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Une version feuilletée du théorème de translation de Brouwer

Patrice Le Calvez

Abstract. The Brouwer's plane translation theorem asserts that for a fixed point free
orientation preserving homeomorphism / of the plane, every point belongs to a proper topological
imbedding C of R, disjoint from its image and separating f(C) and /—1(C). Such a curve is
called a Brouwer line. We prove that we can construct a foliation of the plane by Brouwer lines.

Mathematics Subject Classification (2000). 37E30, 37E35.

Mots clés. Homéomorphisme du plan, droite de Brouwer, feuilletage.

0. Notations

On munit le plan R2 de son orientation et de sa structure euclidienne usuelle.
On note Rg la rotation d'angle 9. On note u A v le déterminant, dans la base

canonique, de deux vecteurs u et v de R2.

On appelera disque de R2 toute partie homéomorphe à D {z G R2 | \\z\\ < 1}.

On appelera droite de R2 tout plongement topologique propre de R, ou plus
précisément toute classe d'équivalence d'un tel plongement par reparamétrage
strictement croissant. Une droite F est alors déterminée par son image et une
orientation. Grâce au théorème de Schoenflies, on peut construire un homéomorphisme
h de R2 préservant l'orientation tel que hoT(t) (0,t), pour tout t G R. La partie
fermée /i^1([0,+oo[xR) est alors indépendante de h, on dit que c'est la partie à

droite de F et on la note D(T). De même, on note G (F) h~l(] — oo,0] x R) la

partie à gauche de F. Remarquons que D(T) \ F et G(T) \ F sont les composantes
connexes de R\F (on identifiera souvent une droite et son image quand il n'y aura
pas d'ambiguité liée à l'orientation).

On dira que deux droites F et F' n'ont pas d'intersection transverse si F C

-D(F') ou F C G(r'). Il est facile de voir que cette relation est symétrique. Plus
précisément, F et F' n'ont pas d'intersection transverse si et seulement si l'une des

quatre propriétés suivantes est vérifiée :

• D(F) C D(F') (et alors G(F') C G (F)) ;

• D(F') C D(F) (et alors G(F) C G(F')),
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• £>(F) U D(r>) R2 (et alors G(F) n G(F') F n T') ;

• G(r) U G(F') R2 (et alors £>(F) D £>(F') F n F').

1. Introduction

Commençons par rappeler le théorème de translation de Brouwer ([B]) :

Théorème 1.1. Soit f un homéomorphisme de R2 préservant l'orientation et

sans point fixe. Par tout point du plan passe une droiteT telle que /(F) C _D(F)\F
e«r1(r)cG(r)\r.

On appelera homéomorphisme de Brouwer un homéomorphisme / vérifiant
les hypothèses du théorème et droite de Brouwer de / une droite F vérifiant la
conclusion. En dehors de la version originale de Brouwer, il faut noter la preuve
actualisée qu'en donne Guillou [G] (on peut également citer Franks [Fr2] ou Le

Calvez, Sauzet [LS]).

La démonstration du théorème est très simple dans deux cas particuliers.

i) Supposons d'abord que / soit le temps 1 d'un champ de vecteurs £ de classe
G1. Le champ de vecteurs rj Ril o £ est de classe G1 et sans singularité. Le
théorème de Poincaré-Bendinxon nous dit que toute orbite de rj est une droite, on
constate très facilement que c'est une droite de Brouwer. On peut approximer rj
par un champ de vecteurs rj de classe G°° tel que £(z) Arj(z) > 0, pour tout z G R2.
Toute orbite de rj est encore une droite de Brouwer. On obtient un feuilletage de
classe G°° de R2 par des droites de Brouwer de /.

ii) Supposons maintenant que / soit G1-proche de l'identité. Plus précisément
supposons que Df{z) n'ait pas de valeur propre réelle négative, si z G R2. Considérons

alors les champs de vecteurs

f(z)-z Df(z)-\(f(z)-z)£i : z i-> —— et £o : z i ¦

\\Df{z)-\{f{z)-z)W

Puisque £1(2) 7^ &(z), Par hypothèse, et puisque R2 est simplement connexe, on
peut trouver une fonction continue 9 : R2 —>]0, 2tt[ telle que £2(2) Re{z)-^i{z)
puis définir le champ de vecteurs continu £ : 2 1—> Re(*) -$i(z). On a alors £1(2;) A

C(z) C(z) A ^(-z) > 0. On peut ensuite approximer £ par un champ de vecteurs

£ de classe G°°, tel que £i(z) A £(z) > 0 et £(z) A £2(2;) > 0. On laisse au lecteur
le soin de verifier que toute orbite de £ est une droite de Brouwer. Là encore, on
a construit un feuilletage de classe C°° par des droites de Brouwer.
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II existe un autre cas, plus difficile, où l'on sait feuilleter le plan par des droites
de Brouwer, c'est le cas où / est un difféomorphisme qui commute avec les translations

entières (et qui relève donc un difféomorphisme du tore T2 R2/Z2 isotope
à l'identité). On construit alors un feuilletage de classe C1, invariant par les
translations entières, dont les feuilles sont des droites de Brouwer (voir [LeC]). L'idée de

la démonstration provient de la géométrie symplectique. Tout difféomorphisme de
T2 isotope à l'identité peut s'écrire comme la composée de 2n difféomorphismes
proches en topologie C1, alternativement du twist de Dehn F* : (x, y) i—> (x + y, y)
et de son inverse. Ces difféomorphismes vérifient la propriété essentielle suivante :

ils dévient la verticale. Si on fixe un relèvement / de F à R2, on peut définir
naturellement un champ de vecteurs £ sur la variété E T2 x R2n~2, ainsi qu'une
fîbration q : E —> T2 envoyant les singularités du champ sur les point fixes de F
qui se relèvent en des points fixes de /. Dans le cas particulier où F est le temps 1

d'une isotopie hamiltonienne, le champ £ est le champ de gradient d'une fonction
H. Cette fonction est une fonction génératrice de F. Dans le cas général, si on
suppose que / n'a pas de point fixe, on peut montrer que l'ensemble des points
x £ E dont l'orbite par le flot de £ est bornée, est une variété invariante M, de

classe C1, telle que q\M : M —> T2 est un difféomorphisme. Le feuilletage en
droites de Brouwer de /, quand on le projette dans le tore T2, n'est rien d'autre
que l'image par q\M du feuilletage de M en courbes intégrales de £.

La question se pose naturellement de savoir si on peut feuilleter le plan par des

droites de Brouwer, pour un homéomorphisme de Brouwer / quelquonque. Nous

répondrons positivement dans ce travail à cette question.

Théorème 1.2. Si f est un homéomorphisme de Brouwer, il existe un feuilletage
topologique formé de droites de Brouwer de f.

Le théorème de translation de Brouwer est appliqué assez fréquemment dans
l'étude de la dynamique de difféomorphismes ou d'homéomorphismes de surfaces.
L'énoncé précédent dit en particulier que l'on peut choisir continûment une droite
de Brouwer par tout point du plan et on peut espérer des applications futures de
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ce résultat. Remarquons le point suivant qui indique que la dynamique du feuilletage

est en quelque sorte transverse à celle de l'homéomorphisme. Pour tout point
z G R2, on peut trouver un arc jz joignant z à f(z) et transverse au feuilletage. La
concaténation des arcs 7/"(z) définit une droite (elle n'a pas de point d'accumulation)

transverse au feuilletage qui contient l'orbite de z. Il est peu probable qu'on
puisse trouver une preuve du théorème 1.2 par la méthode employée dans [LeC]
expliquée plus haut, même dans le cas des difféomorphismes. En effet, la compacité

du tore T2 est essentielle pour écrire le difféomorphisme comme composée de

difféomorphismes déviant la verticale et donc pour construire le champ de vecteurs
£. La méthode employée ici sera tout à fait différente, n'utilisera pas d'argument
de différentiabilité, et ne sera pas troublée par le manque de compacité du plan.

