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Une version feuilletée du théoréme de translation de Brouwer

Patrice Le Calvez

Abstract. The Brouwer’s plane translation theorem asserts that for a fixed point free orien-
tation preserving homeomorphism f of the plane, every point belongs to a proper topological
imbedding C of R, disjoint from its image and separating f(C) and f~'(C). Such a curve is
called a Brouwer line. We prove that we can construct a foliation of the plane by Brouwer lines.

Mathematics Subject Classification (2000). 37E30, 37E35.
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0. Notations

On munit le plan R? de son orientation et de sa structure euclidienne usuelle.
On note Ry la rotation d’angle #. On note u A v le déterminant, dans la base
canonique, de deux vecteurs v et v de R?.

On appelera disque de R? toute partie homéomorphe 4 D = {z € R?|||2| < 1}.

On appelera droite de R? tout plongement topologique propre de R, ou plus
précisément toute classe d’équivalence d'un tel plongement par reparamétrage
strictement croissant. Une droite I est alors déterminée par son image et une orien-
tation. Gréace au théoréeme de Schoenflies, on peut construire un homéomorphisme
h de R? préservant I'orientation tel que hoI'(t) = (0,¢), pour tout ¢ € R.. La partie
fermée h=1([0, +oo[xR) est alors indépendante de h, on dit que c’est la partie a
droite de T" et on la note D(I"). De méme, on note G(I') = h~ (] — o0,0] x R) la
partie & gauche de I'. Remarquons que D(I')\ T et G(I") \ I" sont les composantes
connexes de R\T" (on identifiera souvent une droite et son image quand il n’y aura
pas d’ambiguité liée & I'orientation).

On dira que deux droites I' et IV n'ont pas d’intersection transverse si I' C
D7) ou ' C G(I). 1l est facile de voir que cette relation est symétrique. Plus
précisément, I" et IV n’ont pas d’intersection transverse si et seulement si 'une des
quatre propriétés suivantes est vérifiée :

e D(T") C D(I) (et alors G(I') C G(I'));
o D(I'") C D(T') (et alors G(I") C G(I'));
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e D(INHUDI’) = R? (et alors GIIYNGI) =T'NTY);

e G(T)UG(I") = R2 (et alors D(I) N D(I") =T ATY).

1. Introduction

Commengons par rappeler le théoreme de translation de Brouwer ([B]) :

Théoréme 1.1. Soit f un homéomorphisme de R? préservant lorientation et
sans point fire. Par tout point du plan passe une droite T telle que f(T') C D(T)\T
et {71 Cc GM)\T.

On appelera homéomorphisme de Brouwer un homéomorphisme f vérifiant
les hypotheses du théoreme et droite de Brouwer de f une droite I' vérifiant la
conclusion. En dehors de la version originale de Brouwer, il faut noter la preuve
actualisée qu’en donne Guillou [G] (on peut également citer Franks [Fr2] ou Le
Calvez, Sauzet [L.S]).

La démonstration du théoreme est tres simple dans deux cas particuliers.

i) Supposons d’abord que f soit le temps 1 d’un champ de vecteurs £ de classe
C'. Le champ de vecteurs n = Rz o est de classe C' et sans singularité. Le
théoreme de Poincaré-Bendinxon nous dit que toute orbite de 7 est une droite, on
constate trés facilement que c’est une droite de Brouwer. On peut approximer n
par un champ de vecteurs 7j de classe C°° tel que £(2) A7j(2) > 0, pour tout z € R2.
Toute orbite de 77 est encore une droite de Brouwer. On obtient un feuilletage de
classe C*° de R? par des droites de Brouwer de f.

ii) Supposons maintenant que f soit C'-proche de I'identité. Plus précisément
supposons que D f(z) n’ait pas de valeur propre réelle négative, si z € R?. Considé-
rons alors les champs de vecteurs

o H®=r . DI —2)
s AT B L =)

Puisque &;(2) # &(2), par hypothese, et puisque R? est simplement connexe, on
peut trouver une fonction continue § : R? —]0, 27| telle que & (2) = Ro(zy-€1(2)
puis définir le champ de vecteurs continu £ : z — Rae .£1(2). On a alors £1(z) A
&(z) = €(2) A& (2) > 0. On peut ensuite approximer 2’ par un champ de vecteurs
¢ de classe C™, tel que &1(2) A g(z) >0 et g(z) A& (z) > 0. On laisse au lecteur
le soin de vérifier que toute orbite de § est une droite de Brouwer. La encore, on
a construit un feuilletage de classe C'*° par des droites de Brouwer.
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Df(2) - €(2)

3

Il existe un autre cas, plus difficile, ot I’on sait feuilleter le plan par des droites
de Brouwer, c’est le cas ou f est un difféomorphisme qui commute avec les transla-
tions entiéres (et qui releve donc un difféomorphisme du tore T? = R?/Z? isotope
& 'identité). On construit alors un feuilletage de classe C!, invariant par les trans-
lations entieres, dont les feuilles sont des droites de Brouwer (voir [LeC]). [’idée de
la démonstration provient de la géométrie symplectique. Tout difféfomorphisme de
T2 isotope & lidentité peut s’écrire comme la composée de 2n difféomorphismes
proches en topologie C'!, alternativement du twist de Dehn F* : (z,y) — (z+y,y)
et de son inverse. Ces difféomorphismes vérifient la propriété essentielle suivante :
ils dévient la verticale. Si on fixe un relevement f de F a R?, on peut définir
naturellement un champ de vecteurs ¢ sur la variété E = T? x R?* 2, ainsi qu’une
fibration ¢ : E — T? envoyant les singularités du champ sur les point fixes de F
qui se relevent en des points fixes de f. Dans le cas particulier ot F' est le temps 1
d’une isotopie hamiltonienne, le champ £ est le champ de gradient d’une fonction
H. Cette fonction est une fonction génératrice de F'. Dans le cas général, si on
suppose que f n’a pas de point fixe, on peut montrer que I’ensemble des points
z € F dont l'orbite par le flot de £ est bornée, est une variété invariante M, de
classe C1, telle que qum M — T? est un difféomorphisme. Le feuilletage en
droites de Brouwer de f, quand on le projette dans le tore T?, n’est rien d’autre
que 'image par ¢ p; du feuilletage de M en courbes intégrales de &.

La question se pose naturellement de savoir si on peut feuilleter le plan par des
droites de Brouwer, pour un homéomorphisme de Brouwer f quelquonque. Nous
répondrons positivement dans ce travail a cette question.

Théoreme 1.2. Si f est un homéomorphisme de Brouwer, il eriste un feuilletage
topologique formé de droites de Brouwer de f.

Le théoreme de translation de Brouwer est appliqué assez fréquemment dans
I’étude de la dynamique de difféomorphismes ou d’homéomorphismes de surfaces.
L’énoncé précédent dit en particulier que I’on peut choisir continiiment une droite
de Brouwer par tout point du plan et on peut espérer des applications futures de
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ce résultat. Remarquons le point suivant qui indique que la dynamique du feuille-
tage est en quelque sorte transverse a celle de ’lhoméomorphisme. Pour tout point
z € R?, on peut trouver un arc -y, joignant z & f(z) et transverse au feuilletage. La
concaténation des arcs ysn(,) définit une droite (elle n’a pas de point d’accumula-
tion) transverse au feuilletage qui contient I'orbite de z. Il est peu probable qu’on
puisse trouver une preuve du théoréme 1.2 par la méthode employée dans [LeC]|
expliquée plus haut, méme dans le cas des difféomorphismes. En effet, la compa-
cité du tore T? est essentielle pour écrire le difféomorphisme comme composée de
difféomorphismes déviant la verticale et donc pour construire le champ de vecteurs
¢. La méthode employée ici sera tout a fait différente, n’utilisera pas d’argument
de différentiabilité, et ne sera pas troublée par le manque de compacité du plan.

En liaison avec ce qui a été dit plus haut pour les difféomorphismes du tore,
on peut se poser la question naturelle suivante :

Si f est un homéomorphisme de Brouwer qui commute avec les éléments d’un
groupe discret G d’homéomorphismes de R? préservant l’orientation, agissant pro-
prement et librement, peut-on obtenir un feuilletage en droites de Brouwer qui soit
invariant sous Uaction de G %

On peut poser le probléme dans les termes suivants. Soit F; un homéomorphisme
d’une surface connexe orientable sans bord M, temps 1 d’une isotopie (F});c(0,1)

issue de 'identité et (f;);c(0,1) l'isotopie relevée au revétement universel M qui est
issue de I'identité. Supposons que fi n’ait pas de point fixe, c¢’est-a-dire supposons
que toute courbe fermée ¢ — F;(z) soit non contractile. Le revétement est alors un
plan (du point de vue topologique) et la surface est soit ouverte, soit égale au tore
T?. Peut-on trouver un feuilletage sur M qui se releve sur M en un feuilletage en
droites de Brouwer de f;. Autrement dit, peut on trouver un feuilletage, tel que
pour tout point z € M, il existe un arc transverse au feuilletage qui soit homotope
a extrémités fixées a l’arc ¢t — Fi(z)7 Un tel résultat permettrait de retrouver
rapidement certains résultats sur les homéomorphismes de surfaces (on peut citer
le résultat de Franks [Fr3] sur lexistence d’une infinité de points périodiques pour
un homéomorphisme de S? préservant I’aire et ayant au moins trois points fixes,
ou celui de Floer [Flo] et Sikorav [Si] sur I'existence d’au moins trois points fixes
pour un difféomorphisme hamiltonien d’une surface de genre g > 1, ou encore la
généralisation de ce résultat aux homéomorphismes, due & Matsumoto [M]). On
peut voir cet article comme un premier pas vers la version équivariante.

