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Invariance of Milnor numbers and topology of complex
polynomials

Arnaud Bodin

Abstract. We give a global version of Le—Ramanujam jU-constant theorem for polynomials.
Let (ft), t G [0, 1], be a family of polynomials of n complex variables with isolated singularities,
whose coefficients are polynomials in t. We consider the case where some numerical invariants
are constant (the affine Milnor number ß(t), the Milnor number at infinity X(t), the number
of critical values, the number of affine critical values, the number of critical values at infinity).
Let n 2, we also suppose the degree of the ft is a constant, then the polynomials /o and

/l are topologically equivalent. For n > 3 we suppose that critical values at infinity depend
continuously on t, then we prove that the geometric monodromy representations of the ft are all
equivalent.

Mathematics Subject Classification (2000). 32S15, 14H20, 32C40.

Keywords. jU-constant theorem, family of polynomials, singularities at infinity.

1. Introduction

Let / : Cn —>Cbea polynomial map, n > 2. By a result of Thorn [Th]
there is a finite minimal set of complex numbers B, the critical values, such that

/ : /"*(€ \B) —> C \ B is a fibration.

1.1. Affine singularities

We suppose that affine singularities are isolated i.e. that the set {xGC™ | grad* x
0} is a finite set. Let \ic be the sum of the local Milnor numbers at the points

oij-\c). Let

Baff {c | Me > 0} and /x J^/xc
cec

be the affine critical values and the affine Milnor number.
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1.2. Singularities at infinity

See [Br]. Let d be the degree of / : Cn —> C, let / fd + f1'1 H \- f°
where /J is homogeneous of degree j. Let /(x, xq) (with x (xi,..., xn)) be the
homogenization of / with the new variable xq: /(x,xo) fd(x) + fd~1(x)xo +

+ f°(x)x$. Let

X {((x : xo),c) G P™ x C | f(x,xo)-cx$ o

Let Hoo be the hyperplane at infinity of Pn defined by (xo 0). The singular
locus of X has the form S x C where

We suppose that / has isolated singularities at infinity that is to say that S is

finite. This is always true for n 2. For n ^ 2 such polynomials have been
studied by S. Broughton [Br] and by A. Parusihski [Pa]. For a point (x : 0) G TL001

assume, for example, that x (xi,..., xn_i, 1). Set x (xi,... ,xn_i) and

Fc(x, x0) /(xi,..., xn_i, 1) - cxq.

Let jj,x{Fc) be the local Milnor number of fc at the point (x, 0). If (x : 0) G S then
Mä(-fc) > 0. For a generic s, jjx(Fs) v&, and for finitely many c, jj,x{Fc) > vx.
We set ACjä /xä(Fc) - z/ä, Ac ^(I:o)Es ^c,ä- Let

£oo {cgC I Ac >0} and A ^AC

be the critical values at infinity and the Milnor number at infinity. We can now
describe the set of critical values B as follows (see [HL] and [Pa]):

B Baff\JB00.

Moreover, by [HL] and [ST], for s ^ B, f~1(s) has the homotopy type of a wedge
of A + jj, spheres of real dimension n — 1.

1.3. Statement of the results

Theorem 1. Let (ft)te[o l] ^e a family of complex polynomials from Cn to C whose

coefficients are polynomials in t. We suppose that affine singularities and
singularities at infinity are isolated. Let suppose that the integers fj,(t), X(t), =f£B(t),

^Baffit), =f^Boo(t) do not depend on t G [0, 1], Moreover let us suppose that
critical values at infinity ß^ft) depend continuously on t. Then the fibrations
/o : fö\C \ B(0)) -^ C \ ß(0) and fx : /fX(C \ ß(l)) -^ C \ ß(l) are /?&er

homotopy equivalent, and for n ^ 3 are differentiably isomorphic.
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Remark 1. As a consequence for n ^ 3 and * ^ B(0) U B(l) the monodromy
representations

\*)) and

are equivalent (where Diff(/t^1(*)) denotes the diffeomorphisms of f^l{*) modulo
diffeomorphisms isotopic to identity).

Remark 2. The restriction n ^ 3, as in [LR], is due to the use of the /i-cobordism
theorem. The proof is based on the articles of H. V. Hà-T. S. Pham [HP] and of
D. T. Lê-C. P. Ramanujam [LR].

Remark 3. This result extends a theorem of H. V. Hà and T. S. Pham [HP] which
deals only with monodromy at infinity (which corresponds to a loop around the
whole set B(t)) for n 2. For n=^3, the fact that the monodromies at infinity
are diffeomorphic is proved in [HZ] (for M-tame polynomials, with affine Milnor
number constant) and in [Ti] (for generic fibers with homotopy type equivalent to
a fixed number of (n — l)-spheres, with the hypothesis that B(t) is included in a

compact set for all t).

Lemma 2. Under the hypotheses of the previous theorem (except the hypothesis
of continuity of the critical values), and one of the following conditions:

• n 2, and deg ft does not depend on t;
• deg ft, and S(t) do not depend on t, and for all (x : 0) G S(t)7 v%(t) is

independent oft;
we have that Boo(t) depends continuously on t, i.e. if c(t) G Boo(i~) then for all t
near t there exists c(t) near c(t) such that c(t) G Boo(t).

