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Laminations minimales résiduellement & 2 bouts

FEmmanuel Blance

Résumé. On décrit toutes les feuilles des laminations minimales dont un ensemble résiduel de
feuilles ont 2 bouts.

Abstract. We give a complete description of all the leaves of a minimal foliated space with a
residual set of 2-ended leaves.

Mathematics Subject Classification (2000). 37B05, 57R30.
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Introduction et énoncé des résultats

Une lamination est essentiellement une partition d’un espace métrique compact
en feuilles qui sont des variétés en général non compactes de dimension fixée (une
définition précise sera donnée en section 1). Une lamination est minimale si toutes
ses feuilles sont denses. Les ensembles minimaux des variétés feuilletées compactes
sont des exemples naturels de laminations minimales. Le lecteur trouvera d’autres
exemples dans [12] et [5]. Un théoreme de J. Cantwell et L. Conlon [6], inspiré
par un travail antérieur QL. Ghys [11], montre que les laminations minimales se
séparent en 4 classes selon qu’un ensemble résiduel de leurs feuilles ont 0, 1, 2
ou un Cantor de bouts. Rappelons qu’il s’agit 1a précisément des 4 espaces de
bouts possibles pour un groupe de type fini, résultat da & H. Hopf [15]. Parmis ces
groupes, ceux ayant 2 bouts sont tres particuliers : il s’agit des extensions finies
de Z et Z/2Z x ZJ2Z ([15], [9], voir aussi [19]). De maniére analogue, E. Ghys
a décrit en terme d’extensions compactes de flots mesurés, les laminations dont
presque-toutes les feuilles relativement & une mesure transverse invariante ont 2
bouts [11]. Dans cet esprit, ce travail montre que les laminations minimales rési-
duellement a 2 bouts, ie celles dont un ensemble résiduel de feuilles ont 2 bouts,
sont tres particulieres.

Les premiers exemples de laminations minimales résiduellement & 2 bouts sont
donnés par les orbites des flots minimaux sur les variétés compactes et les ensembles
minimaux non triviaux des flots sur les variétés compactes. Dans ces exemples,
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toutes les feuilles, homéomorphes a la droite réelle, ont 2 bouts. Il se trouve qu’il
existe des exemples de laminations et de feuilletages minimaux résiduellermnent a 2
bouts mais dont certaines feuilles ont 1 seul bout (voir section 2). L’objet central de
cet article est le résultat suivant qui montre que ce phénomene est le seul possible.

Theoréme 1. Soit (X, F) une lamination minimale résiduellement d 2 bouts sur
un espace X compact. On a les faits suivants
— toutes les feuilles de F ont 1 ou 2 bouts;
— les feuilles a 2 bouts sont les feuvilles sans holonomie. Flles sont quasi-isomé-
triques o 7Z ;
----- les feuilles a 1 bout sont les feuilles avec holonomie. Elles sont quasi-isomé-
triques 4 N. Leur holonomie esl a support compact el isomorphe & Z.)27.

D’apres E. Ghys [11], si (X, F) est une lamination, ses feuilles génériques re-
lativemnent & une mesure tranverse invariante ou plus généralement une mesure
harmonique (voir [10]) ont 0, 1, 2 ou un Cantor de bouts. Le résultat suivant
donne un lien entre les travaux d’E. Ghys et ceux de J. Cantwell - L. Conlon [6].

Theoréme 2. Si (X, F) est une lamination minimale résiduellement ¢ 2 bouts et
i est une mesure harmonique sur (X, F) alors p-presque toute feuille de F a 2
bouts.

Un des intérets de ce résultat tient au fait que I'auteur a construit un exemple
de lamination minimale munie d’une mesure transverse invariante g dont l’en-
semble des feuilles & 1 bout est résiduel et l'ensemble des feuilles a 2 bouts est
p-générique [4].

A laide de la classification des surfaces, le théoréeme 1 entraine le résultat
suivant qui donne la liste, finie, des surfaces pouvant étre uniformément équiva-
lentes (voir section 1 pour une définition) & une feuille d’une lamination minimale
résiduellement a 2 bouts Les différentes surfaces apparaissant dans 'énoncé sont
décrites par les figures 1 et 2. De plus, les exemples donnés dans la section 2
montrent que toutes ces surfaces peuvent effectivement étre réalisées (& unifor-
me équivalence pres) comme feuilles de laminations minimales résiduellement & 2
bouts.

