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On the projective geometry of rational homogeneous varieties

Joseph M. Landsberg and Laurent Manivel

Abstract. We determine the varieties of linear spaces on rational homogeneous varieties, provide
explicit geometric models for these spaces, and establish basic facts about the local differential
geometry of rational homogeneous varieties.
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1. Introduction

Let G be a complex simple Lie group and Ps a parabolic subgroup corresponding to
a subset S of nodes of the Dynkin diagram (so that a maximal parabolic subgroup
is defined by a single root). Then G/Ps has a minimal homogeneous embedding
in the projective space of the highest weight module of G corresponding to the
weight A JiESw„ where ujt is the i-th fundamental weight. We study the local
differential geometry of the embedded variety G/Ps C ¥V\ and the projective
linear subspaces on G/Ps C FV\.

We describe the varieties parametrizing such linear spaces in §4-6. In most
cases (those of "non-short roots" the parameter varieties are determined in terms
of Dynkin diagram data as explained in §4. (See in particular Theorem 4.9.) The
exceptional (exposed short root) cases are determined by use of explicit models
in §5 for the case of classical groups and §6 for the exceptional groups. In all

cases, each connected component of the variety of linear spaces on a G/P is quasi-
homogeneous; more precisely, it is the union of a fînite number of G-orbits.

The case of unirulings by lines was studied in [4] by means of Tits buildings.
Our approach is by means of projective differential geometry. This method is
well suited because the variety G/Ps is homogeneous and in particular cut out
by quadrics, so the varieties of linear spaces on it are determined by second order
data at a point x G G/Ps.

In §2 we establish basic connections between local differential geometry and

representation theory. We study the semisimple part H of Ps, which fixes the point
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x [v\] corresponding to the highest weight line in its action on the tangent space
TXG/Ps- As an iï-module, TXG/Ps decomposes into a direct sum of generalized
minuscule i7-modules. If S {a} where a is a non-short root, the space of
tangent directions to lines is a minuscule variety of H (an irreducible, minimally
homogeneously embedded Hermitian symmetric space of H).

We study minuscule varieties in §3 and prove our main result on their infinitesimal

geometry in §4.

This is the first paper in a series [15, 14, 16, 17, 18] establishing new relations
between the representation theory of complex simple Lie groups and the algebraic
and differential geometry of their homogeneous varieties. The surprising connection

between secant varieties and prolongations developed in this paper is exploited
in the sequels.

Acknowledgements. We thank J. Wolf, J.-M. Hwang and D. Snow for useful

conversations, and an anonymous referee for the simplified proof of Theorem 4.3.

2. Under the microscope

In this section we establish the basic connections between differential invariants
of homogeneous varieties and representation theoretic data. In §2.1 we review
the projective fundamental forms of an arbitrary projective variety Xn C Pn+a
and establish a connection between secant varieties and fundamental forms. In
§2.2 we express the fundamental forms of homogeneously embedded homogeneous
varieties X G/P C VV\ in terms of the universal envelopping algebra U(q). In
§2.3 we discuss the P-module structure on TXX, introduce an important class of
homogeneous varieties, the generalized minuscule varieties and explain their role
in the study of fundamental forms of rational homogeneous varieties.

2.1. Fundamental forms of projective varieties

2.1.1. Notation

We let V Cn+a+1 and VV the corresponding projective space. If Y C VV
is a set, we let Y C V denote the corresponding cone in V. If v G V, we let
[v] G W denote the corresponding point in projective space. For any vector space
W, we let W* denote the dual vector space. Let X C VV Pn+a be a projective
variety of dimension n, and let x G X be a smooth point. We let TXX denote the
(intrinsic) Zariski tangent space to X at x, TXX C Pn+a denote the embedded

tangent projective space (the Pn C Pn+a that best approximates X at x), and

TXX TXX C V. We have the relation TXX x*(g)(TxX)/x and we also have,
^affine n

V
We let NXX TXVV/TXX denote the normal space of X at x.

for any p G V with x [p], TXX TpafflneX, the affine tangent space at p.
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2.1.2. Fundamental forms in coordinates

Let Xn C Pn+a be a projective variety, and let x G X be a smooth point. Take
local linear coordinates (x1,..., xn, xn+1,..., xn+a) adapted to x, which means that
they are centered at x and that xn+1 ¦ ¦ ¦ xn+a 0 are equations of the
embedded tangent space of X at x. Write X, locally in the complex topology, as

a graph

E
where n + 1 < /x < n + a. The geometric information in the series (that is,
information independent of choice of adapted coordinates) can be encoded in a

series of tensors, the simplest of which is the projecüve second fundamental form

¥¥%x ]T <£ßdxa o dx?®-^ e S2T*XX®NXX.

l<a,ß<n,<<
If x is a general point, FF^ x even contains information about the global geometry
of X, see [9], [12]. It is useful to consider the second fundamental form as a system
of quadrics |FF^J := ¥(¥¥Xx(N*X)) Ç VS2T*X parametrized by N*X, and

Base |FF^ x\ C VTXX, their common zero locus.

We let TX2)X TXX + O(l)x(g)¥¥2x X(N*X) C V, the second osculating space

to X at x, and N2 N2,XX O(-l)(E)(fx^X/fxX).
More generally, the k-th projective fundamental form of X at x is a tensor

¥¥kXx e SkT*X(g)NkiXX

where Nk NKxX O(-l)x(E)(fx^X/fJk-^X) and

O(-l)x(g)¥¥k(SkTxX) is the k-th osculating space to X at x. To define FF^
one can use the same définitions as one does for the Euclidean fundamental forms,
either in coordinates or as the derivatives of successive Gauss mappings (see [12]).
Note that the osculating spaces determine a flag of V,

ocîc fxx c tj-2)x c c fxU) v.

More generally, given a mapping </> : Y —> VV, one defines its fundamental
forms FF^ in the same manner. FF^ x quotiented by ker 4>tx is isomorphic to the
second fundamental form of the image, ¥¥2),yj ,,y See [13] for details.

In what follows, we slightly abuse notation by ignoring twists by the line bundles

O(j), which will not matter as we study fundamental forms only at some fixed base

point. We let |FF^J C VSkT*X denote V(¥¥Xx(N* XX)) and Base |FF^_J C
VTXX denote its base locus.

2.1.3. Prolongation
Let V be a vector space, let A C SdV* be a linear subspace, and let

A® :=(A®SlV*)nSd+lV*,
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the l-th prolongation of A. Here the inclusion Sd+lV* <-^ SdV* <g> SlV* is dual to
the multiplication map SdV <g> SlV —> Sd+lV. If P G Sd+lV*, we still denote by
P(«i,... ,Vd+i) its polarization. Then P G A^ if and only if for all v £ V, the
degree d polynomial w i—> P(w,..., w, w,..., w) belongs to A. The notation is such

that A(°) A.
Let Jac(A) := j>_P|v G V, P G A} Ç S"*-1!/*, the Jacobian space of A. Then

,4(1) {P g Sd+1V*|Jac(P) C A}. Here _, denotes contraction, v^P(wu wd_i)

A basic fact about fundamental forms, due to Cartan ([2], p. 377) (and
rediscovered in [9]), is that if x G X is a general point, then the prolongation property
holds at x:

\V¥kXx\ Ç |FF^|(1).
A geometric consequence is as follows. Define the k-th secant variety ak(Y) °f

a projective variety Y C VN to be the closure of the union of the linear spaces
spanned by k points of Y. The notation is such that (J\{Y) Y.

Proposition 2.1. Let Xn C Pn+a be a variety and x G X a general point. Then

for k>2,
Base |FF^J D crfc_i(Base IFF^J).

Proposition 2.1 is a consequence of the following lemma:

Lemma 2.2. Let A C S2V* be a system of quadrics with base locus Base (A) C
VV. Then

Base(A(fc"1)) D ak(Base (A)).

Moreover, if Base (A) is linearly non-degenerate, then for k > 2, Lk(ak(Base (A))
0, and if A /2(Base (A)), then Lk+1(ak(B&se (A)) A^, where Id(Z) C SdV*
is the component of the ideal of Z C PV^ in degree d.

Proof. We prove the lemma for k 2, the generalization being clear. We first need

to prove that any polynomial P G A^ vanishes on v sx + ty for all s, t G C and

x,y G B, the cone over Base (A). Since P(x, x, •) P(y, y, •) 0, we have

P(«) P(v, v, v) s3P(x, x, x) + 3s2tP(x, x, y) + 3st2P(x, y, y) +t3P(y, y, y) 0.

Now, say Q G ^(^(Base (A)). Then for all x,y G B and s,t G C, Q(sx + ty)
0, which implies Q(x, y) 0, which implies Q 0 since Base (A) is non-degenerate.

Finally, consider a polynomial P G /3(<T2(B(^4))- Since P vanishes on v
sx + ty for all x, y G B and all s, t G C, we have P(x, x, y) 0 for ail x £ B, and
ail y & B, hence all y G V since Base (A) is non-degenerate. Thus for all y G V,
P(-,-,y) is a quadric vanishing on Base (A), hence belongs to A /2(Base (A)).
This means that P is in A^\ D

An elementary fact about projective varieties is that if Xn C Pn+a is a variety
whose ideal is generated in degree < d, and L a linear space osculating to order
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d at a smooth point x G X, then L C X. The ideal of a projective homogeneous
variety is generated in degree two (see e.g. [19]), so if X C W is homogeneous,
then BaselFF^ J is the set of tangent directions to lines on X through x. If
y G TXX n X then the line P*y is contained in X.

