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Invariance of Milnor numbers and topology of complex poly-
nomials

Arnaud Bodin

Abstract. We give a global version of Lé-Ramanujam pg-constant theorem for polynomials.
Let (f¢), t € [0,1], be a family of polynomials of n complex variables with isolated singularities,
whose coefficients are polynomials in £. We consider the case where some numerical invariants
are constant (the affine Milnor number u(t), the Milnor number at infinity A(¢), the number
of critical values, the number of affine critical values, the number of critical values at infinity).
Let n = 2, we also suppose the degree of the f; is a constant, then the polynomials fy and
f1 are topologically equivalent. For n > 3 we suppose that critical values at infinity depend
continuously on £, then we prove that the geometric monodromy representations of the f; are all
equivalent.

Mathematics Subject Classification (2000). 32S15, 14H20, 32C40.

Keywords. p-constant theorem, family of polynomials, singularities at infinity.

1. Introduction

Let f : C* — C be a polynomial map, n > 2. By a result of Thom [Th]
there is a finite minimal set of complex numbers B, the critical values, such that

f:fHC\ B) — C\ Bis a fibration.

1.1. Affine singularities

We suppose that affine singularities are isolated i.e. that the set {z€C" | grad, =
= 0} is a finite set. Let u, be the sum of the local Milnor numbers at the points
of f~1(c). Let

Baﬁ:{c|uc>0} and “:Z“C

ceC

be the affine critical values and the affine Milnor number.
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1.2. Singularities at infinity

See [Br|. Let d be the degree of f : C* — C, let f = f¢ 4 f¥ 1 ... 4 f°
where f7 is homogeneous of degree j. Let f(z,x0) (with 2 = (21,...,2,)) be the
homogenization of f with the new variable zo: f(z,z0) = f%(z) + f¢ Y(z)zo +
vos  Fx)xd. Let

XK = {((x:xo),c) eP" x C| f(z,z0) — cxd :O}.

Let He be the hyperplane at infinity of P™ defined by (zqg = 0). The singular
locus of X has the form 3 x C where

d d
z{(x:()) g—i...%fdlfo}cﬁw.

We suppose that f has isolated singularities at infinity that is to say that > is
finite. This is always true for n = 2. For n > 2 such polynomials have been
studied by S. Broughton [Br] and by A. Parusiiiski [Pa]. For a point (z : 0) € Ho,
assume, for example, that z = (z1,...,2,-1,1). Set £ = (x1,...,zy_1) and
Fo.(&,20) = f(®1,...,Zn_1,1) — cal.

Let px(F.) be the local Milnor number of F, at the point (z,0). If (z : 0) € ¥ then
wz(F.) > 0. For a generic s, pz(Fs) = vz, and for finitely many ¢, pz(F.) > vsi.
We set )\c,a? = /Li(FC) — Vg, )\c = Z(m:O)EE )\c,:i- Let

Boo={ceC|A,>0} and A= X
ceC

be the eritical values at infinity and the Milnor number at infinity. We can now
describe the set of critical values B as follows (see [HL] and [Pa]):

B = Bu U Bo.

Moreover, by [HL] and [ST], for s ¢ B, f~!(s) has the homotopy type of a wedge
of A+ u spheres of real dimension n — 1.

1.3. Statement of the results

Theorem 1. Let (f;)ic(o,1] be a family of complex polynomials from C" to C whose
coefficients are polynomials int. We suppose that affine singularities and singu-
larities at infinity are isolated. Let suppose that the integers p(t), A(t), #B8(t),
#Bug (t), #Boo(t) do not depend on t € [0,1]. Moreover let us suppose that
eritical values at infinity Boo(t) depend continuously on t. Then the fibrations
fo @ foHT\ B(0)) — C\ B(0) and f1 : f{1(C\ B(1)) — C\ B(1) are fiber

homotopy equivalent, and for n # 3 are differentiably isomorphic.
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Remark 1. As a consequence for n # 3 and * ¢ B(0) U B(1) the monodromy

representations
71(C\ B(0), ) — Diff(f;'(x)) and

m1(C\ B(1),*) — Diff(f; (%))

are equivalent (where Diff(f, ! (%)) denotes the diffeomorphisms of f, ! () modulo
diffeomorphisms isotopic to identity).

Remark 2. The restriction n #£ 3, as in [LR], is due to the use of the h-cobordism
theorem. The proof is based on the articles of H. V. Ha—T. S. Pham [HP] and of
D. T. Lé-C. P. Ramanujam [LR].

Remark 3. This result extends a theorem of H. V. Ha and T. S. Pham [HP] which
deals only with monodromy at infinity (which corresponds to a loop around the
whole set B(t)) for n = 2. For n # 3, the fact that the monodromies at infinity
are diffeomorphic is proved in [HZ] (for M-tame polynomials, with affine Milnor
number constant) and in [Ti] (for generic fibers with homotopy type equivalent to
a fixed number of (n — 1)-spheres, with the hypothesis that B(t) is included in a
compact set for all ).

Lemma 2. Under the hypotheses of the previous theorem (except the hypothesis
of continuity of the critical values), and one of the following conditions:
e n =2, and deg f; does not depend on t;
e deg fi, and X(t) do not depend on t, and for all (xz : 0) € 3(t), vz(t) is inde-
pendent of t;
we have that Boo(t) depends continuously on t, i.e. if ¢(1) € Boo(T) then for allt
near T there exists c(t) near c(7) such that c(t) € Boo(t).