En liaison avec ce qui a été dit plus haut pour les difféomorphismes du tore,
on peut se poser la question naturelle suivante :

Si f est un homéomorphisme de Brouwer qui commute avec les éléments d'un
groupe discret G d'homéomorphismes de R2 préservant l'orientation, agissant
proprement et librement, peut-on obtenir un feuilletage en droites de Brouwer qui soit
invariant sous l'action de G

On peut poser le problème dans les termes suivants. Soit F\ un homéomorphisme
d'une surface connexe orientable sans bord M, temps 1 d'une isotopie (i?t)te[o,i]

issue de l'identité et (ft)te[o,i] l'isotopie relevée au revêtement universel M qui est
issue de l'identité. Supposons que j\ n'ait pas de point fixe, c'est-à-dire supposons
que toute courbe fermée t i—> Ft(z) soit non contractile. Le revêtement est alors un
plan (du point de vue topologique) et la surface est soit ouverte, soit égale au tore
T2. Peut-on trouver un feuilletage sur M qui se relève sur M en un feuilletage en
droites de Brouwer de f\. Autrement dit, peut on trouver un feuilletage, tel que

pour tout point z G M, il existe un arc transverse au feuilletage qui soit homotope
à extrémités fixées à l'arc t i—> Ft{z)l Un tel résultat permettrait de retrouver
rapidement certains résultats sur les homéomorphismes de surfaces (on peut citer
le résultat de Pranks [Fr3] sur l'existence d'une infinité de points périodiques pour
un homéomorphisme de S*2 préservant l'aire et ayant au moins trois points fixes,

ou celui de Floer [Flo] et Sikorav [Si] sur l'existence d'au moins trois points fixes

pour un difféomorphisme hamiltonien d'une surface de genre g > 1, ou encore la

généralisation de ce résultat aux homéomorphismes, due à Matsumoto [M]). On

peut voir cet article comme un premier pas vers la version équivariante.

L'outil principal de la démonstration du théorème 1.2 est la notion de
décomposition en briques, libre et maximale, du plan. La notion de décomposition libre
a été introduite par Flucher [Flu] pour montrer l'existence d'un deuxième point
fixe dans la version topologique du théorème de Conley-Zehnder en dimension
deux et utilisée ensuite dans [LS] pour obtenir une démonstration du théorème de

translation de Brouwer. La notion de décomposition en briques, libre et maximale a

été développée et utilisée par Sauzet dans sa thèse [Sa] et appliquée très récemment

par Le Roux [LeR] dans l'étude de la dynamique d'un homéomorphisme du plan
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au voisinage d'un point fixe d'indice de Lefschetz ^ 1. C'est la donnée d'un graphe
localement fini du plan tel que tout sommet est extrémité de trois arêtes, tel que
toute cellule fermée délimitée par ce graphe est libre, c'est-à-dire disjointe de son

image, enfin tel que la réunion de deux cellules adjacentes n'est jamais libre.

Au paragraphe 2, nous rappelerons les principales propriétés de ces décompositions

obtenues par Sauzet, en particulier l'existence d'une décomposition en briques
libre et maximale pour un homéomorphisme de Brouwer. Dans le paragraphe 3,

nous verrons comment écrire le graphe comme réunion de droites de Brouwer
n'ayant pas d'intersections transverses deux à deux. Au paragraphe 4, nous
prolongerons notre famille de droites pour construire un "quasi-feuilletage" ayant le

graphe comme lieu de singularités. Plus précisément, nous écrirons le plan comme
réunion de droites de Brouwer n'ayant pas d'intersections transverses deux à deux.
Tout point en dehors du graphe appartient à une unique droite de notre famille
et celle-ci définit un feuilletage au voisinage de ce point ; un point du graphe qui
n'est pas un sommet appartient éventuellement à plusieurs droites, mais toutes
coïncident au voisinage du point avec l'arête contenant ce point et la famille définit
un feuilletage dans ce voisinage ; il n'y a pas de feuilletage au voisinage d'un sommet.

Au paragraphe 5 nous désingulariserons ce quasi-feuilletage pour obtenir un
feuilletage en droites de Brouwer en épaississant convenablement le graphe de la

décomposition.

Remarquons que deux droites de Brouwer F et F' n'ont pas d'intersection transverse

si et seulement si l'une des propriétés suivantes est vérifiée :

• D(T) C D(F) ;

• D(F) C D(T) ;

• G(F) n G(F') 0 ;

• fl(r)nfl(r') 0.

2. Décompositions en briques, libres et maximales

On va rappeler dans ce paragraphe les résultats de Sauzet, en esquissant les

démonstrations que l'on trouvera de façon plus développées dans [Sa]. On appe-
lera décomposition en briques du plan la donnée d'un ensemble stratifié £(X>) de

dimension un, appelé squelette de la décomposition V, avec une sous-variété de

dimension zéro S tel que de tout sommet s £ S sont issues exactement trois arêtes.
Les adhérences des composantes connexes de R2 \ £(X>) sont les briques de la

décomposition. Une décomposition en briques V est une sous-décomposition de
T> si £(X>') C £(Z?). Si / est un homéomorphisme de Brouwer, on peut construire
une décomposition libre, c'est-à-dire une décomposition dont toute brique est libre
(i.e. disjointe de son image par /). On peut trouver alors une sous-décomposition

en briques qui est libre et dont toute sous-décomposition stricte ne l'est pas.
Si deux briques de cette sous-décomposition sont adjacentes (i.e. ont une arête
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en commun), la réunion des deux briques n'est pas libre. On dira qu'on a une
décomposition en briques, libre et maximale. On peut démontrer, mais c'est bien
plus difficile car il faut modifier la décomposition initiale, que l'on peut construire
une décomposition en briques, libre et maximale, dont toute brique est bornée.

Chaque brique est alors un disque. On se fixe dès à présent une décomposition en
briques V, libre et maximale, on note B l'ensemble des briques, A l'ensemble des

arêtes, et S l'ensemble des sommets. Pour ne pas avoir à séparer différents cas par
la suite, nous supposerons de plus que toute brique est bornée.

Définition. On dira qu'une partie X de B est connexe si, pour toutes briques
ß, ß' G X, il existe une suite (ßl)o<t<n, où ßo ß et ßn ß, telle que ßt et ßl+i
sont adjacentes si i G {0,..., n — 1}.

On identifiera par la suite une partie X de B et la partie fermée de R2, réunion
des briques de X. Dans certains cas, il n'y a aura pas d'ambiguité : si on parle de

l'intérieur IntX de X, de sa frontière dX ou de son image f(X), alors X est une

partie de R2. En cas d'ambiguité on lèvera celle-ci en écrivant X C B ou X C R2.
Remarquons que la connexité de X C B équivaut à celle de X C R2. Remarquons

qu'elle équivaut aussi à celle de Int(X). Remarquons enfin (c'est encore une
propriété des décompositions en briques) que dX est une variété topologique de

dimension 1 pour tout X C B.
On définit naturellement une application y : V(B) —> V(B) en posant :

{ß G B\ il existe /?' G X tel que ß D /(/?') + 0}

Remarquons que <p(X) est connexe si X est connexe. On a alors le résultat
fondamental suivant :

Proposition 2.1. Pour tout ß G B, l'ensemble M cpn({ß}) ne contient pas ß.

Le classique lemme de Franks [Prl] nous dit qu'il n'existe pas de suite (ßl)o<t<n,
n > 1, de briques dans B, telle que ß0 ßn et telle que /(Int(/?j)) nlnt(/3î+i) ^0,
si i G {0,..., n — 1}. Le résultat précédent, en fait du à Guillou et Le Roux, exprime
que le résultat est encore vrai en remplaçant la brique ouverte Int(/3j) par la brique
fermée ßt.

La proposition 2.1 nous permet d'orienter naturellement le squelette de la
décomposition. Considérons une arête a et notons ß\, ßi les briques qui contiennent
a. Puisque ß\ U /% n'est pas libre, on peut supposer que /(/?i) n ßi ^ 0, c'est-à-
dire /?2 G (fi({ßi}). Puisque ß\ <^ (p2{{ßi\), on sait que ß\ <^ f{{ß2}) et donc que
/(/%) H /?i 0. On peut donc orienter a pour que ß\ soit la brique adjacente à a
située à gauche de a et /% celle située à droite. On écrira ß\ g (a) et ßi d(a).
L'orientation de a permet de définir naturellement parmi les extrémités de a (qui
sont toujours distinctes) la source s (a) G S* et le but b(a) G S.
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On dira qu'une suite (aj)je/ dans A, indexée par un intervalle / de Z, est
adrmsstble si 6(aj) s(aî+i) quand « et i + 1 appartiennent à /. On peut définir
naturellement un arc géométrique orienté F TT aj, par concaténation des arêtes,

je/
dont l'orientation coïncide avec celle du squelette (on dira alors que F est bien

oriente). On définit alors le voisinage à droite d(T) {d{a{)\i G /} et le voisinage
à gauche g(T) {g(at)\i G /} de F. On trouvera dans [Sa] la démonstration du
résultat suivant qui utilise la proposition 2.1 :

Proposition 2.2. La frontière d'une brique ß est réunion de deux arcs bien

orientés F I I at et F' I I a[ de source s(«o) s(a'o) et de but

0<i<n 0<i<n>
b(an) b(a'n,) communs, tels que g(T) d(T') {/?}. En d'autre termes, il
existe toujours une arête a telle que g (a) ß, une arête a1 telle que d(a') ß et
les arêtes du premier type ne sont pas séparées sur dß par celles du second type.