2.2. Osculating spaces of homogeneous varieties

Let G be a simply connected complex semi-simple Lie group, q its Lie algebra, g®

the tensor algebra of q and U(g) 0®/{x<g>y — y®x — [x,y] \ x, y G q}, the universal
envelopping algebra. U(g) inherits a filtration from the natural grading of g®,
and the associated graded algebra is the symmetric algebra of q. Fix a maximal
torus T and a Borel subgroup B of G containing T. We adopt the convention that
B is generated by the positive roots, and we write the corresponding root space
decomposition of q as

0=t0 0 (flaSfl-a),

where A+ denotes the set of positive roots. We use the ordering of the roots as in [1].

Let V\ be an irreducible G-module with highest weight A, and v\ G V\ a

highest weight vector. The induced action of g extends to the universal envelopping
algebra, inducing a filtration of V\ whose fc-th term is

V™ Uk(g)vx.

Let x [vx] G VVX and let X G/P C ¥VX be its G-orbit. Here P is the
stabilizer of x, it is a parabolic subgroup of G. The tangent bundle TX is a

homogeneous bundle and we identify TXX with the associated P-module g/p. The
osculating spaces and the fundamental forms of X have a simple representation-
theoretic interpretation:

Proposition 2.3. Let X G/P C PV^ be a homogeneous variety with hase point
x [vx\- Let Tx X denote the cone over the k-th osculating space at x and let

Nj. Tx X/Tx X be the k-th normal space twisted by O( —1). Then

^ Vf°, Nk

Moreover, there is a commutative diagram

SkQ Uk

I I
¥¥kXtX : SkTxX -^ Nk,

where the bottom horizontal map is the k-th fundamental form atx.

Proof. The diagram above is the fc-th fundamental form of the mapping </> : G —>

VV at e G G, where </>(G) X. D
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V^ has a natural P-module structure. Thus the osculating spaces of X at x
correspond to the increasing filtration of P-modules

ocîc fxx v^ c vA(2) c • • • c v^f) vx.

Our next goal is to understand the first quotient of this filtration, namely the
structure of TL.X as a P-module.

2.3. Decomposing the tangent space

Let P Pai denote the maximal parabolic subgroup of G corresponding to the
simple root aj. Let P LPU be a Levi decomposition of P, where P" is unipotent,
L is reductive and contains the maximal torus T. If a is a positive root, let
a ^2 nij(a)aj be its decomposition in terms of simple roots. Let Ax {a G

A_|_|mj(a) > 0}. We have the root space decompositions

P t © (©aeA+ fla) © (©a£A + \Ax 0-«)'
[ te©aeA+\Ax(0ae0-a),
P" 0a£Ax 0"'

Proposition 2.4. Let G be simple, let à be the highest root of Q, let ai be a simple
positive root, and let P Pa% be the associated maximal parabolic subgroup. For
1 < k < rrii(ä), let

This defines an increasing filtration of g/p by P-submodules. The quotients

T, — rV\ aJ-k — \jy fl—a

are irreducible P-modules.

Proof. The fact that each Sk/^k-i is a P-module is clear. The irreducibility of T]~

is a special case of [25], 8.13.3 (which is attributed to Kostant). D

The irreducibility of Tj, implies that the set {a G A+ | m,(a) k} has a unique
minimal element which we denote by — </>& when we consider the root as a weight
of Tfc. In particular, the highest weight of T\ is

3

where n{o.ll a0) denotes the entries of the Cartan matrix. This weight is easy to
read directly on the Dynkin diagram of G. Let H denote the semi-simple part
of L. As an iï-module, the filtration of TXX into irreducible P-modules becomes
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a direct sum decomposition into irreducible i7-modules. Note that L has a one
dimensional center and that the Lie algebra of H is

where ker wj C t. The Dynkin diagram of H is therefore deduced from that of G

by suppressing the node corresponding to the simple root 04. In particular, we
conclude:

Proposition 2.5. Let X G/P be a homogeneous variety with P a maximal
parabolic and let H be the semi-simple part of P. Then T\, the first irreducible
component of TXX as an H-module, is obtained by marking the nodes of T>(H)
adjacent to the node from T>(G) that was removed. A node ß is given multiplicity
two (resp. three) if there is an arrow emanating from a. towards ß with a double

(resp. triple) bond.

The above observations can be found in [7].

Definition 2.6. A fundamental weight ujt is minuscule if the Weyl group acts

transitively on the set of weights of the corresponding fundamental representation.
In an irreducible root system, a fundamental weight wj is cominuscule if the

highest root has coefficient one on 04. In a reducible root system, a weight is
cominuscule if it is a sum of cominuscule fundamental weights, one for each irreducible
factor of the root system.

The relation between these two notions is as follows. In the irreducible case, lv1

is minuscule if and only if in the dual root system, the highest root has coefficient
one on the coroot âj ([1], Chap. 8).

Geometrically, when G is simple, the weight wj is cominuscule exactly when

G/Pt admits the structure of an irreducible Hermitian symmetric space whose

automorphism group is locally isomorphic to G (we call G/Pi a G-Hermitian
symmetric space). This was pointed out by Kostant in [11]. We use the following
définition (be careful that minuscule varieties are in correspondence with
cominuscule weights, not minuscule weights!):

Definition 2.7. A G-minuscule variety X G/P C W is a G-Hermitian (not
necessarily irreducible) symmetric space in its minimal homogeneous embedding.
A generalized minuscule variety is a Hermitian symmetric space X G/P C W
in some G-homogeneous embedding, but the automorphism group of X need not
be locally isomorphic to G, and the embedding need not be minimal.

Proposition 2.8. Let X G/P with G simple, and P Pa% a maximal subgroup
with semi-simple part H. If a-% is not short, then the closed H-orbit Y\ C PT\ is

an H-minuscule variety.
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See 2.11 below for a more general statement.

Proof. The observations above imply that Y\ H\jQ\ x • • • x Hr/Qr, where

Hi,..., Hr are simple Lie groups whose Dynkin diagrams are the branches from
a.i of T>(G), and Qi,...,Qr are maximal parabolic subgroups defined for each

branch by the node adjacent to 04. Since the root system of each H]~ is formed
by the roots of G with support on the corresponding branch, we just need to
prove that if a root ß of G has coefficient mj(/3) 0 on o.il its coefficient on an
adjacent root a.], cannot exceed one. But this follows immediately from the equality
n(ß, ai) ^2 nij(ß)n(aj, at) (where the integers n{a0, at) are non-positive, and

negative exactly when aj is adjacent to o^), and the fact that, since on is not short,
n(ß, at)\ < 1. The minimality of the embedding of Y\ in PT\ similarly follows

from the fact that n(otj, a{) — 1 for a.j connected to a,-. D

We can say slightly more when G is simply laced.

Proposition 2.9. Let G be a simple Lie group of type A, D or E, let P be a

maximal parabolic subgroup, letT\ C TXG/P be as in 2.^. ThenT\ is a minuscule
H -module.

Proof. The weights of T\ are, by définition, the opposites of the roots ß such that
nii(ß) 1. If G is simply laced, these roots all have the same length and lemma
4.4 shows that the Weyl group of H acts transitively on them. D

The above discussion can easily be extended to homogeneous spaces X G/P
with P not necessarily maximal. Suppose that P Ps is the parabolic subgroup
generated by the complement of a set S of simple positive roots. Then there is

an irreducible component of the L-module T TX(G/P) for each choice of the
coefficients of the positive roots on these simple roots. If we choose such a family
of coefficients a (at)ies, and let

•So, (-P) fl« and Ta

then sa is a P-submodule of g/p, and Ta is an irreducible L-submodule of sa-
An important difference with the case of maximal parabolics is that the incidence
relations between the non-zero sa's is no longer a simple chain of inclusion, but
defines a partial order.

Let £j be the family of coefficients aj 1, and a,j 0 for j G S — i. The
analogues of T\ in the maximal case are the i7-modules TEi (note that only the
irreducible factors of H corresponding to the branches of T)\S connected to at act
non trivially on T£.\ we denote their product by H£.). Again we need to know
whether a-% is short or not, but this condition is relevant only with respect to a

subdiagram of T>(G).
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Definition 2.10. We call a G S an exposed short root if the connected component
of a in T>\{S\a) contains a root longer than a, i.e., if an arrow in T>\{S\a) points
towards a.

Proposition 2.11. Notations as above. Let Y[ C PT£l be the closed orbit. Then

Y[ is a generalized minuscule variety. Moreover, it is a HF%-minuscule variety,
except for situations equivalent to the following cases:

1. Cn/Pk for k <n. Here Yx Seg^'1 x p2»-2fc-i); H SLkx Sp2n-2k Ç
SLk X Shin-Ik-

2. Cn/Pn. Here Y\ V2(¥n~1), which is An_\-minuscule but not in its minimal

embedding.
3. F4/P4. Here Y\ B3/P3, a six-dimensional quadric.
4. GilPi- Here Y\ 1*3 (P1) is the twisted cubic, which is Ai-minuscule, but

not in its minimal embedding.

Let X G/P with P maximal, let H the semi-simple part of P. We obtain
a splitting TXX (&pTp, with each Tp an irreducible i7-module. Let Yp C VTp
denote the closed orbit.

Proposition 2.12. The closed orbit Yp is contained m Base|FF^J, and there
is a rational normal curve in X of degree at most p + 1, passing through x with
tangent vector in Yp.

This proposition indicates that it is possible to study the G-homogeneous rational

curves on G/P of degree greater than one using the methods we use to study
lines on G/P.

Proof Let P Paj and let ß be such that rrij(ß) p. Let Xß G Q-ß. Let v eV
be a highest weight vector and x [v]. Then XßV &YpC Tp. By [6], lemme 7.2.5,

XPß+ v 0 so the rational curve exp(tXß)v is contained in X and is of degree at
most p. D

These propositions stress the importance of minuscule varieties in our study.
The next section is devoted to their properties.