Under the hypothesis that there is no singularity at infinity we can prove the
stronger result:

Theorem 3. Let (fi)ic(0,1) be a family of complex polynomials whose coefficients
are polynomials in t. Suppose that u(t), #Bug(t) do not depend on t € [0,1].
Moreover suppose that n # 3 and for all t € [0,1] we have Boo(t) = @. Then
the polynomials fo and f| are topologically equivalent, that is to say, there erist
homeomorphisms ® and ¥ such that

cr —2>cn

A

For the proof we glue the former study with the version of the p-constant
theorem of D. T. Lé and C. P. Ramanujam stated by J. G. Timourian [Tm]: a
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p-constant deformation of germs of isolated hypersurface singularity is a product
family:.

For polynomials in two variables we can prove the following theorem which is
a global version of Lé-Ramanujam—Timourian theorem:

Theorem 4. Let n = 2. Let (f;)icio,1) be a family of complex polynomials whose
coefficients are polynomials in t. Suppose that the integers u(t), A(t), #B(t),
#Bog (t), #Boo(t), deg fr do not depend on t € [0,1]. Then the polynomials fo

and f1 are topologically equivalent.

It uses a result of L. Fourrier [Fo] that gives a necessary and sufficient condition
for polynomials to be topologically equivalent outside sufficiently large compact
sets of C?.

Remark 4. In theorems 3 and 4 not only fy and f; are topologically equivalent
but we can prove that it is a topologically trivial family.

This work was initiated by an advice of D. T. Lé concerning the article [Bo]:
“It is easier to find conditions for polynomials to be equivalent than find all poly-
nomials that respect a given condition.”

We will denote Br = {z € C" | ||z|| < R}, Sr = 9Br = {z € C" | |z|| = R}
and D,(c) ={se€C||s—¢/ <r}.

2. Fibrations

In this paragraph we give some properties for a complex polynomial of n variables.
The two first lemmas are consequences of transversality properties. There are
direct generalizations of lemmas of [HP]. Let f : C* — C be a polynomial with
isolated affine singularities and with isolated singularities at infinity. Let choose
7 > 0 such that B is contained in the interior of D, (0). For each fiber f~*(c) there
is a finite number of real numbers R > 0 such that f~!(c) has non-transversal
intersection with the sphere Sr (see [M3], Corollaries 2.8 and 2.9). So, for a
sufficiently large number R(c), the intersection f~!(c) with Sg is transversal for
all R > R(c). Let Ry be greater than the maximum of the R(c) with ¢ € B, we
also choose R; > r. We choose a small €, 0 < ¢ < 1 such that for all values ¢ in
the bifurcation set B of f and for all s € D.(c) the intersection f~1(s) N Sg, is
transversal, this is possible by continuity of the transversality. We denote

K = D.(0)\ | D:(e).

ceEB

Lemma 5. There exists Ry > 1 such that for all R 2> Ry and for all s in K,
f1(s) intersects Sy transversally.
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Proof. We have to adapt the beginning of the proof of [HP]. If the assertion is false
then we have a sequence (z) of points of C* such that f(zy) € K and ||| — +oo
as k — +oo and such that there exist complex numbers A, with grad, z; = Ajzy,

where the gradient is Milnor gradient: grad, = (E i). Since K is a

dxy? ? Ty,
compact set we can suppose (after extracting a sub-sequence, if necessary) that
f(zr) — c€ K as k — 4o00. Then by the Curve Selection Lemma of [NZ] there
exists a real analytic curve x :]0,e[— C" such that 2(7) = a7? +a; 7?1+ .- with
B <0, aeR™\ {0} and grad; z(r) = A(7)z(r). Then f(z(1)) = c+c17” + -
with p > 0. So f(z(7)) — ¢ as 7 — 0. Then we can redo the calculus of [HP]:

dj d - d

FETD (% grad () = M), ()
it implies

‘df(;’(T))
IA(T)] < 2w~
dr

As ||l2(7)] = bi7? + -+ with by € R% and 8 < 0 we have, for small enough 7,
|A(T)] < 7:2/13—111 = 777 2P where v is a constant. We end the proof be using the
characterization of critical value at infinity in [Pal:

le (I N grad 2(n)| = (D) NI ()] < AN

)
As p>0and 8 <0, for all N > 0 we have that [|=(7)||*~/V || grad; z(7)|| — 0 as
7 — 0. It implies that the value ¢ (the limit of f(z(7)) as 7 — 0) is in B,,. But
as ¢ € K it is impossible. (Il

Lemma 5 enables us to get the following result: because of the transversality
we can find a vector field tangent to the fibers of f and pointing out the spheres
Sg. Integration of such a vector field gives the next lemma (see [HP]| Paragraph
2.2 or [Ti] Lemma 1.8).

Lemma 6. The fibrations f : f~(K)N Bgr, — K and f : 1K) — K are
differentiably isomorphic.

As K is diffeomorphic to C\ B we have the following fact:

Lemma 7. The fibrations f : f*(K) — K and f : f1(C\ B) — C\ B are
differentiably isomorphic.