La source commune de «o et a'o est appelée la source s(ß) de ß, le but commun
de an et a'n, est le but b(ß) de ß.

Remarquons, grâce à la proposition 2.1, que tout sommet a G S est source de

deux arêtes et but d'une arête, ou alors but de deux arêtes et source d'une arête.
Dans le premier cas, il existe ß G B tel que a s(ß), dans le second cas, il existe

ße B tel que a b(ß).
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ß \ ß

On appelera attracteur toute partie X C B vérifiant <p(X) C X, ce qui est

équivalent dans R2 à l'inclusion f(X) C Int(X). Des relations

vérifiées pour toute famille de parties de B, on déduit que la réunion et
l'intersection d'une famille d'attracteurs est un attracteur. Remarquons également que
toute composante connexe X\ d'un attracteur X est également un attracteur. En
effet, fixons ß G X\. On vient de voir que <p(ß) et ß ne sont pas disjoints dans
R2, il en est donc de même de <p(X{) et de X\. La composante connexe de X qui
contient y(Xi) est donc X\.

On définit de façon analogue une application y>_ : V(B) —> P(B) en posant :

y-(X) {/3 G B| il existe /?' G X tel que /? n f~\ß') + 0}

Les relations ß' G yn({/?}) et ß G y™ ({/?'}) sont équivalentes et la proposition
2.1 est vraie en remplaçant y par y>_. On définit alors un répulseur comme étant
une partie positivement invariante par y>_ ; les résultats sur les attracteurs se

transposent alors aux répulseurs. Remarquons que X C B est un attracteur si et
seulement si B \ X est un répulseur.

Soit X un attracteur et a G A une arête contenue dans dX. L'une des briques
adjacentes à a est dans X et l'autre pas. Puisque <p(X) C X, on sait que d(a) G X
et g (a) <^ X. Considérons maintenant une composante connexe F de dX. Deux
cas sont possibles :

i) F est une droite bien orientée qui s'écrit F TT aiy où (aj)jez est admissible ;

ii) F est une courbe fermée simple qui s'écrit F JJ^ aj, où («j)o<j<n est

0<i<n
admissible et où b(an) s(ao).

Dans le second cas, on peut trouver une partition B X\ U X-2, où R2 \ F

Int(Xi)Ulnt(X2), où Xi contient d(T) et X2 contient g(T). L'ensemble d(T) C R2

est une union de parties connexes rencontrant la partie connexe F, il est donc

connexe, plus particulièrement contenu dans une composante connexe X3 de X
et X2 est une composante connexe de B \ X3. Puisque X est un attracteur, il en
est de même de X3. On en déduit que X2 est un répulseur puis que X\ est un
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attracteur. L'une des parties X\ ou X2 étant un disque, le théorème du point fixe
de Brouwer nous dit que / a un point fixe, ce qui contredit l'hypothèse. On peut
aussi obtenir une contradiction en utilisant le fait que tout attracteur ou répulseur
est fini, d'après la proposition 2.1.

On se trouve donc dans le cas i). Pour les mêmes raisons, on peut trouver une

partition B X\ U X2, où R2 \ F Int(Xi) U Int(X2), où X\ est un attracteur
qui contient d(T) et X2 un répulseur qui contient g(T). Puisque d(T) C D(T) et
g(T) C G(F), on en déduit que Xx D(T) et X2 G(F). Ainsi F est une droite
de Brouwer.

Donnons nous maintenant une droite de Brouwer F contenue dans le squelette
de T>. Cette droite est une concaténation d'arêtes, a priori non nécessairement bien
orientées, et les ensembles D(Y) et G(F) correspondent à deux parties
complémentaires de X. Le premier est un attracteur et le second un répulseur et F la
frontière commune de ces ensembles, on en déduit que F est bien orienté et s'écrit
F TT«î, où (at)tez est admissible. On appelera V-droite de Brouwer toute

droite de Brouwer contenue dans le squelette de T>.

Toute arête a est contenue dans une P-droite de Brouwer, il suffit en effet de

remarquer que X M ipn({d(a)}) est un attracteur qui contient d(a) et qui ne
n>0

contient pas g {a), puisque d(a) G <p(g({a})). L'arête a est donc sur la frontière de

X et la composante connexe de dX qui contient a est une P-droite de Brouwer.

Remarquons également qu'un arc F TT a,, où (a,),e/ est une suite admissible

îei
indexée par un intervalle de Z, se prolonge en une P-droite de Brouwer si et seulement

si, dans B, on a g(T) O M ipn(d(T)) 0. Cette condition est évidemment
n>0

nécessaire puisqu'elle est vérifiée si F est une droite de Brouwer. Elle est également
suffisante puisque l'ensemble X M ipn(d(T)) est un attracteur qui est alors dis-

n>0
joint de g(T) et que l'une des composantes connexes de dX contient F. On en

déduit en particulier, pour une suite admissible (aj)jezj que l'arc F J^[ a» est

iGZ

une P-droite de Brouwer si et seulement si, pour tout n > 1, l'arc Fn I I at

se prolonge en une P-droite de Brouwer. On va formaliser cela ci-dessous.

Munissons A de la topologie discrète, puis Az de la topologie produit et
considérons le décalage

ö : Az —> Az («j)»ez i-^ (al+1)ieZ-

L'ensemble des suites admissibles (aj)jezj telles que TT on est une droite de Brou-

iez
wer, est une partie fermée A de Az invariante par ô. Remarquons que pour tout
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a G A, l'ensemble Aa formé des suites (aj)jez € «4. vérifiant «o « est compact.
En effet, il existe au plus deux arêtes dont la source ou le but est donné.

Notons B l'ensemble des P-droites de Brouwer. L'application

iez

passe au quotient et définit une bijection entre l'ensemble A/S des orbites de
S contenues dans A et B. On peut donc définir une topologie naturelle sur B
en transportant la topologie quotient induite sur A/S par celle de A. Il s'agit
d'une topologie en général non séparée dont une base de voisinage est formée des

ensembles Ba, a G A, où Ba désigne l'ensemble des P-droites de Brouwer contenant
a. Remarquons que la restriction de II à Aa induit un homéomorphisme entre Aa
et Ba. Les ensembles Ba sont donc ouverts, compacts, mais non nécessairement
fermés.

Terminons ce paragraphe par le résultat suivant :

Proposition 2.3. Si Y et Y' sont deux T)-droite s de Brouwer, les conditions
suivantes sont équivalentes :

i) F et Y' ont une intersection transverse ;

ii) d(Y) n g(Y') =é 0 et g (Y) n d(Y') =é 0 dans B.

Démonstration. Montrons l'implication i) => ii). Supposons que Y rencontre les

parties ouvertes D(Y') \ Y' et G(Y') \ Y' de R2. Il en est de même de d(Y). Il
en est également de même de Int(d(T)) qui est dense dans d(Y). Puisque d(Y)
est connexe, il en est de même de son intérieur. Ainsi Y' rencontre Int(d(T)).
Par un raisonnement analogue, on en déduit que Int(gr(r')) n Int(d(T)) ^ 0. En

utilisant la densité de [J Int(/3) dans d(Y) et celle de [J Int(/3) dans g(Y'),
ßed{T) ßeg{T>)

on en déduit d'abord que M Int(/3) rencontre Int(<?(r')), puis que M Int(/3)
ßed{T) ßed(T)

rencontre |^J Int(/3), en d'autre termes que les parties d(Y) et g(Y') de B ont

ßeg(r>)
une brique en commun.

Montrons maintenant la réciproque. Supposons que Y et Y' n'ont pas d'intersection

transverse et étudions les quatre cas énumérés à la fin du paragraphe 1.

Si D(Y) C D(Y'), on a dans B, l'inclusion d(Y)Dg(Y') C D(Y) DG(Y') 0. De

même, si D(Y') C D(Y), on a d(Y') n g (Y) 0.