3. Minuscule varieties

We explicitly describe the tangent and normal spaces to minuscule varieties X
G/P in §3.1 and §3.3 as iï-modules, where H is the semi-simple part of the Levi
factor of P. In §3.2 we state an prove our main theorem that determines the
fundamental forms of minuscule varieties. In §3.4 we remark on some interesting
complexes obtained from the normal spaces of minuscule varieties.
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3.1. Their tangent spaces

We summarize characterizations and tangent space structures of minuscule
varieties: Let G be a simple Lie group and P POi a maximal parabolic subgroup. Let
G/P CFV be the minimal homogeneous embedding. The following are equivalent:

1. nii(à) 1 (the highest root à has coefficient one on the simple root a,),
2. pu is an abelian subalgebra of g,
3. T Tje] (G/P) contains no P-invariant submodule,
4. G/P admits an irreducible Hermitian symmetric metric with local holonomy

G induced from a Fubini-Study metric on FV, and the embedding to FV is the
smallest such embedding.

Here is a table of the G-minuscule varieties: there are four infinité series and
two exceptional spaces.

Name Grassrnanrnan Quadric Lagrangian Grassrn. Quadric

Notation
G

V(G)
H

V(H)
T

G(fc,n + 1)

An

Ak-i x An-k
Wfc-l + LOk+ l

E*®t

Q2n-1

E*®(E±/E)

Name Spmor variety Cayley plane

Notation
G

D(G)
H

V(H)
T A2E*

Here i? and Q are the tautological and quotient vector bundles on the Grass-
mannian or their pullbacks to the varieties in question. <S+ is the half spin
representation of Dz, and ^(O) is the space of 3 x 3 O-Hermitian matrices, the
representation VUl for Eq (see §6.2 for details). GW(O3,O6) may be interpreted as

the space of O3's in O6 that are null for an O-Hermitian symplectic form, see [15].
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3.2. The strict prolongation property

We prove our main theorem on the infinitésimal geometry of minuscule varieties.

Theorem 3.1. Let X GjPa% C FV^ be a minuscule variety and x G X. Then

for k>2,

Remark 3.2. This result says that the leading terms of the Taylor series in local
coordinates adapted to the filtration by osculating spaces, are determined by the
quadratic terms in an elementary manner. In [15], we show moreover that there
are no terms in the Taylor series except for the leading terms. (Minuscule varieties
are the unique homogeneous varieties having this property.)

Proof. Let v vu% G Vu% be the highest weight vector, and let T T[V]X. We

denote by Rk C SkT the space of relations of degree k, that is, the space of
homogeneous polynomials Pk of degree k in the XO1 with a G Ax, such that Pk.v G

Ty, X, the (k — l)-st osculating space. We have the following commutative
diagram, where horizontal middle long sequence and the vertical short sequences
are exact:

0 0

1

Rk®T
1

SkT(E)T
1

Nk®T
1

0

0

1

Rk+l
1

—> Sk+1T
1

1

0

—> 0

—> 0

—> 0

I
0

Lemma 3.3. N^+1 Nk for all k > 2 if and only if the relations are generated
in degree two, that is, the map Rk®T —> Rk+i is surjecUve for all k > 2.

Proof. We first note that Nk+1 N^ holds if and only if the sequence

is exact at the middle term. This is because, by définition, Nk^ (Nk<%>T*) n
S^T* and Sk+1T* is the kernel of the map SkT*(E)T* -* S^^^A2^.

A diagram chase, using the above partially exact diagram, shows that the
exactness of the dual sequence Nk_i<S)A2T —? Nk<S)T —> Nk+i is equivalent to
the surjectivity of the map Rk®T
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Now we analyze the space of relations. By [6] (Lemme 7.2.5 p. 225), the
relations all come from the identities

X^.v 0 and XßV 0 for mt{ß) 0.

More precisely, if P]. is a homogeneous relation of degree k, there exists an
identity of the following kind in U(n) (where n is the subalgebra of q generated by
positive root vectors):

mj(/3)=0

where Q<fc is a polynomial of degree less than k in the Xa, a G Ax, and the Rß
and S are polynomials in the X7, 7 G A+. Now we fix an ordered basis of n,
beginning first with the Xß, ß ^ aiy such that ml(ß) > 0, then Xai, and then
continuing with the X1 for which 7712(7) 0- By the Poincaré-Birkhoff-Witt
theorem ([6], Théorème 2.1.11 p. 69), the monomials in the X1 compatible with
this order form a basis of U(n).

We say that a polynomial expression in the X7, 7 G A+, is well-ordered if
each of its monomials is compatible with our ordered basis. We may suppose that
in the identity above, all the polynomials Pj,, Q<k, Rß and S are well-ordered.
We may even suppose that the products RßXß are well-ordered, as if they are

not, reordering them gives a sum of expressions of the same type, since the space
generated by the X7 for which 77^(7) 0 is stable under the Lie bracket. However,
and this is the crucial point, we cannot suppose a priori that the product SX^. is

also well-ordered.
The conclusion of this analysis is that all relations appear in the following

way: we first chose a well-ordered monomial Xß1 ¦ ¦ -Xßm, with mt(ßi) ¦ ¦ ¦

m-iißm) 0; we reorder its product with X^., which gives an expression of the
form:

xßi ¦ ¦ ¦ xßmx<i, 2^ c7sXo^+7Xo^+s + Cl2«,+ft+ +ßm + 2^ UriXri,
7<5 m,-(t))=0

where Uv is some polynomial in the X7 and C is a constant. We then multiply on
the left by a monomial in the Xß with mt (ß) > 0 and reorder if necessary, then
we make linear combinations, and finally, we only keep the homogeneous terms of
maximal degree in the resulting expression.

This doesn't seem very enlightening, but since X is a minuscule variety, if
ml(ß) 7714(7) 1, then Xß and X7 commute. So the above relation simplifies
to an expression of the form

7(5 mz(?])=0

Moreover, the relations are then obtained by multiplying the sums

sc~lsXa.jrlXa.jrs by monomials in the Xo^+ri, which need no reordering; and
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finally, the resulting expression is necessarily homogeneous, since we can assume
that all its monomials have the same total weight.

This means in particular that all relations are deduced from the degree two
relations

7«S

by simple polynomial multiplication in T. Thus the maps R2<S>Sk~1T —> Rk+i are
surjective for k > 2, which implies surjectivity of Rk<S>T —> Rk+i-

3.3. Their normal spaces

An interesting property of G-minuscule varieties is that the irreducibility of the
tangent space propagates to the irreducibility of all normal spaces. Indeed, the
normal spaces and fundamental forms of the minuscule varieties are as follows:

Proposition 3.4. The tangent space T, and the normal spaces Nj, with 2 < j < I,

of the classical irreducible minuscule varieties X are given by the following table:

X
G
H
T
Nj

I

G{k,n)
SLn

SLk X SLn-k
WUk_1+Uk+1 E*(£>Q

WUk_.+Uk+. =AJS*(g)AJQ
min(A;, n — k)

GLag(n, 2n)
Sp2n
SLn

w2iJl =s2u
W2ulj S2...2U

n

s2n

Spin2n
SLn

WUn_2 A2U

\-9.\

SOn+2
SOn
wU2

c
2

For the two exceptional irreducible minuscule varieties, we have the following
table:

X
OP2

Gw(O3,Ob)

G
E6
E7

H
Spin10

E6

T
wU2

N2 N3
0

c

The fundamental forms may be described explicitly as follows:

For a non-degenerate quadric Qn, the second fundamental form is a nondegen-
erate quadratic form with base locus a smooth quadric Qn~2.

For the respective cases G(k,v), Gu(k, V), S, GW(O3,O6), T is a (subset) of
a matrix space, respectively T E* (£>Q, S2E*, A2E*, J3(O). In all but S, the
last fundamental form is the set of maximal minors (the determinant for S2E*
and ^3(0)), and the lower fundamental forms are just the successive Jacobian
ideals. For S, the last form is the Pfafnan (since the determinant is a square) and
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the other forms are the successive Jacobian ideals, which are the Pfaffians of the
minors centered about the diagonal.

For the OP2 case, let V C10. Then T S+(V) is a half-spin representation,
and N2 is the vector representation V. The half-spin representations S+ and
S- can be constructed as the even and odd parts of the exterior algebra of a

null 5-plane E in V (see e.g. [10]): S+,S- are dual to one another, the wedge

product giving a perfect pairing S+&S- —? A5E C Moreover, the full exterior
algebra of E is a module over the Clifford algebra of V. If F is a complementary
null 5-plane of E, then E acts on S+ by exterior multiplication, F by interior
multiplication, and this action of V E(B F extends to the whole Clifford algebra.
In particular, there is a natural map from V to End(S'_,S'+) ~ S+(gS+. The
transpose of the symmetric part of this morphism is the second fundamental form.

Alternatively, identifying S+(V) O©O (see [10]) with octonionic coordinates

u, v, we have IFF2^ x\ {ull, uv, vv} where, considering O as an eight dimensional
vector space over C, the middle equation is eight quadrics.

Remark 3.5. Note that in all cases, the only i7-orbit closures in PT\ are the
secant varieties. This actually characterizes the minuscule varieties, see [15]. A
special case of this phenomenon is observed in [22]. Note that this property also
allows one to easily classify the G-orbits in t(X) when X is minuscule. See [14]

for examples.

Corollary 3.6. Let X he a minuscule variety, and let x G X. Then

Base |FF^J cr^^Base |FF^J).

Moreover, |FF^_J /fc(Base |FF^J).