Theoréme 3. Une lamination minimale, par surfaces, résiduellement a 2 bouts,
sur un espace compact X, a toutes ses fewilles uniformément équivalentes ¢ l'une
des surfaces suivantes :

----- le cylindre

- [échelle de Jacob a1 ou 2 bouts Jy ou Jo;

Uéchelle de Jacob infiniment non orientable a 1 ou 2 bouis J| ou Ji;

- la somme connere P? 4 (RT x S');

-~ la somme connexe K # J1:

— la somme connexe B2 4 Jy.

Dans [4], Pauteur montre que si une lamination minimale a une feuille quasi-

P

isométrique & N on Z alors cette lamination est résiduellement a 2 bouts. Le théo-
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reme 3 donne ainsi la liste (& uniforme-équivalence pres) des surfaces quasi-isomé-
triques a N ou Z et feuilles de laminations minimales. On retrouve ainsi un résultat
dtia D. M. Cass [7]. Il avait en effet construit une surface quasi-isométrique a Z et
non uniformément équivalente a une feuille d’'une lamination minimale : on part
d'un cylindre et on ajoute une infinité d’anses s’accumulant sur les 2 bouts mais de
telle sorte que la distance entre 2 anses consécutives soit non bornée. Cette surface,
bien que homéomorphe & Jy, n’apparait pas dans la liste précédente. Notons par
conitre que ce théoréme ne dit rien sur le type d’homéomorphisme dune feuille
d’une lamination minimale. L’auteur a en effet montré que toute surface non-
compacte est homéomorphe & une feuille d’une certaine lamination minimale ([4]
et [3]).

Enfin, on étude les lamimations minimales résiduellement a 2 bouts transver-
salement Cantor : celles dont les transversales sont homéomorphes & l'espace de
Cantor. On définit une notion de suspension et de suspension singuliere dans ce
cas. Le théoreme 1 et 'abondance des transversales fermées permettent d’obtenir
I"énoncé suivant :

Theoréme 4. Les laminations minimales résiducllement ¢ 2 bouts tranversale-
ment Cantor sont les ertensions compactes des suspensions des actions minimales
de Z/2Z » L) 27 sur Uespace de Cantor K.

Cet article, qui reprend une partie des résultats de la thése de Vauteur [4], se
présente comme suit. La section 1 rappelle la définition de la notion de lamination
et les outils de dynamique topologique utiles dans la suite. La section 2 donne des
exemples de feuilletages et de laminations résiduellement a 2 bouts dont certaines
feuilles ont 1 seul bout. Ces exemples nous permettrons d’introduire les surfaces du
théoreme 3. La suite de Uarticle est consacrée aux preuves des différents résultats.

Lauteur tient a remercier D. Gaboriau, k. Ghys, G. Hector et G. Meigniez
pour leur nombreux encouragements durant la préparation de ce travail.

1. Définitions et outils
1.1. Laminations

Une structure de lamination (foliated space dans la littérature anglophone) F
de classe C? et de dimension » sur un espace métrique compact X est définie
par la donnée d’'un recouvrement de X par un nombre fini d’ouverts précompacts
(Us)ier et d'une famille d’heméomorphismes ¢; : U; — T; x D™ ot T} est un espace
métrique localement compact et D™ est le disque unité de R™ de sorte que les
changements de cartes, la o il sont définis, aient la forme :

Ici g4, est un homéomorphisme local et F7% est un difféomorphisme local de D™
de classe C? dépendant continuement au sens de la topologie C? du point 2. Les
o
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plaques sont les ensembles ¢, ]'({t} x D™). On demande de plus que I'intersection
entre 2 plaques quelconques soit ou vide ou connexe. La feuille L, de F qui contient
le point = de X est 'ensemble de points de X qu’on peut atteindre depuis =
par un chemin continu inclus dans un nombre fini de plaques. Les feuilles sont
naturellement des variétés connexes sans bord de dimension n qui forment une
partition de X . La réunion, qu’on suppose disjointe, des ensembles ¢, YTy {0}) est
notée 7T et appelée systéme de transversales. C'est un espace localement compact,
en particulier un espace de Baire. Notons que lorsque les espaces T} sont des ouverts
de R?, on retrouve la définition classique d’un feuilletage (transversalement de
classe CV et tangentiellement de classe C?) de dimension n et codimension ¢. Une
lamination est minimale si toutes ses feuilles sont denses.