Si, dans R2, on a £>(r)n_D(r') 0, alors £>(r)U_D(r') n'est pas connexe. On en

déduit, dans B, que g(Y)nD(Y') g(Y')nD(Y) 0. En effet, si ß G g(Y)nD(Y'),
on peut écrire dans R2 (ou dans B) l'ensemble £>(r)U_D(r') (D(Y)U{ß})UD(Y')
comme réunion de deux parties connexes d'intersection non vide. De même, si

G(Y) n G(Y') 0, alors d(Y) n G(Y') d(Y') n G (Y) 0. D
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Corollaire 2.4. La partie de B x B formée de couples de droites de Brouwer
n'ayant pas d'intersection transverse est fermée dans B x B.

Démonstration. Si F et F' sont deux P-droites de Brouwer qui s'écrivent F TT 04

iez
et F' Y\ a'n Ie fait que F et F' aient une intersection transverse est caractérisé

par l'existence d'entiers iq, i'q tels que g(aio) d(a'., et d'entiers i\, i[ tels que

d(atl) g (a'., ce qui est une condition ouverte. D

3. Droites de Brouwer tracées sur le squelette

Le premier résultat de ce paragraphe exprime qu'on peut recouvrir le squelette
par des droites de Brouwer n'ayant pas d'intersections transverses entre elles. On
indexe les arêtes (aj)j>o par N.

Proposition 3.1. On peut construire une suite {Tt)t>o de T)-droites de Brouwer,
telle que :

i) chaque droite Tt contient l'arête ctl ;

ii) deux droites Fj et Tj n'ont pas d'intersection transverse.

Commençons par démontrer le lemme suivant, par récurrence sur p :

Lemme 3.2. On peut construire, pour toutp > 0, une suite (Xf )j>o d'attracteurs,

telle que :

i) la frontière de Xf contient at ;

ii) les attracteurs Xf, 0 < i < p, sont comparables pour la relation d'inclusion.

Démonstration. Le résultat est évident pour p 0, il suffit de poser X®

M Lpn(d(a.i)). Supposons le résultat vrai jusqu'au rang p et considérons les 2p + 2

n>0
attracteurs suivants, qui sont comparables :

XInx;+1 ,..,^nx;+1, x%uxpp+1,..., x?uxpp+1.

Fixons ie{0,...,p}. On sait que g{at) g Xf. Si g{at) g Xpp+l, alors at C d(Xf U

X^+1), on pose alors Xf+1 Xf U Xpp+1. Si g(at) G Xpp+ll alors d(at) G Xpp+1

puisque Xp+1 est un attracteur. On en déduit que at C d(Xf n Xp+1), on pose

alors Xf+1=XfnX;+1.
Définissons maintenant X^^. Pour les mêmes raisons, si g(ap+i) $ Xp, alors

ap+1 C d{Xp0 U Xp+1) et on pose X%\\ Xp U Xp+1 ; si g(ap+1) G Xp, alors
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ap+1 C d{Xp fli;+1) et on pose Xp+l Xp n Xpp+1. Enfin on garde Xf+1 X?,
si i > p+ 1. D

Démonstration de la proposition 3.1. On note TP la composante connexe de dXf
qui contient a». On a #(Fp n d(Ff 0 si Xf C Xj, puisque #(Fp n X? 0 et

rf(rf) C Xf. La proposition 2.3 implique donc que Ff et TP n'ont pas d'intersection
transverse si i < p et j < p. On définit maintenant une suite (Tp)p>o à valeurs

dans TTBq^, muni de la topologie produit, en posant Fp (F?)j>o- Elle admet

une valeur d'adhérence F (Fj)j>o, puisque chaque Ba% est compact. Le corollaire
2.4 permet d'affirmer que la suite (Fj)j>o vérifie la conclusion de la proposition.D

On note B l'adhérence dans B de l'ensemble des Fj, « > 0. D'après le corollaire
2.4, il est formé de P-droites de Brouwer n'ayant pas d'intersections transverses
entre elles. Les ensembles Ba BC\Ba, a G A, ne sont pas nécessairement fermés,
il^sont par contre compacts et ouverts et définissent une base de la topologie de

B. Le reste du paragraphe 3 est consacré à l'étude de cet espace et du lien entre
la topologie et un ordre naturel qu'on va définir ci-dessous.

On munit B de l'ordre suivant :

T <V &D{T) C-D(F').

Cet ordre n'est pas nécessairement total, mais restreint à chaque Ba il le devient.
En effet, si F et F' appartiennent à Bai les ensembles £>(F)n_D(r/) et G(F)nG'(r/)
ne sont pas vides puisqu'il contiennent respectivement d(a) et g (a). Puisque F

et F' n'ont pas d'intersection transverse, l'une des inclusions D(T) C -D(F') ou

-D(F') C -D(F) est vérifiée. Remarquons que Ba est un intervalle de B. En effet,
si F G Ba, F' G Ba et F" G B vérifient F < F" < F', alors D(T) C D(T") et
G(F') C G(F"). On en déduit que d(a) G D(T") et g(a) G G(F") et donc que F"
contient a.

Proposition 3.3. La topologie de Ba est la topologie de l'ordre.

Démonstration. Il suffit d'exhiber une application continue strictement croissante
de Ba dans R. A toute droite F TT aj, où «o a, on associe la suite (pi)iez €

îêZ
{0,1}Z en posant pi 1 si i > 0 et s'il existe a' G A, tel que s(a') b(at) et

g (a1) d(ai+i), ou alors si i < 0 et s'il existe a' G A, tel que 5(c/) s(«j+i) et
(?(«') d(«i) ; en posant ft 0 dans tous les autres cas. On considère alors le réel

2_/~nj- On obtient ainsi une application continue de Ba dans R. Le fait qu'elle
îêZ
soit injective et croissante provient du fait que deux courbes dans Ba n'ont pas
d'intersection transverse. D
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Remarques, i) On peut définir, pour toute arête a, les droites

et F^ maxßa.

ii) Pour toute suite (Fn)n>o de B convergeant vers F G B, on peut trouver

un voisinage Ba de F qui contient tous les Fn, pour n assez grand. On peut donc

comparer Fn et F. On dira que Fn tend vers F par valeurs supérieures (resp.

tnféneures si Fn > F (resp. Fn < F)) pour n assez grand. On dira que F G B est
isolée à droite (resp. à gauche) s'il n'existe aucune suite (Fn)n>o convergeant vers
F par valeurs supérieures (resp. inférieures).

Proposition 3.4. Les droites isolées à droite (resp. à gauche) sont les droites Fj
(resp. F~), a G A.

Démonstration. Il est clair que si a G A, alors F+ est isolée à droite puisque Ba
est un voisinage de F+. Pour prouver la proposition, il suffit de montrer que si

F TT o.i n'est pas de la forme F+, a G A, on a :

Lemme 3.5. Pour tout intervalle fini I de Z7 il existe F' G B vérifiant F' > F et

contenant I I a,.
aei

Démonstration. On fait une récurrence sur le cardinal p de /. Le résultat est vrai
pour p 1, puisque F ^ F+^, pour tout i G Z. Le résultat est également vrai pour
p 2. En effet, fixons « G Z puis choisissons I\ > F contenant at et Fî+i > F

contenant ai+\. Le sommet a b(at) s(at+i) est extrémité d'une troisième
arête a. Si a est le but de a, la droite Fj contient nécessairement aj+i puisque
l'arête qui suit o.i sur Fj ne peut pas être a. De même si a est la source de a, la
droite Fj+i contient at.

Supposons maintenant le lemme démontré pour p > 2 et vérifions le pour p +1.
On écrit I {i, i + 1,..., i + p}. On peut trouver Fj > F contenant TT <x,

et Fî+i > F contenant JJ a3. Puisque Fj et Fî+i contiennent l'arc JJ a3

i<j<i+p i<j<i+p
(qui est non vide ces arcs sont comparables et le plus petit d'entre eux contient

Proposition 3.6. On a les propriétés suivantes pour deux arêtes a et a' :

i) si g (a) g(a'), alors F+ F+, ;

ii) si d(a) d(a'), alors F^ T~, ;

iii) si g(a) d(a'), alors F+ < F", et ]F+, F", [= 0.



242 P. Le Calvez CMH

Démonstration. Prouvons l'assertion i). Considérons une brique ß. On rappele que
la frontière de ß est formée de deux arcs bien orientés TT o.% et TT a-, où

0<i<n 0<i<n'
d(oi) g(oi) ß, et où s(a0) s(a'o) s(ß) et b(an) b(a'n,) b(ß).