Proof of the corollary. Immediate from our explicit descriptions of the fundamental
forms. D

Proof of the proposition. For each of these varieties, and each integer j, we check

that there is a unique irreducible i7-module which is a component of both S3'T

and of the restriction Res^V^.. Then Nj must be this i7-module. For an
ordinary Grassmannian G{k,n) G{k,V), T E*<g>Q, where E is the tautological
subbundle and Q V/E the quotient bundle. Its symmetric powers are given by
the Cauchy formula ([21], p. 33)

0 SXE*®SXQ,
\M=i

the sum is over all partitions A with the sum of its parts |A| equal to j. We have

0 0 k_h+Uk+h
h>0 h>0

ResGHKkV K\E 0 Q) 0 AhE*®AhQ 0 WU



Vol. 78 (2003) On the projective geometry of rational homogeneous varieties 79

since rank (E) k. The only common component of these two decompositions
is K3E*<S>K:'Q Wulk_.jrUlk+.. The case of Lagrangian Grassmannians is similar.
Here Q~E*,T S2E* and we use the formula ([21], p. 45)

SjT=

We compute the decomposition

h>0 h h>0

i 2 :and the conclusion follows as above. On spinor varieties, Q ~ E* again, T K2E*
and we use the formula ([21], p. 46)

\M=J

where if A (Ai,..., Am), then A(2) (Ai, Ai,..., Am, Am). Finally, the case of
quadrics is immediate since they are hypersurfaces.

For exceptional minuscule varieties the same argument goes through, except
that we use the LiE package [20], or Littelmann paths, instead of the above classical

decomposition formulas. D

3.4. Algebraic structures induced by infinitesimal geometry

We remark on some consequences of the strict prolongation property for minuscule
varieties.

Proposition 3.7. Let Xn C Pn+a he a variety such that strict prolongation holds

at x £ X. Let Nj NjtXX. Then there are natural maps

Proof. The maps are the restrictions of the symmetrization maps SlT*<%>S:>T* —>

Sl+:)T* and the image is assured to lie in N*+J by the strict prolongation property.
D

Corollary 3.8. Let X G/P C W be a minuscule variety. Let H be the semi-
simple part of P. Then there is a natural structure of a graded H-algebra on V.

In the case of Grassmannians, the algebra structure on AkV is given by the
multiplication of minors. For Lagrangian Grassmannians, it is related to the
multiplication of Pfaffians. The exceptional cases are related to certain exceptional
algebraic structures introduced by Freudenthal, that we meet again in §6. For
example, consider the minuscule variety of Er : this is a 27-dimensional subvariety



80 J. M. Landsberg and L. Manivel CMH

of the projectivization of the minimal representation V of Er, whose dimension is
56. As an H-module, we have

v v0® Vie v2® v3 ce J3(o)e J3(o)*e c,
where Js(O) denotes the exceptional Jordan algebra of 3x3 O-Hermitian matrices.
The group H Eß is realized as the subgroup of GL(J^(O)) preserving the cubic
form defined by the determinant. Its polarization defines the map Vi<g>Vi —> V2.

The map Vi<g>V-2 —> V3 is just the evaluation.

Another consequence of the strict prolongation property at a point of any
variety is the appearance of Koszul complexes:

Corollary 3.9. Let Xn C Pn+a he a variety such that strict prolongation holds at
x G X. Let Nj NjtXX. Then there is a Koszul complex:

• • • —> W*_l(g)Afc+1T* —> N*(g)AkT* —> N*+1(g)Ak-1T* —> • • •

induced by the maps T*(£>N* -> N*+1 (recall that T* Nf).

If NJ is replaced by the space of sections F(X, Ox(j)) for a subvariety X C PT,
the homology of the corresponding Koszul complexes compute the syzygies of X
[8].

For a classical minuscule variety X, there is a strange relation between the
complexes constructed from their normal spaces, and the Koszul complexes
computing the syzygies of another minuscule variety Z. Indeed, we obtain this second

family of complexes from the first, by a natural involution on the set of highest
weights of irreducible L-modules.

For L GLn, this involution is defined in the following way: to the Schur

power S\ we associate S\*, where A* is the conjugate partition of A, obtained
by symmetry along the main diagonal of its diagram (which actually defines a

bijection between partitions inscribed in a k x (n — k) rectangle, and partitions
inscribed in a (n — k) x k rectangle). The complex associated to our example above
is therefore

• • • —> SjE(g)SjF(g)Ak(E(g)F) —> S]+1E(g)S]+1F(g)Ak-1(E(g)F) —> • • •

In small degrees, for X G{k,n), G-^ag(n,2n), Sn, we obtain the Koszul
complexes associated to Z P"-fc-1 xPfc~1, G(2, n), v2(Vn~1) respectively. (Note
that Yi Pfc"1 x Vn-k-\ V2(Vn-1), G(2,n) respectively.)

4. Linear spaces on homogeneous varieties

In this section we explicitly describe the lines through a point of a homogeneous
variety X G/P C PV, the Fano variety parametrizing all lines on X (in §4.2),
as well as the Fano varieties parametrizing higher dimensional linear spaces on X
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in §4.3. These parameter spaces all come equipped with natural embeddings to
projective spaces whose associated vector spaces are G-modules as described in
§4.4. We give an amusing recipe for recovering the Dynkin diagram of G from
second fundamental form data in §4.5. We begin, in §4.1 with a construction due
to Tits that is essential to our work.

4.1. Tits fibrations

Let G be a simple Lie group, let S, S' be two subsets of the sets of simple roots of
G. Consider the diagram

G/Psus'

X G/Ps X' G/Ps>

Let x' G X' and consider Y := tt(tt'~1(x')) C X. Then X is covered by such

varieties Y. Tits shows in [24] that Y H/Q where V(H) V(G)/(S\S'), and
Q C H is the parabolic subgroup corresponding to S'\S. He calls such subvarieties
Y of X, L-subvarieties, and Y the shadow of x'.

Example 4.1. For X Dn/Ps and X' Dn/Pn, we read off the diagram below
that Y G(3,n).

4.2. Lines

Let V T>(G) be the Dynkin diagram of a complex simple Lie group G. We

identify the nodes of V with the set of simple roots with respect to a choice of
maximal torus T and Borel subgroup B which we fix once and for all. Let aeD.
Let N(a) {ß G T> \ (a, ß) < 0} denote the neighbors of a, the simple roots
connected to a by an edge in T>.

Proposition 2.5 implies the following (with the same notations):

Corollary 4.2. Let X G/P, with G simple and P a maximal parabolic
subgroup. Let Y\ C PTi be the closed orbit. Then Y\ is isomorphic to the shadow of
a point x G X on the space X' G/P' of G-lines in X.

Here P' is the parabolic subgroup of G defined by the neighbors of the root
defining P.

We will see that if we consider the minimal homogeneous embedding X C W,
these G-Tits lines are linearly embedded. We first need to recall a few basic facts

on the Picard group of a rational homogeneous space.
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It a classical fact, due to Chevalley, that Pic(G/B) H2(G/B,Z) P, the
weight lattice ([3], Exposé 15). More generally, Pic(G/Ps) H2(G/PS,Z)
P(S), the sublattice generated by the fundamental weights wj dual to the roots
OjGS (or rather to the corresponding coroots). Dually, ^(G/Ps, Z) ~ R(S), the
lattice generated by the coroots âj to the roots ai G S, with the obvious pairing
with P(S). Each class <3y can be realized geometrically by considering the double
fibration

G/PS\as\JN(as)

Indeed, the shadow on G/Ps of a point in G/Ps\a uN(a is a rational curve, on
which a line bundle L\ defined by a weight A G P{S) has degree (A, à0) (see [5],
Lemme 2 p. 58).

In particular, suppose that G/Ps is embedded in some ¥V\ by a very ample
line bundle L\, where A ^2îeSh^î, and contains a line of ¥V\ whose homology
class is ß ^îeSm,âj. Then ^2ieshmi 1, which implies that ß ôy for

some j & S with /j 1. Moreover, the variety F((X) of these ay-lines on X is

independent of the A with /j 1 chosen. Note that it contains G/Ps\a}uN(a})-

Theorem 4.3. Let S Ç Î), consider X G/Ps in its minimal homogeneous
embedding. Then

1. -Fi(X) ]J7-es Ff (X), where Ff(X) is the space of lines of class àj G

H2(G/Ps,Z).
2. If ctj is not an exposed short root, then Ff(X) G/Ps^jUNia,)-
3. // a.j is an exposed short root, then F((X) is the union of two G-orbits, an

open orbit and its boundary G/Ps\a.ij]\[(a.y

Assertions 1. and 2. are rephrasings of results in [4], which were published
just after the first version of this paper was written (but note that Cohen and

Cooperstein work over an arbitrary field). Assertion 3. and its proof below were
communicated to us by an anonymous referee (our original proof contained some
case by case arguments).

In §6 we give explicit descriptions of the open orbits of 3. for each short root.

Proof. The argument, proceeds in three steps: first we give a criterion for identifying

distinct orbits in F((X); up to the action of Ws, the subgroup of the Weyl
group W generated by the simple reflections siy i £ S, there is a unique T-fixed
point in each G-orbit passing through a base point x G X, where T denotes the
maximal torus in G. We then show that there is a unique tangent direction in T3\
corresponding to a line up to Wg-equivalence, and finally, if aj is an exposed short
root with —(a,otj) 2 (resp. 3), then there is a unique vector in Tj2 (resp. Tjs)
modulo Wg-equivalence corresponding to a T-fixed line. Finally we show that the
orbit of the Tji (resp. Tjs) line is not closed.
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We first observe that every G-orbit in F( (X) contains a T-fixed line. Indeed, if /

is an ay-line, by homogeneity we can suppose it contains the base point x [Ps] G

X. If y G I is another point, y lies in a unique Bruhat cell B(w) {wxh^1 \ h G

B}, w G W. Then there exists h G B such that h(y) w(x), and since h(x) x,
the line /' xw(x) is T-stable in Gl.

By T-stability, the tangent direction to /' at x must be a g_a for some a G Aj.
The orbit through x of the Shi corresponding to a. is /, and thus (A, a) 1 because

A is also the highest weight of the S^-module / ~ C2.

Write a pa.j + 7 with nij(j) 0. We have

[a, a)

Since the equality holds for any choices of coefficients /j, we must have (wj, a) 0

for all 1 G S'Y?'. Thus (a, a) p(oy,ay) and we have two cases.