L’outil principal de la démonstration du théoreme 1.2 est la notion de décom-
position en briques, libre et maximale, du plan. La notion de décomposition libre
a été introduite par Flucher [Flu] pour montrer I'existence d’un deuxieme point
fixe dans la version topologique du théoreme de Conley-Zehnder en dimension
deux et utilisée ensuite dans [LiS] pour obtenir une démonstration du théoreme de
translation de Brouwer. La notion de décomposition en briques, libre et maximale a
été développée et utilisée par Sauzet dans sa these [Sa] et appliquée trés récemment
par Le Roux [LeR] dans ’étude de la dynamique d’un homéomorphisme du plan
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au voisinage d’un point fixe d’indice de Lefschetz £ 1. C’est la donnée d’un graphe
localement fini du plan tel que tout sommet est extrémité de trois arétes, tel que
toute cellule fermée délimitée par ce graphe est libre, c’est-a-dire disjointe de son
image, enfin tel que la réunion de deux cellules adjacentes n’est jamais libre.

Au paragraphe 2, nous rappelerons les principales propriétés de ces décomposi-
tions obtenues par Sauzet, en particulier ’existence d’'une décomposition en briques
libre et maximale pour un homéomorphisme de Brouwer. Dans le paragraphe 3,
nous verrons comment écrire le graphe comme réunion de droites de Brouwer
n’ayant pas d’intersections transverses deux a deux. Au paragraphe 4, nous pro-
longerons notre famille de droites pour construire un “quasi-feuilletage” ayant le
graphe comme lieu de singularités. Plus précisément, nous écrirons le plan comme
réunion de droites de Brouwer n’ayant pas d’intersections transverses deux a deux.
Tout point en dehors du graphe appartient a une unique droite de notre famille
et celle-ci définit un feuilletage au voisinage de ce point; un point du graphe qui
n’est pas un sommet appartient éventuellement a plusieurs droites, mais toutes
coincident au voisinage du point avec ’aréte contenant ce point et la famille définit
un feuilletage dans ce voisinage ; il n’y a pas de feuilletage au voisinage d’un som-
met. Au paragraphe 5 nous désingulariserons ce quasi-feuilletage pour obtenir un
feuilletage en droites de Brouwer en épaississant convenablement le graphe de la
décomposition.

Remarquons que deux droites de Brouwer I' et IV n’ont pas d’intersection trans-
verse si et seulement si I'une des propriétés suivantes est vérifiée :

e D(I') C D(I) ;
e D(I'") C D(I) ;

e GMNGIT)=0;
e DN D) = 0.

2. Décompositions en briques, libres et maximales

On va rappeler dans ce paragraphe les résultats de Sauzet, en esquissant les
démonstrations que 1’on trouvera de fagon plus développées dans [Sa]. On appe-
lera décomposition en briques du plan la donnée d’un ensemble stratifié (D) de
dimension un, appelé squelette de la décomposition D, avec une sous-variété de di-
mension zéro S tel que de tout sommet s € S sont issues exactement trois arétes.
Les adhérences des composantes connexes de R?\ (D) sont les brigues de la
décomposition. Une décomposition en briques D’ est une sous-décomposition de
D si (D) € X(D). Si f est un homéomorphisme de Brouwer, on peut construire
une décomposition libre, c’est-a-dire une décomposition dont toute brique est libre
(i.e. disjointe de son image par f). On peut trouver alors une sous-décomposi-
tion en briques qui est libre et dont toute sous-décomposition stricte ne ’est pas.
Si deux briques de cette sous-décomposition sont adjacentes (i.e. ont une aréte
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en commun), la réunion des deux briques n’est pas libre. On dira qu’on a une
décomposition en briques, libre et maximale. On peut démontrer, mais c’est bien
plus difficile car il faut modifier la décomposition initiale, que I’on peut construire
une décomposition en briques, libre et maximale, dont toute brique est bornée.
Chaque brique est alors un disque. On se fixe dés a présent une décomposition en
briques D, libre et maximale, on note B ’ensemble des briques, A ’ensemble des
arétes, et S ’ensemble des sommets. Pour ne pas avoir a séparer différents cas par
la suite, nous supposerons de plus que toute brique est bornée.

Définition. On dira qu’une partie X de B est conneze si, pour toutes briques
B, € X, il existe une suite (3;)o<i<n, ot fo = (B et B, = B, telle que §; et ;41
sont adjacentes si i € {0,...,n— 1}.

On identifiera par la suite une partie X de B et la partie fermée de R?, réunion
des briques de X. Dans certains cas, il n’y a aura pas d’ambiguité : si on parle de
lintérieur IntX de X, de sa frontiere dX ou de son image f(X), alors X est une
partie de R2. En cas d’ambiguité on levera celle-ci en écrivant X C B ou X C R2.
Remarquons que la connexité de X C B équivaut & celle de X C R?. Remar-
quons qu’elle équivaut aussi & celle de Int(X'). Remarquons enfin (c’est encore une
propriété des décompositions en briques) que X est une variété topologique de
dimension 1 pour tout X C B.

On définit naturellement une application ¢ : P(B) — P(B) en posant :

o(X) = {p € B| il existe 3 € X tel que N f(5') # 0}
={B e B|an f(X) #0}.

Remarquons que (X ) est connexe si X est connexe. On a alors le résultat fonda-
mental suivant :

Proposition 2.1. Pour tout 3 € B, l’ensemble U ©"({B}) ne contient pas 3.
n>1

Le classique lemme de Franks [Fr1] nous dit qu’il n’existe pas de suite (5;)o<i<n,
n > 1, de briques dans B, telle que 8y = 3, et telle que f(Int(3;))NInt(Bi41) # 0,
siie {0,...,n—1}. Le résultat précédent, en fait du & Guillou et Le Roux, exprime
que le résultat est encore vrai en remplagant la brique ouverte Int(3;) par la brique
fermée [3;.

La proposition 2.1 nous permet d’orienter naturellement le squelette de la
décomposition. Considérons une aréte « et notons 31, (3 les briques qui contiennent
a. Puisque 31 U 35 n’est pas libre, on peut supposer que f(51) N Pa # 0, c’est-a-
dire 5 € p({31}). Puisque By & ¢2({B1}), on sait que By & ({f}) et done que
f(B2) N B3 = 0. On peut donc orienter a: pour que 31 soit la brique adjacente & «
située & gauche de « et 35 celle située & droite. On écrira 81 = g(a) et B2 = d(a).
L’orientation de o permet de définir naturellement parmi les extrémités de o (qui
sont toujours distinctes) la source s(a) € S et le but b(a) € S.
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On dira qu’une suite (c;);er dans A, indexée par un intervalle I de Z, est
admissible si b(oy) = s(ay1) quand i et 4+ 1 appartiennent & /. On peut définir
naturellement un arc géométrique orienté I' = H «;, par concaténation des arétes,

icl
dont D'orientation coincide avec celle du squelette (on dira alors que I' est bien
orienté). On définit alors le voisinage a droite d(I') = {d(a;)|i € I} et le voisinage
a gauche g(I") = {g(e)|i € I} de T'. On trouvera dans [Sa] la démonstration du
résultat suivant qui utilise la proposition 2.1 :

Proposition 2.2. La frontiére d’une brique 3 est réunion de deux arcs bien

orientés T' = H a; et IV = H af de source s(ag) = s(af) et de but
0<i<n 0<i<n’

bla,) = blal,) communs, tels que g(I') = d(I”) = {B}. En d’autre termes, il

existe toujours une aréte o telle que g(a) = 3, une aréte o telle que d(a’) = 3 et

les arétes du premier type ne sont pas séparées sur 08 par celles du second type.

La source commune de ag et ) est appelée la source s(3) de 3, le but commun
de oy, et !, est le but b(5) de S.

Remarquons, grace a la proposition 2.1, que tout sommet o € S est source de
deux arétes et but d’une aréte, ou alors but de deux arétes et source d’une aréte.

