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On the projective geometry of rational homogeneous varieties

Joseph M. Landsberg and Laurent Manivel

Abstract. We determine the varieties of linear spaces on rational homogeneous varieties, provide
explicit geometric models for these spaces, and establish basic facts about the local differential
geometry of rational homogeneous varieties.
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1. Introduction

Let G be a complex simple Lie group and Pgs a parabolic subgroup corresponding to
a subset S of nodes of the Dynkin diagram (so that a maximal parabolic subgroup
is defined by a single root). Then G/Ps has a minimal homogeneous embedding
in the projective space of the highest weight module of G corresponding to the
weight A = 3, ¢ w;, where w; is the i-th fundamental weight. We study the local
differential geometry of the embedded variety G/Ps C PV, and the projective
linear subspaces on G/Ps C PV,.

We describe the varieties parametrizing such linear spaces in §4-6. In most
cases (those of “non-short roots”) the parameter varieties are determined in terms
of Dynkin diagram data as explained in §4. (See in particular Theorem 4.9.) The
exceptional (exposed short root) cases are determined by use of explicit models
in §5 for the case of classical groups and §6 for the exceptional groups. In all
cases, each connected component of the variety of linear spaces on a G/ P is quasi-
homogeneous; more precisely, it is the union of a finite number of G-orbits.

The case of unirulings by lines was studied in [4] by means of Tits buildings.
Our approach is by means of projective differential geometry. This method is
well suited because the variety G/Ps is homogeneous and in particular cut out
by quadrics, so the varieties of linear spaces on it are determined by second order
data at a point z € G/Ps.

In §2 we establish basic connections between local differential geometry and
representation theory. We study the semisimple part H of Pg, which fixes the point



66 J. M. Landsberg and L. Manivel CMH

z = [va] corresponding to the highest weight line in its action on the tangent space
T,G/Ps. As an H-module, T,,G/Ps decomposes into a direct sum of generalized
minuscule H-modules. If S = {a} where « is a non-short root, the space of
tangent directions to lines is a minuscule variety of H (an irreducible, minimally
homogeneously embedded Hermitian symmetric space of H).

We study minuscule varieties in §3 and prove our main result on their infinites-
imal geometry in §4.

This is the first paper in a series [15, 14, 16, 17, 18] establishing new relations
between the representation theory of complex simple Lie groups and the algebraic
and differential geometry of their homogeneous varieties. The surprising connec-
tion between secant varieties and prolongations developed in this paper is exploited
in the sequels.

Acknowledgements. We thank J. Wolf, J.-M. Hwang and D. Snow for useful
conversations, and an anonymous referee for the simplified proof of Theorem 4.3.

2. Under the microscope

In this section we establish the basic connections between differential invariants
of homogeneous varieties and representation theoretic data. In §2.1 we review
the projective fundamental forms of an arbitrary projective variety X™ C P»t¢
and establish a connection between secant varieties and fundamental forms. In
62.2 we express the fundamental forms of homogeneously embedded homogeneous
varieties X = G/P C PV, in terms of the universal envelopping algebra U(g). In
§2.3 we discuss the P-module structure on T, X, introduce an important class of
homogeneous varieties, the generalized minuscule varieties and explain their role
in the study of fundamental forms of rational homogeneous varieties.

2.1. Fundamental forms of projective varieties

2.1.1. Notation

We let V = C*T2t1 and PV the corresponding projective space. If Y C PV
is a set, we let Y C V denote the corresponding cone in V. If v € V, we let
[v] € PV denote the corresponding point in projective space. For any vector space
W, we let W* denote the dual vector space. Let X C PV = P""® be a projective
variety of dimension n, and let z € X be a smooth point. We let T, X denote the
(intrinsic) Zariski tangent space to X at z, T,X C P"te denote the embedded
tangent Blgjective space (the P* C P"T% that best approximates X at z), and

T.X=T,X CV. We have the relation T, X = 32*®(TwX)/32 and we also have,
for any p € V with z = [p], T, X = Tpafﬁl"‘e)(7 the affine tangent space at p.
We let N, X = T,PV/T, X denote the normal space of X at z.
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2.1.2. Fundamental forms in coordinates

Let X™ C P2 be a projective variety, and let 2 € X be a smooth point. Take
local linear coordinates (z!, ..., 2", 2" 1 . 2"1%) adapted to =, which means that
they are centered at = and that z”t! = ... = z"T% = 0 are equations of the
embedded tangent space of X at x. Write X, locally in the complex topology, as

a graph
H = Z qgﬁxo‘mﬂ + Z rgﬁvxo‘xﬁyﬂ + ...,
1<a,8<n 1<a,B8,7<n
where n +1 < p < n + a. The geometric information in the series (that is,
information independent of choice of adapted coordinates) can be encoded in a
series of tensors, the simplest of which is the projective second fundamental form

B
FFy, = > dipda® ode’® € SPTIXON,X.
1<a,B<n,
n+1<p<n+ta

If z is a general point, ]F]F%(z even contains information about the global geometry
of X, see [9], [12]. It is useful to consider the second fundamental form as a system
of quadrics |FF% | = P(FF% ,(N;X)) C PS?T; X parametrized by N;X, and
Base |IFIF%(@| C PT, X, their common zero locus.

We let TV X =T, X + 0(1)1®FF%(7I(N;X) C V, the second osculating space
to X at z, and Ny = Ny, X = O(-1)e (T, @ X/T,X).

More generally, the k-th projective fundamental form of X at z is a tensor

FF% , € S*Tr X® Ny o X

where N}, = Ny, X = O(-1), ®(T,®X/T,*VX) and T, X = T,(--DX +
O(—1), @FF*(S*T, X) is the k-th osculating space to X at . To define FF%
one can use the same definitions as one does for the Euclidean fundamental forms,
either in coordinates or as the derivatives of successive Gauss mappings (see [12]).
Note that the osculating spaces determine a flag of V,

oczcT,XcT,@PXxc..ch,W=v
More generally, given a mapping ¢ : ¥ — PV, one defines its fundamental

forms ]FIF’; in the same manner. ]F]Féz quotiented by ker ¢,,, is isomorphic to the

second fundamental form of the image, FFZ(Y), o(z)- Oee [13] for details.

In what follows, we slightly abuse notation by ignoring twists by the line bundles
O(7), which will not matter as we study fundamental forms only at some fixed base
point. We let [FF% .| € PS*T; X denote P(FF% (N X)) and Base [FF% | C
PT,X denote its base locus. 7

2.1.3. Prolongation
Let V be a vector space, let A C S?V* be a linear subspace, and let
AD = (A®S'V*)n 4V,
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the I-th prolongation of A. Here the inclusion S¥HV* — S¥V* @ S'V* is dual to
the multiplication map SV @ 8'V — STV If P € S9HV* we still denote by
P(vy,...,vq4;) its polarization. Then P € A" if and only if for all v € V, the
degree d polynomial w — P(v,...,v,w,...,w) belongs to A. The notation is such
that A = A,

Let Jac(A) := {viPlv € V, P € A} C S 'V*, the Jacobian space of A. Then
A = 1P ¢ S4H1V*|Jac(P) C A}. Here L denotes contraction, v iP(w1, ..., wq 1)
= P(’U7w1, . ,wd,l).

A basic fact about fundamental forms, due to Cartan ([2], p. 377) (and redis-
covered in [9]), is that if z € X is a general point, then the prolongation property
holds at z:

[FFY .| C [FFY ).

A geometric consequence is as follows. Define the k-th secant variety o, (Y) of
a projective variety Y C PV to be the closure of the union of the linear spaces
spanned by k points of Y. The notation is such that o4 (Y) =Y.

Proposition 2.1. Let X™ C P2 be a variety and x € X a general point. Then
fork > 2,
Base |IE']F§<Z| D oj,—1(Base |FF%(I|)

Proposition 2.1 is a consequence of the following lemma;:

Lemma 2.2. Let A C S?V* be a system of quadrics with base locus Base (A) C
PV. Then
Base (A*~1)) D o, (Base (4)).

Moreover, if Base (A) is linearly non-degenerate, then fork > 2, Iy(o,(Base (A)) =
0, and if A = I>(Base(A)), then I; (o (Base (A)) = A®) where I;(Z) C S4V*
is the component of the ideal of Z C PV in degree d.

Proof. We prove the lemma for k = 2, the generalization being clear. We first need
to prove that any polynomial P € A vanishes on v = sz +ty for all s,t € C and
z,y € B, the cone over Base (A). Since P(z,z,-) = P(y,y, ) = 0, we have

P(v) = P(v,v,v) = s P(z,z,2)+3stP(z,z,y) + 3st* Pz, y,9) + * P(y, y, ) = 0.

Now, say ) € I2(o2(Base (A)). Then for all z,y € B and s,t € C, Q(sz+1ty) =
0, which implies Q(z,y) = 0, which implies @ = 0 since Base (A4) is non-degenerate.

Finally, consider a polynomial P € I3(02(B(A)). Since P vanishes on v =
sz + ty for all z,y € B and all s,t € C, we have P(z,z,y) =0 for all z € B, and
all y € B, hence all y € V since Base (A) is non-degenerate. Thus for all y € V,
P(,-,y) is a quadric vanishing on Base (A), hence belongs to A = I;(Base (4)).
This means that P is in A®). O

An elementary fact about projective varieties is that if X™ C P**¢ is a variety
whose ideal is generated in degree < d, and L a linear space osculating to order
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d at a smooth point z € X, then L C X. The ideal of a projective homogeneous
variety is generated in degree two (see e.g. [19]), so if X C PV is homogeneous,
then Base |IF]F%<1| is the set of tangent directions to lines on X through =. If

y € T, X N X then the line ]P’;/y is contained in X.