Under the hypothesis that there is no singularity at infinity we can prove the

stronger result:

Theorem 3. Let (ft)te[o,i] be a family of complex polynomials whose coefficients
are polynomials in t. Suppose that /x(t), #Baff(t) do not depend on t G [0,1].
Moreover suppose that n ^ 3 and for all t G [0,1] we have Boo(t) 0. Then
the polynomials /o and f\ are topologically equivalent, that is to say, there exist
homeomorphisms $ and ty such that

C" $
> C"

h

For the proof we glue the former study with the version of the /x-constant
theorem of D. T. Le and C. P. Ramanujam stated by J. G. Timourian [Tin]: a
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/i-constant deformation of germs of isolated hypersurface singularity is a product
family.

For polynomials in two variables we can prove the following theorem which is

a global version of Lê-Ramanujam-Timourian theorem:

Theorem 4. Let n 2. Let (ft)te[o,i] be a family of complex polynomials whose

coefficients are polynomials in t. Suppose that the integers /x(£), A(t)7 #B(t),
4j=Baff(t), #ßoo(t)7 deg/t do not depend on t G [0,1]. Then the polynomials /o
and /i are topologically equivalent.

It uses a result of L. Fourrier [Fo] that gives a necessary and sufficient condition
for polynomials to be topologically equivalent outside sufficiently large compact
sets of C2.

Remark 4. In theorems 3 and 4 not only /o and f\ are topologically equivalent
but we can prove that it is a topologically trivial family.

This work was initiated by an advice of D. T. Le concerning the article [Bo]:
"It is easier to find conditions for polynomials to be equivalent than find all
polynomials that respect a given condition."

We will denote BR {x G Cn \ \\x\\ < R}, SR dBR {ieC" ||x|| R)
and Dr(c) {seC \s - c\ < r}.

2. Fibrations

In this paragraph we give some properties for a complex polynomial of n variables.
The two first lemmas are consequences of transversality properties. There are
direct generalizations of lemmas of [HP]. Let / : Cn —? C be a polynomial with
isolated affine singularities and with isolated singularities at infinity. Let choose

r > 0 such that B is contained in the interior of Dr(0). For each fiber f~1(c) there
is a finite number of real numbers R > 0 such that /^1(c) has non-transversal
intersection with the sphere SR (see [M3], Corollaries 2.8 and 2.9). So, for a

sufficiently large number R(c), the intersection /^1(c) with SR is transversal for
all R ^ R(c). Let R\ be greater than the maximum of the R(c) with c G B, we
also choose R\ ^> r. We choose a small £, 0 < £ « 1 such that for all values c in
the bifurcation set B of / and for all s G De(c) the intersection /^1(s) n SRl is

transversal, this is possible by continuity of the transversality. We denote

K Dr(0)\{jDe(c).

Lemma 5. There exists Rq ^> 1 such that for all R ^ Rq and for all s in K,
f^1(s) intersects SR transversally.
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Proof. We have to adapt the beginning of the proof of [HP]. If the assertion is false
then we have a sequence (x^) of points of Cn such that /(#&) G K and ||xfc|| —> +00
as k —> +00 and such that there exist complex numbers A^ with grad^. Xf. Xkxk,

where the gradient is Milnor gradient: grad^. ^-,..., -^- J. Since if is a

compact set we can suppose (after extracting a sub-sequence, if necessary) that
/(xfc) —> c G if as A; —> +00. Then by the Curve Selection Lemma of [NZ] there
exists a real analytic curve x :]0, e[—? Cn such that x(t) ar'3+aiT'3+1 + - • • with
/3 < 0, a G R2n \ {0} and grad; x(t) A(t)x(t). Then /(x(t)) c + cit? H

with p > 0. So /(x(t)) —> c as t —> 0. Then we can redo the calculus of [HP]:

df(x(T)) /dx x T ,dx >-^ <^, grader)) Ä(r)(-,x(r)>

it implies

dr
\\x(t

dr

As ||x(t)|| feir'3 + • • • with 61 G R^ and /3 < 0 we have, for small enough t,
|A(t)| ^ 7^23^t jtp~213 where 7 is a constant. We end the proof be using the
characterization of critical value at infinity in [Pa]:

a:(T)|| ||^(^)||^1/JV|A(-r)| ||x(r)|| < ^-^N
As p>0 and /3 < 0, for all N > 0 we have that 11^(^)11 ^^^1/JV|| grad; x(t)|| ^ 0 as

t —> 0. It implies that the value c (the limit of /(x(t)) as t —> 0) is in ß^. But
as c G if it is impossible. D

Lemma 5 enables us to get the following result: because of the transversality
we can find a vector field tangent to the fibers of / and pointing out the spheres
Su. Integration of such a vector field gives the next lemma (see [HP] Paragraph
2.2 or [Ti] Lemma 1.8).

Lemma 6. The fibrations f : f~x{K) D ÊRo —> K and f : f~x{K) —> K are
dîfferenuably tsomorphic.