If o.j is not an exposed short root, then p 1 and by Lemma 4.4 below, a is

Wg-conjugate to <x,. There is therefore a unique G-orbit in F((X).
If «j is an exposed short root, then either p 1 and a is short, or p > 1 and a

is long. Then Lemma 4.4 and Lemma 4.6 below imply that there are at most two
G-orbits in F((X).

The following lemma was communicated to us anonymously.

Lemma 4.4. Let ß G Ax have the same length as at, and mt(ß) 1. Then there
exists w G Ws with wai ß.

Proof. We use induction on the height of ß, i.e., the sum of its coefficients in
its decomposition on simple roots. Suppose that ß ^ o.-ll and (/?, otj) < 0 for
all j ^ 1. Then (ß,at) > (ß,ß) > 0, thus n(ß,at) 1 and st(ß) 7, where

sl(ß) ß — (ß,äi)oti. Therefore, since ß,7 and 0.1 have the same length, we get
— 1 «.(7, a.t) n(aj, 7), hence n(/3, 7) 1 and (/?, 7) > 0.

We can therefore let k ^ 1 such that (ß, a.k) > 0. Then the root Sk(ß) verifies
the same assumptions as ß, but its height is smaller, and we conclude the proof
by induction. D

Lemma 4.5. a.j is an exposed short root iff there exists a G A+\S* such that
n(a,Q!j)\ > 1.

Proof. If otj is not an exposed short root, n(a, otj) ^ 0 implies that a and ay have

the same length, hence \n(a, otj)\ \n(otj, a)\ < 1. Now say aj is an exposed short
root. Then there exists a long root a supported outside S such that (a,otj) ^ 0.

Thus \n(a,aj-)\ > \n{aha)\ 1. D

Lemma 4.6. // a.j is an exposed short root, then any pair of long roots of the

form pa.j +7, where 7 is supported outside S, are conjugate in Ws-
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Proof. If p 3, we are in the G-2 case which is clear. So assume p 2. Let
(5 2oy + 7, 7 supported outside S.

Assume S is such that (S, aj) < 0 for each ^ j with mj(J) 7^ 0. Then
((5, ay) > ((5,(5) > 0. Since ay is short, we have n(ö,aj) 2, so Sj(ö) 7 and

7 is a long root. Also, n(aj,ö) 1, so that n(5,a{) 0 for all 1 ^ j with
rrij(ô) ^ 0. Thus ô is the highest root with support in the subdiagram supp(ö).
But n((5, ay) 2, therefore this subdiagram must be of type Cr+2 for some r > 0.

Since j is an end of it, it is uniquely determined, and S is a uniquely determined
root Sq.

Thus if J ^ (5o, there exists « 7^ j, «j G Î)\S', with ((5, aj) > 0. And we can then
proceed by induction on the root Sj((5), whose height is smaller than that of S. D

Finally we show that when ay is an exposed short root, the orbit corresponding
to a long root a is not closed. The case of Gi is easy (see §6.1), so assume p 2

and, using the notation of lemma 4.5, take a So- The corresponding line is

la vxvx-a, where vx is a highest weight vector in Vx and vx-a X-avx,
X-a & Q-a- Let us compute the tangent space Ta at la of its G-orbit. For leg,
we have

X(vx A Vx-a) Xvx A Vx-a + Vx A XX-aVx-

If X G 0-/3, a^(3e Ax, then X^ A «A-a, and therefore also X(vx A vx-a)-> are

non zero. If X G ps, then Xw^ 0, hence X(vx A vx-a) v\ A [X, X_a]wA. If
X is a root vector, this is non zero if and only if X G Qa-ß, with ß G Ax- This
implies that, as a T-module,

-ß, F (Ax-{a})U{/3-aGA,/3GAx}.

(Note that since a is a long root, we also have F (Ax — {«}) U sa(Ax — {«})•)
To prove that the G-orbit of la is not closed, we need to prove that its stabilizer

cannot contain a Borel subgroup, and for this it is enough to exhibit a root ß G F
such that —ß also belongs to F. But this is easy: indeed, recall that the subdiagram
of T> supporting a is of type Gr+2, and that a is the corresponding highest root,
that is a 2oy + • • • + 2ar+J + ar+J+i for a suitable numbering of the simple
roots. Then we can take ß ay + • • • + ar+j + ar+J+i G Ax, since —ß + a
ay H \-ar+j G A+. D

Remark 4.7. This proof gives a formula for the dimension of the open orbit of
lines in the case of an exposed short root, namely the cardinality of F (Ax —

{a})Usa(Ax-{a}).

On the infinitesimal level, Cx C VTXX, the set of tangent directions to lines on
X passing through x, is a union of disjoint varieties, one component C" for each

possible class a. of lines. The proof of the preceding theorem implies the following:
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Theorem 4.8. Let G be a complex simple Lie group, let S be a subset of the

simple roots. Let a G S. Let T)(H) be the components of (T)(G)\S)\a containing
an element of N(a), where by V(G)\S we mean V(G)\S plus any nodes of S
attached to a node ofV(G)\S. Let C" C VTXX denote the class of a-line s through
x.

1. // a is not an exposed short root, then C" ~ H/Ppj^y
2. If a is an exposed short root, then C" is a union of an open Ps-orbit and

its boundary H/'Pj\fçay

With the notations of §2, the closed Pg-orbit in C"3 is Yf, and the open orbit
is PsY-2 ¦ The cases of C" for exposed short roots are described explicitly on a

case by case basis in §6.

4.3. Linear spaces of higher dimension

A A;-plane in X must come from a linear Pfc^1 in some C". We call such a Pfc,

of class a, and let Ff?(X) denote the variety parametrizing the a-class Pfc's on
X. Fj?(X) may have several components. The space of Pfc's in X, Fj,{X), is the
disjoint union of the Fj?(X)'s.

If a otj G S is not an exposed short root, it follows from Theorem 4.3 that the
projection G/Ps —> G/P$\j is constant on each a-line, hence it is also constant on
each a-class Pfc. It follows that the space of a-class Pfc's is a fibration over G/P$\j,
and to determine the fiber, we can restrict to the subdiagram of T> consisting in
the connected component of otj in V\(S\j). In particular, we are reduced to the
case of a maximal parabolic subgroup, corresponding to a non-short root. Then
we know that Cx Y\ is a minuscule variety, so it is again a homogeneous space
of type H/Q with Q a maximal parabolic subgroup corresponding to a long root,
or possibly a product of such spaces. We can therefore apply Theorem 4.3 to
Y\ to describe its lines, which gives P2's in the original space, and so on. The
conclusion is that, not only Pljs, but all linear spaces can be described in terms
of Tits' geometries.

Theorem 4.9. Let G be a simple group and let X G/Ps C W be a rational
homogeneous variety in its minimal homogeneous embedding.

If a £ S is not an exposed short root, then for all k, F£(X) is the disjoint
union of homogeneous varieties G/Psßj where {/%} C A+ is a minimal set of
positive roots such that the component ofD(G)\{_ßj\ containing a is isomorphic
to 17(^4^), intersects S only in a, and a is an extremal node of this component.

Corollary 4.10. Let G be a simple Lie group, let S C T>{G), let a Ci S with a
not exposed short. Let X G/Ps be the corresponding homogeneous variety in a

homogeneous embedding such that there are à-Unes. Suppose that the longest of
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the chains of type A in 'D(G) beginning at a and containing no other element of
S, is isomorphic to T)(An). Then the largest linear space of class a on X is a Pn.

Example 4.11. Consider the case of G/B C PV>, A u>\ + • • • + ior, the sum of
the fundamental weights. There are no unexposed short roots, so Cx is the union
of r points, F^X) TJj G/PV\aj and Fk(X) 0 for k > 2.

Example 4.12. In the case of Dn/Pn, we have a unique family of lines, parametrized

by isotropic subspaces of dimension n — 2, _Dn/Pn_2 and a unique family of
two planes parametrized by the Q-isotropic flag variety -Dn/-Pn-3,n-i- There are
two families of P3's, namely Dn/Pn-s and _Dn/Pn_4„_i. For 4 < k < n — 1 there
is a unique family of Pfc's, namely -Dn/-Pn-fc-i,n-i-

Example 4.13. The largest linear space on EnjP\ is a P™^1, via the chain
terminating with an, so EnjP\ is maximally uniruled by P™^1^ and there is a second
chain terminating with o.^1 so En/P\ is also maximally uniruled by P4's. (The
unirulings by the P4 's are maximal in the sense that none of the P4 's of the unirul-
ing are contained in any P5 on ErJP\.) The varieties parametrizing these rulings
are respectively ErJP-2 and En/Pn.

1' I
" ' "

Now we address the case of exposed short roots. First note that if X G/Pa
Bn/Pn, G2/P1 or Cn/P\, then the space of Pfc's on X is G-homogeneous, where
T>{G) is the fold of T>{G), as in these cases G/P ~ G/P. In general, we have:

Theorem 4.14. If a G S is an exposed short root, then for all k, Fj?(X) consists

of a finite number of G-orbits (at least two).

If a G S is an exposed short root, F£(X) can be deduced from Fk(G/Pa). In
each of these cases we determine the unextendable linear spaces through a point
explicitly. By further calculation, one can deduce all linear spaces through a point
and prove the theorem.

4.4. Natural embeddings of linear spaces

For X G/Ps C VV, we have Ffc_i(X) C G{k, V) C VKkV. Thus the connected
components of the Fk-i(G/Ps)'s come naturally embedded in some irreducible
component of AkV with highest weight A supported on the weights dual to the
roots appearing in the (unique) closed orbit G/Ps> consisting of (^-homogeneous
Pfc's in the component (i.e. Pfc's that are L-varieties in the sense of Tits). While S'

can be determined pictorially, the multiplicities of the weights in general cannot.
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We now determine the multiplicities in several cases, in particular the elementary
representations defined below.