2.2. Osculating spaces of homogeneous varieties

Let G be a simply connected complex semi-simple Lie group, g its Lie algebra, g®
the tensor algebra of g and U(g) = ¢*/{z®y —y®z — [z,y] | z,y € g}, the universal
envelopping algebra. U(g) inherits a filtration from the natural grading of g®,
and the associated graded algebra is the symmetric algebra of g. Fix a maximal
torus 7" and a Borel subgroup B of GG containing T". We adopt the convention that
B is generated by the positive roots, and we write the corresponding root space
decomposition of g as

g:t@ @ (904@9*04)7

acAL

where A_ denotes the set of positive roots. We use the ordering of the roots as in [1].

Let Vi be an irreducible G-module with highest weight A, and vy € V) a
highest weight vector. The induced action of g extends to the universal envelopping
algebra, inducing a filtration of V) whose k-th term is

VA(k) = Uk(g)vk.

Let x = [v)] € PV, and let X = G/P C PV, be its G-orbit. Here P is the
stabilizer of x, it is a parabolic subgroup of G. The tangent bundle TX is a
homogeneous bundle and we identify 7, X with the associated P-module g/p. The
osculating spaces and the fundamental forms of X have a simple representation-
theoretic interpretation:

Proposition 2.3. Let X = G/P C PV, be a homogeneous variety with base point
z = [v)]. Let ngk)X denote the cone over the k-th osculating space at x and let
Ny = Ték)X/ngkfl)X be the k-th normal space twisted by O(—1). Then

TOx =v¥®, — N=VFvED,
Moreover, there is a commutative diagram

Sty = Ui(g)/Ur-1(g)
! !
FF: , : S*T,X — N,

where the bottom horizontal map is the k-th fundamental form at x.

Proof. The diagram above is the k-th fundamental form of the mapping ¢ : G —
PV at e € G, where ¢(G) = X. O
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ka) has a natural P-module structure. Thus the osculating spaces of X at =
correspond to the increasing filtration of P-modules
ocechx=v"cv®P c...cvil=w.

Our next goal is to understand the first quotient of this filtration, namely the
structure of T, X as a P-module.

2.3. Decomposing the tangent space

Let P = P,, denote the maximal parabolic subgroup of GG corresponding to the
simple root a;. Let P = LP" be a Levi decomposition of P, where P is unipotent,
L is reductive and contains the maximal torus 7. If « is a positive root, let
a =Y .mj(a)a; be its decomposition in terms of simple roots. Let Ax = {a €
A+|m¢(7a) > 0}. We have the root space decompositions

p - t@ (@aEA+ gOé) 2] (@QEA+\AX 9—01)7
L= t@@aEAJF\AX(ga@g*a)?
pu - @QGAX Yo

Proposition 2.4. Let G be simple, let & be the highest root of g, let o; be a simple
positive root, and let P = P,, be the associated mazimal parabolic subgroup. For

1<k <mi(a), let
S = @ Ba-

msi(a)>—k
This defines an increasing filtration of g/p by P-submodules. The quotients
Ti= D s
m;(a)=k

are irreducible P-modules.

Proof. The fact that each sy /s;_1 is a P-module is clear. The irreducibility of T}
is a special case of [25], 8.13.3 (which is attributed to Kostant). O

The irreducibility of T}, implies that the set {& € A} | m;(a) = k} has a unique
minimal element which we denote by —¢; when we consider the root as a weight
of Ty. In particular, the highest weight of T} is

$1 = —a; = =Y nlas, az)wj,
J

where n(a;, ;) denotes the entries of the Cartan matrix. This weight is easy to
read directly on the Dynkin diagram of G. Let H denote the semi-simple part
of L. As an H-module, the filtration of T, X into irreducible P-modules becomes
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a direct sum decomposition into irreducible H-modules. Note that L has a one
dimensional center and that the Lie algebra of H is

h = ker w; D @ (ga D gfoz)7
aEA\Ax

where kerw; C t. The Dynkin diagram of H is therefore deduced from that of G
by suppressing the node corresponding to the simple root «;. In particular, we
conclude:

Proposition 2.5. Let X = G/P be a homogeneous variety with P a maximal
parabolic and let H be the semi-simple part of P. Then T4, the first irreducible
component of T, X as an H-module, is obtained by marking the nodes of D(H)
adjacent to the node from D(G) that was removed. A node 8 is given multiplicity
two (resp. three) if there is an arrow emanating from a towards 3 with a double
(resp. triple) bond.

The above observations can be found in [7].

Definition 2.6. A fundamental weight w; is minuscule if the Weyl group acts
transitively on the set of weights of the corresponding fundamental representation.

In an irreducible root system, a fundamental weight w; is cominuscule if the
highest root has coeflicient one on «;. In a reducible root system, a weight is comi-
nuscule if it is a sum of cominuscule fundamental weights, one for each irreducible
factor of the root system.

The relation between these two notions is as follows. In the irreducible case, w;
is minuscule if and only if in the dual root system, the highest root has coefficient
one on the coroot &; ([1], Chap. 8).

Geometrically, when G is simple, the weight w; is cominuscule exactly when
G/P; admits the structure of an irreducible Hermitian symmetric space whose
automorphism group is locally isomorphic to G (we call G/P; a G-Hermitian sym-
metric space). This was pointed out by Kostant in [11]. We use the following
definition (be careful that minuscule varieties are in correspondence with comi-
nuscule weights, not minuscule weights!):

Definition 2.7. A G-minuscule variety X = G/P C PV is a G-Hermitian (not
necessarily irreducible) symmetric space in its minimal homogeneous embedding.
A generalized minuscule variety is a Hermitian symmetric space X = G/P C PV
in some G-homogeneous embedding, but the automorphism group of X need not
be locally isomorphic to G, and the embedding need not be minimal.

Proposition 2.8. Let X = G/P with G simple, and P = P,, a mazimal subgroup
with semi-simple part H. If oy is not short, then the closed H-orbit Y1 C PT} is
an H-minuscule variety.
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See 2.11 below for a more general statement.

Proof. The observations above imply that Y, = Hy/Q; X --- x H,/Q,, where
Hy, ..., H, are simple Lie groups whose Dynkin diagrams are the branches from
a; of D(G), and Qq,...,Q, are maximal parabolic subgroups defined for each
branch by the node adjacent to «;. Since the root system of each Hy is formed
by the roots of G with support on the corresponding branch, we just need to
prove that if a root 3 of G has coefficient m;(8) = 0 on ¢y, its coeflicient on an
adjacent root «y, cannot exceed one. But this follows immediately from the equality
(B, i) = >, my(B)n(ay, a;) (where the integers n(ay;, ;) are non-positive, and
negative exactly when «; is adjacent to «;), and the fact that, since «; is not short,
|n(B, ;)] < 1. The minimality of the embedding of Y7 in PT) similarly follows
from the fact that n(ay;, a;) = —1 for «; connected to a;. O

We can say slightly more when G is simply laced.

Proposition 2.9. Let G be a simple Lie group of type A, D or E, let P be a
mazximal parabolic subgroup, let Ty C T,G/P be as in 2.4. Then Ty is a minuscule
H-module.

Proof. The weights of T} are, by definition, the opposites of the roots 3 such that
m;(B) = 1. If G is simply laced, these roots all have the same length and lemma
4.4 shows that the Weyl group of H acts transitively on them. O

The above discussion can easily be extended to homogeneous spaces X = G/P
with P not necessarily maximal. Suppose that P = Pgs is the parabolic subgroup
generated by the complement of a set S of simple positive roots. Then there is
an irreducible component of the L-module T" = T, (G/P) for each choice of the
coefficients of the positive roots on these simple roots. If we choose such a family
of coefficients a = (a;);cs, and let

F— @ go and T, = @ O—a,

AL, mi(a)>—a; acAy, mi(a)=a;

then s, is a P-submodule of g/p, and T; is an irreducible L-submodule of s,.
An important difference with the case of maximal parabolics is that the incidence
relations between the non-zero s,’s is no longer a simple chain of inclusion, but
defines a partial order.

Let &; be the family of coefficients a; = 1, and a; = 0 for j € S —i. The
analogues of 7 in the maximal case are the H-modules 7, (note that only the
irreducible factors of H corresponding to the branches of D\S connected to «; act
non trivially on T, ; we denote their product by H.,). Again we need to know
whether «; is short or not, but this condition is relevant only with respect to a
subdiagram of D(G).
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Definition 2.10. We call o € S an exposed short root if the connected component
of o in D\(S\ &) contains a root longer than «;, i.e., if an arrow in D\ (S\«) points
towards o.

Proposition 2.11. Notations as above. Let Y{ C PT, be the closed orbit. Then
Y} is a generalized minuscule variety. Moreover, it is a H.,-minuscule variety,
except for situations equivalent to the following cases:

1. C,/Py fork <n. Here Y] = Seg(P*~1 x P?*2k—1) H = SLy x Span_2k S
SLk X SLQn,Qk.

2. C,/P,. Here Y| = vo(P" 1), which is A,_1-minuscule but not in its mini-
mal embedding.

3. Fy/Py. Here Y1 = B3/ P, a siz-dimensional quadric.

4. Gy/Py. Here Y| = v3(P') is the twisted cubic, which is Ay-minuscule, but
not in its minimal embedding.

Let X = G/P with P maximal, let H the semi-simple part of P. We obtain
a splitting T, X = @®,T,, with each T}, an irreducible H-module. Let Y, C PT,
denote the closed orbit.
Proposition 2.12. The closed orbit Y, is contained in Base|IFIF§<+;|, and there
is a rational normal curve in X of degree at most p 4+ 1, passing tkrough x with
tangent vector in Y.

This proposition indicates that it is possible to study the G-homogeneous ratio-
nal curves on G/P of degree greater than one using the methods we use to study
lines on G/P.

Proof. Let P = P, and let 3 be such that m;(8) =p. Let Xg€g 3. LetveV
be a highest weight vector and & = [v]. Then Xgv € f/p C Tp. By [6], lemme 7.2.5,

Xg“y = 0 so the rational curve exp(tXg)v is contained in X and is of degree at
most p. O

These propositions stress the importance of minuscule varieties in our study.
The next section is devoted to their properties.