As K is diffeomorphic to C \ B we have the following fact:

Lemma 7. The fibrations f : f~l{K) —> K and f : f-1(C\B) —> C \ B are

differentiably isomorphic.

The following lemma is adapted from [LR]. For completeness we give the proof.

Lemma 8. Let R, R' with R Jï R1 be real numbers such that the intersections
f~l(K) C\Sr and f~l(K) C\Sr> are transversal. Let us suppose that f : f~l(K) C\

Bri —> K and f : f~l(K) fl Br —> K are fibrations with fibers homotopic to
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a wedge of v (n — 1)-dimensional spheres. Then the fibrations are fiber homotopy
equivalent. And for n ^ 3 the fibrations are differentiably equivalent.

Proof. The first part is a consequence of a result of A. Dold [Do, Th. 6.3]. The first
fibration is contained in the second. By the result of Dold we only have to prove
that if * G dDr then the inclusion of F' Z'H*) n BR> in F Z'H*) f~l BR is a

homotopy equivalence. To see this we choose a generic xo in Cn near the origin
such that the real function x i—> ||x — xq\\ has only non-degenerate critical points
of index less than n (see [Ml, §7]). Then F is obtained from F' by attaching cells

of index less than n.
For n 2 the fibers are homotopic to a wedge of v circles, then the inclusion of

F' in F is a homotopy equivalence. For n > 2 the fibers F, F' are simply connected
and the morphism Hi(F') —? Hi{F) induced by inclusion is an isomorphism. For

^ n - 1 this is trivial since F and F' have the homotopy type of a wedge of
(n — l)-dimensional spheres, and for i n — 1 the exact sequence of the pair
(F, F') is

with Hn(F,F') 0, iï"n_i(F) and i/n_i(F') free of rank z/, and Hn-^F, F')
torsion-free. Then the inclusion of i*1' in F is a homotopy equivalence.

The second part is based on the /i-cobordism theorem. Let X f 1(K)P\Br\
Bri, then as Z has no affine critical point in X (because there is no critical value in
K) and f is transversal to f 1(K) n SR and to f 1(K) n S*^ then, by Ehresmann
theorem, Z : -X" —? if is a fibration. We denote F \ F' by F*. We get an
isomorphism i74(9F') —> #*(.F*) for all « because Ht{F*,dF') Ht(F, F') 0.

For n 2 it implies that F* is diffeomorphic to a product [0,1] x dF'.
For n > 3 we will use the /i-cobordism theorem applied to F* to prove this.

We have dF* dF' U dF; dF' and dF are simply connected: if we look at the
function x i—> — ||x — xo|| on f 1(*) for a generic xo, then F Z 1(*) ^ ß«
and F' Z 1(*) ^1 Sfi' are obtained by gluing cells of index more or equal to
n — 1. So their boundary is simply connected. For a similar reason F* is simply
connected. As we have isomorphisms Hi(dF') —? Hi(F*) and both spaces are
simply connected then by Hurewicz-Whitehead theorem the inclusion of dF' in
F* is a homotopy equivalence.

Now F*, dF', dF are simply connected, the inclusion of dF' in F* is a homotopy

equivalence and F* has real dimension 2n — 2 ^ 6. So by the /i-cobordism
theorem, [M2], F* is diffeomorphic to the product [0,1] x dF'. Then the fibration

Z : X —> K is differentiably equivalent to the fibration f : [0,1] x [f~l{K) n
Sfl/) —> if ; so the fibrations f : f-1(K)nBR, —> K and f : f-1(K)nBR —> K
are differentiably equivalent. D
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3. Family of polynomials

Let (/t)te[o,i] be a family of polynomials that verify hypotheses of theorem 1.

Lemma 9 ([HP]). There exists R 3> 1 such that for allt G [0, 1] the affine critical
points of ft are in Br.

Proof. It is enough to prove it on [0, t] with t > 0. We choose R ^> 1 such that
all the affine critical points of /o are in B#. We denote

gradf
II grad/t II

Then deg^o A*(0). For all x G S'a, grad^o i^O, and by continuity there exists

t > 0 such that for all t G [0, t] and all x G Sß, grad^t i^O. Then the maps </>t

are homotopic (the homotopy is </> : Sß x [0, t] —? S*! with 4>{x,t) </>t(x)). And
then /x(0) deg</>o deg</>t ^ /x(t). If there exists a family x(t) G C™ of affine
critical points of 4>t such that ||x(t)|| —> +oo as £ —> 0, then for a sufficiently small
£, x(t) <£ Br and then /x(t) > deg</>t. It contradicts the hypothesis /z(0) /x(t). D

Lemma 10. There exists r>l smc/i i/iai i/ie subset {(c, t) G -Dr(0) x [0,1] | c G

is a fermd of Dr(0) x [0,1],

It enables us to choose * G dDr(0) which is a regular value for all ft, t £ [0,1].
In other words if we enumerate B(0) as {ci(0),..., cm(0)} then there are continuous
functions q : [0,1] —> -Dr(0) such that for i ^ j, cj(t) 7^ Cj-(t). This enables us to
identify tti(C \ ß(0), *) and tti(C \ ß(l), *) by means of the previous braid.