The following lemma is adapted from [LR]. For completeness we give the proof.
Lemma 8. Let R, R’ with R > R’ be real numbers such that the intersections

FHUK)NSR and f~Y(K)NSg are transversal. Let us suppose that f: f~1(K)N
Br — K and f : fY{(K)N Br — K are fibrations with fibers homotopic to
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a wedge of v (n — 1)-dimensional spheres. Then the fibrations are fiber homotopy
equivalent. And for n # 3 the fibrations are differentiably equivalent.

Proof. The first part is a consequence of a result of A. Dold [Do, Th. 6.3]. The first
fibration is contained in the second. By the result of Dold we only have to prove
that if x+ € 9D, then the inclusion of F¥ = f~'(*)N Br in F = f~'(*) N Br is a
homotopy equivalence. To see this we choose a generic xp in C™ near the origin
such that the real function z — ||z — zg|| has only non-degenerate critical points
of index less than n (see [M1, §7]). Then F is obtained from F’ by attaching cells
of index less than n.

For n = 2 the fibers are homotopic to a wedge of v circles, then the inclusion of
F” in I is a homotopy equivalence. For n > 2 the fibers F) F' are simply connected
and the morphism H;(F’) — H;(F') induced by inclusion is an isomorphism. For
i # n — 1 this is trivial since F' and I’ have the homotopy type of a wedge of
(n — 1)-dimensional spheres, and for ¢ = n — 1 the exact sequence of the pair
(F,F’) is

00— Hn~1(F) — nfl(F/) —* nfl(Fa F/)

with H,(F,F') = 0, H,_1(F) and H,_{(F’) free of rank v, and H,_{(F, ")

torsion-free. Then the inclusion of F” in F' is a homotopy equivalence.

_ The second part is based on the h-cobordism theorem. Let X = f~'(K)N Bg\
Bpr, then as f has no affine critical point in X (because there is no critical value in
K) and f is transversal to f~1(K)N Sk and to f~1(K) N Sg then, by Ehresmann
theorem, f : X — K is a fibration. We denote F'\ F' by F*. We get an
isomorphism H;(0F') — H;(F*) for all ¢ because H;(F*,0F") = H,(F, F’) = 0.
For n = 2 it implies that F* is diffeomorphic to a product [0, 1] x dF".

For n > 3 we will use the h-cobordism theorem applied to I'* to prove this.
We have 0F* = OF' U QF; OF’ and OF are simply connected: if we look at the
function = +— —|lz — 20| on f~!(x) for a generic zo, then F = f~'(x) N Bp
and F' = f~1(x) N Bp: are obtained by gluing cells of index more or equal to
n — 1. So their boundary is simply connected. For a similar reason F* is simply
connected. As we have isomorphisms H;(0F’) — H;(F*) and both spaces are
simply connected then by Hurewicz—Whitehead theorem the inclusion of JF’ in
F* is a homotopy equivalence.

Now F™*, OF’, OF are simply connected, the inclusion of F’ in F'* is a homo-
topy equivalence and F™* has real dimension 2n — 2 > 6. So by the h-cobordism
theorem, [M2], F"* is diffeomorphic to the product [0,1] x @F’. Then the fibra-
tion f: X — K is differentiably equivalent to the fibration £ : [0, 1] x (f 1K) N
Sp) — K; so the fibrations f : f~'(K)NBr — K and f: f~(K)NBgr — K
are differentiably equivalent. (Il
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3. Family of polynomials
Let (ft)iep0,1) be a family of polynomials that verify hypotheses of theorem 1.

Lemma 9 ([HP]). There exists B> 1 such that for allt € [0,1] the affine critical
points of f; are in Bpg.

Proof. 1t is enough to prove it on [0, 7] with 7 > 0. We choose R >> 1 such that
all the affine critical points of fy are in Bg. We denote

gradg,

t= T

l| grady, ||

Then deg ¢o = w(0). For all z € Sk, grad, = # 0, and by continuity there exists
7 > 0 such that for all ¢t € [0,7] and all z € Sg, grady,  # 0. Then the maps ¢,
are homotopic (the homotopy is ¢ : Sg x [0,7] — Sy with ¢(z,t) = ¢(z)). And
then 1(0) = deg ¢y = deg ¢, < p(t). If there exists a family z(¢) € C" of affine
critical points of ¢; such that ||(¢)|| — +occ as ¢ — 0, then for a sufficiently small
t, z(t) ¢ Bpr and then p(t) > deg ¢;. It contradicts the hypothesis ;(0) = p(t). O

2SR%51.

Lemma 10. There ezists 7 >> 1 such that the subset {(c,t) € D,(0) x [0,1] | c €
B(t)} is a braid of D,(0) x [0, 1].

It enables us to choose * € 9D, (0) which is a regular value for all f;, ¢t € [0,1].
In other words if we enumerate B(0) as {c1(0), .. ., ¢n(0)} then there are continuous
functions ¢; : [0,1] — D,(0) such that for i # j, ¢;(t) # ¢;(t). This enables us to
identify 71 (C\ B(0), *) and w1 (C\ B(1),*) by means of the previous braid.

Proof. Let 7 be in [0, 1] and ¢(7) be a critical value of f,, then for all ¢ near 7 there
exists a critical value ¢(t) of f;. It is a hypothesis for critical values at infinity and
this fact is well-known for affine critical values as the coefficients of f; are smooth
functions of ¢, see for example [Br, Prop. 2.1].