Dans le premier cas, il existe 8 € B tel que o = s(3), dans le second cas, il existe
B € B tel que o = b(f3).
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On appelera attracteur toute partie X C B vérifiant o(X) C X, ce qui est
équivalent dans R? & linclusion f(X) C Int(X). Des relations

W(UXi) = |Jexa), so(ﬂXi) c)eX),
el el el el

vérifiées pour toute famille de parties de B, on déduit que la réunion et 'inter-
section d’une famille d’attracteurs est un attracteur. Remarquons également que
toute composante connexe X1 d’un attracteur X est également un attracteur. En
effet, fixons S € X;. On vient de voir que ¢(3) et 3 ne sont pas disjoints dans
R?, il en est donc de méme de »(X;) et de X;. La composante connexe de X qui
contient ¢(X1) est done Xj.

On définit de facon analogue une application ¢_ : P(B) — P(B) en posant :

¢ (X)={B e B|il existe ' € X tel que 3N f1(3") £ 0}
={BeB|BN f1(X) +#0}.

Les relations 8’ € ¢"({8}) et B € ¢ ({F’'}) sont équivalentes et la proposition
2.1 est vraie en remplacant ¢ par ¢_. On définit alors un répulseur comme étant
une partie positivement invariante par ¢_; les résultats sur les attracteurs se
transposent alors aux répulseurs. Remarquons que X C B est un attracteur si et
seulement si B\ X est un répulseur.

Soit X un attracteur et o € A une aréte contenue dans d.X. L’une des briques
adjacentes & « est dans X et 'autre pas. Puisque »(X) C X, on sait que d(a) € X
et g(a) € X. Considérons maintenant une composante connexe I' de d.X. Deux
cas sont possibles :

i) " est une droite bien orientée qui s’écrit I' = H ay, ot (ay);ez est admissible ;

icZ

ii) T est une courbe fermée simple qui s’écrit I" = H o, ol (04)o<i<n est

0<i<n
admissible et ol b(ay,) = s(ag).

Dans le second cas, on peut trouver une partition B = X; U X, ott R?\T' =
Int(X;)UInt(X>), ol X; contient d(I') et X5 contient g(I'). L’ensemble d(I") C R?
est une union de parties connexes rencontrant la partie connexe I, il est donc
connexe, plus particulierement contenu dans une composante connexe X3 de X
et Xy est une composante connexe de B\ X3. Puisque X est un attracteur, il en
est de méme de X3. On en déduit que X5 est un répulseur puis que Xi est un
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attracteur. L'une des parties X1 ou Xy étant un disque, le théoreme du point fixe
de Brouwer nous dit que f a un point fixe, ce qui contredit I’hypothese. On peut
aussi obtenir une contradiction en utilisant le fait que tout attracteur ou répulseur
est fini, d’apres la proposition 2.1.

On se trouve donc dans le cas 1). Pour les mémes raisons, on peut trouver une
partition B = X; U X5, oi R\ I' = Int(X;) U Int(X>), olt X; est un attracteur
qui contient d(I") et X5 un répulseur qui contient g(I'). Puisque d(I") C D(T') et
g(I') € G(T'), on en déduit que Xy = D(T") et X9 = G(I"). Ainsi I' est une droite
de Brouwer.

Donnons nous maintenant une droite de Brouwer I' contenue dans le squelette
de D. Cette droite est une concaténation d’arétes, a priori non nécessairement bien
orientées, et les ensembles D(I") et G(I") correspondent & deux parties complé-
mentaires de X. Le premier est un attracteur et le second un répulseur et I' la
frontiere commune de ces ensembles, on en déduit que I' est bien orienté et s’écrit
r = 1_[%»7 ou (ay)icz est admissible. On appelera D-droite de Brouwer toute

icZ
droite de Brouwer contenue dans le squelette de D.

Toute aréte « est contenue dans une D-droite de Brouwer, il suffit en effet de

remarquer que X = U @"({d()}) est un attracteur qui contient d(«) et qui ne
n>0

contient pas g(«), puisque d(a) € ¢(g({a})). L'aréte o est donc sur la frontiere de

X et la composante connexe de X qui contient « est une D-droite de Brouwer.

Remarquons également qu’'un arcI" = H ay, ol (o );er est une suite admissible
iel
indexée par un intervalle de Z, se prolonge en une D-droite de Brouwer si et seule-
ment si, dans B, on a g(I") ﬂ U @™ (d(T")) = 0. Cette condition est évidemment
n>0
nécessaire puisqu’elle est vérifiée si I' est une droite de Brouwer. Elle est également
suffisante puisque I’ensemble X = U ©"(d(I")) est un attracteur qui est alors dis-
y )
joint de g(I') et que I'une des composantes connexes de 90X contient I'. On en
déduit en particulier, pour une suite admissible (o;);cz, que Parc T’ = H oy est
icz
une D-droite de Brouwer si et seulement si, pour tout n» > 1, 'arc I'), = H oy
—n<i<n
se prolonge en une D-droite de Brouwer. On va formaliser cela ci-dessous.
Munissons A de la topologie discrete, puis A% de la topologie produit et
considérons le décalage

§: A% = A% (ay)iez = (@it1)icz.

L’ensemble des suites admissibles («;);cz, telles que H a; est une droite de Brou-
i€Z
wer, est une partie fermée A de AZ invariante par §. Remarquons que pour tout
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a € A, 'ensemble A, formé des suites (;);ez € A vérifiant cg = o est compact.
En effet, il existe au plus deux arétes dont la source ou le but est donné.

Notons B I'ensemble des D-droites de Brouwer. L’application

Mm:A—B, (a)icz— Hai
icZ
passe au quotient et définit une bijection entre I’ensemble .A4/d des orbites de
0 contenues dans A et B. On peut donc définir une topologie naturelle sur B
en transportant la topologie quotient induite sur A/ par celle de A. Il s’agit
d’une topologie en général non séparée dont une base de voisinage est formée des
ensembles B,,, a € A, ou B, désigne ’ensemble des D-droites de Brouwer contenant
a. Remarquons que la restriction de IT a A, induit un homéomorphisme entre 4,
et B,. Les ensembles B, sont donc ouverts, compacts, mais non nécessairement
fermés.
Terminons ce paragraphe par le résultat suivant :

Proposition 2.3. SiI' et IV sont deux D-droites de Brouwer, les conditions sui-
vantes sont équivalentes :

i) ' et TV ont une intersection transverse;

i) dIT)Ng(T") #0 et g(T)NA(T’) # O dans B.

Démonstration. Montrons I'implication i) = ii). Supposons que I' rencontre les
parties ouvertes D(I'") \ T et G(I'") \ I'" de R>. Il en est de méme de d(I'). Il
en est également de méme de Int(d(T")) qui est dense dans d(I"). Puisque d(T")
est connexe, il en est de méme de son intérieur. Ainsi I rencontre Int(d(T)).
Par un raisonnement analogue, on en déduit que Int(g(I")) N Int(d(T)) # 0. En

utilisant la densité de U Int(3) dans d(T") et celle de U Int(3) dans g(I'),

Bed(T') Beg(I')
on en déduit d’abord que U Int(8) rencontre Int(g(I")), puis que U Int(3)
Bed(T) Bed(T)
rencontre U Int(3), en d’autre termes que les parties d(I") et g(I'") de B ont

Beg(T’)
une brique en commun.

Montrons maintenant la réciproque. Supposons que I' et IV n’ont pas d’inter-
section transverse et étudions les quatre cas énumérés a la fin du paragraphe 1.

Si D(T") € D(I), on a dans B, 'inclusion d(I')Ng(I") € D(T)NG{T') = 0. De
méme, si D(I') C D(T"), on a d(I") N g(T") = 0.

Si, dans R?, on a D(I')ND(I) = @, alors D(I")UD(I") n’est pas connexe. On en
déduit, dans B, que g(T)ND(T") = g(T")ND(T) = (. En effet, si 5 € g(T)ND(TV),
on peut écrire dans R? (ou dans B) I’ensemble D(IUD(I') = (D(I)U{AHUD(I)
comme réunion de deux parties connexes d’intersection non vide. De méme, si

G(T)Y N G(I') =, alors d(I') N G(I") = d(I") N G(T") = 0. O
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Corollaire 2.4. La partie de B x B formée de couples de droites de Brouwer
n‘ayant pas d’intersection transverse est fermée dans B x B.

Démonstration. SiT et I sont deux D-droites de Brouwer qui s’écrivent I' = H oy
i€Z
et IV = H aj, le fait que I" et I/ aient une intersection transverse est caractérisé
i€Z
par Pexistence d’entiers ig, i, tels que g(oy,) = d(a, ) et d’entiers iy, i} tels que
0
d(ey,) = g(oz;/1 ), ce qui est une condition ouverte. O

3. Droites de Brouwer tracées sur le squelette

Le premier résultat de ce paragraphe exprime qu’on peut recouvrir le squelette
par des droites de Brouwer n’ayant pas d’intersections transverses entre elles. On
indexe les arétes (a;);>0 par N.