3. Minuscule varieties

We explicitly describe the tangent and normal spaces to minuscule varieties X =
G/P in §3.1 and §3.3 as H-modules, where H is the semi-simple part of the Levi
factor of P. In §3.2 we state an prove our main theorem that determines the
fundamental forms of minuscule varieties. In §3.4 we remark on some interesting
complexes obtained from the normal spaces of minuscule varieties.
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3.1. Their tangent spaces

We summarize characterizations and tangent space structures of minuscule vari-
eties: Let GG be a simple Lie group and P=F,, a maximal parabolic subgroup. Let
G/P CPV be the minimal homogeneous embedding. The following are equivalent:

1. m;(&) = 1 (the highest root & has coefficient one on the simple root «;),

2. p* is an abelian subalgebra of g,

3. T = Tj)(G/P) contains no P-invariant submodule,

4. G/ P admits an irreducible Hermitian symmetric metric with local holonomy
G induced from a Fubini-Study metric on PV, and the embedding to PV is the
smallest such embedding.

Here is a table of the G-minuscule varieties: there are four infinite series and
two exceptional spaces.

Name Grassmannian Quadric Lagrangian Grassm. Quadric
Notation Glk,n+1) Q1 Grag(n, 2n) Q2
G A, B, Chn Dy,
w Wk w1 Wn w1
6006 e 0 0O |6E—0—0—0—0C>0|0—0—0—0—0=<@|6— 00 —0—0
D(G) <
H Ak*l X Anfk anl Anfl anl
1 We—1 + Wit1 w1 QW1 Wy
o—o—e e——o —o0—0—0=0 o—o—o—o—% o—c>—c>—o<c>
D(H) B
7§ E'®Q E*®(E*/E) 5%Q E*®(E*/E)
Name Spinor variety Cayley plane 7
Notation S OP? G, (02, 0%
G D, Fs Er
w Wn w1 wr
D(G) ) 5 6
H Anfl D5 EG
P1 Wn—2 wq we
.—I—O_O o—o—I—o—o
D(H) o
T A’E" St TJ3(0)

Here I/ and @ are the tautological and quotient vector bundles on the Grass-
mannian or their pullbacks to the varieties in question. ST is the half spin rep-
resentation of Ds, and J3(Q) is the space of 3 x 3 O-Hermitian matrices, the
representation V,,, for Fy (see §6.2 for details). G,(0%,0°) may be interpreted as
the space of @*’s in QF that are null for an O-Hermitian symplectic form, see [15].
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3.2. The strict prolongation property
We prove our main theorem on the infinitesimal geometry of minuscule varieties.

Theorem 3.1. Let X = G/P,, C PV, be a minuscule variety and x € X. Then
for k> 2,
[P, | = [FFG x| 0.

Remark 3.2. This result says that the leading terms of the Taylor series in local
coordinates adapted to the filtration by osculating spaces, are determined by the
quadratic terms in an elementary manner. In [15], we show moreover that there
are no terms in the Taylor series except for the leading terms. (Minuscule varieties
are the unique homogeneous varieties having this property.)

Proof. Let v = v,, € V,, be the highest weight vector, and let T' = T}, X. We
denote by Ry C S*T the space of relations of degree k, that is, the space of
homogeneous polynomials Py, of degree k in the X, with a € A, such that Py.v €
T[Sfrl)X , the (k — 1)-st osculating space. We have the following commutative
diagram, where horizontal middle long sequence and the vertical short sequences
are exact:

0 0 0
! 1 1

— Rk,1®A2T — Rk®T — RIH»I — 0
1 1 1

— SFITQAT — S*TeT — SHIT — 0
J 1

— N AT — Npy@T — Nigy1 — O
1 | 1
0 0 0

Lemma 3.3. Ny, | = N,:(l) for all k > 2 if and only if the relations are generated
in degree two, that is, the map Rpy@T — Ryi1 is surjective for all k > 2.

Proof. We first note that Ng, ;| = N,:(l) holds if and only if the sequence
Nipy — Ni@T* — Ni_ ®AT*

is exact at the middle term. This is because, by definition, N,j(l) = (NjT*)n
SFHIT* and S*H1T* is the kernel of the map S*T*®T* — SF—1T* @ A2T*.

A diagram chase, using the above partially exact diagram, shows that the
exactness of the dual sequence N1 ®A?T — N,.@T — Ni41 is equivalent to
the surjectivity of the map Ry ®T — Rji1. O
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Now we analyze the space of relations. By [6] (Lemme 7.2.5 p. 225), the
relations all come from the identities

Xiv=0 and Xguv=0 for m(3)=0.

More precisely, if P, is a homogeneous relation of degree k, there exists an
identity of the following kind in U (n) (where n is the subalgebra of g generated by
positive root vectors):

Pi+ Qe+ Y. RsXsg+SXZ =0,
m;(3)=0

where Q< is a polynomial of degree less than % in the X,, o € Ay, and the Rg
and S are polynomials in the X, v € A;. Now we fix an ordered basis of n,
beginning first with the Xz, 3 # o, such that m;(3) > 0, then X,,, and then
continuing with the X, for which m;(y) = 0. By the Poincaré-Birkhoff-Witt
theorem ([6], Théoréme 2.1.11 p. 69), the monomials in the X, compatible with
this order form a basis of U(n).

We say that a polynomial expression in the X, v € Ay, is well-ordered if
each of its monomials is compatible with our ordered basis. We may suppose that
in the identity above, all the polynomials Py, Q«x, Rz and S are well-ordered.
We may even suppose that the products RzXg are well-ordered, as if they are
not, reordering them gives a sum of expressions of the same type, since the space
generated by the X, for which m;(y) = 0 is stable under the Lie bracket. However,
and this is the crucial point, we cannot suppose a priori that the product SX O%z is
also well-ordered.

The conclusion of this analysis is that all relations appear in the following
way: we first chose a well-ordered monomial Xg, --- Xg,,, with m;(81) = -+ =
m;(Bm) = 0; we reorder its product with X 2“ which gives an expression of the
form:

Xpy - Xﬁmxii - ZCV5X04i+7XOé¢+5 + C X041+ +6m T Z Up X,
vé m4(n)=0

where U,, is some polynomial in the X, and C'is a constant. We then multiply on
the left by a monomial in the Xz with m;(/) > 0 and reorder if necessary, then
we make linear combinations, and finally, we only keep the homogeneous terms of
maximal degree in the resulting expression.

This doesn’t seem very enlightening, but since X is a minuscule variety, if
m;i(3) = m;(y) = 1, then X3 and X, commute. So the above relation simplifies
to an expression of the form

Xp, "'XﬂmXi,v = ZCV5X0%+’YXO%+6 ot Z Up X
¥4 m;(n)=0

Moreover, the relations are then obtained by multiplying the sums
> s ¢v6 X a;+vXa;+s by monomials in the X, 1y, which need no reordering; and
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finally, the resulting expression is necessarily homogeneous, since we can assume
that all its monomials have the same total weight.
This means in particular that all relations are deduced from the degree two
relations
ZC75XQ¢+’YX04¢+5 =0

Yo

by simple polynomial multiplication in 7. Thus the maps Ro®@S* 1T — Ry, are
surjective for & > 2, which implies surjectivity of Ry ®T — Rpi1. O

3.3. Their normal spaces
An interesting property of G-minuscule varieties is that the irreducibility of the
tangent space propagates to the irreducibility of all normal spaces. Indeed, the

normal spaces and fundamental forms of the minuscule varieties are as follows:

Proposition 3.4. The tangent spaceT', and the normal spaces Nj, with2 < 5 <1,
of the classical irreducible minuscule varieties X are given by the following table:

X G(k,n) Ghag(n, 2n) Son Q"
G SLy, Spon Spin,,, SOy 12
H SLi X SLp_p SL, SLy S0,
T Weseor tunps = E*®Q Wa,, = S?U W, , =AU W,
N; W gdoan, gy = MO BEGAIE) Wa, = S2..2U W _y; = AU C

l min(k,n — k) n k4 2

For the two exceptional irreducible minuscule varieties, we have the following

table:
X G H T Ny N3
OP? Eg Spiny, Wiy Wi 0
G, (03,09 B By W, W, (@

The fundamental forms may be described explicitly as follows:

For a non-degenerate quadric Q”, the second fundamental form is a nondegen-
erate quadratic form with base locus a smooth quadric Q2.
For the respective cases G(k,v),G.(k,V),S, G, (0% 0°), T is a (subset) of

a matrix space, respectively T = E*®Q, S?E*, A’E*, J5(0).

In all but S, the

last fundamental form is the set of maximal minors (the determinant for S?FE*
and J3(0)), and the lower fundamental forms are just the successive Jacobian
ideals. For S, the last form is the Pfaffian (since the determinant is a square) and
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the other forms are the successive Jacobian ideals, which are the Pfaffians of the
minors centered about the diagonal.

For the OP? case, let V = C'°. Then T'= S, (V) is a half-spin representation,
and N> is the vector representation V. The half-spin representations S, and
S_ can be constructed as the even and odd parts of the exterior algebra of a
null 5-plane E in V (see e.g. [10]): S;,S_ are dual to one another, the wedge
product giving a perfect pairing S, ®S_ — A°E = C. Moreover, the full exterior
algebra of E is a module over the Clifford algebra of V. If F'is a complementary
null 5-plane of F, then E acts on S} by exterior multiplication, F' by interior
multiplication, and this action of V- = E® F extends to the whole Clifford algebra.
In particular, there is a natural map from V to End(S_,5;) ~ S, ®5;. The
transpose of the symmetric part of this morphism is the second fundamental form.

Alternatively, identifying S, (V) = O@® O (see [10]) with octonionic coordinates
u, v, we have |FF% | = {u@, uw, vT} where, considering O as an eight dimensional
vector space over C the middle equation is eight quadrics.

Remark 3.5. Note that in all cases, the only H-orbit closures in PT; are the
secant varieties. This actually characterizes the minuscule varieties, see [15]. A
special case of this phenomenon is observed in [22]. Note that this property also
allows one to easily classify the G-orbits in 7(X) when X is minuscule. See [14]
for examples.