Fix an end of the Dynkin diagram of G, and label the end node ct\. Following
[7], define the branch of ol\, B(a{), as the largest chain in T>(G) containing a.\
that is isomorphic to V(Ap) or V(Cp), such that no node in B(a{) before the last
has valence three. We say such a branch has length p. We label the roots on
B(a\) as a\,...,a.p and denote the fundamental representation corresponding to
lui by V Ven(j VUl. Such an irreducible representation is called an elementary
representation in [7].

end

The following result is evidently due to Cartan, a proof can be found in [7]

except for the 'moreover' assertions which may be verified on a case by case basis.

Proposition 4.15. With the notations above, VUk is an irreducible component
of AkV, with multiplicity one for 2 < k < p. More precisely, lû]~ is the unique
extremal weight of AkV.

Moreover, AP+1V also has a unique extremal weight which is
1. 2cop+i for a double edge with arrow pointing away from u)\.
2. 3ujp^i for a triple edge with arrow pointing away from <jj\.
3. ujp^i -\-ujp^2 if ^p corresponds to a node of valence three.

Idea of proof. One simply checks that among the weights of V, there is a maximal
chain /xi,..., /xp_|_i with /x$ lü\ — [a\ + • • • + ckj_i). In particular, /xi + • • • + /x^
is the unique maximal weight of AkV for 1 < k < p + 1, and it is straightforward
to check that this weight is as announced in the proposition. D

It is an easy exercise to prove that the wedge product of the weight vectors
corresponding to the weights /xi,..., /x^ generate a Pfc^1 that is contained in the
closed orbit Xen(j. Thus the G-submodule of AkV which hosts Fk-i{X) is precisely
the fundamental representation VUk.

It follows for example that in the case of simply-laced groups, we can obtain
all fundamental representations from the elementary ones, in a simple geometric
way.

Example 4.16. For Eq we have three elementary representations, the minimal
representation VUl, its dual VCÜ6 and the adjoint representation VU2.

Start with VUl, so X Ee/Pi is the Cayley plane. Then WCÜ3 is the ambient

space for F\{X), WVUi is the ambient space for F^{X) and WVU2 is the ambient

space for F^(X).
Start with V^2 te, so X Eq/P^ is the adjoint variety. Then WVUi is the

ambient space for F\{X) and WU3 is the ambient space for F^X). (Note that
Ee/Pi is a space of spinor varieties -D5/P5 on X.)
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A case by case analysis with LiE [20] leads to the following more precise result:

Proposition 4.17. Notations as above.

1. If Xen(j is a minuscule variety and V is not symplecUc or (Dn,ujn) —

(Dn,ujn-i), then for 2 < k < p, V^fc AkV. This is the case for (G,u>)

(An,uji), (Bn,uji), (Dn,wi) and (£6,^i) - {E6,u6).
2. // Xen(j is a rmnuscule variety and V has a symplecUc form Q, set A^V

KkV/{Q/\kk-2V). ThenVend_k=A^V. This is the case for {G,to) {C^lo^
and (£7, i^r)-

3. // Xend is an adjoint variety, so V Q, let A^g ker [ ], where

we consider the Lie bracket as a map [ ] : A2g —> Q. The adjoint variétés
corresponding to elementary representations are those of the exceptional groups:
(G,lv) (C?2,^2), (-Pij^i), (Ee,uJ2), (Er,u^i) and (Eg,u;g). In each of these

cases, except for Gi, V^ncj—l A^lg. (And afterwards there is always a double
bond or node with triple valence.)

4. // Xend G2/Pi then VU2 K2VUJ{V*^<j>) where 4> G A3l/Wl is the

defining three form.
5. // Xend F4/P4, then VU2 A2VUJU-

Remark 4.18. Consider the case of An. The adjoint variety X GjP\n is the
flag variety of lines in hyperplanes in Pn. The space of lines in X is disconnected:
it is the disjoint union of F2,n and Fin_i, the corresponding embeddings of which
are not their minimal ones, since

A[2]s[n+i V^+u^! © VU2+2Un.

Remark 4.19. For X F4/P4, F5(X) F4/P1, but here the variety occurs in its
third Veronese re-embedding, i.e. V%Ul C A3VUi. For X G2/P1, F2(X) occurs
in its second Veronese embedding, PV2Wl.

4.5. Dynkin diagrams via second fundamental forms

We describe how to recover V*(G), the marked Dynkin diagram of G, from the
second fundamental form at a point of any X G/P where P is maximal and not
short:

Fix x G X and start with a marked node, which corresponds to P. Say Y\
is the Segre product of Veronese re-embeddings of k minuscule varieties. Then
attach k edges to the node, with nodes at the end of each edge. For each factor
in the Segre that is minimally embedded, the edge is simple. If there is a factor
that is a quadratic (resp. cubic) Veronese, then make the corresponding edge a

double (resp. triple) bond. Now compute BaselFF^J of each factor and repeat
the process starting with the node corresponding to the factor. Continue until
arriving at the empty set. The resulting diagram is T>(G).
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A shortcut: if at any point one obtains an H/Q as a factor where the marked

Dynkin diagram associated to H/Q is known, one can simply attach the diagram.
In particular, if one arrives at a P', just attach a copy of V(Ai).

Example 4.20. Beginning with X En/Pi, one has

Sn_i, Base|FF2 _J G(2,n-l),
3(2 „-1)1 ^(P1 x P«-2), Base IFfQ^

So the construction is:

Base \¥¥2G(2 „_1}
| Sec^P1 x P™"2), Base |FF2 I - roo ro„-3

o

5. Classical homogeneous varieties

In this section we present the higher normal spaces of the classical homogeneous
varieties which are not minuscule, as well as the base loci of the higher fundamental
forms. We give most results without their proofs, which are computational.

5.1. Orthogonal Grassmannians

Let Go(k,n) denote the orthogonal Grassmannian of null A;-planes in V Cn
where V is equipped with a nondegenerate quadratic form Q and 2k < n. It
is a subvariety of the ordinary Grassmannian, and its minimal embedding is the
Plücker embedding in VVUk V(AkV).

Introduce the notation

(S2(APE*) if pis even
+ \A2(APE*) if pis odd

and

(A*£r®A*£T)_ iÎifZl ^ 1S T."v ' \S2(APE*) if p is odd.

Proposition 5.1. Let Ek be the tautological vector subbundle on Go(k,n), let
E1- D E denote its Q-orthogonal complement, and let [Jn~2k E^/E. Then the

tangent space and normal spaces of Go(k,n), as H SL(E) x SO(U) modules,

are
Tx E*®U, T2 A2E*,

N2 (A2E*®A2U(&S2E*)(&(A2E*(E)E*(E)U)(B(A4E* (&S22E*).

Np ®a>0(AP-aE* ®APE* ®AaU)(&
(&(APE*®APE*)+ 0
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In particular, the length of the normal graduation is k when k is even and the
last non zero term is Nk ~ AkE*(E)(A°E*(E)AkU +¦¦¦ + AkE*(E)A°U) 0 S2(AkE*).
When k is odd, the length is k + 1 and the last non zero term is N^i ~ C

Remark 5.2. Note that in contrast to the case of minuscule varieties, here N£ ^

Corollary 5.3. The base locus Base |FF^ ,k % E\ of the p-th fundamental fo

for p even,

P{ei<gmi H h ep<gmpeei A e2 H h ep_i A ep, \ e3 G E*, u3 G U},

and for p odd,

P{ei(g)Mi H \-ep(g>Up® ex A e2 H hep_2 A ep_i, | e^ G S*, «j G C/}.

5.2. Symplectic Grassmannians

We let Gu(k, 2n) Cn/Pf. denote the Grassmanian of A;-planes isotropic for a

symplectic form. Its minimal embedding is to VUJk A^V AkV/{ü A Ak~2V),
the fc-th reduced exterior power of V C2n, where Q denotes the symplectic form.

A straightforward computation shows that VUk has the following decomposition
as an H SLk x <Sp2n-2fc-module:

A<fc> V 0 AbE* ®Aa+bE* <g) A(a> U.

a,b

Note that U E1- /'E is endowed with a symplectic form induced by the symplectic
form on V C2n.

Proposition 5.4. Let E be the tautological vector sub bundle on Gu{k, 2n), let
E1- D E denote the Q-orthogonal complement to E and let U E^/E. Then the

tangent space and normal spaces of Gu(k,2n) are, as H-modules,

Ti E*®U, T2 S2E\

N2 A2E*(E)A^U 0 S2iE*:(8)C/ e S22E*,

In particular, the length of the normal graduation is equal to k, the last non zero
term being Nk ~ Afc(Ce U).
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Corollary 5.5.

Base |FF2^(Mn)iB| P{e®W © e2 | e £ E*\{0}, u £ U\{0}}.
This base locus contains an open and dense P-orhit, the boundary of which is the

union of the two (disjoint) closed H-orbits

Yl ~ pfc-i x p2™-^-1 c P(Ti) and Y2 ~ ^(P*"1) C P(T2).

Proof. This can be seen directly. A line in Gu(k, 2n) through a point E is given
by a (A; — l)-plane H C E, and a (A; + l)-plane K D E. K does not need to be

isotropic, each point of the corresponding line is generated by H and a vector of K,
and is isotropic if and only if this vector is w-orthogonal to H. The condition on
K is thus K C HL. K is therefore determined by a line in H^/E ~ £/ 0 HL/EL.

H e e E* is an equation of ff, the line H±/E± ~ (E/H)* C S* is generated
by £?, so that a vector in HL/E can be written as m © Ae, where u <£ E. Our
claim follows, the closed orbits Yi and I2 corresponding to the cases where m or A

is equal to zero. D

Corollary 5.6. More generally, the base locus of the p-th fundamental form is

Base|FF^(fcj2n)jB| =P{e1<gm1 -\ Vep®up(Be\ -\ he2,, | e0 £ E*, u0 £ U}.