Proposition 3.1. On peut construire une suite (I';);>0 de D-droites de Browwer,
telle que :

i) chaque droite T'; contient Uaréte o ;

i) deux droites T'; et T'; n'ont pas d’intersection transverse.
Commencons par démontrer le lemme suivant, par récurrence sur p :

Lemme 3.2. On peut construire, pour tout p > 0, une suite (X} );>o0 d’attracteurs,
telle que :

i) la frontiére de X! contient o ;

ii) les attracteurs XI', 0 < i <p, sont comparables pour la relation d’inclusion.

Démonstration. Le résultat est évident pour p = 0, il suffit de poser X? =
U ¢"(d(cy)). Supposons le résultat vrai jusqu’au rang p et considérons les 2p 4 2
n>0

attracteurs suivants, qui sont comparables :

b Rud ¢ RPN ¢ u b . YU AT 1 JU . fF

Fixons i € {0,...,p}. On sait que g(oy) & X. Si g(ow) &€ X4, alors a; C d(XPU

P11
X}, 1), on pose alors Xptt = x? UXJ, . Sigla) € X))y, alors d(o) € X))

p+1
puisque X}, est un attracteur. On en déduit que a; C (X} N X} ), on pose

p+1 _ yp P
alors X;7'" = X7 N X, 4.
Définissons maintenant Xgif . Pour les mémes raisons, si g(ap11) € X5, alors

apr1 C A(XFU XD, ) et on pose Xﬁill = X§ U XD, ;si glapr1) € X§, alors
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P P P+l _ yp P P+l _ 0
Q1 CO(X§N X, ) etonpose X7y = XgNX, . Enfin on garde X}~ = X/,
sit>p+ 1 [l

Démonstration de la proposition 3.1. On note I'Y la composante connexe de 9.X7
qui contient a;. On a g(T) N d(I'}) = @ si X7 C X7, puisque g(I')) N X7 =0 et
d(I'}) € X7. Laproposition 2.3 implique donc que I'}" et T' n’ont pas d’intersection
transverse si ¢ < p et j < p. On définit maintenant une suite (I'”),>0 & valeurs
dans HB%, muni de la topologie produit, en posant I'* = (I'7);>0. Elle admet
i>0
une valeur d’adhérence I' = (I';);>0, puisque chaque B, est compact. Le corollaire
2.4 permet d’affirmer que la suite (I';);>¢ vérifie la conclusion de la proposition.[]

On note B I'adhérence dans B de I'ensemble des I';, @ > 0. D’apres le corollaire
2.4, il est formé de D-droites de Brouwer n’ayant pas d’intersections transverses
entre elles. Les ensembles B, = BN B,, a € A, ne sont pas nécessairement fermés,
il sont par contre compacts et ouverts et définissent une base de la topologie de
B. Le reste du paragraphe 3 est consacré a 1’étude de cet espace et du lien entre
la topologie et un ordre naturel qu’on va définir ci-dessous.

On munit B de 'ordre suivant :
<1’ < D) C D).

Cet ordre n’est pas nécessairement total, mais restreint a chaque ga il le devient.
En effet, si I" et I appartiennent & B, les ensembles D(I') N D(I") et G(I)NG(I)
ne sont pas vides puisqu’il contiennent respectivement d(a) et g(a). Puisque T’
et TV n’ont pas d’intersection transverse, I'une des inclusions D(I") ¢ D(T) ou
D(I") € D(I) est vérifiée. Remarquons que By, est un intervalle de B. En effet,
siT € By, I' € B, et I' € B vérifient I' < T < TV, alors D(T') € D(I') et
G(I'") C G(I"). On en déduit que d(a) € D(I'”) et g(er) € G(I'") et done que I'”
contient a.

Proposition 3.3. La topologie de B, est la topologie de lordre.

Démonstration. 11 suffit d’exhiber une application continue strictement croissante
de B,, dans R. A toute droite I' = H a;, Ol ag = av, on associe la suite (p;)icz €
icZ
{0,1}% en posant p; = 1 si i > 0 et s'il existe o/ € A, tel que s(a’) = b(oy) et
g(e’) = d(ay11), ou alors si 1 < 0 et 8'il existe o € A, tel que b(o) = s(ay11) et
g(a’) = d(ay) ; en posant p; = 0 dans tous les autres cas. On consideére alors le réel
Pi
4lil
i€Z 2 B
soit injective et croissante provient du fait que deux courbes dans B, n’ont pas
d’intersection transverse. (|

On obtient ainsi une application continue de ga dans R. Le fait qu’elle



Vol. 79 (2004) Translation de Brouwer 241

Remarques. i) On peut définir, pour toute aréte a, les droites

I', = min B, et Il = max By,

ii) Pour toute suite (I';,),>0 de B convergeant vers I' € B, on peut trouver
un voisinage ga de T' qui contient tous les I'),, pour n assez grand. On peut donc
comparer I'), et T'. On dira que T',, tend vers T' par valeurs supérieures (resp.
inférieures ) si 'y, > T (resp. 'y < T')) pour n assez grand. On dira que I' € B est
isolée a droite (resp. a4 gauche) s'il n’existe aucune suite (I'y,),,>0 convergeant vers

I par valeurs supérieures (resp. inférieures).

Proposition 3.4. Les droites isolées a droite (resp. a gauche) sont les droites T')
(resp. T, ), o € A.

Démonstration. 1l est clair que si o € A, alors I'T est isolée & droite puisque B,
est un voisinage de I'7. Pour prouver la proposition, il suffit de montrer que si
I'= H a; n'est pas de la forme 'L, € A, on a :

i€Z

Lemme 3.5. Pour tout intervalle fini I de Z, il existe IV € B vériftant IV > T et

contenant H Q.
acl

Démonstration. On fait une récurrence sur le cardinal p de I. Le résultat est vrai
pour p = 1, puisque I' # '}, pour tout i € Z. Le résultat est également vrai pour
p = 2. En effet, fixons ¢ € Z puis choisissons I'; > I' contenant a; et I';11 > T
contenant «;. 1. Le sommet o = b(ay) = s(oyy1) est extrémité d'une troisieme
aréte .. Si o est le but de «, la droite I'; contient nécessairement o1 puisque
I'aréte qui suit oy sur I'; ne peut pas étre o. De méme si ¢ est la source de «, la
droite I';11 contient o.

Supposons maintenant le lemme démontré pour p > 2 et vérifions le pour p+1.
On écrit I = {4,714+ 1,...,7+ p}. On peut trouver I'; > I' contenant H o

1<j<it+p
et I';11 > I' contenant H a;. Puisque I'; et I'; 1 contiennent I'arc H oy
i<j<i+p 1<j<i+p

(qui est non vide!), ces arcs sont comparables et le plus petit d’entre eux contient

H Cvj. O

i<j<it+p

Proposition 3.6. On a les propriétés suivantes pour deur arétes o et o' :
i) si gla) = g(o), alors T, =T, ;

ii) si d(o) = d(), alors T, =T, ;
iii) si g(o) = d(o), alors T, <T_, et [T, T, [=0.
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Démonstration. Prouvons I’assertion i). Considérons une brique 8. On rappele que

la frontiere de 8 est formée de deux arcs bien orientés H oy et H aj, ol
0<i<n 0<i<n’

d(ey) = gloy) = B, et olt s(avg) = s(ag) = s(B) et baw,) = b)) = b(5).

Le répulseur X = ﬂ G(I'},) contient 3 et ne contient aucune brique d(ey),
0<i<n
sa frontiere contient donc ’arc H a;. La composante connexe I' de 90X qui
0<i<n
contient H «; est comparable a chaque FL puisqu’elle contient «; et on a
0<i<n

I' < T par maximalité de I dans B,.. De plus, on a g(I') ¢ X C G(rf,). On
en déduit que I'}, < T'. Remarquons que la droite I' = I'/ contient 'aréte o~
dont le but est s(/3) et I'aréte o dont la source est b(3).

[’assertion ii) se démontrant de fagon analogue, prouvons iii). Remarquons
que les droites Fgo et I'_, sont comparables puisqu’elles contiennent toutes deux
0

o . Comme g € D', )\ D(I'} ), on en déduit que I'} < I'_,. Toute droite
0 0

I'e [} ,T', ] contient o~ :si 8 € D(I'), alors I' contient of, et donc I' =T'_, ; si
0 0
B € G(T), alors I contient ag et donc I' =T, . O

La proposition nous dit en particulier que I’on peut indexer les droites I'T et
I',,, pas seulement par les arétes, mais également par les briques. On posera :

Fg:F* si d(a) =, L'y =T sigla) = 3.

(o4

L’assertion iii) nous dit que I'; < Fg et que |I';, Fg [= 0.
On va conclure ce paragraphe en étudiant la relation d’équivalence naturelle-
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ment définie sur I’ensemble de briques :

o~ + 1t - -
p~p T —Fﬁ/ etFﬁ —Fﬂ,.