Proof. Let t be in [0,1] and c(t) be a critical value of fT, then for all t near t there
exists a critical value c(t) of ft. It is a hypothesis for critical values at infinity and
this fact is well-known for affine critical values as the coefficients of ft are smooth
functions oft, see for example [Br, Prop. 2.1].

Moreover there can not exist critical values that escape at infinity i.e. a t G

[0,1] such that \c(t)\ —> +00 as t —> t. For affine critical values it is a consequence
of lemma 9 (or we can make the same proof as we now will perform for the critical
values at infinity). For Boo(t) let us suppose that there are critical values that
escape at infinity. By continuity of the critical values at infinity with respect to
t we can suppose that there is a continuous function co(t) on ]0,t] (t > 0) with
co(t) G Boo(i) and \c(t)\ —> +00 as t —> 0. By continuity of the critical values
at infinity, if Boo(0) {ci(0),..., cp(0)} there exist continuous functions cj(t) on
[0,t] such that cj(t) G ßoo(^) for all « l,...,p. And for a sufficiently small
t > 0, co(t) 7^ Cj(t) ({ 1,... ,_p) then #ßoo(0) < #ßoo(t) which contradicts the

constancy of =fj=Boo(t).

Finally there can not exist ramification points: suppose that there is a t such

that cj(t) cj(t) (and ct(t), Cj(t) are not equal in a neighborhood of t). Then if
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c,{t) g Baff{r) \ Boo(t) (resp. B^t) \ Baff{r), B^t) n Baff{T)) there is a jump
in #Baff(t) (resp. =fj=Boo(t), #B(t)) near t which is impossible by assumption. D

Let Rq, K, Dr(0), DE(c) be the objects of section 2 for the polynomial / /o-
Moreover we suppose that Rq is greater than the R obtained in lemma 9.

Lemma 11. There exists t g]0, 1] such that for all t G [0, t] we have the properties:

• a(t) GDE(c(0)), i=l,...,m;
• /or a// s G Ä", /t (s) intersects Sr0 transversally.

Proof. The first point is just the continuity of the critical values cj(t). The second

point is the continuity of transversality: if the property is false then there exist

sequences tk —> 0, xk G SV and Afc G C such that gracL xfc Afcxfc. We

can suppose that (xi~) converges (after extraction of a sub-sequence, if necessary).
Then xk -? x G 5flo, grad/tfc xfc -^ grad/o x, and Afc (grad/tfc xfc |xfc)/||xfc||2

(grad^t Xfc | xk)/Ro converges towards A G C. Then grad^o x Ax and the

intersection is non-transversal. D

Lemma 12. T/ie fibrations f0 : /0^(if)nBfîo —> K and fT : f~x(K )DBRo —> K
are dtfferenüably isomorphic.

Proof. Let
F : Cn x [0,1] —>Cx [0,1], (x,t) ^ (ft(x),t).

We want to prove that the fibrations

Fo : So F-1^ x {0}) n (ßfio x {0}) -^ K, (x, 0) ^ /0(x)

and

fr : ST F-1^ x {r}) n (BRo x {r}) -^ K, (x, t) ^ fT(x)

are differentiably isomorphic. Let denote [0, t] by /. Then F has maximal rank
on F-^if x /) n (ßfio x /) and on the boundary F^1^ x /) n (5flo x /). By
Ehresmann theorem F : F~l(K x /) n (ßfl0 x /) —> if x / is a fibration.

As in [HP] we build a vector field that gives us a diffeomorphism between the
two fibrations fo and FT. Moreover it provides a control of the diffeomorphism
near Sr0 that we will need later. Let 0 < tj C 1 be a real number. We build a

vector field v\\
• which is defined on F~l{K x /) n (Uro-2V<r<roSr x /),
• such that dzF.v1(z) (0,1) for all z,
• and such that v\{z) is tangent to Sr x / for z G Sr x I, Rq — 2r] < R < Rq-

This is possible because F is a fibration on F^1(if x /) n (ßfl0 x /). On the set

F~l(K x /) n (ßßo_^ x /) we build a second vector field v^ such that dzF.V2(z)
(0,1).
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By gluing these vector fields v\ and v-2 by a partition of unity and by integrating
the corresponding vector field we obtain integral curves

Pz ¦ [0,1] -^r^xijnß«, xi
such that Pz(0) z G So an(i Vzij) £ ST. It induces a diffeomorphism $ : So —?
ST such that Fo FT o $; that makes the fibrations isomorphic. D

Proof of theorem 1. It is sufficient to prove the theorem for a family (ft) parameterized

by t in an interval [0, t] for a small t > 0. We choose t as in lemma 11.