Moreover there can not exist critical values that escape at infinity i.e. a 7 €
[0, 1] such that |¢(t)| — +o0 as t — 7. For affine critical values it is a consequence
of lemma 9 (or we can make the same proof as we now will perform for the critical
values at infinity). For B (¢) let us suppose that there are critical values that
escape at infinity. By continuity of the critical values at infinity with respect to
t we can suppose that there is a continuous function ¢y(¢) on |0, 7] (7 > 0) with
co(t) € Boo(t) and |c(t)] — 400 as ¢ — 0. By continuity of the critical values
at infinity, if Boo(0) = {c1(0),...,¢p(0)} there exist continuous functions ¢;(¢) on
[0,7] such that ¢;(t) € Boo(t) for all ¢ = 1,...,p. And for a sufficiently small
t >0, cot) # ci(t) (i =1,...,p) then #B,(0) < #Bo(t) which contradicts the
constancy of #B.(t).

Finally there can not exist ramification points: suppose that there is a 7 such
that ¢;(7) = ¢;(7) (and ¢;(t), ¢;(t) are not equal in a neighborhood of 7). Then if
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ci(T) € Bag () \ Boo (T) (resp. Boo(T) \ Bagr (7), Boo(T) N Bagr (7)) there is a jump
in #Byr(t) (resp. #Bx(t), #B(t)) near 7 which is impossible by assumption. O

Let Ry, K, D,(0), D.(c) be the objects of section 2 for the polynomial f = fq.
Moreover we suppose that Ry is greater than the R obtained in lemma 9.

Lemma 11. There erxists T €]0, 1] such that for all t € [0, 7] we have the proper-
ties:

[} Ci(t) € DE(Q(O)), 1=1,...,m;

o foralls € K, f, '(s) intersects Sp, transversally.

Proof. The first point is just the continuity of the critical values ¢;(¢). The second
point is the continuity of transversality: if the property is false then there exist
sequences tp — 0, z; € Sgp, and A\, € C such that gradftk T = A\pxp. We
can suppose that (z;) converges (after extraction of a sub-sequence, if necessary).
Then z — = € Sg,, grad;, z; — gradg =, and A\x = (gradftk zy |zp)/||lze|? =
(gradftk @ | z1)/Ro’ converges towards A € C. Then grady, = Az and the
intersection is non-transversal. (|

Lemma 12. The fibrations fo: fo '(K)NBgr, — K and f,: f-(K)NBp, — K
are differentiably isomorphic.

Proof. Let
F.C"x[0,1] — Cx[0,1], (z,t) — (fe(z),t).

We want to prove that the fibrations

Fo:%0=F YK x{0})N(Bg, x {0}) — K,  (2,0) = fo(z)
and

F, %, = F YK x{r})n(Bg, x {1}) — K, (z,7) — fr(z)

are differentiably isomorphic. Let denote [0,7] by I. Then F has maximal rank
on F~Y(K x I)N (Bg, x I) and on the boundary F~1(K x I) N (Sg, x I). By
Ehresmann theorem F: F~1(K x I) N (Bg, x ) — K x I is a fibration.

As in [HP] we build a vector field that gives us a diffeomorphism between the
two fibrations Fy and F.. Moreover it provides a control of the diffeomorphism
near Sg, that we will need later. Let 0 < n < 1 be a real number. We build a
vector field vq:

e which is defined on F~1(K x I) N (Ury—2y<Rr<Ro SR X I),

e such that d,F.v(2) = (0,1) for all z,

e and such that v1(z) is tangent to Sg x [ for z € Sp x I, Ry —2n < R < Ry.
This is possible because F is a fibration on F~1(K x I)N (Bg, x I). On the set
FH{KxI)n (éRO,77 x I) we build a second vector field vy such that d, Flus(2) =
(0,1).
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By gluing these vector fields v and v, by a partition of unity and by integrating
the corresponding vector field we obtain integral curves

P, [0,1] — F YK xI)NBg, xI

such that p,(0) = z € ¥y and p,(7) € X,. It induces a diffeomorphism & : ¥y —
Y- such that Fy = F; o ®; that makes the fibrations isomorphic. [l

Proof of theorem 1. 1t is sufficient to prove the theorem for a family (f;) parame-
terized by ¢ in an interval [0, 7] for a small 7 > 0. We choose 7 as in lemma 11.
By lemma 7, fo : f~1(C\ B(0)) — C\ B(0) and fo : f3 {(K) — K are differen-
tiably isomorphic fibrations. Then by lemma 6, the fibration fo : fo {(K) — K
is differentiably isomorphic to fo : fy HEK)n B R, — K which is, by lemma 12
differentiably isomorphic to f, : f-*(K) N B R, — K.

By continuity of transversality (lemma 11) f-!(K) has transversal intersection
with Sg,. Lemma 5 applied to f, gives us a large real number R, such that f-1(K)
intersects Sg transversally, £ may be much more greater than Ry. The fibration
fr: f7YK)NBg, — K is fiber homotopy equivalent to f, : f-'(K)NBr — K:
it is the first part of lemma 8 because the fiber f=1(x) N B R, is homotopic to a
wedge of u(0) + A(0) spheres and the fiber f-1(x) N Bp is homotopic to a wedge
of u(7) 4+ A(7) spheres; as u(0) + A(0) = (1) + A(7) we get the desired conclusion.
Moreover for n # 3 by the second part of lemma 8 the fibrations are differentiably
isomorphic.