Remarquons que deux briques adjacentes ne sont pas équivalentes. En effet, pour
toute aréte o € A, on a :

+ -t sT 7t
Lo > Tge) =Ta 2Ta =T

Proposition 3.7. Les trois propriétés suivantes sont équivalentes :
1) G By
i) g edT;)ng(ly);
iit) 8/ € D(T;)NG(Ty).
Démonstration. Puisque toute brique 3’ ~ (3 appartient & d(Fg/) N g(I‘g,)7 I'im-
plication i) = ii) est vérifiée. Pour montrer I'implication réciproque, remarquons
que si f' € d(Fg)7 alors F;, et Fg ont au moins une aréte commune « telle que

d(a)) = B'. On en déduit que Fg et I‘g, sont comparables et comme F;}C =TI,,on
a Fg, < Fg. De méme, si 3/ € g(lﬂg)7 onaly <T';. Ainsisila condition ii) est
vérifiée, on obtient
— <7 T+t <+
Iy <T'g <Tg <Ty,
et comme l'intervalle |I';, Fg[ est vide, on a
- _ - + _pt
Ig=Tgetls =0
Pour montrer ’équivalence entre ii) et iii), il faut montrer ’égalité
DI{)NG(Tg) =d(l;)Nng(ly),
pour toute brique g € B. Il suffit bien str de montrer I’inclusion

D(TL)NG(ry) cd(ly)ng(Ty).

Une brique adjacente & 3 n’appartient pas a D(Fz;) N G(Fg). En effet, pour
toute aréte « telle que d(a) = 3 (resp. g(a) = ), on a g(a) & D(FZ;) (resp. d(«) &
G(I';)). On en déduit que la composante connexe, dans B, de D(Fg) NG(I';) qui
contient 3 se réduit a 5. On en déduit immédiatement que la composante connexe,
dans B, de D(Fg) NG (F;) qui contient une brique 3 équivalente & 3’ se réduit a
4. Ainsi, d’apres I’équivalence 1) < ii), on sait que toute composante connexe de
D(F;) NG(L'5) qui contient une brique de d(Fg) Ng(l';) se réduit a cette brique.
I1 ne reste plus qu’a montrer que toute composante connexe X de D(Fg) NG(I,)
contient une brique de d(Fg) Ng(ls).

L’ensemble G(I';) est connexe et contient G(F;), On peut donc trouver une
suite (3;)o<i<p de briques de G(I';) telle que :
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*boeX;

e 3,1 est adjacente & 3;,si i € {0,...,p —1};

® 3, € G(FE)A

Quitte a racourcir la suite, on peut supposer que j3; € D(I‘g) si ¢ < p. Les j3;,
i <p, sont dans X et on a 8,1 € d(Fg) NG(I). L'aréte o, dont la source est
le but de 3, appartient & I'; et a F;}L, ainsi d(a™) € d(l“g) N D(I';). L’ensemble
connexe d(F;) n’est donc pas contenu dans G(I'5). On peut donc construire une
suite (8])o<i<p de briques de d(Fg) telle que :

L4 /6(/) - ﬁpfl )

o 3/ est adjacente & 3], si i € {0,...,p" — 1};

* 3, € D(I's);

e 3 eG(ly),sii<p.

Les briques 3}, ¢ < p/, appartiennent a X et on a 3, _; € d(l_‘g) Ng(lz). O

Soit B € B et a € A une aréte de I‘g. Deux cas sont possibles :
i) la brique d(«) appartient a g(l“g)7 elle est équivalente & 3 ;

ii) la brique d(«) appartient a d(Fg)7 I’aréte o appartient également & I'; et
gla) € g(Tz) Ng(Ty).

La réunion des arétes communes a F/g et Fg et des briques équivalentes a 3 est
une partie fermée Cg du plan, appelée chaine d’équivalence, ne dépendant que de
la classe d’équivalence de 5. On a

Cp = D(Fg) \ Int(D(Fg)) — G(Fg) \ Int(G(F:;)).
Les briques équivalentes & 3 ne sont jamais adjacentes, elles sont séparées par
des arétes communes a I‘g et Fg. Puisque les ensembles précédents ne dépendent

que des classes d’équivalence, on notera B\ les classes d’équivalence, et on posera
s 5 . 3 a S — e P 1t
CB = Cp, si f € 3. De méme on écrira Fﬁ =T, et FE =Iy.

On note F la réunion disjointe de A et B. Une chaine d’équivalence s’écrit alors
HE“ ou la famille (g;);cz & valeurs dans E est telle que b(g;) = s(g;41), pour
;;f)ﬁt 1 € Z.. Les ¢; qui sont des briques sont les éléments de la classe d’équivalence,
les arcs H €; définis entre deux briques successives sont les composantes connexes

icl
de T NTE.
B B
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~.

4. Construction d’un quasi-feuilletage

On commence par feuilleter chaque brique § € B par une famille continue
d’arcs orientés (’Y,t@)te[—l,l] issus de la source de (3 et aboutissant au but de 8. Si
D est le disque fermé unité de R2, on choisit un homéomorphisme h : § — D
préservant ’orientation qui envoie s(3) sur (—1,0) et b(3) sur (1,0). Remarquons
que chaque aréte o telle que d(a) = 3 est envoyée dans le demi-plan d’équation
y > 0 et chaque aréte « telle que g(a) = 3 dans le demi-plan d’équation y < 0.
On note alors vj l'arc défini sur [—1, 1] par :

(s) = b (s t/1= D))
Fixons maintenant une classe d’équivalence ﬁ Chaque ensemble
rt— (r3nr%) J o
B BB Ufﬁ
Bep

définit naturellement une droite dont l'orientation coincide avec celle des arétes
communes a Fé et I‘g ainsi qu’avec celle des arcs 'yfg,

Ces droites n’ont pas d’intersections transverses entre-elles. En effet D(F%) -

D(F%) si ¢ < t'. Dans le cas ol f(D(F%)) C Int(D(I%))? ce sont des droites de

Brouwer. Nous allons voir — c’est le point principal de ce paragraphe — que 1'on
peut, par un reparamétrage en t de chaque famille ('y'g)te[,l,”, obtenir une famille

(Ftﬁ)te[fl,l] de droites de Brouwer, méme si la relation f(D(F%)) C Int(D(Fé))
n’est pas vérifiée.

On commence par établir le lemme tres simple suivant :

Lemme 4.1. Soit X un ensemble ordonné fini ou dénombrable. Il existe alors une
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famille () zex d’homéomorphismes croissants de [—1,1] tels que :

z <2 = py (1/3) < pg (=1/3).

Il suffit de prouver :
Sous-lemme 4.2. Soit X un ensemble ordonné, Y C X une partie finie de X et
(b2 )zcy une famille d’homéomorphismes croissants de [—1,1], tels que :
z <2 = py (1/3) < pg (=1/3).

Pour tout zo € Y, il existe un homéomorphisme croissant pg, de [—1,1] tel que,
pour tous z et ' dans Y U{zo}, on a :

T <$/$Mz (1/3) </j’z/(_1/3)'

Démonstration. On note
Y ={zeY|lz<a}et YT ={zeY|z >}
et on envisage tous les cas possibles :
i) si Y~ =Y =0, on choisit u,, arbitraire;
il) si Y™ =0 et YT £ 0, on choisit p, tel que pz, (1/3) < m;n+ e (—1/3);
S
iii) si Y~ #£ 0 et YT =0, on choisit p, tel que max i, (1/3) < przy (—1/3);
zeY ~
iv)siY™ #0et YT #£0, on choisit p,, tel que

MaX o (1/3) < piay (—1/3) < pay (1/3) < min g (—1/3).
ey z€Y Tt

Il n’y a pas d’obstruction & la construction de p,, dans le cas iv). En effet, il
existez— €Y~ et T € YT tel que
max iz (1/3) = o (1/3) et min g (—1/3) = g (~1/3).
zEY — zeYt

Puisque 2o < 27 et 2~ < 29, on sait que 2~ < 2" et que - (1/3) < gt (—1/3).
a

Démonstration du lemme 4.1. Puisque f(Fg\) C Int((D(Fé)) et f(F%) C
Int(D(l“%))7 on peut toujours reparamétrer chaque famille (’Yé)te[—l,lp B e @
par un homéomorphisme v : [—1,1] — [—1, 1] de telle facon que
te[-1,-1/3] = f(+h) C Int((D(I'3))
et
te[1/3,1] =5 C Int(G(f(F%))).
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La relation suivante
p=p epe s},
n>0

définie sur B, est un ordre, le caractere anti-symétrique provenant de la proposition
2.1. On peut construire une famille d’homéomorphismes psz : [—1,1] — [-1,1],
B € 3, vérifiant la conclusion du lemme 4.1 pour l’ordre restreint a 3. Il reste a

vérifier que chaque droite
-1
t _— s Mg ()
It — (Fgmrg) U5

pep
est une droite de Brouwer.