By lemma 7, f0 : /"^C \ B(0)) —? C \ B(0) and /0 : /q"1^) —? K are differen-
tiably isomorphic fîbrations. Then by lemma 6, the fîbration /o : /0"1(if) —> K
is differentiably isomorphic to /o : /^(if) n ßß0 —s- if which is, by lemma 12

differentiably isomorphic to fT : f~l(K) n ßß0 —? K.
By continuity of transversality (lemma 11) f~l(K) has transversal intersection

with Sr0 Lemma 5 applied to fT gives us a large real number R, such that f~l(K)
intersects Sr transversally, R may be much more greater than Rq. The fibration
fT : f^1(K)C\BRo —> K is fiber homotopy equivalent to fT : f^1(K)nÈR —> K:
it is the first part of lemma 8 because the fiber /7T1(*) n Br0 is homotopic to a

wedge of /x(0) + A(0) spheres and the fiber /1T1(*) n ßß is homotopic to a wedge
of /x(t) + A(t) spheres; as /x(0) + A(0) /x(t) + A(t) we get the desired conclusion.
Moreover for n 7^ 3 by the second part of lemma 8 the fibrations are differentiably
isomorphic.

By applying lemmas 6 and 7 to /T, the fibration fT : f1T1(K) D Br —? K is

differentiably isomorphic to fT : /7T1(C \ B(t)) —> C \ B(t). As a conclusion the

fibrations/o :fo\C\B(0)) —>C\B(0) and fT :/-1(C\ß(r)) —>C\B(t) are
fiber homotopy equivalent, and for n ^ 3 are differentiably isomorphic D

4. Around affine singularities

We now work with t G [0,1]. We suppose in this paragraph that the critical
values B(t) depend analytically on t G [0,1]. This enables us to construct a

diffeomorphism \ such that:

• Xo id,

xt(B(t))=B(0).
We denote \i by *, so that * : C —> C verifies *(ß(l)) B(0). Moreover we

can suppose that \t is equal to id on C \ Dr(0) because all the critical values are
in Dr(0). Finally \ defines a vector field wofCx [0,1] by |f.

We need a non-splitting result of the affine singularities, this principle has been

proved by C. Has Bey ([HB], n 2) and by F. Lazzeri ([La], for all n).
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Lemma 13. Let x(t) be an affine singular point of fT and let UT be an open
neighborhood of x(t) in Cn such that x(t) is the only affine singular point of fT
in UT. Suppose that for all t closed to t, the restriction of ft to UT has only one
critical value. Then for all t sufficiently closed to t, there is one, and only one,
affine singular point of ft contained in UT.

This lemma is a local lemma; it enables to enumerate the singularities: if we
denote the affine singular points of /o by {xt(0)}tej then there are continuous
functions x-% : [0,1] —> Cn such that {xi(t)}iej is the set of affine singularities of
ft ¦ Let us notice that there can be two distinct singular points of ft with the same
critical value.

We suppose
• that (ft) verifies the hypotheses of theorem 1,

• that n ^ 3,

• and B(t) depends analytically on t.
This and lemma 13 imply that for all t G [0,1] the local Milnor number of ft

at x(t) is equal to the local Milnor number of /o at x(0). The improved version
of Lê-Ramanujam theorem by J. G. Timourian [Tm] for a family of germs with
constant local Milnor number proves that (ft) is locally a product family.

Theorem 14 (Lê-Ramanujam-Timourian). Let x(t) be a singular point of ft.
There exist Ut, Vt neighborhoods of x(t), ft(x(t)) respectively and a homeomor-
phism Qm such that ifU Ute[o l] ^t x {t} and V Ute[o l] ^* x W ^le following
diagram commutes:

U -^* Uo x [0,1]

/o x id
V

¦Vox [0,1].

In particular it proves that the polynomials /o and f\ are locally topologi-
cally equivalent: we get a homeomorphism $in such that the following diagram
commutes:

h

By lemma 9 we know that for all t G [0,1], B(t) C Dr(0). Now we redefine the
radius Rq and R\ of section 2. By continuity of transversality and compactness of
[0,1] we choose R\ such that

Vc G B(0) VR > Ri fo\c) rh SR and Vt G [0,1] Vc G B(t) f^(c) rh SRl.
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ft

Bi

K

For a sufficiently small e we denote

K(0) Dr(0)\ U DE(c), K{t) xt\-

and we choose i?o ^ R\ such that

VsGif(O) VR^Rq fö\s) &\SR and Vt G [0,1] Vs G if (t) /^(s) rh Sflo.

We denote

nßfil)u(/r1(^W)nßfio), tG[o,i].

Lemma 15. There exists a homeomorphism $ such that we have a commutative
diagram:

R' $
^ R'_Di 3" Dr.
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Proof. We denote by U't a neighborhood of x(t) such that U[ C Ut. We denote by
lit (resp. Wt), the union (on the affine singular points of ft) of the Ut (resp. U[).
We set

B't' B't\Ul, te [0,1].

We can extend the homeomorphism $ of lemma 12 to $out : B" —> B'o'. We just
have to extend the vector field of lemma 12 to a new vector field denoted by v'
such that
• v' is tangent to dWt,

• v' is tangent to SRl x [0,1] on ^(^(O) \ K(t) x {t}) for all t G [0,1],
• v' is tangent to 5flo x [0,1] on F~l{K(t) x {t}) for all t.
• dzF.v'(z) w{F{z)) for all z G Utefo l] ^t' x W> wnicn means that $out

respects the fibrations (w is defined by -g|).
If we set B" IJtefo l] ^" x W the integration of «' gives Qout and $out such

that:

S x [0,1] B'i
$out

> B^'

h /o

x [0,1], Dr(0) -^ Dr(0).