Corollary 3.6. Let X be a minuscule variety, and let x € X. Then
Base |IE‘]F’§(I| = o, 1(Base |]FF%<z|)
Moreover, |]FIE"§<7$| = I (Base |]F]F.I§(,z|)

Proof of the corollary. Immediate from our explicit descriptions of the fundamental
forms. O

Proof of the proposition. For each of these varieties, and each integer j, we check
that there is a unique irreducible H-module which is a component of both S77T
and of the restriction Res$V,,,. Then N; must be this H-module. For an ordi-
nary Grassmannian G(k,n) = G(k, V), T = E*®Q, where F is the tautological
subbundle and @ = V/FE the quotient bundle. Its symmetric powers are given by
the Cauchy formula ([21], p. 33)

SIT = @ S\E*®8,Q,
A|=j

the sum is over all partitions A with the sum of its parts |A| equal to 7. We have

R@SgAkV = Ak(E D Q) = @ AhE*®AhQ = @ ka,h+wk+h
h2>0 h2>0
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since rank (E) = k. The only common component of these two decompositions
is AVE*QAQ = We, _ +u,,. The case of Lagrangian Grassmannians is similar.
Here Q ~ E*, T = S?E* and we use the formula ([21], p. 45)

SIT = @ S B,
[X=j
We compute the decomposition

G
Res§iVi, = €D S22 B* = @D Wa,,
h>0 B h>0

and the conclusion follows as above. On spinor varieties, Q ~ E* again, T'= A2E*
and we use the formula ([21], p. 46)

ST = P Sz E*,
[X=7
where if A = (Aq,...,A\p), then A(2) = (A, A1,..., A, Ap). Finally, the case of
quadrics is immediate since they are hypersurfaces.

For exceptional minuscule varieties the same argument goes through, except
that we use the LiE package [20], or Littelmann paths, instead of the above classical
decomposition formulas. O

3.4. Algebraic structures induced by infinitesimal geometry

We remark on some consequences of the strict prolongation property for minuscule
varieties.

Proposition 3.7. Let X" C P"T® be a variety such that strict prolongation holds
atx € X. Let N; = N; ,X. Then there are natural maps

N;@N;‘ — N;ij
Proof The maps are the restrictions of the symmetrization maps S*T*®S7T* —
SHIT* and the image is assured to lie in N, ; by the strict prolongation property.
O

Corollary 3.8. Let X = G/P C PV be a minuscule variety. Let H be the semi-
simple part of P. Then there is a natural structure of a graded H-algebra on V.

In the case of Grassmannians, the algebra structure on A*V is given by the
multiplication of minors. For Lagrangian Grassmannians, it is related to the mul-
tiplication of Pfaffians. The exceptional cases are related to certain exceptional
algebraic structures introduced by Freudenthal, that we meet again in §6. For
example, consider the minuscule variety of E: this is a 27-dimensional subvariety
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of the projectivization of the minimal representation V' of E;, whose dimension is
56. As an H-module, we have

V =Voa Vie Vas V3 = Cao J3(0)s J5(0)"'a C,

where J3(0Q) denotes the exceptional Jordan algebra of 3x 3 @-Hermitian matrices.
The group H = Fj is realized as the subgroup of GL(J3(Q)) preserving the cubic
form defined by the determinant. Its polarization defines the map Vi®V; — Va.
The map Vi ®Vy — V3 is just the evaluation.

Another consequence of the strict prolongation property at a point of any
variety is the appearance of Koszul complexes:

Corollary 3.9. Let X™ C P*t® be a wvariety such that strict prolongation holds at
z€X. Let Ny = N;,X. Then there is a Koszul complex:

- — N} @AM — NXQAMT™ — Ni @A I — .
induced by the maps T ®N; — N7,y (recall that T* = N7 ).

If N} is replaced by the space of sections I'(X, Ox (j)) for a subvariety X C PT,
the homology of the corresponding Koszul complexes compute the syzygies of X
[8].

For a classical minuscule variety X, there is a strange relation between the
complexes constructed from their normal spaces, and the Koszul complexes com-
puting the syzygies of another minuscule variety Z. Indeed, we obtain this second
family of complexes from the first, by a natural involution on the set of highest
weights of irreducible L-modules.

For . = GL,, this involution is defined in the following way: to the Schur
power S, we associate Sy, where A\* is the conjugate partition of A, obtained
by symmetry along the main diagonal of its diagram (which actually defines a
bijection between partitions inscribed in a k x (n — k) rectangle, and partitions
inscribed in a (n— k) x k rectangle). The complex associated to our example above
is therefore

- SEQSFRANERF) — ST EQSTT I Fo A EQF) — - -

)
In small degrees, for X = G(k,n), Grag(n,2n), S,, we obtain the Koszul
complexes associated to Z = P**~1xPE—1 G(2,n), va(P" 1) respectively. (Note
that Y7 = PF=1 x PP=F=1 4y (P"1), G(2,n) respectively.)

4. Linear spaces on homogeneous varieties
In this section we explicitly describe the lines through a point of a homogeneous

variety X = G/P C PV, the Fano variety parametrizing all lines on X (in §4.2),
as well as the Fano varieties parametrizing higher dimensional linear spaces on X
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in §4.3. These parameter spaces all come equipped with natural embeddings to
projective spaces whose associated vector spaces are (G-modules as described in
64.4. We give an amusing recipe for recovering the Dynkin diagram of G from
second fundamental form data in §4.5. We begin, in §4.1 with a construction due
to Tits that is essential to our work.

4.1. Tits fibrations

Let G be a simple Lie group, let S, S’ be two subsets of the sets of simple roots of
G. Consider the diagram

G/Psus
./ N
X =G/Ps X' =G/Ps
Let 2/ € X’ and consider Y := 7(7'~!(2’)) C X. Then X is covered by such
varieties Y. Tits shows in [24] that Y = H/Q where D(H) = D(G)/(S\S5’), and

@ C H is the parabolic subgroup corresponding to S’\S. He calls such subvarieties
Y of X, L-subvarieties, and Y the shadow of z’.

Example 4.1. For X = D,,/Ps and X' = D,,/P,,, we read off the diagram below

that Y = G(3,n).

e}

4.2. Lines

Let D = D(G) be the Dynkin diagram of a complex simple Lie group G. We
identify the nodes of D with the set of simple roots with respect to a choice of
maximal torus 7" and Borel subgroup B which we fix once and for all. Let oo € D.
Let N(a) = {# € D | (o, 8) < 0} denote the neighbors of a, the simple roots
connected to o by an edge in D.

Proposition 2.5 implies the following (with the same notations):

Corollary 4.2. Let X = G/P, with G simple and P a mazimal parabolic sub-
group. Let'Yy C PT, be the closed orbit. Then Yy is isomorphic to the shadow of
a point x € X on the space X' = G/P’ of G-lines in X.

Here P’ is the parabolic subgroup of G defined by the neighbors of the root
defining P.

We will see that if we consider the minimal homogeneous embedding X C PV,
these G-Tits lines are linearly embedded. We first need to recall a few basic facts
on the Picard group of a rational homogeneous space.
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It a classical fact, due to Chevalley, that Pic(G/B) = H?(G/B,Z) = P, the
weight lattice ([3], Exposé 15). More generally, Pic(G/Ps) = H?*(G/Ps,Z) =
P(S), the sublattice generated by the fundamental weights w; dual to the roots
o; € S (or rather to the corresponding coroots). Dually, Hy(G/Ps,Z) ~ R(S), the
lattice generated by the coroots ¢&; to the roots «; € 5, with the obvious pairing

with P(S). Each class &; can be realized geometrically by considering the double

fibration
G/ Psun(ay)
/
G/Ps G/ Ps\o,; UN(7)

Indeed, the shadow on G/Ps of a point in G /Ps\aju N(oy) Is a rational curve, on
which a line bundle Ly defined by a weight A € P(S) has degree (A, &;) (see [5],
Lemme 2 p. 58).

In particular, suppose that G/Ps is embedded in some PV, by a very ample
line bundle Ly, where A\ = Zie s liw;, and contains a line of PV whose homology
class is 3 = > iegMidi. Then 7, ¢ lym; = 1, which implies that B = &y for
some j € S with [; = 1. Moreover, the variety Ff(X) of these o -lines on X is
independent of the A with [; = 1 chosen. Note that it contains G/Pg\aju N(oy)-

Theorem 4.3. Let S C D, consider X = G/Ps in its minimal homogeneous
embedding. Then 4 ‘

L. Fi(X) = [ljes F{(X), where F{(X) is the space of lines of class &; €
Hy(G/Ps,Z). ‘

2. If o is not an exposed short root, then F}(X) = G/ Ps\o;uN(a;)-

3. If o  is an exposed short root, then Ff(X) is the union of two G-orbits, an
open orbit and its boundary G/Ps\ajuN(aj)-

Assertions 1. and 2. are rephrasings of results in [4], which were published
just after the first version of this paper was written (but note that Cohen and
Cooperstein work over an arbitrary field). Assertion 3. and its proof below were
communicated to us by an anonymous referee (our original proof contained some
case by case arguments).

In §6 we give explicit descriptions of the open orbits of 3. for each short root.

Proof. The argument, proceeds in three steps: first we give a criterion for identi-
fying distinct orbits in Ff (X); up to the action of Wy, the subgroup of the Weyl
group W generated by the simple reflections s;, ¢ ¢ S, there is a unique 7-fixed
point in each G-orbit passing through a base point z € X, where T denotes the
maximal torus in G. We then show that there is a unique tangent direction in T}
corresponding to a line up to Wg-equivalence, and finally, if o5 is an exposed short
root with —(ev, ;) = 2 (resp. 3), then there is a unique vector in 7o (resp. T}3)
modulo Wg-equivalence corresponding to a T-fixed line. Finally we show that the
orbit of the T} (resp. Tj3) line is not closed.
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We first observe that every G-orbit in Ff (X)) contains a T-fixed line. Indeed, if {
is an ay-line, by homogeneity we can suppose it contains the base point z = [Pg] €
X. If y € l is another point, y lies in a unique Bruhat cell B(w) = {wzh~' | h €
B}, we W. Then there exists h € B such that h(y) = w(z), and since h(z) = z,
the line I’ = zw(x) is T-stable in GI.