Puisque f(I'') N D(I'*) # 0 et f~1(T") N G(I'*) # 0, il suffit de montrer que
F(IY) NIt = (. Si ce dernier ensemble nest pas vide, il existe 8 € 38, 3’ € 8 et
t € [-1,1] tels que

gt () H;,l(t

f('Yﬁ )0'75 )#@

On en déduit ugl(t) > —1/3 et ulg,l(t) < 1/3, clest-a-dire pg(—1/3) < t <
p(1/3). On sait d’autre part que f(3)N 3 # 0 et done que 3’ < 3. Ceci contredit
la propriété de la famille (u3) P donnée par le lemme 4.1. O

Nous supposerons dorénavant notre famille ('y/g) BB tc[—1,1) Teparamétrée pour
que chaque F% soit une droite de Brouwer.

Proposition 4.3. Deur droites th et F%/ n‘ont pas d’intersection transverse.

Démonstration. Supposons d’abord que, dans B, on D(Fé) N D(Fé) ={.Onavu

dans la démonstration de la proposition 2.3 que cette relation était encore vraie
dans R? et que g(Fé) N D(I%/) = () dans B. On en déduit que dans B, on a
D) N D) € (D(Fé) U g(Fé)) n D) =9.

On en déduit, toujours par le méme raisonnement que D(F%) ﬁD(F%/) = () dans B
et dans R2. Ainsi, F% et F%/ n’ont pas d’intersection transverse puisque D(F%) N
D(Fﬁ/) = (. La proposition 4.3 est encore vérifiée, pour les mémes raisons, si
G(F%) N G(F%/) =0.

L’une des égalités D(Fé) N D(Fé) =0 ou G(F%) N G(Fg\l) = () est vérifiée des
que 1'une des deux droites F/; I‘% n’est pas comparable & I'une des deux droites

F,é” F%/. Il reste donc a montrer la proposition dans le cas ou les quatres droites
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', TL, I et I't sont comparables. Puisque [T, L=~ , T [= 0, il y a trois
B B B 8" B B’

BB B’
cas a envisager :
) g=p"
i) T <TL<To <TI't;
B BT R

iii) [~ <L <T < Tt
B’ B 1<) B
On a vu plus haut que la proposition était vraie dans le premier cas, il est en
de méme dans le second cas puisque

DY) ¢ D(T%) € D(I'%) € DI,
(%) € D(T%) € DT € DTS,
ainsi bien siir que dans le troisieme. (Il

La famille (F%)ﬁ , est formée de droites de Brouwer n’ayant pas d’intersections

transverses entre elles qui recouvrent le plan. Tout point z & (D) appartient &
une unique droite et la famille définit un feuilletage au voisinage de z. Un point
z € %(D) qui n’est pas un sommet peut appartenir a plusieurs droites, mais toutes
ces droites coincident au voisinage de z avec I'unique aréte contenant z, la famille
définit encore un feuilletage au voisinage de z.

5. Construction d’un feuilletage en droites de Brouwer

Si on se donne un feuilletage en droites du plan, on a un ordre naturellement
défini sur I’ensemble des feuilles, analogue a ’ordre défini sur 5 dans le paragraphe
3, a savoir

<I'< D) c D),

ainsi qu’une topologie, quotient de la topologie usuelle. L’espace des feuilles est
alors séparé si et seulement si 'ordre est total. Par contre toute droite admet
un voisinage compact totalement ordonné. Nous allons construire un feuilletage
en droites de Brouwer, contenant une partie fermée isomorphe (du point de vue
topologique et du point de vue de 'ordre) a B. Nous construirons pour cela une
décomposition en brique plus fine que la décomposition initale (libre mais pas
maximale) obtenue en épaississant le squelette initial.

Définition. On dira qu’une aréte o € A est singuliére si I', = I'T, autrement
dit si B, se réduit & une unique droite; dans le cas contraire on dira qu’elle est
réquliére.

On choisit pour toute aréte o un voisinage connexe, simplement connexe et
libre U, C R? de a, tel que f(U,) C D(I',)) et f~1(U,) C G(I'}). Ainsi, pour

toute D-droite de Brouwer I' € B, on aura f(U,) C D(I') et f~+(U,) C G(I).
On choisit ensuite pour tout sommet o € S, un voisinage U, de o, connexe et
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simplement connexe, inclus dans U,, NU,, NU,,, ol aq, as et as sont les arétes
d’extrémité o et ne rencontrant aucune brique qui ne soit adjacente a o et aucune
aréte autre que aq, ay et as.

Supposons que o = b(a1) = s(az) = s(ag). Quitte & conjuguer f par un
homéomorphisme préservant l’orientation, on peut supposer que o est lorigine
(0,0), que le carré K, = [—1,1]? est inclus dans U,, et que I'on a

a1 N[-1,1]? = [-1,0] x {0},
1

01 [1, 112 = [0,1] x {0},
ag N [—1,1]* = {0} x [0,1].
§ s

L’aréte oy est réguliere puisqu'il existe une droite dans B contenant aqas et
une autre droite contenant «jas. Remarquons également que o est la source de

B = g(ag) = d(as).

Supposons que as et ag sont toutes deux régulieres. On définit trois quadri-
lateres T, T2 et T2 de la facon suivante :

e les sommets de T} sont (—1,0), (0,0), (0,1/4) et (—1,1/4);

(0
o les sommets de 772 sont (—1,1/4), (0,1/4), (0,1) et (—=1,1/2);
e les sommets de 77 sont (—1,1/2), (0,1), (—=1/2,1) et (—1,3/4).

Le segment {—1} x [0, 3/4], noté I°(cvy) et orienté suivant les y croissants, est le
segment d’arrivée de vy ; le segment {0} x [0, 1/4], noté I*(as) et orienté également
suivant les y croissants, est le segment de départ de oy ; le segment [—1/2,0] x {1},
noté I1°(as) et orienté suivant les = décroissants, est le segment de départ de oz ; le
segment {0} x [1/4, 1], noté I°(3) et orienté suivant les y croissants, est le segment
d’arrivée de f3; enfin, le segment {—1} x [1/4,1/2] est le centre de I°(ay).
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I*(a3)
4
| G
i1 3
I(en)
T} p (a2)

On va feuilleter les triangles T} par des arcs, orientés suivant les x croissants,
de la facon suivante. On feuillete 7! par des segments horizontaux, 75 par des
segments paralléles aux bords obliques, enfin T2 par les segments joignants t €
{=1} x[1/4,1/2] & A;(t) € I°(3), olt A, est un homéomorphisme croissant entre le
centre de I°(a) et le segment d’arrivée de 3. On appelera A, un homéomorphisme
de liaison (on fera varier A, plus tard). Utilisant la démonstration de la proposition
3.3, on peut construire, pour ¢ € {2, 3}, une partie fermée E;Z de I*(c; ), contenant
les deux extrémités de I°(c;) et isomorphe (en tant qu’espace topologique ordonné)
a gai. Si on transporte chacun de ces ensembles sur I°(ay) par les feuilletages
définis sur T'! et T3, on obtient deux parties dont la réunion est isomorphe & gal
et notée z?g "

/
e

Supposons maintenant que aq est réguliére et asg singuliere. On ne définit dans
ce cas, que deux quadrilateres T et T2, le segment d’arrivée de oy devient I°(avy) =
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{—1} x [0,1/2], toujours orienté suivant les y croissants, les segments de départ de
ay et 3 sont inchangés, le segment de départ de a3 se réduit au point (0, 1), le point
de départ de a. Le feuilletage défini sur T est identicque, de méme celui sur 77 est
défini par un homéomorphisme de liaison A,. [L’ensemble g33 se réduit au point
de départ de a3. On considere la-encore un ensemble 532 de I?(as) contenant les
extrémités de I°(as) et isomorphe & gm. Cet ensemble transporté sur I°(ay) par
le feuilletage de T} donne, quand on lui ajoute le point (—1,1/2), un ensemble

b . s
B, isomorphe a B, .

~

Dans le cas ofl oy est réguliere et o singuliere, le quadrilatere T2 reste inchangs,
le quadrilatere T2 est délimité par les points (—1,0), (0,0), (0,1) et (—1,1/2), on
a

IP(ar) = {1} x [0,3/4],
I*(3) = {0} x [0,1],
I*(as) = [-1/2,0] x {1}.

Le point de départ de as est le point (0,0). Le feuilletage sur T2 reste inchangé,
il transporte 57, sur un ensemble qui donne Bgl quand on lui ajoute (—1,0).

=
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Enfin, si a1 et g sont toutes deux singulieres, on ne définit que le quadrilatere
T2, délimité la-encore par (—1,0), (0,0), (0,1) et (—1,1/2) et feuilleté par un
homéomorphisme de liaison A,. Les ensembles EZE et E;s se réduisent respective-
ment a (0,0) et & (0,1). On a Egl ={(-1,0),(=1,1/2)}, il n’y a que deux droites

dans B qui contiennent «;.