By applying lemmas 6 and 7 to f., the fibration f, : f;l(lo() N Bp — K is
differentiably isomorphic to f, : f1(C\ B(7)) — C\ B(7). As a conclusion the
fibrations fo : fo 1(C\ B(0)) — C\ B(0) and f, : f7(C\ B(r)) — C\ B(7) are
fiber homotopy equivalent, and for n # 3 are differentiably isomorphic (Il

4. Around affine singularities

We now work with ¢ € [0,1]. We suppose in this paragraph that the critical
values B(t) depend analytically on ¢ € [0,1]. This enables us to construct a
diffeomorphism yx such that:

x:Cx0,1] — Cx [0,1],

X(ZE,t) - (Xt(x)7t)7

X0 = Id)

x:(B(t)) = B(0).

We denote x1 by V¥, so that ¥ : C — C verifies ¥(B(1)) = B(0). Moreover we

can suppose that x; is equal to id on C\ D, (0) because all the critical values are
in D,(0). Finally x defines a vector field w of C x [0, 1] by %.

We need a non-splitting result of the affine singularities, this principle has been
proved by C. Has Bey ([HB], » = 2) and by F. Lazzeri ([La], for all n).
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Lemma 13. Let z(7) be an affine singular point of fr and let U, be an open
neighborhood of x(T) in C" such that x(71) is the only affine singular point of f-
in U.. Suppose that for allt closed to T, the restriction of f; to U, has only one
critical value. Then for all t sufficiently closed to T, there is one, and only one,
affine singular point of fi contained in U..

This lemma is a local lemma; it enables to enumerate the singularities: if we
denote the affine singular points of fy by {z;(0)};cs then there are continuous
functions z; : [0,1] — C™ such that {z;(¢) };cs is the set of affine singularities of
fi. Let us notice that there can be two distinct singular points of f; with the same
critical value.

We suppose

o that (f;) verifies the hypotheses of theorem 1,
e that n £ 3,
e and B(t) depends analytically on ¢.

This and lemma 13 imply that for all ¢ € [0, 1] the local Milnor number of f;
at z(t) is equal to the local Milnor number of fy at x(0). The improved version
of Lé-Ramanujam theorem by J. G. Timourian [Tm] for a family of germs with
constant local Milnor number proves that (f;) is locally a product family.

Theorem 14 (Lé-Ramanujam-Timourian). Let z(t) be a singular point of fi.
There ezist Uy, Vi neighborhoods of x(t), fi(z(t)) respectively and a homeomor-
phism Q" such that if U = J,cp0 1) Us x {t} and V = U, (0,1 Vi X {t} the following

diagram commutes:

U _Qin> UO X [07 1]

Fl lmxm

V—>X Vo x [0,1].

In particular it proves that the polynomials f; and f; are locally topologi-
cally equivalent: we get a homeomorphism ®;,, such that the following diagram

commutes:
Pin
U ——=1U

sl e

Vl—\P>VO~

By lemma 9 we know that for all ¢ € [0,1], B(¢) C D,(0). Now we redefine the
radius Ry and Ry of section 2. By continuity of transversality and compactness of
[0, 1] we choose R; such that

Yee B(0) YR>=R; fy'c)thSp and Vte[0,1] VeeB(t) f;'(c)thSp,.
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Bg,
Bpr,
B}
Cn
It
o
-~ K
C

For a sufficiently small & we denote
K©0)=D.(0)\ |J Do)y K@) =x;"(K(0))
c€Buo(0)
and we choose Ry > Ry such that
Vse K(0) YR>Ry fo'(s)hSk and Vte[0,1] Vse K(t) f,'(s)M Sg,.
We denote

By = (f {(Dr(0)) N Br,) U (f; {(K(t)) N Br,), te0,1].

Lemma 15. There exists a homeomorphism ® such that we have a commutative
diagram.:

B, —=2 ->pB

| |

D, (0) — D, (0).
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Proof. We denote by U/ a neighborhood of z(t) such that U] C U;. We denote by
U, (resp. U,), the union (on the affine singular points of f;) of the U; (resp. UJ).
We set

B! = B \U/, telo,1].

We can extend the homeomorphism & of lemma 12 to ®qy, : BY — Bj. We just

have to extend the vector field of lemma 12 to a new vector field denoted by v’

such that

e v is tangent to ol

e o' is tangent to Sg, x [0,1] on F~1(D,(0)\ K(t) x {t}) for all t € [0, 1],

e v’ is tangent to Sg, x [0,1] on F~1(K(t) x {t}) for all ¢.

o d.Fw'(z) = w(F(2)) for all 2 € U, By x {t}, which means that ®oy
respects the fibrations (w is defined by %).