By T-stability, the tangent direction to I’ at = must be a g_,, for some a € Ax.
The orbit through = of the S Ly corresponding to « is [, and thus (A, &) = 1 because
A is also the highest weight of the S Lo-module [ ~C2.

Write o = pay; + v with m;(y) = 0. We have

o, 0

Since the equality holds for any choices of coefficients /;, we must have (w;, &) =0
for all i € S\j. Thus (e, &) = p(e;, ;) and we have two cases.

If a; is not an exposed short root, then p = 1 and by Lemma 4.4 below, « is
Ws-conjugate to a;. There is therefore a unique G-orbit in Ff(X ).

If «; is an exposed short root, then either p = 1 and « is short, or p > 1 and «
is long. Then Lemma 4.4 and Lemma 4.6 below imply that there are at most two
G-orbits in FJ(X).

The following lemma was communicated to us anonymously.

Lemma 4.4. Let 3 € Ax have the same length as oy, and m;(3) = 1. Then there
exists w € Wg with wo; = f3.

Proof. We use induction on the height of 3, i.e., the sum of its coefficients in
its decomposition on simple roots. Suppose that § # a5, and (5,a;) < 0 for
all 5 # 4. Then (8,a4) > (5,8) > 0, thus n(3,a;) = 1 and s;(8) = ~, where
si(B) = B — (B, &;)c;. Therefore, since 3,v and «; have the same length, we get
—1 = n(y,a;) = n{a,v), hence n(3,7) =1 and (B,~) > 0.

We can therefore let k # i such that (3, ) > 0. Then the root si(3) verifies
the same assumptions as (3, but its height is smaller, and we conclude the proof
by induction. (Il

Lemma 4.5. «; is an exposed short root iff there exists o« € AL\S such that
Ina, ;)] > 1.

Proof. If o is not an exposed short root, n(a, o;) # 0 implies that o and «; have

the same length, hence |n(o, a;)| = |n(ay, )] < 1. Now say oy is an exposed short
root. Then there exists a long root « supported outside S such that (e, ;) # 0.
Thus |n(c, oy)] > [n(ay, @)| = 1. O

Lemma 4.6. If o; is an exposed short root, then any pair of long roots of the
form po; + v, where 7y is supported outside S, are conjugate in Wg.
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Proof. If p = 3, we are in the G5 case which is clear. So assume p = 2. Let
0 = 2a5 + vy, v supported outside S.

Assume 0 is such that (6,a;) < 0 for each 7 # j with m;(d) # 0. Then
(6,c¢5) > (6,6) > 0. Since oy is short, we have n(d, ;) = 2, so s;(6) = v and
v is a long root. Also, n(ay;,d) = 1, so that n(d,a;) = 0 for all i # j with
m;(6) # 0. Thus ¢ is the highest root with support in the subdiagram supp(9).
But n(6, o) = 2, therefore this subdiagram must be of type C,;o for some r > 0.
Since j is an end of it, it is uniquely determined, and § is a uniquely determined
root dg.

Thus if 6 # do, there exists i # 7, a,; € D\S, with (6, ;) > 0. And we can then
proceed by induction on the root s;(d), whose height is smaller than that of 6. O

Finally we show that when «; is an exposed short root, the orbit corresponding
to a long root « is not closed. The case of G4 is easy (see §6.1), so assume p = 2
and, using the notation of lemma 4.5, take o = d5. The corresponding line is
lo = UaUx_o, Where vy is a highest weight vector in V) and vy_, = X_,va,
X_o € g—o. Let us compute the tangent space T, at [, of its G-orbit. For X € g,
we have
X(T)A I\ Q))\,a) = Xvyx Ava_ag +ua AN XX_, v,

If X €g_p, a# e Ay, then Xvy Avy_,, and therefore also X(vy Awvy_,), are
non zero. If X € pg, then Xvy = 0, hence X(vx Ava_pn) = va A [X, X _o]ox. If
X is a root vector, this is non zero if and only if X € go_p, with 5 € Ax. This
implies that, as a T-module,

To=Egs T=(Ax—{ah)U{B-acA BeAx}
pel

(Note that since « is a long root, we also have I' = (Ax — {a}) U sy (Ax — {a}).)

To prove that the G-orbit of [, is not closed, we need to prove that its stabilizer
cannot contain a Borel subgroup, and for this it is enough to exhibit a root 3 € I
such that — 3 also belongs to I'. But this is easy: indeed, recall that the subdiagram
of D supporting « is of type C,12, and that « is the corresponding highest root,
that is o = 2a5 + - -+ + 20445 + 1511 for a suitable numbering of the simple
roots. Then we can take 8 = oy + -+ + opqj + 4 jp1 € Ax, since = +a =
aj+~~~+ar+j€A+. O

Remark 4.7. This proof gives a formula for the dimension of the open orbit of
lines in the case of an exposed short root, namely the cardinality of I' = (Ax —

{o) Usa(Ax —{a}).

On the infinitesimal level, C,, C PT, X, the set of tangent directions to lines on
X passing through z, is a union of disjoint varieties, one component C2 for each
possible class o of lines. The proof of the preceding theorem implies the following:
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Theorem 4.8. Let G be a complex simple Lie group, let S be a subset of the
simple roots. Let o € S. Let D(H) be the components of (D(G)\S)\a containing
an element of N(a), where by D(G)\S we mean D(G)\S plus any nodes of S
attached to a node of D(G)\S. Let C¢ C PT, X denote the class of a-lines through
z.

L. If « is not an exposed short root, then Cg ~ H/Pn(y).

2. If o is an exposed short root, then CT is a union of an open Pg-orbil and

its boundary H/ Py ().

With the notations of §2, the closed Pg-orbit in Cy” is Ylj , and the open orbit
is PsYy. The cases of C2 for exposed short roots are described explicitly on a
case by case basis in §6.

4.3. Linear spaces of higher dimension

A k-plane in X must come from a linear P*~! in some C2. We call such a P*,
of class «, and let F¥(X) denote the variety parametrizing the a-class P*’s on
X. FY(X) may have several components. The space of P*’s in X, F;(X), is the
disjoint union of the F'¥(X)’s.

If o = a5 € S'is not an exposed short root, it follows from Theorem 4.3 that the
projection G/ Ps — G/ Pg\ ; is constant on each a-line, hence it is also constant on
each a-class P*. It follows that the space of a-class P*’s is a fibration over G/ Ps\j,
and to determine the fiber, we can restrict to the subdiagram of D consisting in
the connected component of «o; in D\(S\j). In particular, we are reduced to the
case of a maximal parabolic subgroup, corresponding to a non-short root. Then
we know that C, = Y7 is a minuscule variety, so it is again a homogeneous space
of type H/Q with () a maximal parabolic subgroup corresponding to a long root,
or possibly a product of such spaces. We can therefore apply Theorem 4.3 to
Yi to describe its lines, which gives P%’s in the original space, and so on. The
conclusion is that, not only P'’s, but all linear spaces can be described in terms
of Tits” geometries.

Theorem 4.9. Let G be a simple group and let X = G/Ps C PV be a rational
homogeneous variety in its minimal homogeneous embedding.

If « € S is not an exposed short root, then for all k, FP(X) is the disjoint
union of homogeneous varieties G/ Psp, where {8;} C Ay is a minimal set of
positive roots such that the component of D(G)\{f;} containing o is isomorphic
to D(Ay), intersects S only in o, and o is an extremal node of this component.

Corollary 4.10. Let G be a simple Lie group, let S C D(Q), let o € S with «
not exposed short. Let X = G/Ps be the corresponding homogeneous variety in a
homogeneous embedding such that there are &-lines. Suppose that the longest of
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the chains of type A in D(G) beginning at o and containing no other element of
S, is isomorphic to D(Ay). Then the largest linear space of class o on X is a P™.

Example 4.11. Consider the case of G/B C PV, A = w1 + -+ - + wy, the sum of

the fundamental weights. There are no unexposed short roots, so C, is the union
of 7 points, I1(X) =[], G/Pp\a, and Fi(X) =0 for k > 2.

Example 4.12. In the case of D,,/P,,, we have a unique family of lines, parametr-
ized by isotropic subspaces of dimension n — 2, D,,/P,_2 and a unique family of
two planes parametrized by the Q-isotropic flag variety D,,/P,_3,—1. There are
two families of P*’s, namely D,,/P,,—3 and D, /P, _4,—1. For 4 <k <n —1 there
is a unique family of P*’s, namely D) By b—Am—A.

Example 4.13. The largest linear space on E, /Py is a P* !, via the chain termi-
nating with a,, so E, /P is maximally uniruled by P*~’s and there is a second
chain terminating with as, so E,/P; is also maximally uniruled by P*’s. (The
unirulings by the P*’s are maximal in the sense that none of the P*’s of the unirul-
ing are contained in any P° on E,,/P;.) The varieties parametrizing these rulings
are respectively F,/P; and E,/P,.

aq aq

Now we address the case of exposed short roots. First note that if X = G/P, =
B, /Py, G2/ Py or Cp /Py, then the space of Pkg on X is G-homogeneous, where
D(Q) is the fold of D(G), as in these cases G/P ~ G/P. In general, we have:

Theorem 4.14. If a € S is an exposed short root, then for all k, F(X) consists
of a finite number of G-orbits (at least two).

If o € S is an exposed short root, F*(X) can be deduced from Fy(G/P,). In
each of these cases we determine the unextendable linear spaces through a point
explicitly. By further calculation, one can deduce all linear spaces through a point
and prove the theorem.