Le répulseur X (| G(F+.) contient ß et ne contient aucune brique d{at),
0<i<n

sa frontière contient donc l'arc TT at. La composante connexe F de dX qui
0<i<n

contient TT at est comparable à chaque F+^ puisqu'elle contient ai et on a

T < T+ par maximalité de T+^ dans Ba%. De plus, on a g(T) <Z X <Z G(F+.). On
en déduit que F+^ < F. Remarquons que la droite F F+^ contient l'arête ar
dont le but est s(ß) et l'arête a+ dont la source est b(ß).

L'assertion ii) se démontrant de façon analogue, prouvons iii). Remarquons
que les droites F+o et Fa, sont comparables puisqu'elles contiennent toutes deux

or. Comme ß G D(T~,) \ D(T+o), on en déduit que F+o < T~,. Toute droite

F G [F+o,Fa,] contient or : si ß G D(T), alors F contient a'o et donc F T~, ; si

ß G G(r), alors F contient «o et donc F F+ D

La proposition nous dit en particulier que l'on peut indexer les droites F+ et

Fa, pas seulement par les arêtes, mais également par les briques. On posera :

=T- si d(a)=ß, F+ si g(a) ß.

L'assertion iii) nous dit que F^ < Tt et que jL, ri[= 0.

On va conclure ce paragraphe en étudiant la relation d'équivalence naturelle-
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ment définie sur l'ensemble de briques :

Remarquons que deux briques adjacentes ne sont pas équivalentes. En effet, pour
toute arête a. G A, on a :

1
g (a) ^ L

g (a) ~ L a ^ L a — L d{a)-

Proposition 3.7. Les trois propriétés suivantes sont équivalentes :

i) ß ~ /?' ;

n) ß'e d(r+) n g(r-) ;

ni) ß'eD(r+)nG(r-).

Démonstration. Puisque toute brique ß' ~ ß appartient à d(Tt,) D g {Yg,),
l'implication i) =>• ii) est vérifiée. Pour montrer l'implication réciproque, remarquons
que si ß' G d(T~ß), alors F^, et F^ ont au moins une arête commune a telle que

d(a) ß'. On en déduit que F^ et F^, sont comparables et comme F^, Fa, on

a r^g, < r^g. De même, si /?' G fir(r^), on a F^ < F^,. Ainsi si la condition ii) est

vérifiée, on obtient

IV < r^, < r+ < r+,

et comme l'intervalle ]F^,Ft[ est vide, on a

Pour montrer l'équivalence entre ii) et iii), il faut montrer l'égalité

pour toute brique ß G B. Il suffit bien sûr de montrer l'inclusion

Une brique adjacente à ß n'appartient pas à D(Tt) D G(Tg). En effet, pour
toute arête a telle que d(a) ß (resp. g (a) ß), on a g (a) $. D(Tt) (resp. d(a) $.

G(Tß On en déduit que la composante connexe, dans B, de D(Tt) D G(Tg) qui
contient ß se réduit à /3. On en déduit immédiatement que la composante connexe,
dans B, de _D(F^) n G(Tß) qui contient une brique ß' équivalente à ß' se réduit à

ß'. Ainsi, d'après l'équivalence i) -44- ii), on sait que toute composante connexe de

D(rt) n G (Y „ qui contient une brique de d(Tt) n j(FJ se réduit à cette brique.

Il ne reste plus qu'à montrer que toute composante connexe X de _D(F^) n G(Tß)
contient une brique de d(Tß~) D g(Tß).

L'ensemble G(Tg) est connexe et contient G(Tt). On peut donc trouver une

suite (ßl)o<i<P de briques de G(Fg) telle que :
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• ßo e X ¦

• ßi+i est adjacente à ßt, si i G {0,... ,p — 1} ;

ßP g G(r+).

Quitte à racourcir la suite, on peut supposer que ßi G D(Tt) si i < p. Les ßt,

i < p, sont dans X et on a ßv-\ G d(Fi) n G(Fg). L'arête a+, dont la source est

le but de ß, appartient à F^ et à Ft, ainsi d(a+) G d(Tt) n _D(F^). L'ensemble

connexe d(Tt) n'est donc pas contenu dans G(Fg). On peut donc construire une

suite (ß-)o<i<pr de briques de d(Tt) telle que :

• ßo= /?p-i ;

• /?j+1 est adjacente à ß-, si « G {0,... ,p' — 1} ;

ß'v, G

Les briques ß-, i < p', appartiennent à X et on a ß'p/_± G d(rt) n gr(F^). D

Soit ß G ß et a. G A une arête de Ft. Deux cas sont possibles :

i) la brique d(a) appartient à g{T „), elle est équivalente à ß ;

ii) la brique d(a) appartient à d(Tg), l'arête a appartient également à F^ et

g(a)eg(T-)ng(r+).

La réunion des arêtes communes à F^ et Ft et des briques équivalentes à ß est

une partie fermée Cß du plan, appelée chaîne d'équivalence, ne dépendant que de

la classe d'équivalence de ß. On a :

Cß D(r+) \ Int(D(r^)) G(I^) \ Int(G(r+)).

Les briques équivalentes à ß ne sont jamais adjacentes, elles sont séparées par
des arêtes communes à F^ et Ft. Puisque les ensembles précédents ne dépendent

que des classes d'équivalence, on notera ß les classes d'équivalence, et on posera
C- Cß, si ß G ß. De même on écrira F^ F^ et Fi F+

On note E la réunion disjointe de A et B. Une chaîne d'équivalence s'écrit alors

Ej, où la famille (et)tez à valeurs dans E est telle que b(et) s(eî+i), pour
îêZ
tout i G Z. Les £j qui sont des briques sont les éléments de la classe d'équivalence,
les arcs TT ej définis entre deux briques successives sont les composantes connexes

iei
de r^ n ri.

ß ß
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4. Construction d'un quasi-feuilletage

On commence par feuilleter chaque brique ß G B par une famille continue
d'arcs orientés (j^)te[-i,i] issus de la source de ß et aboutissant au but de ß. Si

D est le disque fermé unité de R2, on choisit un homéomorphisme h : ß —> D
préservant l'orientation qui envoie s(ß) sur — 1,0) et b(ß) sur (1,0). Remarquons
que chaque arête a telle que d(a) ß est envoyée dans le demi-plan d'équation
y > 0 et chaque arête a telle que g (a) ß dans le demi-plan d'équation y < 0.

On note alors 7^ l'arc défini sur [—1,1] par :

Fixons maintenant une classe d'équivalence ß. Chaque ensemble

ßeß

définit naturellement une droite dont l'orientation coincide avec celle des arêtes

communes à F^ et Fi ainsi qu'avec celle des arcs 7L
ß ß '

Ces droites n'ont pas d'intersections transverses entre-elles. En effet -D(Fl.) C

D(ri.) si t < t'. Dans le cas où f(D(T±)) C Int(£>(F^)), ce sont des droites de

Brouwer. Nous allons voir - c'est le point principal de ce paragraphe - que l'on
peut, par un reparamétrage en t de chaque famille (7«)te[-iii], obtenir une famille

(rL)te[_1A] de droites de Brouwer, même si la relation f(D(T±)) C Int(£>(F^))
n'est pas vérifiée.

On commence par établir le lemme très simple suivant :

Lemme 4.1. Soit X un ensemble ordonné fini ou dénombrable. Il existe alors une
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famille (ßx)xex d'homéomorphismes croissants de [—1,1] tels que :

x < x' => iix (1/3) < ijlx, (-1/3).

Il suffit de prouver :

Sous-lemme 4.2. Soit X un ensemble ordonné, Y C X une partie finie de X et

{p-x)xeY une famille d'homéomorphismes croissants de [—1,1], tels que :

x < x' => Mx (1/3) <^,(-l/3).
Powr tout xo $ Y, il existe un homéomorphisme croissant \iXSi de [— 1, 1] £e/ gwe7

wr iows x ei x' dans Y U {xo}7 on a :

z < z'=> ^ (1/3) < av (-1/3).