Remark 5.7. Since Cn/Pk GUJ{k,2n) is a subvariety of the ordinary Grass-
mannian G(k, 2n), the P''s it contains are easy to describe: letting Mfi, Nq denote
fixed linear spaces of dimensions a and 6, they are of the form

{Mo*"1 CLC N$+l C M^},
with / < 2n-2k + l, or

{Alt1 CicJVok+1c M^},
with 1 < / < k and A^o isotropic. This second family of P;'s has two Cn-orbits,
while the first family breaks into a number of Cn-orbits that grows with k, indexed
by the rank of the restriction of Q to No.

5.3. Odd spinor varieties

We call the homogeneous spaces Bn/Pn the odd spinor varieties. They are the
usual _Dn-spinor varieties seen as Bn-homogeneous spaces.

Proposition 5.8. The tangent space and normal spaces of the odd spinor varieties
Bn/Pn, as H An-\-modules, are (dimE n):

Ti E*, T2 A2E*,
Np A2p-1E* ®A2pE*.
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Corollary 5.9.

Base |FF|„/p„ I P{e 0 e A /, e G E*\{0}, f G E*\Ce} ~ G(2, n).

TTws &ase locus contains an open and dense H-orbit, the boundary of which is the

union of the two (disjoint) closed H-orbits

Yx FE* P(ï\) and Y2 ~ G(2, £*) G(2, n - 1) C P(T2).

TVie &ase /ocms o/ the k-th fundamental form is

Base \¥¥kBn/Pn \ P{e ©fi, eG £*\{0}, rank Q|e± < rank Q, < 2k - 2}.

Proof. Consider V2n+1 C W2n+2, and En C Fn+1, where F is a null plane in W.
let L E± C F Then A*£* ~ AevenF*. We may write N2 A3E*(g)L 0 A4S*
A4F I2(G(2,F)). The analogous identities hold for the higher normal spaces.
After all, this is the same projective variety as Dn/Pn. D

Remark 5.10. The varieties parametrizing the P''s of Bn/Pn Dn+i/Pn+i are
stratified as Bn-spaces. For k > 2, a connected component of this variety is

-Dn+i/-Pn,n-fc-i- If V C2n+2is endowed with a nondegenerate quadratic form,
a point of this space is a flag Fq C Mq of isotropic subspaces of V of respective
dimensions n — k — 1 and n. The associated line in Dn+i/Pn+i is the space of
n-dimensional isotropic subspaces of V containing Fq and cutting Mo in dimension

n — 1. Let V be the hyperplane of V preserved by Bn. Then the Bn-orbits inside

-Dn+i/-Pn,n-fc-i are indexed by the relative position of Fq and V. There is a closed

orbit corresponding to Fq C V, isomorphic to Bn/Pn_i--i, an(i its complement
is an open orbit. For k 1 or k 3, there is another connected component,
parametrized by _Dn+i/Pn_i and _Dn+i/Pn_2 respectively. Each of them has two
Bn-orbits, the closed orbits being ßn/Pn_i and Bn/Pn_2 respectively.

6. Exceptional short roots and the octonions

In this section we calculate Base IFF2^ x\ for the exceptional spaces corresponding
to short roots, and give geometric interpretations of these varieties and their linear
spaces in terms of the octonions.

6.1. G2/Pi

As an algebraic variety, G2/P\ is a familiar space, G2/P\ Q5 C P6. Studying it
from an octonionic perspective will help us to understand -F4/P4 by analogy.

Identify C7 ~ ImO VUl V. Let </> G A3^* be a generic element and let p :

GL(V) —> GL(A?V*) be the induced representation. Here are some descriptions
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of G2 C GL(V) (see [10] pp. 114, 116, 278 and [23] chapter 2):

G2 Aut(O)
{ge GL(V) | p(g)4> 4>}

{9 {g+,9-,9o) G Spin8(V) \g+ g- go}-

The third line should be understood as follows: let S+, S_, Vq denote the vector
and two spin representations of Spin8 and choose appropriately an identification
of each of the three spaces with O, so that they are acted on by g G Spin8 in three
different ways, call them (<?+, <?-, <?o)- In this case (see [10] p. 278), the triality
principle of E. Cartan leads to the identification

Spin8 {(g+,g-,go) G SO(O) x SO(O) x SO(O) \ g+(uv) g^(u)go(v)},

where uv denotes octonionic multiplication. When the three coincide one obtains
an automorphism of the octonions, showing the equivalence of the second and third
définition. Harvey's description is explicit in bases. The connection between the
first two interpretations is that if one makes suitable identifications, for u,v,w G

ImO, we have 4>{u,v,w) Re[{uv)w\.
The first definition is due to R. Bryant. It shows that G2 is not really an

exceptional group, because it is defined by a generic form. (Generic three forms
on Cm for m > 8 are not preserved by a positive dimensional group. For m 6, 8,

the groups preserving such a form are classical.)
The third interpretation can be understood in terms of folding Dynkin

diagrams:

D4 G2

This indicates that G2jP\ should be be understandable in terms of -D4/P1 Q6,
and in fact it is a generic hyperplane section. ImO C O should be thought of as

the traceless elements, where the trace of an element is its "real" part and we call
the hyperplane section {tr 0}. In what follows, uv etc... refers to octonionic
multiplication.

Proposition 6.1. Consider Q5 ~ G2/P\ P(/mO)0 C V(ImO) ~ V(VUl).
Then TXG2/Pi TieT2eT3 as an H SL2-module. Let A C2, the

standard representation of SL2. Then T\ A, T2 C (the trivial representation)
and Ts A*. Moreover, in a suitable normalization,

Base |FF^2/Pi I =F{a(&t(&a* | (a, a*) =t2}.

Proposition 6.2. We have the following octonionic interpretations:

G2/P1 {[u] G P(imO) I u2 0}
T[u]G2/P1 {v £ ImO I uv + vu 0} {v £ ImO \ Re(uv) 0}

T[u]iG2/Pi {v G ImO I uv 0}.
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Proposition 6.3. The space G^P1, G2/'P\) of lines on G2/P1, has the following
description:

G(P\ G2/P1) {P{m, v} I [u], [v] G G2/P1 such that uv + vu 0}.

Note that G^P1, G2/P1) Go(2, 7) and in particular is of dimension seven.

The space G2/P2 G^P1, P(JmO)o) of G2-homogeneous lines on G2/P1 has

dimension h, and admits the following descriptions:
1. G2/P2 {VE G G(P\ PVLJ I E-i<f> 0}
ii. G2/P2 {VE V{u,v} I [u], [v] G G2/P1, uv 0}.

Proofs are left to the reader. The arguments are similar to, but simpler than
the arguments for the F4/P4 case below.

Remark 6.4. Recall that VU2 is the adjoint representation of G2, so that G2/P2
is an adjoint variety. The relation with our description of G2/P2 as a space of
special lines on the quadric G2/P1 is as follows. Let [u], [v] G G2/P1 be such that
uv vu 0. One can then check that the map

du,v{z) =u(vz) -v(uz), zeO,
defines a nilpotent derivation of O,with d\ v 0.

Note that Gq(3, 7) ~ Q6, the space of P2's on G2/P1, contains a special family
of planes isomorphic to G2/P1 as follows: through each point of G2/P1 there is a

plane contained in G2/P1 tangent to T\ (and it is completely tangent to T\ at this
point only). Perhaps it is better to say the space of special P2 's is parametrized
by V2{G2/P\) as the variety sits inside V2LOl C A3VUl. (Although VLOl C A3VLOl,

the Veronese re-embedding is the correct factor as were there linear spaces on the
parameter space, they would determine larger linear spaces on G2/P1 which do
not exist.)

6.2. The Cayley plane

Let Js (O) be the space of 3 x 3 O-Hermitian symmetric matrices

J3(O)={A= \x3 r2 xï r\ G C, z G

can be equipped with the structure of a Jordan algebra for the commutative

product A o B 5(AB + BA), where AB is the usual matrix product.
dimcJsi®) 27 and it is a model for the i?6-module VUl. There is a well-defined
determinant on ^(O), which is defined by same expression as the classical
determinant in terms of traces:

det A -(traced)3 (trace A) (trace A2) + -traced3.
6 2 3
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E6 is the subgroup of GL(J3(O)) GL(27, C) preserving det. The notion of rank
one matrices is also well defined and the Cayley plane, Ee/Pi OP2 C V(Js(O))
is the projectivization of the rank one elements, with ideal the 2x2 minors (see

[13]).
Since a.\ is not short, all linear spaces on OP2 are described by Tits geometries.

In particular, Ee/Ps is the space of lines on OP2 and EqJPi is the space of P5's

on OP2.

6.3. F4/P4

Here are some descriptions of F4 C GL{J-C

FA {ge GL(J3(O)) I ti((p(g)Ay) tiA1 for * 1, 2, 3}
Aut(J3(O))
{g£ E6 I g+ =g-}

The third description is motivated by folding of Dynkin diagrams:

E6 ^ F4

The equivalence of the second and third descriptions can be proved by using
the quadratic form tr(A2) to identify ^(O) with ^(O)* and considering g+ (resp.
<?_) as the two resulting elements of GL(J^(O)). Harvey shows that the second

définition implies the first [10] p. 296. For the first définition, one only needs two
of the three forms to be preserved, as any group preserving two preserves the third.

Geometric folding indicates F4/P4 should be understood in terms of OP2, and,
as with G2/P1 above, it is the hyperplane section {tr 0}. In what follows, AB
denotes the usual matrix product of A and B. Note that A2 A o A.