4.4. Natural embeddings of linear spaces

For X = G/Ps C PV, we have Fj,_1(X) C G(k,V) C PA*V. Thus the connected
components of the Fj,_;(G/Ps)’s come naturally embedded in some irreducible
component of A*V with highest weight A supported on the weights dual to the
roots appearing in the (unique) closed orbit G/Ps: consisting of G-homogeneous
P*’s in the component (i.e. P*’s that are L-varieties in the sense of Tits). While S’
can be determined pictorially, the multiplicities of the weights in general cannot.
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We now determine the multiplicities in several cases, in particular the elementary
representations defined below.

Fix an end of the Dynkin diagram of G, and label the end node «;. Following
[7], define the branch of «y, B(ay), as the largest chain in D(G) containing oy
that is isomorphic to D(A4,) or D(Cy), such that no node in B(«1) before the last
has valence three. We say such a branch has length p. We label the roots on
B(ay) as ai,...,ap and denote the fundamental representation corresponding to
wi by V =Vaaq =V,,. Such an irreducible representation is called an elementary

representation in [7].
end :O
g 2

P &)

The following result is evidently due to Cartan, a proof can be found in [7]
except for the ‘moreover’ assertions which may be verified on a case by case basis.

Proposition 4.15. With the notations above, V., is an irreducible component
of ARV, with multiplicity one for 2 < k < p. More precisely, wy, is the unique
extremal weight of AFV .

Moreover, APT1V also has a unique extremal weight which is

1. 2wy for a double edge with arrow pointing away from w;.

2. 3wpt1 for a triple edge with arrow pointing away from wy.

3. Wpt1 + wpyo if wp corresponds to a node of valence three.

Idea of proof. One simply checks that among the weights of V', there is a maximal
chain gy, ..., pp1 with p; = wy — (@ + -+ + a;_1). In particular, pq + - +
is the unique maximal weight of A*V for 1 < k < p + 1, and it is straightforward
to check that this weight is as announced in the proposition. ([l

It is an easy exercise to prove that the wedge product of the weight vectors
corresponding to the weights 1, ..., s, generate a P*~! that is contained in the
closed orbit Xenq. Thus the G-submodule of A*V which hosts F_1(X) is precisely
the fundamental representation V,,, .

It follows for example that in the case of simply-laced groups, we can obtain
all fundamental representations from the elementary ones, in a simple geometric
way.

Example 4.16. For Fg we have three elementary representations, the minimal
representation V,,,, its dual V,,, and the adjoint representation V.

Start with V,,, so X = Fs/P; is the Cayley plane. Then PV, is the ambient
space for Fy(X), PV, is the ambient space for F;(X) and PV, is the ambient
space for F5(X).

Start with V,,, = ¢s, so X = FEg/ P, is the adjoint variety. Then PV, is the
ambient space for F(X) and PV, is the ambient space for I;(X). (Note that
Es/ Py is a space of spinor varieties Ds/Ps on X.)
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A case by case analysis with LiE [20] leads to the following more precise result:

Proposition 4.17. Notations as above.

1. If Xena is a minuscule variety and V is not symplectic or (Dyp,wy)
(Dy,wn_1), then for 2 < k < p, V., = A*V. This is the case for (G,w)
(Ap,w1), (Bn,wi), (Dp,w1) and (Fg,wy) =~ (Eg,wg).

2. If Xena is a minuscule variety and V has a symplectic form €, set ARV =
ARV Q ANV, Then Vepa_r, = ARV, This is the case for (G,w) = (Cy,w)

IR

and (E77(U7).
3. If Xenq is an adjoint variety, so V. = g, let APlg = ker[ , |, where
we consider the Lie bracket as a map | , | : A’g — g. The adjoint varietes

corresponding to elementary representations are those of the exceptional groups:
(G,w) = (Ga,wn), (Fy,wi), (Fs,ws), (Fr,wi) and (Es,ws). In each of these
cases, except for Go, Vena—1 = A?lg. (And afterwards there is always a double
bond or node with triple valence.)

4. If Xena = Go/Py then V,,, = NV, /(V2 1¢) where ¢ € A®V,, is the
defining three form.

5. ]f Xend == F4/P4, then sz == AQVM/M.

Remark 4.18. Consider the case of A,. The adjoint variety X = G/P,,, is the
flag variety of lines in hyperplanes in P”. The space of lines in X is disconnected:
it is the disjoint union of Fs ,, and IFy ,,_1, the corresponding embeddings of which
are not their minimal ones, since

A[2]5[n+1 — ‘/2w1+wn,1 @ Vw2+2wn'

Remark 4.19. For X = F,/P,, F5(X) = F,;/ Py, but here the variety occurs in its
third Veronese re-embedding, i.e. Va,, C A®V,,. For X = Gy/P;, F5(X) occurs
in its second Veronese embedding, PVa,, .

4.5. Dynkin diagrams via second fundamental forms

We describe how to recover D*(@), the marked Dynkin diagram of G, from the
second fundamental form at a point of any X = G/P where P is maximal and not
short:

Fix z € X and start with a marked node, which corresponds to P. Say Y;
is the Segre product of Veronese re-embeddings of k minuscule varieties. Then
attach k edges to the node, with nodes at the end of each edge. For each factor
in the Segre that is minimally embedded, the edge is simple. If there is a factor
that is a quadratic (resp. cubic) Veronese, then make the corresponding edge a
double (resp. triple) bond. Now compute Base |FF3 | of each factor and repeat
the process starting with the node corresponding to the factor. Continue until
arriving at the empty set. The resulting diagram is D(G).
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A shorteut: if at any point one obtains an H/Q as a factor where the marked
Dynkin diagram associated to H/Q is known, one can simply attach the diagram.

In particular, if one arrives at a P!, just attach a copy of D(4;).

Example 4.20. Beginning with X = F,, /Py, one has

Base [FF% | = S,_1, Base |FF3 | = G(2,n—1),
Base [FFgy,, 1)| = Seg(P! x P*~?), Base|[FFg, p1 ,pn-2)| = PO LP" 2.

So the construction is:

e} —_— o—e 5 o—C—e —= O—O—T—'—.

5. Classical homogeneous varieties

In this section we present the higher normal spaces of the classical homogeneous
varieties which are not minuscule, as well as the base loci of the higher fundamental
forms. We give most results without their proofs, which are computational.

5.1. Orthogonal Grassmannians

Let G,(k,n) denote the orthogonal Grassmannian of null k-planes in V. = C»
where V is equipped with a nondegenerate quadratic form @ and 2k < n. It
is a subvariety of the ordinary Grassmannian, and its minimal embedding is the
Pliicker embedding in PV,,, = P(A®V).

Introduce the notation
S?(APE*) if p is even

P Pk _
(APE*®APE"), = {AZ(APE*) if p is odd

and 2 )
A“(APE*) if p is even
PI* o AP*)  —
(AET@APET)- = {SQ(APE*) if p is odd.
Proposition 5.1. Let E* be the tautological vector subbundle on G,(k,n), let
E+ 5 E denote its Q-orthogonal complement, and let U"=* = BX/E. Then the
tangent space and normal spaces of Go(k,n), as H = SL(E) x SO(U) modules,
are

T, = B*QU, T, = A2E",
Ny = (N2E*QA%U @ S’E*) @ (A’E*QE*®U) @ (A*E* @ S E*).

Np = @5 o AP E*QAPE* @A V)@
G(APE*QAPE*), @ (AP 1E*®@APTIE*)_.
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In particular, the length of the normal graduation is k when k is even and the

last non zero term is Ny ~ AFE*Q(A°E*QA*U + - -+ AFE*®@A°U) @ S?(AFE*).

When k is odd, the length is k + 1 and the last non zero term is Ny =~ C.

Remark 5.2. Note that in contrast to the case of minuscule varieties, here N #

Ny,
Corollary 5.3. The base locus Base |IE‘IE‘%O(k’n)7E| of the p-th fundamental form is,
for p even,

P{ei®@ui+ -+ ep@upder Aea+ -+ ep1 Aep, | €5 € B, u; € U},
and for p odd,

Ple1®@ui+ -+ ep@updei Aea+ - +epoNep1,|e; € B*, u; € U}

5.2. Symplectic Grassmannians

We let G, (k,2n) = C,, /P denote the Grassmanian of k-planes isotropic for a
symplectic form. Its minimal embedding is to V,,, = A%V = ARV/(Q A A2V,
the k-th reduced exterior power of V = C??, where Q denotes the symplectic form.

A straightforward computation shows that V,,, has the following decomposition
as an H = SLy x Spay_oi-module:

ARy = @ A E*QA TP E* @A,
a,b

Note that U = E+- / E is endowed with a symplectic form induced by the symplectic
form on V = C?",

Proposition 5.4. Let E be the tautological vector sub bundle on G, (k,2n), let
E+ > E denote the Q-orthogonal complement to E and let U = E+/E. Then the

tangent space and normal spaces of G (k,2n) are, as H-modules,
T = F*®U, T, = S%E*,
Ny = A2E*@ANU @ So1 E*QU @ Sy E*,

Np = D oiprep ADURS, o 1\/1E*
b—c at2c

-  AU®S B
Do M52

e d

In particular, the length of the normal graduation is equal to k, the last non zero
term being N ~ A*(Ca U).



Vol. 78 (2003) On the projective geometry of rational homogeneous varieties 91

Corollary 5.5.
Base [FF%_(; 5, 5| — Ple@u & &2 | e € B\{0}, u € U\{0}}.

This base locus contains an open and dense P-orbit, the boundary of which is the
union of the two (disjoint) closed H-orbits

Y] o PEL PP C P(TY) and Yo oo (PRTY) € P(Th).

Proof. This can be seen directly. A line in G, (k, 2n) through a point F is given
by a (k—1)-plane H C E, and a (k+ 1)-plane K D E. K does not need to be
isotropic, each point of the corresponding line is generated by H and a vector of K,
and is isotropic if and only if this vector is w-orthogonal to H. The condition on
K isthus K ¢ H-. K is therefore determined by a line in H+/E ~U® H-/E*.