We now explain how to glue $in and $out together. We can suppose that there
exist spheres St centered at the singularities x(t) such that if S Utefo l] &t x {t}
then we have Q[n : S —> So x [0,1] and Qout : S —> So x [0,1]. It defines
Qjn :St —> So and Q°ut : St —> So. On 5i we have Q\n $in and Q^ut $out.

Now we define

Then Oo ^out and @i $;n. On a set homeomorphic to 5 x [0,1] included in
Utefo l] Ut \ U[ we glue $in to $Out, moreover this gluing respects the fibrations /o
and j\. We end by doing this construction for all affine singular points. D

Proof of theorem 3. In the hypotheses of this theorem we supposed that there
is no critical value at infinity. In order to apply the results of this section we
have to prove that affine critical values are analytic functions of t. Let c(0) G

Baff (0), by lemma 10 it defines a continuous function c : [0,1] —? C The set
C {(c(t),t) | t G [0,1]} is a real algebraic subset of C x [0,1] as all affine critical
points are contained in Br0 (lemma 9). In fact there is a polynomial P G C[x,t]
such that C is equal to (P 0) fl (C x [0,1]). Because the set of critical values is

a braid of C x [0,1] (lemma 10) then c : [0,1] —> C is an analytic function.
If we suppose that B^t) 0 for all t G [0,1] then by lemma 6 we can extend

$ : B[ —> B'o to $ : f^\Dr(0)) —> fö\Dr{Q)). And as B(t) C Dr(0) by a

lemma similar to lemma 7 we can extend the homeomorphism to the whole space.
D
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Remark. We can improve the end of the proof of lemma 15 in order to get
a trivialization of the whole family, that is to say (ft)te[o,i] is topologically a

product family. For each t G [0,1] we thicken the sphere St in a set St x [0,1]. We

parameterize this interval [0,1] by s. Let

A : Sx [0,1] —> So x [0,1] x [0,1], A(x,t, s) i-> (AM(x),t, s)

where Ats is a map defined by

A t,s
AAt,s

By fixing s 0 the map A can be identified with Qout and for s 1 it can be

identified with Qm. So we are able to glue together the trivializations in order to
get a homeomorphism Q with a commutative diagram:

B

F

Dr(0) x

-^ Bo x [0,1]

/o x id

where B' U[ ]

extend Q in order to get:
te[o l]
d

x 0}- Now

¦Dr(0) x [0,1],

is empty for all t G [0,1], then we can

c

X

F

X

[0,

[0,

l]_tl.

1]

*Cn x

>Cx

[0

/o

o,

,1]

xid

1].

5. Polynomials in two variables

We set n 2. We recall a result of L. Fourrier [Fo]. Let / : C
of critical values at infinity B^,. Let * <£B and Z /~1(*)U|JC
total link of / is Lf Z n Sß for a sufficiently large iî.

To / we associate a resolution </> : S —> P1,

C with set

-^c). The

where / is the map coming from the homogenization of /; tt is the minimal blowup

of some points on the line at infinity £oo of P2 in order to obtain a well-defined
morphism </> : S —> P1. The components of the divisor tt^1(£oo) on which <f> is

surjective are the dicritical components. For each dicritical component D we have
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a branched covering </> : D —> P1. If the union of dicritical components is D<i[c we
then have the restriction </>dïc : -Ddic —? IP1 of </>. The 0-monodromy représentation
is the representation

The set (pd^ci*) ^s m bijection with the boundary components of f-1(*). Then
the 0-monodromy representation can be seen as the action of tti(C \ B) on the
boundary components of f-1(*).

Theorem 16 (Fourrier). Let f,g he complex polynomials in two variables with
equivalent 0-monodromy representations and equivalent total links. Then there

exist compact sets C, C of C and homeomorphisms $00 and ty^ that make the

diagram commute:

C2\C -^ C2 \ C

Let ft : C2 —? C such that the coefficients of this family are algebraic in t.
We suppose that the integers /x(t), X(t), #B(t), #Baff(t), #Boo(t) do not depend
on t G [0,1]. We also suppose the deg/t does not depend on t. For our family
(ft), by theorem 1 we know that the geometric monodromy representations are
all equivalent, then they act similarly on the boundary components of ft 1(*). It
implies that all the 0-monodromy representations of (ft) are equivalent. Moreover
if we suppose that for any t, t' G [0,1] the total links Lft and Lft, are equivalent,
then by theorem 16 the polynomials ft and ft/ are topologically equivalent out of
some compact sets of C2. We need a result a bit stronger which can be proved by
similar arguments than in [Fo] and we will omit the proof:

Lemma 17. Let (ft)te[o,i] be a polynomial family such that the coefficients are
algebraic functions of t. We suppose that the 0-monodromy representations and
the total links are all equivalent. Then there exist compact sets C(t) of C2 and a

homeomorphism Q°° such that if C Utefo 1] C(t) x {£} we have a commutative
diagram:

C2 x [0,1] \ C -^* (C2 \ C(0)) x [0,1]

F\ /oxid
Y Y

Cx [0,1] 5-Cx [0,1].