Proposition 6.5. Consider OP2, F4/P4 C P(J3(©)o) - P(%4). Then
TX(F4/P4) T\(BT2 as an H Spin7-module. Let U be the 1 -dimensional vector
representation of Spin7 and SilJ) the spin representation, then T\ S(U) and

Ti U. The spinor variety Y\ S(U) is a six dimensional quadric, and Yi Q5

is a five dimensional quadric. Moreover, we may identify T\ ~ O and Ti ~ ImO
and with this identification

Base |FF2)p21 V{(u, v) eT1®T2\uu 0, vv 0,uv 0} S5 n H

where S5 Pi H is a generic hyperplane section of the spinor variety S5 D5/P5.
In particular, Base |FFqf2 | 'i-s of dimension 9, and is the closure of a Spinr-orbit,
the boundary of which is the disjoint union of Y\ and Y^. It is not homogeneous

for any group.
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Proof. The decomposition of the tangent space follows from §2.3. Moreover,
Base|FF^p2| must be a generic hyperplane section of S5 Base|FFQp2| because

F4/P4 is a generic hyperplane section of Eq/Pq. The explicit description follows
using the description of TXOV2 ~ O © O and the explicit description of I lor2
in [13], verifying that O© Oo is indeed a generic hyperplane section or using the
explicit description below. Finally, we check that there is no homogeneous space
of dimension 9 homogeneously embedded in a P14. D

Proposition 6.6. We have the following octonionic interpretations:
OP2 F4/P4 {[A] e VJ3(O)0 I A2 0}

T[A]OV2 {Be J3(O)0 I A o B 0}
fi[A]OP§ {Be J3(O)0 I AB 0}

Proof. A calculation shows that an element A G 1/3(0) is rank one and traceless

if and only if A2 0. Differentiation yields the second line.
To prove the third line, we first need to show that if [A] G OPq and B G

T^jOPq, the equation AB 0 is F4 invariant (although the matrix product AB is

not F4 invariant). Note that F4 is generated by SO3 and Spin8, where the action
of g G SO3 is by A 1—> gAfg, and that of (g+,g_, go) G Spin8 by

(This defines an automorphism of the Jordan algebra ^3(0)0 because of the triality
principle.) The SO3 invariance is clear. Moreover, if we take

A

then
IJ U J_ l dis -Î I *^O V ds 1

x3 -itr(z3) xl
«xi xi 0

where tr(w) u — uq ^(u + u) is the "real" part of w. The Spin8 invariance of
the equation AB 0 is a straightforward calculation, and follows again from the

triality principle. With this model, {B G T[A]OFl \ AB 0} ~ {x1;tr(x3)} and

we may consider {x{\ C Tjaj/1^4} — T. Note that T is acted on by the subgroup
of Spin8 that preserves A, which means that <?+(l) 1. By [10] p. 285,

Spin7 {(g+,g-,go) € Spin8 | gr_ g0}
{(9+, 9-, 9o) G Spin8 I g+(l) 1 G O}

(Note that this embedding of Spin7 in Sping is not the standard one). Thus
we explicitly see the Spin7 H action on T and the decomposition of T into



Vol. 78 (2003) On the projective geometry of rational homogeneous varieties 97

T\ ~ {xi} and T-2 — {(3:3)0}, respectively as the spin and vector representations.
In particular, {ï\ + A} {B G f | AB 0}. D

Proposition 6.7. TTie space ©(P^OPq) of lines on OP2 /mis dimension 237 and
admits the following description:

<G(P\ OP2,) {P{A, B} | [A], [B] G OP2, sMc/i i/iai Aoß 0}

TTie space F4/P3 Go(P1,OPg) of F^-homogeneous lines on OP2 /mjs dimension

20, and admits the following description:

G0(P1,OP^) {F{A,B} I [A], [B] G OPg such that AB 0}.

Proof. The geometric descriptions of G^OP2,) and <G0(P\OPg) follow immediately

from proposition 6.6, because -F4/P3 is the space of lines on F4/P4 tangent
to Y\. Moreover,

dim(G(P1,OPg)) dimOPg+dim(Base|FF^P2|) - 1 15 + 9 - 1 23

vérifies the dimension assertion. D

Proposition 6.8. There are four types of maximal (i.e. unextendable) linear
spaces through a point of F4/P4:

The space of P 's which is 5-dimensional, parametrized by the quadric Q C
PÎ2-

A space 0/P4 's which is 6-dimensional, parametrized by the quadric Q6 C Pï\
or equivalently Sq5 the variety of P2 's in Q5 C PT2 ¦

A space of P4 's which is ^-dimensional and having two components, the two
copies ofS>Q6, the variety off3 's in Q6 C Pï\.

All other linear spaces can be deduced from these.

Proof A Pfc in F4/P4 corresponds to a Pfc"1 in S5 n H. Let L Pm C S5 n H.
The dimension d-2 of its projection p2(L) onto Q5 C PT2 is P4 invariant.

We choose a splitting T Ti®T-2 in order to use the equations above describing
Base \V¥2X x\. Relative to a choice of splitting, L is just the span oîpi(L) &ndp2(L)
so we can analyze L accordingly.

Since B3 acts transitively on Gq(ä;, T2)) we maY choose convenient A;-planes to
calculate with.

Without loss of generality, take v £\ + «£2 G T2, Then, writing u «o +
«i£i + • • • + «7£7, and using the standard octonionic multiplication table (e.g.,
see [13]) the condition uv 0 implies u ia.% + a.\E\ + ia.\£2 + «3£3 + 10.^4 +
«5£5 +«6£6 + ««6£7- In other words, we obtain aPjcQ6 "polar" to v which gives
rise to an unextendable L4 (v,¥%). Note that we automatically have uv, 0.

Taking M (v,vr) with v' £q + «£7, the additional condition uv' 0 implies
u a(ee + «£7), i.e., is a point q G Q6. A similar computation shows that any
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q G Q6 has a P2's worth of points in Q5 'polar' to it so we obtain an unextendable
I? (P2, q). If p2(L) is empty, then we are of course free to take one of the two
families of P3's on Q6 as our maximal linear space. D

6.4. iVP3

Proposition 6.9. Consider F4/P3 C VVU3. Then T ï\ 0 T2 0 T3 0 T4 as an
H SL3 x SL2-module. Let dimE 3 and dimU 2, then

E*®U, T2 E®S2U, T3 U, T4 E*,

Base |FFj;o(pl

P{e*(g)u + e(g)u2 GTi0T2 | e* G E*, e e E,ue U, (e*,e) =0}.
This base locus B is a nontrivial Q4-bundle over VU P1. In particular, dimB
5 and it has a dense open SL3 x SLi-orbit, the boundary of which is the union of
the two closed orbits Y\ C PT\ and Y2 C VT2. It is not homogeneous for any Lie

group.

Proposition 6.10. The space G(¥1,Fi/P3) o/Pl7s on F4/P3 has dimension 24,
and admits the following description:

G(V\F4/P3)

{{A} c {A, B, C} I [A], [B], [C] G OVl such that AB AC 0, B o C 0}.

The space F4/P2A <G0(P\ OP^) ofF4-homogeneous P1 's on F4/P3 has dimension
227 and admits the following description:

F4/P2A G0(V1,OV20)

{{A} c {A, B, C} I [A], [B], [C] G OPg with AB AC BC 0}.

Corollary 6.11. There are two types of maximal linear spaces passing through
a point of F4/P3; the P3 's corresponding to a P2 in some quadric in a fiber of
Base IFF2^ ™ or2\| considered as a fibration and the P2 's corresponding to the P1

in the base.

Proof of 6.10. We have F4/P3 C G(2, 26) so a line on F4/P3 must be a line of
the Grassmanian as well. Lines on G{2, 26) are determined by the choice of a flag
P° C P2. Here we need [A] P° G F4/P4 in both cases.

In the first case AB AC 0, BoC 0 are necessary and sufficient conditions
that the line be contained in F4/P3, as by 6.7, we need A(sB + tC) 0 and

(sB+tC)2 0 for all [s,t] G P1. Moreover, dimG(P1, F4/P3) 24 because the
choice of [A] is 15 dimensions and then one needs an element of Go(2, 8), which is
of dimension 9. (Here C8 ~ ï\.)
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In the second case, considering F4/P2.4 as a P2-bundle over F4/P2, the
conditions AB AC BC 0 follow from picking an element of F4/P2, and the
choice of [A] is a choice of an element in the fiber. D

Proof of 6.9. First, dimB 5 because

dim (F4/P3) + dim Base |FF|,4/p31 - 1 dimG(P1, F4/P3).

Moreover, we know that B contains Y\ and I2 and is irreducible.
Consider now [y\ + yi\ G B, with y3 G Y3 C VTj. Write y\ eigm and

2/2 e*igiv2. Conditions for such a point to belong to B can only come from
components of

ïT<g>T2* (E(g)E*)(g)(U*(g)S2U*) (C®sl(E))(g)(U*®S3U*).

Suppose that sl(E)<%S3U* were contained in N%. Since ege* is not a homothety,
this would force uv2 to be zero in S3U, hence u or v to be zero. If this component
were in N$, then B would be included in PT\ UPT2, and would not be irreducible.

Suppose now that sl(E)<gU* were contained in A^|. This set of equations would
force u and v to be parallel because under the contraction U<g>S2U —> U, u<g>v2

maps to lv(u,v)v, where us G A2U*. Similarly, the component S3U* would force

(e,e*)=0.
In conclusion, P{e<g>w© e*<S)u2 \ (e, e*} 0} Ç B. Since both sets are irreducible

of dimension five, the second one must be the closure of the first one.
The quadric bundle structure is given by the application B —> VU defined by

[e*<gm + eigm2] 1—> [u]. This is a nontrivial bundle structure. Finally, to see that B
cannot be homogeneous, note that there are no homogeneous nontrivial quadric
fibrations in dimension five. D

Further calculations along this line show that each variety of linear spaces is a

finite union of i^-orbits.
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