Démonstration. On note

r {ie y|x < x0} et y+ {x g y|x > x0}

et on envisage tous les cas possibles :

i) si Y~ Y+ 0, on choisit \iXSi arbitraire ;

ii) si Y~ 0 et Y+ ^ 0, on choisit \iXSi tel que \iXSi (1/3) < min \ix (-1/3) ;

X£Y+

iii) si Y~ ^ 0 et Y+ 0, on choisit \iXo tel que max \ix (1/3) < /iXo — 1/3) ;

xçy-
iv) si Y~ ^ 0 et y+ 7^ 0, on choisit /iXo tel que

max \ix (1/3) < \iXü (-1/3) < Mxo (1/3) < min \ix (-1/3).
X£Y- X£Y+

II n'y a pas d'obstruction à la construction de \iXSi dans le cas iv). En effet, il
existe x~ G 1" et x+ G 1"+ tel que

max \ix (1/3) /xx- (1/3) et min \ix — 1/3) nx+ — 1/3)
X£Y- X£Y+

Puisque xq < x+ et x~ < xo, on sait que x~ < x+ et que \ix- (1/3) < jj,x+ — 1/3).
D

Démonstration du lemrne 4.1. Puisque f(T~) C Int((£>(F^)) et /(ri) C
ß ß ß

Int(_D(ri)), on peut toujours reparamétrer chaque famille (7«)te[-iii], ß G ß,

par un homéomorphisme Vß : [—1,1] —> [—1,1] de telle façon que

et
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La relation suivante

\Jvn({ß'}),
n>0

définie sur B, est un ordre, le caractère anti-symétrique provenant de la proposition
2.1. On peut construire une famille d'homéomorphismes \iß : [—1,1] —> [—1,1],

ß G ß, vérifiant la conclusion du lemme 4.1 pour l'ordre restreint à ß. Il reste à

verifier que chaque droite

ßeß

est une droite de Brouwer.

Puisque f{Yt) n £>(F*) ^ 0 et /^(F*) n G(F*) ^ 0, il suffit de montrer que

/(F*) n F* 0. Si ce dernier ensemble n'est pas vide, il existe ß & ß, ß' & ß et

te [-1,1] tels que

On en déduit ^(t) > -1/3 et ^}{t) < 1/3, c'est-à-dire ^(-1/3) < t <
On sait d'autre part que f(ß)C\ß' ^ 0 et donc que ß' ~< ß. Ceci contredit

la propriété de la famille {p-ß) 8 g- donnée par le lemme 4.1. D

Nous supposerons dorénavant notre famille (jß)ßeB,te[-i,i] reParamétrée pour
que chaque FÎ-- soit une droite de Brouwer.

Proposition 4.3. Deux droites Tfx et Tfx n'ont pas d'intersection transverse.
ß ß'

Démonstration. Supposons d'abord que, dans B, on D(T^.) D D(T^ 0. On a vu
ß ß'

dans la démonstration de la proposition 2.3 que cette relation était encore vraie
dans R2 et que g(T^) n DÇT^. 0 dans B. On en déduit que dans B, on a

ß ß'

D(r±) n D(rz c fi)(rz) u ff(rz)) nV
/37

V ß'J V V
/37

V

/3 Vc f() ff()) 0
ß'J V V

/37
V

/3 V V ß'J

On en déduit, toujours par le même raisonnement que _D(ri)n_D(Ti 0 dans B
ß ß'

et dans R2. Ainsi, TÎ-. et TÎ-. n'ont pas d'intersection transverse puisque D(T^) D
ß ß' ß

-D(r^) 0. La proposition 4.3 est encore vérifiée, pour les mêmes raisons, si

G(rt)nG(ri) 0.

L'une des égalités D(T^) D £>(F^ 0 ou G(T±) D G(F+ 0 est vérifiée dès
ß1 ß'1 ß1 ß'1

que l'une des deux droites F^., Fi n'est pas comparable à l'une des deux droites
ß ß

F^, Fi. Il reste donc à montrer la proposition dans le cas où les quatres droites
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r^, Ft, T^ et Fi sont comparables. Puisque lr^,rt[=lr^ ,ri [= 0, il y a trois
ß ß ß' ß'

J

ß ß ß' ß'v
cas à envisager :

ü) r^ < ri < r^ < ri ;

ß ß ~ ßr ßr

m) r^ < ri < r^ < ri.
ß' ß' ~ ß ß

On a vu plus haut que la proposition était vraie dans le premier cas, il est en
de même dans le second cas puisque

c D(rp c D(rz) c

ainsi bien sûr que dans le troisième. D

La famille (Fl.)-> est formée de droites de Brouwer n'ayant pas d'intersections
ß Pi*

transverses entre elles qui recouvrent le plan. Tout point z £ S(2?) appartient à

une unique droite et la famille définit un feuilletage au voisinage de z. Un point
z G S(2?) qui n'est pas un sommet peut appartenir à plusieurs droites, mais toutes
ces droites coïncident au voisinage de z avec l'unique arête contenant z, la famille
définit encore un feuilletage au voisinage de z.

5. Construction d'un feuilletage en droites de Brouwer

Si on se donne un feuilletage en droites du plan, on a un^ordre naturellement
défini sur l'ensemble des feuilles, analogue à l'ordre défini sur B dans le paragraphe
3, à savoir

T <V &D{T) C-D(r'),

ainsi qu'une topologie, quotient de la topologie usuelle. L'espace des feuilles est
alors séparé si et seulement si l'ordre est total. Par contre toute droite admet
un voisinage compact totalement ordonné. Nous allons construire un feuilletage
en droites de Brouwer, contenant une partie fermée isomorphe (du point de vue

topologique et du point de vue de l'ordre) à B. Nous construirons pour cela une
décomposition en brique plus fine que la décomposition initale (libre mais pas
maximale) obtenue en épaississant le squelette initial.

Définition. On dira qu'une arête a G A est singulière si F^ F+, autrement
dit si Ba se réduit à une unique droite ; dans le cas contraire on dira qu'elle est

régulière.
On choisit pour toute arête a un voisinage connexe, simplement connexe et

libre Ua C R2 de a, tel que f(Ua) C D(r~) et Z"1^) C G(T+). Ainsi, pour
toute P-droite de Brouwer F G Ba, on aura f(Ua) C D(T) et Z"1^) C G(F).
On choisit ensuite pour tout sommet a G S, un voisinage Ua de a, connexe et
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simplement connexe, inclus dans UOl n UO2 n UO3, où ai, «2 et «3 sont les arêtes
d'extrémité <r et ne rencontrant aucune brique qui ne soit adjacente à a et aucune
arête autre que ai, «2 et «3-

Supposons que a b(a{) s(a.2) s (as). Quitte à conjuguer / par un
homéomorphisme préservant l'orientation, on peut supposer que a est l'origine
(0, 0), que le carré Ka [—1, l]2 est inclus dans Ua, et que l'on a

ain[-i,i]2 [-i,o] x{0},
«2n [-1,1]2 [0,1] x {o},

a3n [-1, l]2 {0} x [0,1].

L'arête ai est régulière puisqu'il existe une droite dans B contenant ai«2 et
une autre droite contenant a\as. Remarquons également que a est la source de

ß g(a2) d(a3).

Supposons que «2 et «3 sont toutes deux régulières. On définit trois quadrilatères

Tp, T2 et T^ de la façon suivante :

• les sommets de T^ sont (-1,0), (0,0), (0,1/4) et (-1,1/4) ;

• les sommets de T2 sont (-1,1/4), (0,1/4), (0,1) et (-1,1/2) ;

• les sommets de T% sont (-1,1/2), (0,1), (-1/2,1) et (-1,3/4).

Le segment {—1} x [0, 3/4], noté Ib(a\) et orienté suivant les y croissants, est le

segment d'arrivée de ai ; le segment {0} x [0,1/4], noté /s(«2) et orienté également
suivant les y croissants, est le segment de départ de 0.2 ; le segment [—1/2, 0] x {1},
noté Ib(as) et orienté suivant les x décroissants, est le segment de départ de «3 ; le

segment {0} x [1/4,1], noté Is (ß) et orienté suivant les y croissants, est le segment
d'arrivée de ß; enfin, le segment { — 1} x [1/4,1/2] est le centre de Ib(a.i).
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I ^^"^

\ Tl

Is (ß)

i Is(a2)

ß

On va feuilleter les triangles Tj: par des arcs, orientés suivant les x croissants,
de la façon suivante. On feuilleté T^ par des segments horizontaux, T^ par des

segments parallèles aux bords obliques, enfin T% par les segments joignants t G

{—1} x [1/4,1/2] à A<j(t) G Is{ß), où A(j est un homéomorphisme croissant entre le

centre de /6(«i) et le segment d'arrivée de ß. On appelera ACT un homéomorphisme
de liaison (on fera varier \a plus tard). Utilisant la démonstration de la proposition
3.3, on peut construire, pour i G {2, 3}, une partie fermée Bsa de Is(ai), contenant
les deux extrémités de Is{ai) et isomorphe (en tant qu'espace topologique ordonné)
à Ba%- Si on transporte chacun de ces ensembles sur Ih{a\) par les feuilletages
définis sur Tj: et T^, on obtient deux parties dont la réunion est isomorphe à BOl

et notée BbOi.