We now prove a strong version of the continuity of critical values.
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Lemma 18. The critical values are analytic functions oft. Moreover for c(t) G

Bit), the integers fj,c^) and ^c(t) do not depend ont G [0, 1],

Proof. For affine critical values, refer to the proof of theorem 3. The constancy
of /xc(t) is a consequence of lemma 9 and lemma 13. For critical values at infinity
we need a result of [Ha] and [HP] that enables to calculate critical values and
Milnor numbers at infinity. As deg ft is constant we can suppose that this degree
is deg /t. Let denote A(x,s,t) the discriminant Discy(/t(x, y) — s) with respect
to y. We write

A(x, s,t) qi(s, t)xk& + q2(s, i)**«"1 + ¦¦¦
First of all A has constant degree k(t) in x because k(t) /x(t) + X(t) + deg ft — 1

(see [HP]). Secondly by [Ha] we have

then we see that critical values at infinity depend continuously on t and that critical
values at infinity are a real algebraic subset of C x [0,1]. For the analyticity we
end as in the proof of theorem 3. Finally, for a fixed t, we have that Ac

k(t) — degj, A(x, c,t). In other words qi{c,t) is zero for i 1,..., Ac and non-zero
for i Ac + 1. For c(t) G Boo(t) we now prove that Ac(t) is constant. The former
formula proves that Ac(t) is constant except for finitely many t g [0,1] for which
AC(T) > Ac(t). But if Ac(r) > Ac(t) then A(t) £ceBoo(T) a= > J2ceBx(t) Xc A(t)
which contradicts the hypotheses. D

To apply lemma 17 we need to prove:

Lemma 19. For any t, t' G [0,1] the total links Lft and Lf are equivalent.

Proof. The problem is similar to the one of [LR] and to lemma 8. Let c(t) G

#oo(*) U {*}. As in lemma 15 we have R± > 1 such that /0"1(c(0))nSrfll is the link
at infinity of /0"1(c(0)). Moreover by lemma 15 we know that the link at infinity
fo\c(O)) n SRl is equivalent to the link /f 1(c(l)) n SRl. But /f 1(c(l)) n SRl is

not necessarily the link at infinity for f1 1(c(l)).
We now prove this fact; let denote c c(l). Let R-2 ^ R\ such that for

all R > R2, fïl{c) fh SR, then fïl{c) n Sr2 is the link at infinity of fïl{c).
We choose (|, 0 < (| < 1 such that f^l{Dv{c)) has transversal intersection with
SRl and Sr2 and such that f11(dDri(c)) has transversal intersection with all SR,
R G [iîi, R2\. Notice that r\ is much smaller than the e of the former paragraphs
and that fi1(s) n Sr2 is not the link at infinity of /f 1(s) for s G dDv{c). We fix
Rq smaller than R\ such that f^1{Dr){c)) has transversal intersection with SRo.

We denote f^(Dv(c)) n BR% \ BRo by A, * 1, 2.

The proof is now similar to the one of lemma 8. Let A\ and A2 be connected
components of A\ and A2 with A\ C A2. By Ehresmann theorem, we have
fibrations f\ : A\ —> Dv{c), f\ : A2 —> Dv{c). From one hand fx 1(c) n BRl is
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diffeomorphic to /(71(c(0)) n Brx. So by Suzuki formula (see [HL]) fx 1(c) n Br1
has Euler characteristic 1 — /x — A + /xc(o) + Ac(o). From the other hand /-f1 (c) n B#2
has Euler characteristic 1 — /x — A + Mc(i) + ^c(i) by Suzuki formula. By lemma 18

we have that /xc(o) + Ac(o) Mc(i) + ^c(i), with c c(l). So the fiber fx 1(c) n B^
and /f 1(c) n Bfl2 have the same Euler characteristic. As the number of connected

components oî f^l(c)C\BR is constant for R G [i?i,i?2] we have that /f'(c)n%
and /t 1(c) n Bfl2 are homotopic. It implies that the fibrations f\ : A\ —>
Dri(c) and f\ : A-2 —> Dri{c) are fiber homotopy equivalent, and even more are
diffeomorphic.

It provides a diffeomorphism S : A\ n Sr% Ai n Äßj —? A2 n S*ß2 and we

can suppose that S(/]"1(c) niifl S1^) is equal to /f 1(c) n A2 n S*ß2. By doing
this for all connected components of Ai, A2, for all values c G #00(1) U {*} and by
extending S to the whole spheres we get a diffeomorphism S : Srx —? S*ß2 such

that S(/f x(c) n 5fll) /f x(c) n S*^ for all c G Boo(l) U {*}. Then the total links
for /o and f\ are equivalent. D

Proof of theorem 4- By lemma 17 we have a trivialization Q°° : C2 x [0,1] \ C —>
(C2\C(0)) x [0,1]. We can choose the Ri (before lemma 15) such that C(t) C BRl.
And then the proof of lemma 15 gives us an Qout : |Jte[0 !] ß"(t) x {*} —> B"(0) x

[0,1]. By gluing Qout and Q°° as in the proof of lemma 15, we obtain $ : C2 —> C2

such that:

¦c2

/o

Then /o and f\ are topologically equivalent. D

Remark. As in the remark after the proof of theorem 3, we can glue Qout and
Q°° in order to get a topologically product family.

