then ¢ is a well-defined, holomorphic and é—equivariant map from
an G-invariant open neighbourhood Wy of p to Ad(Gc¢). Moreover ¢ is constant
along the orbits of the center Z of G. Therefore it induces a holomorphic map
&1 1 Wy — Ad(Gc) where Wy is the image of Wy under the projection X - Xy

Observe that Ad(Gc) is a linear complex Lie group. It follows that Ad(Gc¢)
is Stein ([11]) and hence admits a strictly plurisubharmonic exhaustion function
p1 Ad(Ge) — RT.

Next we consider the real quotient map 7 : X — X/é =Y. Let y1,...,y, be
real-analytic local coordinates on Y with y;(7(p)) = 0. Then z — >, yi(7(z))?
defines a G-invariant real-analytic function pg on a neighbourhood of - p, which
is easily verified to be strictly plurisubharmonic near G .

By appropriately shrinking W, and W; we may assume that there is an ¢ > 0
such that Wy = {z : po(z) < €}.

We reparametrize this function via

pblx) = tan (2_po(7(2))) -

Now pj — +oo whenever pg — e. Thus pf is an “exhaustion function modulo
G7, i.e. it is a G-invariant function which induces a proper continuous map from
Wo/G to RT.

Moreover, pf, is strictly plurisubharmonic, because tan is convex and pg is
strictly plurisubharmonic.

Next we recall that by lemma 2 in [16] the natural map Wy — Y; ~ W1 /G x
Ad(Gc) is proper.

Therefore p1 + pf is a continuous exhaustion function on Wy. On the other
hand, this function is also strictly plurisubharmonic. Thus W; is Stein.

Let U = Wy and U = U/F Then U is Stein, because W is Stein and we have
an unramified covering U — W;. ~

Assume that Q is a G-invariant open locally Stein submanifold of UU. Then
Q/T' is a G-invariant open submanifold of U = U /T which is evidently locally
Stein. But locally Stein open submanifolds of Stein manifolds are Stein. Hence €2
is Stein. (Il

9. Proof of the Main theorem
Here we prove our main theorem.

Proof. Let G denote the universal covering of G, m : G — @ the natural projection
and I' = 7~ '{e}. By prop. 2 there is a quotient G of &) by a central discrete
subgroup I'1 and a Gi-action on a complex manifold €, which is free, proper
and with totally real orbits. Moreover, there is a number N, a bounded domain
D c CV and closed complex analytic subsets Z C D, E C CV and an embedding
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of Q4 as open submanifold in Z such that the closure of Q1 in C¥ is contained in
ZUFE and QN E = {}.

Fix p € Q. We may replace 11 by some appropriately choosen invariant open
neighbourhood of G - p. Therefore we may and do from now on assume that
71 (Q1) = m(G1) =~ I't. (And we keep this assumption throughout all further
replacements of €2 by invariant open subsets of itself.) Let Q denote the universal
covering of €.

From prop. 7 we deduce that, after replacing 1 with some G1-invariant open
subset, we may assume that U/T" is Stein for every open G-invariant locally Stein
submanifold U of €.

Next we apply prop. 3, again replacing €1 by an appropriate smaller G1-
invariant open submanifold. Now £; has a smooth, real-analytic and strictly
pseudoconvex boundary B in 7, and there is a nowhere dense real-analytic subset
> C B such that for every z,y € B\ % the CR-hypersurface germs (B, z), (B, y)
are isomorphic if and only if x = g - y for some g € G.

Let ¢ € Aut(fl). Let 7 : Q — Qy be the covering map. We may assume that
there is a Gy-invariant open subset X C Z such that Q; N Z C X. Furthermore
we may assume that the inclusion €y — X induces an isomorphism of the fun-
damental groups. Then 7 : Q — €, extends to a covering 7/ : X — X with
Q — X. Let 3 and B denote the preimages of 3J resp. B under 7. By prop. 4
there is a sequence of points z, € € and points ¢, € B such that limz, = ¢
and lim¢(z,) = g. By prop. 5 it follows that ¢ extends to a holomorphic map ®
in an open neighbourhood U of ¢ in X. Because ¢! extends to a holomorphic
map near ¢ by the same arguments and ¢ o ¢~ 1 — 4d, this extension ® is locally
biholomorphic and (BN U) C B.

Recall that . is nowhere dense in B. Hence there is an element ¢/ € (BNU)\
<E ud—i(n )) Upon replacing ¢ by ¢’ and U by U \ (E Ud— (Z))7 we may from
now on assume that U N Y and ®(U) N Y are both empty.

For every z € BN U the CR hypersurface germs (B,z) and (B, ®(z)) are
isomorphic and consequently there is an element g, € G such that g, - 2 = d(z).

By prop. 6 it follows that there is one element g € G such that #(z) =gz for
all z € Q. _Thus ¢ € G. Since ¢ was an arbitrary automorphism of €, it follows
that Aut(Q) = G. By lemma 4 this implies that Aut(Q) = & where Q = Q/T.

Finally let us discuss the Stein condition and hyperbolicity. Since ) injects
into a bounded domain D ¢ CV, it is hyperbolic. Because @ — € and Q — € are
both unramified coverings, this 1mphes the hyperbolicity of 2. Moreover, by the
same arguments as in [16], we may conclude that € is even complete hyperbolic.

Concerning the Stein property, let us recall application of prop. 7 further above.
Our choice of £ at that time had the property that U/T" was Stein for every locally
Stein open subset U of €. Subsequently we shrank 1, replacing it by some open
subset with strictly pseudoconvex boundary. Clearly an open subset with strictly
pseudoconvex boundary is locally Stein. Therefore Q2 = Q /T is Stein for our final
choice of Q4. O
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