: :: :

Supposons maintenant que «2 est régulière et as singulière. On ne définit dans
ce cas, que deux quadrilatères T^ et T%, le segment d'arrivée de a\ devient Ih{a\)
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{—1} x [0,1/2], toujours orienté suivant les y croissants, les segments de départ de

«2 et ß sont inchangés, le segment de départ de as se réduit au point (0,1), le point
de départ de «3. Le feuilletage défini sur Tj: est identique, de même celui sur Tj? est

défini par un homéomorphisme de liaison Xa. L'ensemble Bsa se réduit au point
de départ de «3. On considère là-encore un ensemble Bsa2 de Is{0.2) contenant les

extrémités de /s(«2) et isomorphe à Ba2. Cet ensemble transporté sur /6(«i) par
le feuilletage de T^ donne, quand on lui ajoute le point — 1,1/2), un ensemble

Bb isomorphe à Bai.

Dans le cas où «2 est régulière et «3 singulière, le quadrilatère T^ reste inchangé,
le quadrilatère T% est délimité par les points (-1,0), (0,0), (0,1) et (-1,1/2), on
a

{-l}x [0,3/4],

/>3) [-1/2,0] x{l}.
Le point de départ de 0.2 est le point (0,0). Le feuilletage sur T^ reste inchangé,

il transporte BSO3 sur un ensemble qui donne BbOi quand on lui ajoute — 1,0).
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Enfin, si a i et 0.2 sont toutes deux singulières, on ne définit que le quadrilatère
Tl, délimité là-encore par (-1,0), (0,0), (0,1) et (-1,1/2) et feuilleté par un
homéomorphisme de liaison \a. Les ensembles BSO2 et Bsa3 se réduisent respectivement

à (0,0) et à (0,1). On a Bbai {(-1,0), (-1,1/2)}, il n'y a que deux droites

dans B qui contiennent a\.

Supposons maintenant que a s(a-i) 6(02) b(a^). On va construire des

objets analogues dans cette situation. On part de la situation précédente et on
effectue une symétrie par rapport à l'axe vertical. On change alors l'orientation
des arêtes, on change également l'orientation des feuilles du feuilletage qui sont
donc orientées toujours suivant les x croissants, on ne change pas l'orientation
des segments de départ et d'arrivée mais on transforme les segments de départ en

segments d'arrivée et vice-versa. Tout segment de départ ou d'arrivée d'une arête
est située, là-encore, sur la brique adjacente à gauche de l'arête et son extrémité
inférieure est sur cette arête.

Considérons maintenant une arête régulière a. Quitte à conjuguer / par un
homéomorphisme préservant l'orientation, on peut supposer que a est le segment
orienté joignant (—2,0) à (2,0) et que le rectangle [—3, 3] x [—1,1] est contenu dans
Ua. On peut supposer également que le carré [1, 3] x [—1,1] centré en b(a) est un
translaté du carré Kb^ décrit plus haut, dans le cas où b(a) est la source de deux
autres arêtes ou dans le cas où il existe une autre arête a' de but b(a) telle que
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d(a') g (a), et que c'est l'image de Ä&(a) par une rotation d'angle tt/2 puis par
une translation dans le cas où g {a!) d(a). On supposera également que le carré
[—3, —1] x [— 1,1] est l'image de Ksça-) par une translation, dans le cas où s (a) est
le but de deux autres arêtes ou la source d'une arête a' telle que d(a') g (a), et
l'image de ifs(a) par une rotation d'angle —tt/2 puis par une translation dans le

cas où s(a) est source d'une arête a' telle que g (a') d(a).

s(a)
¦v
F a b(a)

On considère alors le quadrilatère Ta dont les cotés respectifs sont Is(a), Ib(a),
le segment (contenu dans a) joignant les extrémités inférieures de Is(a) et Ib(a)
et le segment joignant les extrémités supérieures. Ce quadrilatère est contenu dans

g (a). Quitte à indexer A par N, on peut constuire ces quadrilatères par récurrence

pour qu'ils soient disjoints deux à^deux. On considère alors un homéomorphisme ipa

strictement croissant envoyant Bsa sur Bba, on le prolonge en un homéomorphisme
croissant entre Is (a) et Ib{a) et on considère le feuilletage par des segments,
orientés suivant les x croissants, joignant t à son image.

Rappelons que E est la réunion disjointe de A et B. Toute feuille de Ta se

prolonge, arrivée en Ib(a), en une unique feuille contenue dans un des quadrilatères
Tw s qui aboutit à un point de Is(s), où s(e) b(a). On obtient une famille
continue d'arcs orientés, indexés par t G Is(a), qui induit un homéomorphisme ipa

entre Is(a) et |J Is(e).
{eefî|s(e)=6(a)}

La réunion des frontières des quadrilatères T%a et Ta ainsi que des arêtes
singulières définit une décomposition en briques dont le squelette contient £(î>). Les

Tla et les Ta sont des briques de cette décomposition. Comme nous allons le voir
immédiatement toute autre brique est contenue dans une brique ß G B et toute
brique ß G B contient une unique brique de la nouvelle décomposition qu'on
notera Tß.

Considérons donc une brique ß G B. La frontière de ß est réunion de deux

arcs 11 ai e^ 11 a*' ou 9^°-1) ^(ai) ß' ou s(ao) s(a'o) s(ß) et
0<i<n 0<i<n>

b(an) b(a'n) b(ß). Les quadrilatères Ta>, T^,,-,, Th,y 0 < i < n sont tous

disjoints de Int(/3). Les quadrilatères Ta', 0 < i < n sont contenus dans ß ainsi

que les quadrilatères T°s,,y 1 < i < n ; plus précisément, la réunion de ces quadri-

latètes est un disque dont la frontière est formée de /s(«o) C a'o, de Ib(an) C a'n,,
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de l'arc JJ at, enfin de l'arc JJ 7™axr(a*))7 ou 7 est la feuille de TŒn

0<i<n 0<i<n
/6(joignant max/s(a„) à max/ (a„). Il existe alors une unique brique Tß de la

nouvelle décomposition qui est contenue dans ß, c'est un disque dont la frontière est

réunion de TT 7™ax/ (a*) J7 et du segment contenu dans TT o.[ qui joint
0<i<n

les deux extrémités de M 7^ y-ai>\^. Cette frontière contient les segments

de départ et d'arrivée de ß.

On peut trouver un homéomorphisme h préservant l'orientation envoyant Tß
sur [—1, l]2 et les segments Is{ß) et Ib(ß) respectivement sur { — 1} x [—1,1] et

{1} x [—1,1]. On considère alors le feuilletage orienté, image par hrl du feuilletage
horizontal orienté suivant les x croissants. Chaque feuille issue de t G Is (ß) se

prolonge quand elle arrive sur Ib(ß) en une unique feuille de TS«) aboutissant

en un point tpß(t) du centre de Is(a+), où a+ est l'unique arête dont la source
est le but de ß (c'est également l'unique élément de E ayant cette propriété).
Remarquons que

mm/s(/3) TT maxls(a,) m TT

On dira qu'une suite

est admissible si b(e{) s(ej_|_i) et tj+i ipE.(ti), pour tout 1 G Z. On vient de
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définir un feuilletage orienté T sur le plan dont les feuilles sont les droites de la

forme TT7**, où (el,tl)iez est admissible.
îêZ

Le résultat suivant est évident

Proposition 5.1. Soit F TT 7** et F TT 7£? deux feuilles de T. S'il existe

tez tez
î G Z et 1' G Z tel que £j e'ir, alors les deux feuilles sont comparables et on a

V <V si et seulement si tt < t't,.

Etudions plus précisément les feuilles de T.