Pour plus de détails, le lecteur pourra consulter le livre [5]. 1l y trouvera en
particulier la définition de la notion d’heolonomie.

On fixera une métrique le long des feuilles de classe C?, c’est & dire dépendant
continuement au sens de la topologie C? de la variable transverse. Les feuilles
sont alors des variétés riemmaniennes complétes sans bord & géométrie bornée :
leurs rayons d’injectivité sont uniformément minorés, leurs courbures sectionnelles
uniformément majorées. On note alors dr la distance induite sur les feuilles et si
r est un réel positif, on note By (x,r) la boule fermée de centre z de rayon r de la
feuille L.

Deux variétés riemanniennes sont dites uniformément-équivalentes, qu’on abré-
gera par : U-équivalentes, si elles sont difféomorphes via un difféomorphisme f
tel que f et f~! soient lipschitziens. La compacité de Pespace X fait qu’a U-
équivalence pres, le type des feuilles est indépendant de la métrique dyx choisie.
Pour cette raison, les variétés et surfaces que nous considérerons le seront toujours
a U-équivalence pres.

1.2. Dynamique topologique

Pour une introduction & la théorie des espaces de Baire et a ses liens avec
la dynamique topologique, on peut consulter le livre de A. S. Kechris [16]. Nous
rappelons juste quelques faits et définitions classiques.

On consideére un espace de Baire F (typiquement un espace métrique locale-
ment compact). Une partie de E est dite résiduelle si elle contient une intersec-
tion dénombrable d’ouverts denses. Elle est dite maigre si son compléementaire est
résiduel. Les ensembles de Baire sont les éléments de la o-algébre engendrée par
les parties ouvertes et maigres. Un ensemble de Baire B de I est non maigre si et
seulement si il existe un ouvert non vide U de E tel que BN U soit résiduel dans
espace de Baire U. De plus, si (X, F) est une lamination minimale, 7 un systéme
de transversales et si I? est un ensemble de Baire non maigre de 7, alors le saturé
de R pour F est résiduel dans X [6]. Inversement la trace sur 7 d’un ensemble
résiduel de X saturé par F est résiduelle dans 7. Enfin, on utilisera les 2 lemmes
suivants.
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Lemme 1.1 ([8] et [14]). La réunion Go des feuilles sans holonomie d’une lami-
nation (X, F) est un ensemble résiduel dans X.

Lemme 1.2 ([2]). Si (X, F) est une lamination minimale et U un owvert non
vide de T alors il existe un réel R tel que, pour tout x de X, Br(x, R)yNU est non
vide.

2. Des laminations minimales résiduellement a 2 bouts

Comme on 'a dit, les premiers exemples de laminations minimales résiduel-
lement a 2 bouts sont les laminations minimales de dimension 1 : loufes leurs
feuilles ont 2 bouts. Ces laminations ne permettent pas de comprendre comment
apparaissent des feuilles a 1 bout dans 'énoncé du théoreme 1. Dans cette section,
on donne des exemples de feuilletages et de laminations minimaux résiduellement
a 2 bouts mais qui ont des feuilles ayant 1 seul bout. Les constructions de cette
section sont illustrées par la figure 1.

Le premier exemple se trouve dans le livre de C. Godbillon ([13] p 181). Le tore
de Klein K? = P2#P? admet un revétement galoisien de groupe Z/27Z x Z/2Z par
le cylindre ST xR. On considére d’autre part 2 symétries so et 1 du cercle ST telles
que 7, = 81 © g est une rotation irrationnelle de S'. Elles déterminent une action
de Z /27 x Z/2Z par isométries sur S' et donc un feuilletage suspension Fy sur un
fibré en cercles au dessus de K”. La rotation r,, étant minimale, le feuilletage F,
est minimal. Les feuilles de Fy sont, a U-équivalence pres, des cylindres R x S!
obtenus comme revétement galoisien de groupe Z/27Z  Z/27Z de K2, & I'exception
de 4 fenilles, correspondant aux points fixes des symétries sy et sy, qui sont (&
U-équivalence pres) des demi-cylindres non orientables P?//(RT x S') obtenus
comme revétement non galoisien de K? (voir figure 1). Le feuilletage obtenu est
done résiduellement a 2 bouts mais 4 feuilles ont 1 bout.