If we set B” = [J;c0.q) BY x {t} the integration of v" gives Q°"* and ®ouy such

that:

B —2" B (0,1] By —2 s gy
Fl lfoXid fll lfo
DT(O) X [07 1]7D’r’(0) X [07 1]7 DT(O)—\D)DT(O)

We now explain how to glue ®;,, and ., together. We can suppose that there
exist spheres S; centered at the singularities 2(t) such that if § = J,c(o 1) S¢ x {t}
then we have Q* : § — Sy x [0,1] and Q°% : § — Sy x [0,1]. It defines
Qir Sy — Sp and QW 1 S, — Sp. On S; we have QIF = ®;,, and QU = s

Now we define

®t - Sl — 507 ®t = Q;n o} (Q(t)ut)*l o q)out~

Then ©¢ = Py, and ©1 = P4, On a set homeomorphic to S x [0, 1] included in
Ute[o 1 U\ U] we glue ®i,, to Poyt, moreover this gluing respects the fibrations fo
and f;. We end by doing this construction for all affine singular points. (Il

Proof of theorem 3. In the hypotheses of this theorem we supposed that there
is no critical value at infinity. In order to apply the results of this section we
have to prove that affine critical values are analytic functions of ¢. Let ¢(0) €
B,y (0), by lemma 10 it defines a continuous function ¢ : [0,1] — C. The set
C = {(c(t),t) | t € [0,1]} is a real algebraic subset of C x [0, 1] as all affine critical
points are contained in Bg, (lemma 9). In fact there is a polynomial P € Clz,]
such that C is equal to (P = 0) N (C x [0, 1]). Because the set of critical values is
a braid of C x [0, 1] (lemma 10) then ¢ : [0, 1] — C is an analytic function.

If we suppose that B (t) = @ for all ¢ € [0, 1] then by lemma 6 we can extend
®: B, — By to®: f; YD, (0) — f,(D,(0)). And as B(t) C D,(0) by a
lemma similar to lemma 7 we can extend the homeomorphism to the whole space.

O
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Remark. We can improve the end of the proof of lemma 15 in order to get
a trivialization of the whole family, that is to say (f:):c0,1) is topologically a
product family. For each ¢ € [0, 1] we thicken the sphere S; in a set S; x [0,1]. We
parameterize this interval [0, 1] by s. Let

A:Sx [07 1] — SO X [07 1] X [07 1]7 A(x7t7 5) i (Ai75($)7t7 S)
where A; ; is a map defined by
At,s . St — 507 At,s = Qisnxt e} (Q:S&)gl e} Q?ut.

By fixing s = 0 the map A can be identified with Q°" and for s = 1 it can be
identified with ©'™. So we are able to glue together the trivializations in order to
get a homeomorphism € with a commutative diagram:

B —2 S B x[0,1]

Fl Lfoxid

DT’(O) X [07 1] —X>Dr<0) X [07 1]7

where B’ = UtE[O 1 Bt x {t}. Now if Boo(t) is empty for all ¢ € [0,1], then we can
extend Q in order to get:

C x [0,1] —2>C" x [0,1]

Fl lfoxid

€ x [0,1] ——=C x [0,1].

5. Polynomials in two variables

We set n = 2. We recall a result of L. Fourrier [Fo]. Let f : C? — C with set
of critical values at infinity Boo. Let « ¢ B and Z = f~1(%) UJ,cp_ f'(c). The
total link of f is Ly = Z N Sg for a sufficiently large R.

To f we associate a resolution ¢ : ¥ — P!,

C2_>]P>2é2

|4

C—Pp!

where f is the map coming from the homogenization of f; 7 is the minimal blow-
up of some points on the line at infinity Lo of P? in order to obtain a well-defined
morphism ¢ : ¥ — P!, The components of the divisor 771(£,,) on which ¢ is
surjective are the dicritical components. For each dicritical component D we have
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a branched covering ¢ : D — P1. If the union of dicritical components is Dgj. we
then have the restriction ¢qic : Dgic — P! of ¢. The 0-monodromy representation
is the representation

m1(C\ B) — Aut (¢3L(+)).

The set ¢;ii(*) is in bijection with the boundary components of f~!(x). Then
the 0-monodromy representation can be seen as the action of 71(C \ B) on the
boundary components of f~1(x).

Theorem 16 (Fourrier). Let f, g be compler polynomials in two variables with
equivalent O-monodromy representations and equivalent total links. Then there
exist compact sets C,C’" of C2 and homeomorphisms $oo and ¥oo that make the
diagram commute:

2\ C == 02\ ¢

\
/| |
c—y—>C.

Let f; : €2 — C such that the coefficients of this family are algebraic in ¢.
We suppose that the integers wu(t), A(t), #B(t), #Bay (t), #Bo(t) do not depend
on t € [0,1]. We also suppose the deg f; does not depend on ¢. For our family
(ft), by theorem 1 we know that the geometric monodromy representations are
all equivalent, then they act similarly on the boundary components of ft_l(*). It
implies that all the 0-monodromy representations of (f:) are equivalent. Moreover
if we suppose that for any ¢,t" € [0, 1] the total links Ly, and Ly, are equivalent,
then by theorem 16 the polynomials f; and f;/ are topologically equivalent out of
some compact sets of C2. We need a result a bit stronger which can be proved by
similar arguments than in [Fo] and we will omit the proof:

Lemma 17. Let (f;)cj0,1) be a polynomial family such that the coefficients are
algebraic functions of t. We suppose that the O-monodromy representations and
the total links are all equivalent. Then there erist compact sets C(t) of C? and a
homeomorphism Q> such that if C = ,c(o1) C(t) x {t} we have a commutative
diagram:

€2 x [0,1]\ ¢ == (C2\ €(0)) x [0,1]

Fl lfoxid

C x [0,1] ————=Cx [0, 1].