Proposition 5.2. Soit F Yl^el une feuille de T. Plusieurs cas sont possibles :

iez

i) Tous les Si sont des arêtes, la droite F Yiiez e* appartient à B et chaque

tt est l'élément de B^ qui correspond à F.

ii) II existe «o € Z tel que Ei0 est une brique et tel que ti0 est dans l'intérieur
de Is(eio). Les et qui sont des briques sont exactement les briques équivalentes à

£j et ti est alors dans l'intérieur de Is(et). Si ß est la classe d'équivalence ainsi
définie, alors TT £i est la chaîne d'équivalence de ß.

iez

iii) II existe 10 & Z tel que Ei0 est une brique et tel que ti0 max/s(ei0). Si

F+ I I at, on peut également écrire Y I I r)dî, où t't G Bsa correspond à F+
iez iez

iv) II existe iç, ÇL 7i tel que Ei0 est une brique et tel que ti0 min/s(ei0). Si

T£. TT a.i, on peut également écrire F TT jj., où t[ G Bsa. correspond à F£.
»ez »ez

Démonstration. Démontrons i). Soit (£t,tt)tez une suite admissible, où chaque e^

est une arête. Nous allons montrer que chaque t-% appartient à Bse., (si la propriété
est vraie pour un entier {, elle est vraie pour tous puisque ipe^Bs{ei)) n /|. 1

Bse. i). Il existera alors une droite F TT a.t G B tel que tj correspond à F. En
»ez

particulier on aura ej aj.
Supposons donc qu'aucun t-% n'est dans Bse., notons tj le plus petit élément

de Bseo supérieur à to et to ^e Pms gran(i élément de Bseo inférieur à to. Le point

tg" correspond à une droite F+ ^\ at G ß et t^ à une droite F~ ]^[«7-
iez tez

Comme ces droites sont différentes, on peut supposer par exemple qu'il existe

i > 0 tel que a+ ^ a~ ; on note «o le plus petit entier vérifiant cette relation
et oti la valeur commune de a^ et a~ pour 1 G {0,..., îq — 1}. Remarquons que
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«o > 1 et que d(a^o) g(aîo). Si tf G Bsa. (resp. tî G Bsa.) correspond à F+

(resp. F alors l'image par ipo^ du segment [t. ,tf] C Is(at) est égal au segment

K'+i^j+J c Is(ai+i)y si « G {0,... ,«o - 2}. On a donc et ai et U G [tj ,t^],
pour tout i G {0,..., «o — 1}- On en déduit également que ]t. ,tf[ ne contient

aucun élément de Bsa., c'est-à-dire que l'intervalle ]F F+[ de B est vide. La droite
F~ est inférieure à F+ et doit contenir ajo_i, elle est donc strictement supérieure

à F Ainsi on a F~
+

F+ et de même F+
_

F On en déduit que l'image

par tpa. _x de l'intervalle ]tî _1,tf _1[ est contenue dans l'intérieur de Is(ß), où

/? d(aï) g{aî). On en déduit ensuite que eî0 n'est pas une arête, c'est la
brique ß.

Démontrons ii). Soit (el,tl)iez une suite admissible, où eo est une brique et

où to est dans l'intérieur de /s(eo). Notons TT e[ la chaîne d'équivalence de eo,

îêZ
où e0 £q. On sait déjà que l'unique arête dont le but est la source de eo est

e_i e'_i et que l'unique arête dont la source est le but de eo est e\ e[. Écrivons

F" Yl a~ï e B et F+ J^[ a^, où al 1 al!=£'_!. Notons tr g ß^_ le point
iez iez

correspondant à F£o et £+ G ßs+ le point correspondant à F+Q. S'il y a n~ arêtes

dont eo est la brique adjacente à gauche et n+ arêtes dont eo est la brique adjacente
à droite, on aura a~_ a^+ e\. Supposons qu'il existe une brique dans la suite

(e-)j>i et notons e'io la première qui apparaît. On a aT,
n_ a^ n+ e'i+1, pour

tout i G {0,..., i0 - 2} et g{aio_1+n_) d(a+_1+n+) e'lo. L'image par V<+1
de [**+„-.*i++„+] C /S(£»+i) est égal à [*î+i+n-j*i++i+n+] c /d(£»+2)> Pour tout
i G {O,...,«o - 3}, et l'image par ip^^ de }tÎ0_2+n-,tf_2+n+[C /s(e-0_i) est

égale à ]^_1+n-,^+0_1+n+[C Int(/S(e;j) Le point tx appartenant à ]tn-,t++[, on
en déduit que et e[ pour tout i G {1,..., «o} et que tj0 est dans l'intérieur de

eî0. L'assertion ii) en découle immédiatement.

Les propriétés iii) et iv) sont évidentes. D

Étudions maintenant les feuilles de T vérifiant l'assertion i) de la proposition
précédente :

Proposition 5.3. L'application €>, qui à une droite F TT at G B associe la

iez
feuille @(F) TT 7afr ^e -Fj °ù ti(T) G Bsa. correspond à T, est un homéomor-

iez ^
phisme strictement croissant de B sur son image. De plus, chaque courbe ©(F) est

une droite de Brouwer.

Démonstration. Le fait que l'application © soit injective, continue est que l'inverse
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soit continue est évident. Montrons la croissance de ©. Pour cela remarquons que
l'on a la propriété suivante : pour toute courbe F TT a.t G B pour tout séZ

îêZ
et pour tout t G [min /s (ckj), tj(F)], l'arc 7^. est contenu dans (?(F). En particulier,
on a

fl(r)cfl(e(r))cfl(r)uj(r).
On a également

Supposons que F' TT ajeß soit strictement supérieur à F. Si les droites F

iez
et F' n'ont pas d'arête en commun, alors on a

D{Q{V)) C D{V) U g{V) C D{V) C

Si F et F' ont une arête commune at o.'Vl alors tl(T) < tj'(F') et donc _D(@(F)) C

Pour montrer que ©(F) est une droite de Brouwer, on utilise les propriétés des

voisinages Ua. énoncées au début du paragraphe. On a :

C f(D(T)) U f(UaJ

C Int(D(r))
Clnt(D(8(r))).

II reste à démontrer, comme dans le paragraphe précédent :

Proposition 5.4. On peut choisir les homéomorphismes de liaison Xa, a £ S,

pour que toutes les feuilles de T soient des droites de Brouwer.

Démonstration. Pour toute brique ß G B, on va reparamétrer le feuilletage défini
sur Tß, non plus seulement par t G Is (ß), mais également par t' G [—1,1] en
considérant un homéomorphisme croissant hß de [—1,1] dans Is (ß), obtenant ainsi

une famille {^'%)t'e[-i,i\ de sous-arcs de 7^

Considérons une feuille F TT 7** de IF rencontrant l'intérieur d'une brique
iez

Tß, et notons ß la classe d'équivalence de ß. Si ej est une brique, alors F contient

l'arc 7'4, où tt hEz(t[). Remarquons que F est disjointe de F^ et plus précisément

que D{T~) C Int(£>(F)).
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Si ßo £j0 et ß\ etl sont deux briques successives dans la chaîne d'équivalence

TT £j de /?, les arcs j'y et ~ï' à\ sont séparés sur F par un arc 7 inclus à la

fois dans M U£. et dans le voisinage à gauche g l TT et J. La première in-
io<»<»l îo<»<»l

elusion nous dit que 7(7) est inclus dans Int(_D(F^)) et donc dans D(T) \ F.

La seconde inclusion nous dit que 7 est inclus dans G(Fi) et que f~1('j) est
ß

donc contenu dans Int(G(Fi)). L'image inverse ne rencontre donc aucune brique

/? G /?, comme elle ne rencontre aucun voisinage Ua, où a est une arête contenue
dans la chaîne d'équivalence, f~1('j) est inclus dans G(F) \ F. De même, on peut
choisir les homéomorphismes hß pour que f{^'ß) C Int(_D(F^)) si t' < —1/3 et

Il reste à montrer que l'on peut choisir les homéomorphismes de liaisons A;,^,
ß G ß pour que F soit une droite de Brouwer. D'après ce qui précède, il suffît que
F soit libre. On rappelle que l'on a défini un ordre sur ß dans le paragraphe 4 et

que l'on peut construire une famille d'homéomorphismes fiß : [—1,1] —> [—1,1],

ß G ß, vérifiant la conclusion du lemme 4.1 pour cet ordre. On peut alors choisir
les homéomorphismes de liaison A;,^, ß G /?, pour que toute feuille F TT 7** de

iez
T rencontrant l'intérieur d'une brique Tß, ß G ß, et vérifiant donc l'assertion ii)
de la proposition 5.2, contienne, pour un certain t' G [—1,1] tous les arcs 7' f
ß G ß. D'après ce qui précède, si F rencontre son image, il existe ß G ß, ß' G ß et
t' G [-1,1] tels que

On obtient une contradiction identique à celle obtenue au paragraphe 4. D
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