Supposons maintenant que o = s(ay) = b(ay) = b(as). On va construire des
objets analogues dans cette situation. On part de la situation précédente et on
effectue une symétrie par rapport a I’axe vertical. On change alors 'orientation
des arétes, on change également 'orientation des feuilles du feuilletage qui sont
donc orientées toujours suivant les z croissants, on ne change pas l'orientation
des segments de départ et d’arrivée mais on transforme les segments de départ en
segments d’arrivée et vice-versa. Tout segment de départ ou d’arrivée d’une aréte
est située, la-encore, sur la brique adjacente a gauche de I’aréte et son extrémité
inférieure est sur cette aréte.

a3
v

—
LY

A\
A

a2 aq

N

Considérons maintenant une aréte réguliere «. Quitte a conjuguer f par un
homéomorphisme préservant ’orientation, on peut supposer que « est le segment
orienté joignant (—2,0) & (2,0) et que le rectangle [—3, 3] x [—1, 1] est contenu dans
U,. On peut supposer également que le carré [1,3] x [—1, 1] centré en b(«) est un
translaté du carré K,y décrit plus haut, dans le cas ot b(«) est la source de deux
autres arétes ou dans le cas ol il existe une autre aréte o/ de but b(«) telle que
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d(a') = g(a), et que c’est I'image de Ky(,) par une rotation d’angle /2 puis par
une translation dans le cas ol g(o’) = d(a). On supposera également que le carré
[—3, —1] x [=1, 1] est I'image de K,y par une translation, dans le cas ot s(a) est
le but de deux autres arétes ou la source d’une aréte o’ telle que d(o’) = g(a), et
I'image de K,(,) par une rotation d’angle —x/2 puis par une translation dans le
cas ol s(«) est source d’une aréte o’ telle que g(o/) = d(«).

%//
——
e ——

On considere alors le quadrilatere T, dont les cotés respectifs sont I°(a), I°(a),
le segment (contenu dans «) joignant les extrémités inférieures de I°(a) et I°(a)
et le segment joignant les extrémités supérieures. Ce quadrilatere est contenu dans
g(a). Quitte a indexer A par N, on peut constuire ces quadrilateres par récurrence
pour qu'ils soient disjoints deux & deux. On considere alors un homéomorphisme 1),
strictement croissant envoyant B sur B%, on le prolonge en un homéomorphisme
croissant entre I°(a) et I°(a) et on considere le feuilletage par des segments,
orientés suivant les x croissants, joignant ¢ & son image.

Rappelons que E est la réunion disjointe de A et B. Toute feuille de T}, se
prolonge, arrivée en I1°(a), en une unique feuille contenue dans un des quadrilateres
Tzf(a) qui aboutit & un point de I°(g), ot s(¢) = b(a). On obtient une famille
continue d’arcs orientés, indexés par ¢t € I°(«), qui induit un homéomorphisme ),
entre I*(a) et U I (e).

{e€E | s(e)=b(e)}

La réunion des frontieres des quadrilateres T et T, ainsi que des arétes sin-
gulieres définit une décomposition en briques dont le squelette contient (D). Les
T et les T, sont des briques de cette décomposition. Comme nous allons le voir
immédiatement toute autre brique est contenue dans une brique § € B et toute
brique 8 € B contient une unique brique de la nouvelle décomposition qu’on no-
tera T.

Considérons donc une brique 8 € B. La frontiére de 3 est réunion de deux

ares [ aiet J] of ot glas) = d(af) = B, ot s(ao) = s(ap) = s(B) et
0<i<n 0<i<n’

blay,) = b(ay,) = b(3). Les quadrilateres T, 79 " Tbj(a;)7 0 < i < n sont tous

s(af

disjoints de Int(3). Les quadrilateres T,,, 0 < ¢ < n sont contenus dans (3 ainsi
que les quadrilateres Tg(a{), 1 < i < n; plus précisément, la réunion de ces quadri-

latetes est un disque dont la frontiere est formée de I° (o) C oy, de I°(a,) C o,
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de Darc H ay, enfin de 'arc ( H %“;a“S(%))fy olt v est la feuille de T,
0<i<n 0<i<n
joignant max I*(a,) & max I°(ay,). 11 existe alors une unique brique T de la nou-
velle décomposition qui est contenue dans 3, c’est un disque dont la frontiere est
réunion de ( H Vg < (O‘i))'y et du segment contenu dans H o qui joint
0<i<n 0<¢/<n’
les deux extrémités de ( H i 4 S(O‘i)>'y. Cette frontiere contient les segments
0<i<n
de départ et d’arrivée de 5.

On peut trouver un homéomorphisme h préservant l'orientation envoyant Tjs
sur [—1,1]% et les segments I°(3) et I°(3) respectivement sur {—1} x [—1,1] et
{1} x [~1, 1]. On considere alors le feuilletage orienté, image par h~! du feuilletage
horizontal orienté suivant les z croissants. Chaque feuille issue de ¢ € I°(3) se
prolonge quand elle arrive sur I°(3) en une unique feuille de sz( ) aboutissant
en un point ¢3(¢) du centre de I¥(a™), oit o est Punique aréte dont la source
est le but de 3 (c’est également I'unique élément de F ayant cette propriété).
Remarquons que

’quinfs(ﬁ): H ,Ymaxls(ozi) et ’ygqaxfs(ﬁ) _ H ’Ym,inls(a;).

27 ay
0<i<n 0<i<n/
On dira qu’une suite
(ei,ti)icz € B% x [ I*(e1)
i€z
est admissible si b(e;) = s(gi41) et ti11 = g, (t;), pour tout ¢ € Z. On vient de
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définir un feuilletage orienté F sur le plan dont les feuilles sont les droites de la
forme H 'yé , Ol (g;,t;)icz est admissible.
i€Z
Le résultat suivant est évident

Proposition 5.1. Soit I' = H’ygz et I' = H'y;: deuz feuilles de F. Sl existe
i€Z icZ

i€ Z eti €Z tel que g; = £l,, alors les deuz feuilles sont comparables et on a

' <TV si et seulement sit; <t,.

Etudions plus précisément les feuilles de F.

Proposition 5.2. Soit I' = H 'yéz une feuille de F. Plusieurs cas sont possibles :
i€z
i) Tous les e; sont des arétes, la droite I' =[], .5 &; appartient a B et chaque
t; est l’élément de gjz qui correspond o I.

i) Il existe ig € Z tel que &5, est une brique et tel que t;, est dans Uintérieur
de I*(g;,). Les g; qui sont des briques sont exactement les briques équivalentes

g; et t; est alors dans Uintérieur de 1°(g;). Si 3 est la classe d’équivalence ainsi
définie, alors Hei est la chaine d’équivalence de B\
i€Z
iii) 1l existe iy € Z tel que €, est une brique et tel que t;, = maxI®(e;,). Si

Fjio = H oy, on peut également écrire I’ = H 'yé}'z., out], € gjz correspond a Fjio.
i€Z i€Z

iv) Il existe iy € Z tel que £;, est une bm’que/ et tel que t;, = minI°(g;,). St

F;,D = H o, on peut également écrire I = H 'yéjz., out; € B correspond 4 F;,O.
i€Z icZ

Démonstration. Démontrons 1). Soit (g;,1;);cz une suite admissible, ot chaque ¢;
est une aréte. Nous allons montrer que chaque ¢; appartient & BZ , (si la propriété

est vraie pour un entier i, elle est vraie pour tous puisque ¢Ei(l§5(£i)) N1 ;+1 =

E;, ..)- I existera alors une droite I' = H a; € B tel que t; correspond a I'. En
i€Z
particulier on aura &; = ;.
Supposons donc qu’aucun #; n’est dans B:

€47
de ggo supérieur a ty et ¢, le plus grand élément de gjo inférieur a ¢y. Le point
t{ correspond & une droite I't = l_Icvi+ € Bet ty a une droite I'” = H oy .
icZ icZ
Comme ces droites sont différentes, on peut supposer par exemple qu’il existe
1 > 0 tel que a;r # «; ; on note ig le plus petit entier vérifiant cette relation
et a; la valeur commune de oz:“ et a; pouri € {0,...,49 — 1}. Remarquons que

notons ¢; le plus petit élément
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io > 1 et que d(oyf) = g(ay,). Sitf € Egz (resp. t; € E;z) correspond & I'T
(resp. I'7), alors I'image par v, du segment [t;,¢] C I*(o;) est égal au segment
[t 15t 1] © I*(uq1), sii € {0,...,50 —2}. On a donc &; = o et i; € [t t],
pour tout i € {0,...,ip — 1}. On en déduit également que |t;, ¢ [ ne contient
aucun élément de ggm c’est-a-dire que l'intervalle |, ['"| de B est vide. La droite