If e € E* is an equation of H, the line H'/E* ~ (E/H)* C E* is generated
by E, so that a vector in H'/E can be written as u @ Ae, where u € E. Our
claim follows, the closed orbits Y7 and Y5 corresponding to the cases where u or A
is equal to zero. (Il

Corollary 5.6. More generally, the base locus of the p-th fundamental form is

Base|IE‘IE'%w(k72n)7E| =Ple1®@uy + -+ ®@updel +--- + ek, | e; € B*, u; €U}

Remark 5.7. Since C,,/P, = G, (k,2n) is a subvariety of the ordinary Grass-
mannian G(k, 2n), the P"’s it contains are easy to describe: letting Mg, N} denote
fixed linear spaces of dimensions a and b, they are of the form

{(MF' c L NFY c MY,
with { <2n —2k+1, or
(M c L N} MY,

with 1 < I < k and Ny isotropic. This second family of P'’s has two C,-orbits,
while the first family breaks into a number of C,, -orbits that grows with k, indexed
by the rank of the restriction of € to Np.

5.3. Odd spinor varieties

We call the homogeneous spaces B,,/P, the odd spinor varieties. They are the
usual D,-spinor varieties seen as B,-homogeneous spaces.

Proposition 5.8. The tangent space and normal spaces of the odd spinor varieties
B, /Py, as H = A,,_1-modules, are (dim E = n):

Ty = E*, T, = AE",
N, = A>~1E* @ A% E*.
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Corollary 5.9.

Base [FF% ,p | =P{e@eA f, e € EX\{0}, f € EX\Ce} =~ G(2,n).

This base locus contains an open and dense H-orbit, the boundary of which is the
union of the two (disjoint) closed H-orbits

Y, =PE* =P(T}) and Ys~G(2,E*)=G(2,n—1) CP(Ty).

The base locus of the k-th fundamental form is

Base [FF; /p | =P{e® Q, e € EX\{0}, rank Q.. < rankQ <2k —2}.

Proof. Consider V21 ¢ W27*2 and E® C F*T!, where F is a null plane in W.
let L = F+ C F Then A®*E* ~ A®?¢"[* We may write Ny = AE*®L @ A*E* =
A*F = (G(2, F)). The analogous identities hold for the higher normal spaces.
After all, this is the same projective variety as D,/ P,. (Il

Remark 5.10. The varieties parametrizing the P'’s of B,/P, = Dpy1/Pyqq are
stratified as B,-spaces. For k > 2, a connected component of this variety is
Dyit/Pry—p—1. If V = C?"+2is endowed with a nondegenerate quadratic form,
a point of this space is a flag Fy C M, of isotropic subspaces of V of respective
dimensions n — k — 1 and n. The associated line in D,,.1/P,11 is the space of
n-dimensional isotropic subspaces of V containing Fy and cutting My in dimension
n—1. Let V be the hyperplane of Vv preserved by B,,. Then the B,-orbits inside
Dyy1/Ppn n—i—1 are indexed by the relative position of Fy and V. There is a closed
orbit corresponding to Fy C V, isomorphic to B, /P, _,_1, and its complement
is an open orbit. For £k = 1 or k = 3, there is another connected component,
parametrized by Dy11/P,—1 and D1/ P, _s respectively. Each of them has two
By, -orbits, the closed orbits being B,,/P,_1 and B, /P, _, respectively.

6. Exceptional short roots and the octonions

In this section we calculate Base [FF% | for the exceptional spaces corresponding
to short roots, and give geometric interpretations of these varieties and their linear
spaces in terms of the octonions.

6.1. Go/P

As an algebraic variety, G'a/P; is a familiar space, G5/P; = Q° C P°. Studying it

from an octonionic perspective will help us to understand Fy /Py by analogy.
Identify C7 ~ ImQ =V,,, = V. Let ¢ € A*V* be a generic element and let p :

GL(V) — GL(A*V*) be the induced representation. Here are some descriptions
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of Gy C GL(V) (see [10] pp. 114, 116, 278 and [23] chapter 2):
GQ = Aut(@)
= {9 € GLYV) | plo)é = 6}
= {9 =(9+,9-,90) € Sping(V) | g+ = 9— = go}-
The third line should be understood as follows: let S, ,S_,V, denote the vector
and two spin representations of Sping and choose appropriately an identification
of each of the three spaces with @, so that they are acted on by g € Sping in three

different ways, call them (g4,9—,g0). In this case (see [10] p. 278), the triality
principle of E. Cartan leads to the identification

Sping = {(g+,9-,90) € SO(0) x SO(0) x SO(Q) | g (wv) = g—(u)go(v)},

where uv denotes octonionic multiplication. When the three coincide one obtains
an automorphism of the octonions, showing the equivalence of the second and third
definition. Harvey’s description is explicit in bases. The connection between the
first two interpretations is that if one makes suitable identifications, for u,v,w €
Im©, we have ¢(u,v,w) = Re[(uv)w].

The first definition is due to R. Bryant. It shows that G is not really an
exceptional group, because it is defined by a generic form. (Generic three forms
on C™ for m > 8 are not preserved by a positive dimensional group. For m = 6, 8,
the groups preserving such a form are classical.)

The third interpretation can be understood in terms of folding Dynkin dia-
grams:

Dy G

/O

*—C —_ (%
This indicates that G4/ P; should be be understandable in terms of Dy/P; = QF,
and in fact it is a generic hyperplane section. Im@ C O should be thought of as
the traceless elements, where the trace of an element is its “real” part and we call

the hyperplane section {tr = 0}. In what follows, wv etc... refers to octonionic
multiplication.

Proposition 6.1. Consider Q° ~ Go/P; = P(ImQ)y C P(ImO) ~ P(V,,,).

Then T,Go /P, = T1oTo® T3 as an H = SLy-module. Let A = C?, the
standard representation of SLy. Then Ty = A, Ty = C (the trivial representation)
and Ty = A*. Moreover, in a suitable normalization,

Base |IFIE%2/P1| =Pla®tDa* | {a,a*) =1}

Proposition 6.2. We have the following octonionic interpretations:
Ga/P; = {[u] € P(ImO) | u? = 0}
T1)G2/P1 = {v € ImO | uwv + vu =0} = {v € ImO | Re(uv) = 0}
T141Go/P1 = {v € ImO | uv = 0}.
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Proposition 6.3. The space G(P', Go/Py) of lines on Ga/Py, has the following
description:
G(P', Gq/Py) = {P{u,v} | [u], [v] € G2/Py such that uv 4 vu = 0}.

Note that G(P', G2/ P1) = G,(2,7) and in particular is of dimension seven.

The space Go /Py = Go(PY,P(ImQ)g) of Ga-homaogeneous lines on G2/P; has
dimension 5, and admits the following descriptions:

i. Go/Py = {PE € G(P',PV,,,) | Eo¢ = 0}

ii. Gof Py = {PE =P{u,v} | [u], [v] € G2/ Py, wo = 0}.

Proofs are left to the reader. The arguments are similar to, but simpler than
the arguments for the Fy/ Py case below.

Remark 6.4. Recall that V,,, is the adjoint representation of Gs, so that Go/ P,
is an adjoint variety. The relation with our description of Ga/Ps as a space of
special lines on the quadric Go/P; is as follows. Let [u], [v] € G2/ Py be such that
uv = vu = 0. One can then check that the map

dyv(z) = u(vz) —v(uz), z€0,

defines a nilpotent derivation of Q,with d?w =0.

Note that Gg(3,7) = Q°, the space of P?’s on G/ Py, contains a special family
of planes isomorphic to G5/ P as follows: through each point of G5/ P; there is a
plane contained in G5/ P; tangent to T} (and it is completely tangent to 17 at this
point only). Perhaps it is better to say the space of special P?’s is parametrized
by v2(G2/P;) as the variety sits inside Vo, € A®V,,,. (Although V,,, C A3V,,,
the Veronese re-embedding is the correct factor as were there linear spaces on the
parameter space, they would determine larger linear spaces on G5/P; which do
not exist.)

6.2. The Cayley plane OP?

Let J3(0) be the space of 3 x 3 O-Hermitian symmetric matrices
1 T3 T
JO0)=¢A=|z3m 77 ),r,€Cz; €0
X9 1 T3
Ja(0) can be equipped with the structure of a Jordan algebra for the commu-
tative product A o B = %(AB + BA), where AB is the usual matrix product.
dim ¢ J3(0Q) = 27 and it is a model for the Fg-module V,,,. There is a well-defined

determinant on J3(Q), which is defined by same expression as the classical deter-
minant in terms of traces:

det A = %(trace AP — %(trace A)(trace A?) + %traee A3
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Es is the subgroup of GL(J3(0)) = GL(27,C) preserving det. The notion of rank
one matrices is also well defined and the Cayley plane, Fe/P; = OP? C P(J3(Q))
is the projectivization of the rank one elements, with ideal the 2 x 2 minors (see
[13]).

Since « is not short, all linear spaces on OP? are described by Tits geometries.
In particular, Fs/Ps is the space of lines on OP? and Es/P; is the space of P®’s
on QP2

6.3. Fy/P, = OP3

Here are some descriptions of Iy C GL(J3(0)):

Fy = {9 € GL(J3(0)) | tr((p(g)A)*) = trA® for i = 1,2, 3}
= Aut(J3(0))
={9€Fs|g+ =9-}

The third description is motivated by folding of Dynkin diagrams:

EG 4 F4
/
/O

o— —  o—OC==0—e

o

\O

The equivalence of the second and third descriptions can be proved by using
the quadratic form tr(A?) to identify J3(0) with J3(0)* and considering g, (resp.
g_) as the two resulting elements of GL(J3(Q)). Harvey shows that the second
definition implies the first [10] p. 296. For the first definition, one only needs two
of the three forms to be preserved, as any group preserving two preserves the third.

Geometric folding indicates Fy/P; should be understood in terms of OP?, and,
as with Ga/ Py above, it is the hyperplane section {tr = 0}. In what follows, AB
denotes the usual matrix product of A and B. Note that A? = Ao A.