We now prove a strong version of the continuity of critical values.
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Lemma 18. The critical values are analytic functions of t. Moreover for c(t) €
B(t), the integers iy and Aoy do not depend on t € [0, 1].

Proof. For affine critical values, refer to the proof of theorem 3. The constancy
of pie(sy is a consequence of lemma 9 and lemma 13. For critical values at infinity
we need a result of [Ha] and [HP] that enables to calculate critical values and
Milnor numbers at infinity. As deg f; is constant we can suppose that this degree
is deg,, f;. Let denote A(x,s,t) the discriminant Disc,(f;(z,y) — s) with respect
to y. We write

A($7 S7t) - q1(37t)xk(t) + QQ(S,t)xk(t)71 + .-

First of all A has constant degree k(t) in z because k(t) = wu(t) + A(¢) +deg fr — 1
(see [HP]). Secondly by [Ha] we have

Boo(t) = {s | a1(s,t) = 0}
then we see that critical values at infinity depend continuously on ¢ and that critical
values at infinity are a real algebraic subset of C x [0, 1]. For the analyticity we
end as in the proof of theorem 3. Finally, for a fixed ¢, we have that A\, =
k(t) — deg, A(z, ¢, t). In other words ¢;(c,t) is zero for i = 1, ..., A, and non-zero
for i = A+ 1. For ¢(t) € Boo(t) we now prove that A,y is constant. The former
formula proves that A, is constant except for finitely many 7 € [0, 1] for which
)\c(.,-) > )\c(t)~ But if >\c(7') = )\c(t) then A\(7) = ECEBQO(T) Ae > zcEBw(t) Ae = A(E)
which contradicts the hypotheses. (Il

To apply lemma 17 we need to prove:
Lemma 19. For any t,t' € [0,1] the total links Ly, and Ly, are equivalent.

Proof. The problem is similar to the one of [LR] and to lemma 8. Let ¢(t) €
Boo(t)U{*}. Asin lemma 15 we have Ry >> 1 such that f; 2(c(0))NSg, is the link
at infinity of f; '(¢(0)). Moreover by lemma 15 we know that the link at infinity
fo (c(0)) N Sg, is equivalent to the link f; '(¢(1)) N Sg,. But f; '(c(1)) N Sg, is
not necessarily the link at infinity for f; '(c(1)).

We now prove this fact; let denote ¢ = ¢(1). Let Ry > R; such that for
all R > Ry, f{'(c) M Sg, then fil(c) N Sg, is the link at infinity of f; (c).
We choose 5, 0 < 17 < 1 such that f;'(D,(c)) has transversal intersection with
Sp, and Sp, and such that f; 1 (8D, (c)) has transversal intersection with all Sg,
R € [R1, R2]. Notice that 5 is much smaller than the ¢ of the former paragraphs
and that f '(s) N Sg, is not the link at infinity of f; '(s) for s € D, (c). We fix
Ry smaller than Ry such that f; *(D,(c)) has transversal intersection with Sg,.
We denote f; (D,(c)) N Bg, \ Bg, by A, i =1,2.

The proof is now similar to the one of lemma 8. Let A; and A, be connected
components of A; and Ay with A; C A;. By Ehresmann theorem, we have
fibrations fi : Ay — Dy(c), fi : A2 — D,(c). From one hand f; '(¢) N Bg, is
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diffeomorphic to f5'(c(0)) N Bg,. So by Suzuki formula (see [HL]) f; (¢) N Bg,
has BEuler characteristic 1 —u— A+ pig0) + Ac(0). From the other hand ffl (¢)NBg,
has Euler characteristic 1 — p— A+ pio(1) + Agery by Suzuki formula. By lemma 18
we have that fi.0) + Ao(0) = pe(1) + Ae(1), With ¢ = ¢(1). So the fiber ffl(c) N Br,
and f; ()N Bp, have the same Euler characteristic. As the number of connected
components of f; *(c)N B is constant for R € [Ry, R2] we have that f; '(¢)N Bg,
and f;'(c) N Bg, are homotopic. It implies that the fibrations f; : A; —
Dy(c) and f1 : As — Dy (c) are fiber homotopy equivalent, and even more are
diffeomorphic.

It provides a diffeomorphism = : A; N Sg, = A3 NS, — A2 N S, and we
can suppose that Z(f; '(¢) N A; N Sg,) is equal to f; '(c) N Ay N Sg,. By doing
this for all connected components of A, Ajg, for all values ¢ € Boo (1)U {*} and by
extending = to the whole spheres we get a diffeomorphism = : Sg, — Sg, such
that Z(f; ()N Sg,) = f1 (c)N Sg, for all ¢ € B,o(1)U {*}. Then the total links
for fo and f; are equivalent. O

Proof of theorem 4. By lemma 17 we have a trivialization Q> : C? x [0,1]\C —
(C%\C(0)) x [0, 1]. We can choose the Ry (before lemma 15) such that C(t) C Bg, .
And then the proof of lemma 15 gives us an Q°U : tho i B"(t)x {t} — B"(0) x

[0,1]. By gluing Q°%* and Q> as in the proof of lemma 15, we obtain ® : C> —s C?
such that:

(CZ i>c2

A

C —\1/> C.
Then fy and fi are topologically equivalent. (Il

Remark. As in the remark after the proof of theorem 3, we can glue Q°%* and
Q% in order to get a topologically product family.