L', | estinférieure & [ et doit contenir a;, 1, elle est donc strictement supérieure
Z
0

al”. Ainsional, =TT etdemémel'S =T".0nen déduit que I'image
2’0 7:0
par ¢, _, de lintervalle Jt;. ¢ [ est contenue dans lintérieur de I°(3), ol
8= d(azg) = g(a;,). On en déduit ensuite que &;, n'est pas une aréte, c'est la
brique 3.
Démontrons ii). Soit (£;,%;);cz une suite admissible, ol £y est une brique et

ol tg est dans lintérieur de I*(gq). Notons Heé la chaine d’équivalence de g,
icZ
ol g = g¢. On sait déja que I'unique aréte dont le but est la source de g est
£_1 = &’_4 et que I'unique aréte dont la source est le but de g est 1 = /. Ecrivons
g, = H a; € Bet L = H af ,ona_; =al, =& ;. Notonst; € gj, le point
i€Z i€Z ¢
correspondant & I'_ et t:’ S sz le point correspondant a I‘;fo, S’il y a n™ arétes
dont £ est la brique adjacente & gauche et nt arétes dont g est la brique adjacente
a droite, on aura o _ = aL = £). Supposons qu'il existe une brique dans la suite
(£{)i>1 et notons €] la premiere qui apparait. On a o = €j, 4, pour

— T
itn— ai+n+

tout i € {0,...,490 — 2} et gla;, ,,,-) = d(a,jofum) = g;,. L’image par Vi
de [t;n,?t;:m] C I°(gj, ) est égal & [t;+1+n*7t7::—1+n+] C I%&l,,), pour tout
i € {0,...,40 — 3}, et I'image par ¢, , de ]t;)72+n,7ti+072+n+ [C I°(gf, 1) est
égale & ]t;ﬁHn_,tzﬁum [C Int(1*(¢},)) Le point ¢; appartenant a J¢__,¢' [, on
en déduit que £; = €] pour tout i € {1,...,49p} et que ¢;, est dans l'intérieur de
€4,- L’assertion ii) en découle immédiatement.

Les propriétés iii) et iv) sont évidentes. O

Etudions maintenant les feuilles de F vérifiant Passertion i) de la proposition
précédente :

Proposition 5.3. L’application ©, qui a une droite I' = Hai € B associe la
icZ
feuille O(T) = H ﬁfm de F, ou t;(T") € Egz correspond & I, est un homéomor-
icZ B
phisme strictement croissant de B sur son image. De plus, chaque courbe ©(T") est
une droite de Brouwer.

Démonstration. Le fait que 'application © soit injective, continue est que l'inverse
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soit continue est évident. Montrons la croissance de ©. Pour cela remarquons que
I’on a la propriété suivante : pour toute courbe I' = H a; € B, pour tout i € Z
icZ
et pour tout ¢ € [min I*(a;),2;(I')], 'arc 7, est contenu dans g(I'). En particulier,
on a
D(T) ¢ D(O(T)) c D(T") U g(T).
On a également

D)) c D) | Vs,
i€z

Supposons que IV = H aj € B soit strictement supérieur a I'. Si les droites I
icZ
et I'" n’ont pas d’aréte en commun, alors on a
D)) c DI ug(l) c DI') c D(OT)).

SiT et I ont une aréte commune «o; = a,, alors t;(T") < ¢ (I') et donc D(O(T")) C
D(e(1)).

Pour montrer que ©(T") est une droite de Brouwer, on utilise les propriétés des
voisinages U, énoncées au début du paragraphe. On a :

Foem) c f(DI) | f(Us,)
i€Z
C Int(D() | Int(D(T,,))
C Int(D(I))
c Int(D(OT))). O

Il reste a démontrer, comme dans le paragraphe précédent :

Proposition 5.4. On peut choisir les homéomorphismes de liaison \,, 0 € S,
pour que toutes les feuilles de F soient des droites de Brouwer.

Démonstration. Pour toute brique 5 € B, on va reparamétrer le feuilletage défini
sur T3, non plus seulement par ¢ € I°(53), mais également par ¢ € [-1,1] en
considérant un homéomorphisme croissant hg de [—1, 1] dans 1°(/3), obtenant ainsi
une famille (’Y/g)t/e[—l,l] de sous-arcs de 'yg(t ),

Considérons une feuille I' = H 'y; de F rencontrant l'intérieur d’une brique

icZ

T}, et notons 3 la classe d’équivalence de (3. Si £; est une brique, alors I' contient
Parc«’ éj., out; = h,(t;). Remarquons que I est disjointe de Fé et plus précisément

que D(Fé) C Int(D(T)).
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Si By = €4, et f1 = &4, sont deux briques successives dans la chaine d’équivalence

~ i 7

Hgi de 3, les arcs «/ ﬁé’ et +/ 511 sont séparés sur I’ par un arc  inclus a la

i€z

fois dans U U,, et dans le voisinage a gauche g( H Ei). La premiere in-
do<i<i G0<i<iy

clusion nous dit que f(v) est inclus dans Int(D(Fé)) et donc dans D(I') \ T

La seconde inclusion nous dit que + est inclus dans G(F%) et que f1(v) est

donc contenu dans Int(G(F%)). L’image inverse ne rencontre donc aucune brique

B e 37 comme elle ne rencontre aucun voisinage U,, oll « est une aréte contenue
dans la chaine d’équivalence, f~'(v) est inclus dans G(I') \ I". De méme, on peut
choisir les homéomorphismes hs pour que f(v'j) C Int(D(F[A:)) sit) < —1/3 et

1Y) Int(G(F%)) sit!>1/3.
Il reste & montrer que 1’on peut choisir les homéomorphismes de liaisons Ay(g),

pe /? pour que I" soit une droite de Brouwer. D’apres ce qui précede, il suffit que
I soit libre. On rappelle que 1’on a défini un ordre sur 8 dans le paragraphe 4 et
que l'on peut construire une famille d’homéomorphismes pg @ [—1,1] — [-1,1],
B € f, vérifiant la conclusion du lemme 4.1 pour cet ordre. On peut alors choisir
les homéomorphismes de liaison Ay(), B € 3, pour que toute feuille I' = H 'yéz de
iCZ
rencontrant 'intérieur d’une brique € [, et vérifiant donc 'assertion ii
F trant 'intéri d’ brique T, 8 € 3, et vérifiant d I tion ii)
-1 t
de la proposition 5.2, contienne, pour un certain ¢’ € [—1, 1] tous les arcs 'y'gﬁ ( )7
B e B D’apres ce qui précede, si I" rencontre son image, il existe 3 € E, G e B et
t' e [-1,1] tels que
M;l(t) “;/1

f('Yﬂ ) ﬂ’yﬁ/ “ I 0.

On obtient une contradiction identique a celle obtenue au paragraphe 4. Il

Références

[B] L. E. J. Brouwer, Beweis des ebenen Translationssatzes, Math. Ann. 72 (1912), 37-54.

[Flu] M. Flucher, Fixed points of measure preserving torus homeomrphism, Manuscripta Math.
68 (1990), 271-293.

[Flo] A. Floer, Proof of the Arnold conjectures for surfaces and generalizations to certain
Kahler manifolds, Duke Math. J. 51 (1986), 1-32.

[Fr1]  J. Franks, Generalizations of the Poincaré—Birkhoff theorem, Annals of Math. 128 (1988),
139-151.

[Fr2] J. Franks, A new proof of the Brouwer plane translation theorem, Ergod. Th. & Dynam.
Sys. 12 (1992), 217-226.

[Fr3] J. Franks, Area preserving homeomorphisms of open surfaces of genus zero, New-York J.
Math. 2 (1996), 1-19.



Vol. 79 (2004) Translation de Brouwer 259

[G]
[LeC]|
[LS]

[LeR]

[M]

[Sa]

[Si]

L. Guillou, Théoréme de translation plane de Brouwer et généralisations du théoréme de
Poincaré-Birkhoff, Topology 33 (1994), 331-351.

P. Le Calvez, Propriétés dynamiques de Panneau et du tore, Astérisque, Soc. Math.
France 204 (1991).

P. Le Calvez et A. Sauzet, Une démonstration dynamique du théoréme de translation de
Brouwer, Expo. Math. 14 (1996), 277-287.

F. Le Roux, Dynamique des homéomorphismes de surfaces, versions topologiques des
théoremes de la fleur de Leau—Fatou et de la variété stable, Prépublication, Université
Paris-Sud, 2001.

S. Matsumoto, Arnold conjecture for surface homeomorphisms, Proceedings of the
French-Japanese Conference “Hyperspace Topologies and Applications” (La Bussiere,
1997), Topology. Appl. 104 (2000), 191-214.

A. Sauzet, Application des décompositions libres & I’étude des homéomorphismes de
surface, Thése de I’Université Paris 13, (2001).

J.-C. Sikorav, Points fixes d’une application symplectique homologue a I'identité, J. Diff.
Geom, 22 (1985), 49-79.

Patrice Le Calvez

Laboratoire Analyse, Géométrie et Applications
CNRS-UMR 7539

Institut Galilée

Université Paris 13/CNRS

99, Av. J.-B. Clément

93430 Villetaneuse

France

e-mail : lecalvez@math.univ-paris13.fr

(Received: November 20, 2001)

To access this journal online:
http://www.birkhauser.ch




	Une version feuilletée du théorème de translation de Brouwer