Proposition 6.5. Consider OP3 = F,;/Py C P(J3(0)y) =~ P(V,,). Then
T.(Fy/Py) =T10 T, as an H = Spin,-module. Let U be the 7-dimensional vector
representation of Spin, and S(U) the spin representation, then Ty = S(U) and
Ty = U. The spinor variety Y1 = S(U) 4s a siz dimensional quadric, and Yo = Q°
is a five dimensional quadric. Moreover, we may identify Ty ~ © and Ty ~ ImQO
and with this identification

Base|IE‘]E%P%| =P{u,v)eTi®Tp |va=0,00=0,uv =0} =SsNH

where Sz N H is a generic hyperplane section of the spinor variety S5 = D5/ Ps.

In particular, Base |IFIF(%W2| is of dimension 9, and is the closure of a Spin,-orbit,
0

the boundary of which is the disjoint union of Y1 and Yy. It is not homogeneous

for any group.



96 J. M. Landsberg and L. Manivel CMH

Proof. The decomposition of the tangent space follows from §2.3. Moreover,
Base [FFZ .| must be a generic hyperplane section of S5 = Base [FFg;.| because
0

Fy/ Py is a generic hyperplane section of Eg/Ps. The explicit description follows
using the description of T,0P? ~ @ ® @ and the explicit description of IIgpe
in [13], verifying that O® Oy is indeed a generic hyperplane section or using the
explicit description below. Finally, we check that there is no homogeneous space
of dimension 9 homogeneously embedded in a P™. O

Proposition 6.6. We have the following octonionic interpretations:
OP§ = Fy/Py = {|A] € PJ5(0)o | A* = 0}
T14/0P§ = {B € J5(0)o | Ao B =0}
Ty 4OP5 = {B € J3(0)o | AB =0}

Proof. A calculation shows that an element A € J3(Q0) is rank one and traceless
if and only if A2 = 0. Differentiation yields the second line.

To prove the third line, we first need to show that if [A] € OP3 and B €
T[ Al OP, the equation AB = 0 is F} invariant (although the matrix product AB is
not Fy invariant). Note that Fy is generated by SOs and Sping, where the action
of g € SO3 is by A+ gAtg, and that of (gy,g_, go) € Sping by

71 T3 T ri g+(x3) g—(22)
v3 2 T1 | = | gy(zs) 72 go(z1)
Ty Ty T3 g—(x2) golz1) 73

(This defines an automorphism of the Jordan algebra J5(Q)g because of the triality
principle.) The SOs invariance is clear. Moreover, if we take

10
A=11-i0
000
then
itr(zs) T3 ITL
T[A]@]P% = T3 —itI‘(:Eg) T
i:El X 0

where tr(u) = u —ug = %(u + @) is the “real” part of . The Sping invariance of
the equation AB = 0 is a straightforward calculation, and follows again from the
triality principle. With this model, {B € T[A](O)]P% | AB =0} =~ {z,tr(z3)} and
we may consider {1} C T[A]/{A} ~T. Note that T is acted on by the subgroup
of Sping that preserves A, which means that g, (1) = 1. By [10] p. 285,

Spin; = {(g+,9-,90) € Sp@ng |g- =go}
= {(94,9-,90) € Sping | g, (1) = 1 € O}

(Note that this embedding of Spin, in Sping is not the standard one). Thus
we explicitly see the Spin, = H action on T and the decomposition of 7" into
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Ty = {z1} and T =~ {(z3)0}, respectively as the spin and vector representations.
In particular, {17 + A} ={B €1 | AB =0}. O

Proposition 6.7. The space G(P', OP3) of lines on OP} has dimension 23, and
admits the following description:

G(P',0P3) = {P{A, B} | [A], [B] € OP% such that Ao B =0}
The space Fy/ Py = Go(P!,OP2) of Fy-homogencous lines on OP? has dimen-

sion 20, and admits the following description:

Go(P!,0P%) = {P{A, B} | [A], [B] € OP} such that AB = 0}.

Proof. The geometric descriptions of G(P!, OP3) and Go(P', OP3) follow immedi-
ately from proposition 6.6, because F;/P; is the space of lines on F,; /P, tangent
to Y. Moreover,

dim (G(P*,OP2)) = dim OP3 + dim (Base |1F1Fgm,,3|) —[=164+4—1=23

verifies the dimension assertion. O

Proposition 6.8. There are four types of mazimal (i.e. wunertendable) linear
spaces through a point of Fy/Py:

The space of P°’s which is 5-dimensional, parametrized by the quadric Q° C
PT5.

A space of P*’s which is 6-dimensional, parametrized by the quadric Q% C PT}
or equivalently Sqs, the variety of P?’s in Q° C PTy.

A space of PY7s which is 6-dimensional and having two components, the two
copies of Sgs, the variety of P27 in Q% C PT.

All other linear spaces can be deduced from these.

Proof. A P* in Fy/Py corresponds to a P*~1in S; N H. Let L =P™ C Sz N H.
The dimension dy of its projection ps(L) onto Q° C PT, is Py invariant.

We choose a splitting T' = T &T5 in order to use the equations above describing
Base |IFIF§€$ |. Relative to a choice of splitting, L is just the span of p; (L) and pa(L)
so we can analyze L accordingly.

Since Bs acts transitively on Gg(k,T), we may choose convenient k-planes to
calculate with.

Without loss of generality, take v = &1 + igg € Th, Then, writing v = ap +
o161 + -+ + arer, and using the standard octonionic multiplication table (e.g.,
see [13]) the condition wv = 0 implies v = a3 + 181 + i169 + a3e3 + taseq +
ase5 + ageg +iager. In other words, we obtain a ]P’f’, C Q% “polar” to v which gives
rise to an unextendable L* = (v,P3). Note that we automatically have vz = 0.
Taking M = (v,v’) with v/ = g4 + igy, the additional condition wv’ = 0 implies
u = afeg + ier), ie., is a point ¢ € @°. A similar computation shows that any
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g € Q° has a P?’s worth of points in @Q® ‘polar’ to it so we obtain an unextendable
P = (]P’g7 q). If pa(L) is empty, then we are of course free to take one of the two
families of P?’s on Q° as our maximal linear space. O

6.4. Fy/P; = Go(P!,OP2)

Proposition 6.9. Consider Fy/Py CPV,,. ThenT =T\ ® Ty & T3d Ty as an
H = SLs x SLy-module. Let dim E = 3 and dimU = 2, then
T, =E*QU, Ty,=E®S’U, Ts=U, Ty=E",

Base |FF?}O(P1 o)l

=Pler@u+texu e T1®Th|e* € E*,e€ E,uc U, (e*,e) =0}.

This base locus B is a nontrivial Q*-bundle over PU = P. In particular, dim B =
5 and it has a dense open S L3 x SLa-orbit, the boundary of which is the union of
the two closed orbits Y1 C PTy and Yo C PT5. It is not homogeneous for any Lie

group.

Proposition 6.10. The space G(P', Fy/Ps) of P'’s on Fy/Ps has dimension 24,
and admits the following description:

G(P!, Fy/P3)
= {{A} C {A,B,C} | [A], B, [C) € OP3 such that AB = AC = 0,BoC = 0}.

The space Fy/Py 4 = Go(P, OP3) of Fy-homogeneous P! ’s on Fy/P3 has dimension
22, and admits the following description:

Fy/Ps 4 = Go(P',OP3)
= {{A} Cc {A, B,C} | |4],[B],[C] € OP? with AB = AC = BC = 0}.

Corollary 6.11. There are two types of mazximal linear spaces passing through
a point of Fy/Ps; the P3’s corresponding to a P? in some quadric in a fiber of
Base |FF%O(P17©P3)| considered as a fibration and the P%’s corresponding to the P
in the base.

Proof of 6.10. We have Fy/Ps C G(2,26) so a line on Fy/P; must be a line of
the Grassmanian as well. Lines on G(2,26) are determined by the choice of a flag
P° C P?. Here we need [A] =P° € F, /Py in both cases.

In the first case AB = AC = 0, BoC = 0 are necessary and sufficient conditions
that the line be contained in Fy/Ps, as by 6.7, we need A(sB + tC) = 0 and
(sB +tC)? = 0 for all [s,t] € P!. Moreover, dimG(P', F;/P3) = 24 because the
choice of [A] is 15 dimensions and then one needs an element of G,(2,8), which is
of dimension 9. (Here C® ~ T1.)
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In the second case, considering Fy/Ps 4 as a P2 bundle over Fj /Py, the con-
ditions AB = AC = BC = 0 follow from picking an element of F;/Ps, and the
choice of [A] is a choice of an element in the fiber. O

Proof of 6.9. First, dim B = 5 because
dim (Fy/Ps) 4 dim Base [FF%,  p,| — 1 = dim G(P", Fy/Ps).

Moreover, we know that B contains Y7 and Y5 and is irreducible.

Consider now [y + yo2] € B, with y; € ¥; C PT;. Write y; = e®wu and
ys = e*®v?. Conditions for such a point to belong to B can only come from
components of

TieTy = (EQE*)®(U*0S*U*) = (Cosl(E))e(U*e S3U*).

Suppose that s[( EF)xS3U* were contained in N3 . Since exe* is not a homothety,
this would force uv? to be zero in S®U, hence w or v to be zero. If this component
were in N3, then B would be included in PT; LIPT5, and would not be irreducible.

Suppose now that s[(F)®U* were contained in N5. This set of equations would
force u and v to be parallel because under the contraction U® S?U — U, u®v?
maps to w(w,v)v, where w € A2U*. Similarly, the component S*U* would force
(e,e*) = 0.

In conclusion, P{exu® e*@u? | {e,e*) = 0} C B. Since both sets are irreducible
of dimension five, the second one must be the closure of the first one.

The quadric bundle structure is given by the application B — PU defined by
[e*®u + e®u?] — [u]. This is a nontrivial bundle structure. Finally, to see that B
cannot be homogeneous, note that there are no homogeneous nontrivial quadric
fibrations in dimension five. |

Further calculations along this line show that each variety of linear spaces is a
finite union of Fy-orbits.
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