6. Continuity of the critical values at infinity

We now give a proof of the second part of lemma 2 in the introduction. The first
part has been proven in lemma 18.

Lemma 20. Let (ft);c(0,1) be a family of polynomials such that the coefficients are
polynomials int. We suppose that:
e the total affine Milnor number u(t) is constant;
e the degree deg f; is constant;
e the set of critical points at infinity (t) 4s finite and does not vary: Y(t) = ¥;
e for all (x : 0) € X3, the generic Milnor number vz(t) is independent of t.
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Then the critical values at infinity depend continuously on t, i.e. if c(tg) € Boo(to)
then for all t near to there exists c(t) near c(to) such that c(t) € Boo(t).

Let f be a polynomial. For x € C" we have (z : 1) in P™ and if z,, # 0 we
divide x by z,, to obtain local coordinates at infinity (@', z¢). The following lemma
explains the link between the critical points of f and those of I,. It uses Euler
relation for the homogeneous polynomial part of f of degree d.

Lemma 21.

e F. has a critical point (&', o) with zq # 0 of critical value 0 if and only if f
has a critical point x with critical value c.
o F. has a critical point (z',0) of critical value 0 if and only of (z : 0) € .

Proof of lemma 20. We suppose that critical values at infinity are not continuous
functions of ¢. Then there exists (¢g, co) such that ¢y € Boo(tn) and for all (¢, ¢) in
a neighborhood of (%o, ¢g), we have ¢ ¢ B, (t). Let P be the point of irregularity
at infinity for (to,co). Then pp(Fic,) > pp(Fi, o) (¢ # co) by definition of
co € Boo(to) and by semi-continuity of the local Milnor number at P we have
ve(to) = pp(Fo ) 2 pp(Frc) = ve(t), (t,¢) # (to, co).

We consider ¢ as a complex parameter. By continuity of the critical points and
by conservation of the Milnor number for (¢,c) # (tg,co) we have critical points
M(t,c) near P of I}, that are not equal to P. This fact uses that deg f; is a
constant, in order to prove that I; . depends continuously on ¢.

Let denote by V' the algebraic variety of C* x C* defined by (¢,c,s,z) € V'
if and only if F;. has a critical point = with critical value s (the equations
are grad F} (z) = 0,F;.(x) = s). If pp(f.) > 0 for a generic (¢,c) then
{(t,c,0,P) | (t,c) € C?} is a subvariety of V'. We define V to be the closure
of V/ minus this subvariety. Then for a generic (¢,¢), (¢,¢,0,P) ¢ V. We call
7 C3 x C* — C? the projection on the first factor. We set W = 7(V). Then
W is locally an algebraic variety around (o, cg,0). For each (¢,c) there is a non-
zero finite number of values s such that (¢,¢,s) € W. So W is locally an equi-
dimensional variety of codimension 1. Then it is a germ of hypersurface of C3. Let
R(t, ¢, s) be the polynomial that defines W locally. We set Q(¢,¢) = R(¢,¢,0). As
Q(to, co) = 0 then in all neighborhoods of (¢g, ¢p) there exists (¢,c) # (%o, ¢o) such
that Q(¢,c) = 0. Moreover there are solutions for ¢ a real number near ¢ and we
now suppose that ¢ is a real parameter.

Then for (t,¢) # (to,co) we have that: Q(¢,¢) = 0 if and only if F, . has a
critical point M (¢, ¢) # P with critical value 0. The point M (¢, c) is not equal to
P because for t # tg, (t,¢,0,P) ¢ V: it uses that ¢ ¢ By (t) for t # to, and that
vp(t) =vp(ty). Let us notice that M(t,c) — P as (¢,¢) — (to, co)-

We end the proof be studying the different cases:

e if we have M(f,¢) in He (of equation (zp = 0)) then M(t,¢) € ¥ which
provides a contradiction because then it is equal to P;
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o if we have points M (¢, ¢), not in Heo, with ¢ # ¢g then there are affine critical
points M'(t, ¢) of f; (lemma 21), and as M (¢, ¢) tends towards P (as (¢, ¢) tends
towards (o, co)) we have that M’(¢,c) escapes at infinity. It contradicts the
fact that the critical points of f; are bounded (lemma 9).

e if we have points M (to, ), not in Heo, then there are infinitely many affine
critical points for f;,, which is impossible since the singularities of f;, are
isolated. |

7. Examples

Example 1. Let f, = z(z%y +tz + 1). Then By (t) = @, Boo(t) = {0}, A(t) =1
and deg f; = 4. Then by theorem 4, fy and f; are topologically equivalent. These
are examples of polynomials that are topologically but not algebraically equivalent,
see [Bo].

Example 2. Let f; = (z + t)(zy + 1). Then fy and f; are not topologically
equivalent. One has Boo(t) = @, By (t) = {0,t} for t # 0, but B(0) = {0},
B (0) = &. In fact the two affine critical points for f; “escape at infinity” as ¢
tends towards 0.

Example 3. Let f; = x(x(y+t352)+ 1). Then fy is topologically equivalent to f.
We have for all £ € [0,1], B,y (t) = &, Boo(t) = {0}, and A(¢t) =1, but deg f, =4
for ¢ # 0 while deg fo = 3.
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