6. Continuity of the critical values at infinity

We now give a proof of the second part of lemma 2 in the introduction. The first
part has been proven in lemma 18.

Lemma 20. Let (ft)te[o,i] be a family of polynomials such that the coefficients are
polynomials m t. We suppose that:

• the total affine Milnor number fj,(t) is constant;
• the degree deg ft is constant;
• the set of critical points at infinity S(t) is finite and does not vary: S(t) S;
• for all (x : 0) G S, the generic Milnor number Vx(t) is independent oft.
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Then the critical values at infinity defend continuously ont, i.e. if c(to) G Boo(to)
then for all t near to there exists c(t) near c(to) such that c(t) G Boo(t).

Let / be a polynomial. For x G Cn we have (x : 1) in Pn and if xn ^ 0 we
divide x by xn to obtain local coordinates at infinity (x'; xo). The following lemma
explains the link between the critical points of / and those of Fc. It uses Euler
relation for the homogeneous polynomial part of / of degree d.

Lemma 21.

• Fc has a critical point (x',xo) with xq ^ 0 of critical value 0 if and only if f
has a critical point x with critical value c.

• Fc has a critical point (xr, 0) of critical value 0 if and only if (x : 0) G S.

Proof of lemma 20. We suppose that critical values at infinity are not continuous
functions oft. Then there exists (to, co) such that co G ßoo(^o) and for all (t, c) in
a neighborhood of (to, cq), we have c ^ Bœ(t). Let P be the point of irregularity
at infinity for (to,co). Then (J,p(FtOtCo) > ^p{Fto,c) (c 7^ co) by définition of
co G ßoo(^o) and by semi-continuity of the local Milnor number at P we have

vp{to) =^p{Ft0,c) > fip(Ft,c) M*), (*,c) + (to, co).
We consider t as a complex parameter. By continuity of the critical points and

by conservation of the Milnor number for (t,c) ^ (toico) we have critical points
M(t,c) near P of F^c that are not equal to P. This fact uses that deg/t is a

constant, in order to prove that F^c depends continuously on t.
Let denote by V the algebraic variety of C3 x Cn defined by (t, c, s, x) G V

if and only if F^c has a critical point x with critical value s (the equations
are gradftc(x) 0, Ftc(x) s). If /-ip(Ftc) > 0 for a generic (t, c) then
{(t,c,0,P)'\ (t,c) G C2} is a subvariety of V'. We define V to be the closure
of V minus this subvariety. Then for a generic (t,c), (t, c, 0, P) ^ V. We call
7T : C3 x Cn —>¦ C3 the projection on the first factor. We set VF tt(V). Then
W is locally an algebraic variety around (to,co,O). For each (t,c) there is a nonzero

finite number of values s such that (t, c, s) G VF. So W is locally an equi-
dimensional variety of codimension 1. Then it is a germ of hypersurface of C3. Let
R(t, c, s) be the polynomial that defines W locally. We set Q(t, c) R(t, c, 0). As

Q(to, co) 0 then in all neighborhoods of (to, cq) there exists (t, c) ^ (to, cq) such

that Q(t, c) 0. Moreover there are solutions for t a real number near to and we

now suppose that t is a real parameter.
Then for (t,c) ^ (toico) we have that: Q(t,c) 0 if and only if Ftc has a

critical point M(t, c) =f= P with critical value 0. The point M(t, c) is not equal to
P because for t ^ t0, (t, c, 0,P) ^ V": it uses that c ^ ßoo(t) for t ^ t0, and that
z/p(t) vp(to). Let us notice that M(t, c)^Pas (t, c) —> (to, co).

We end the proof be studying the different cases:

• if we have M(t,c) in Hœ (of equation (xo 0)) then M(t,c) G S which
provides a contradiction because then it is equal to P;
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• if we have points M(t, c), not in Hex,, with t ^ to then there are affine critical
points M'(t, c) of ft (lemma 21), and as M(t, c) tends towards P (as (£, c) tends
towards (£o,co)) we have that M'(t,cj escapes at infinity. It contradicts the
fact that the critical points of ft are bounded (lemma 9).

• if we have points M(to,c), not in Hex,, then there are infinitely many affine
critical points for fto, which is impossible since the singularities of fto are
isolated. D

7. Examples

Example 1. Let ft x(x2y + tx + 1). Then Baff{t) 0, B^t) {0}, \{t) 1

and deg/t 4. Then by theorem 4, /o and /i are topologically equivalent. These

are examples of polynomials that are topologically but not algebraically equivalent,
see [Bo].

Example 2. Let ft (x + t)(xy + 1). Then /o and f\ are not topologically
equivalent. One has B^t) 0, Baff{t) {0,t} for t ^ 0, but Boo(0) {0},
Baff(0) 0. In fact the two affine critical points for ft "escape at infinity" as t
tends towards 0.

Example 3. Let ft x(x(y + tx2) + l). Then /o is topologically equivalent to f\.
We have for all t £ [0,1], Baff{t) 0, ß^ft) {0}, and \{t) 1, but deg/t 4

for t ^ 0 while deg /o 3.
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