De méme, la sormme connexe K?#K? admet un revétement galoisien de groupe
Z/27 x Z/27. par V'échelle de Jacob & 2 bouts Jo. La méme construction que
précédemment, donne un feuilletage minimal sur un fibré en cercles au dessus
de K?#K?. Toutes ses feuilles sont des échelles de Jacob & 2 bouts J5 sauf 4 qui
sont des échelles de Jacob & 1 bout non orientables K*#.J; (voir figure 1).

Toujours par la méme construction, en partant d'un revétement galoisien de
T?#T? par I’échelle de Jacob & 2 bouts J2, de groupe Z/27Z « Z/2Z, on obtient un
feuilletage minimal dont toutes les feuilles sont des échelles de Jacob a 2 bouts Jj
saufl 4 feuilles sont des échelles de Jacob a 1 bout Jy (voir figure 1).

Knfin, en substituant dans les exemples précédents, & un voisinage tubulaire
d’un cercle transverse feuilleté trivialement par disques, un produit (T?)® x St
(resp. (P?)® x 8') feuilleté horizontalement, ot (T?)* (resp. (P?)*) désigne un tore
(resp. un plan projectif) privé d'un disque, on obtient un feuilletage minimal dont
les fenilles résiduelles sont, toujours & U-équivalence pres, des échelles de Jacob
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P2t x sh)

Fig. 1. Feuilles résiduelles et spéciales

a 2 bouts Jy (resp. des échelles de Jacob infiniment non orientable Ji) et ayant 4
feuilles U-équivalentes & I’échelle de Jacob & 1 bout non orientable P?4£.J; (resp.
I’6chelle de Jacob infiniment non orientable & 1 bout J{). Les surfaces J5, P24/ .J;
et J{ ont été représentées sur la figure 2 ol les plans projectifs ajoutés par sommes
connexes & S' x R et P?#(RT x S!) pour obtenir J§ et .J| sont isométriques
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Fig. 2. Les surfaces J5, Ji et P?#.J;

entre eux. On prendra garde au fait que les surfaces P2#£J; et K?#£.J; ne sont pas
homéomorphes.

Les différents feuilletages précédemment construits n’ont que 4 feuilles & 1 bout.
L’exemple suivant est une lamination minimale résiduellement & 2 bouts ayant

une infinité non dénombrable de feuilles & 1 bout. Son espace transverse est de
dimension infinie.

Exemple 2.1. 1l existe une lamination minimale résiduellement & 2 bouts sur un
espace compact ayant une infinité non dénombrable de feuilles & 1 bout.

Construction

L’idée est de construire une action minimale de Z/2Z « Z/27Z sur 1'espace com-
e s N , T ,
pact (R/Z)" ayant une infinité d’orbites & 1 bout.

Une simple application du théoreme de Baire montre qu’il existe un élément o
74 N 3 5
dans (R/Z)" tel que la translation R, par o = (ag, @1,

,,,,, .y, ... ) dans le groupe

(R/Z)" soit un homéomorphisme minimal de (R/Z)

symétries :

-

iy iy«

(R/Z)"
)
(R/Z)"

\
i
v

N
- (R/2)
=3 <_:C07 B
- (R/Z)"
— (-—;ro + g, —1 + oy

. Considérons alors les deux

o o =i > Oy o v )
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Les symétries Sy et Sy engendrent un groupe G d’homéomorphismes de (R/ Z)N
isomorphe & Z/27Z x Z/2Z et dont 'action est minimale car il contient R, ==
51 08y, De maniére analogue aux exemples précédents, les orbites de G ont ré-
siduellement 2 bouts et il v des orbites a 1 bout correspondant aux points fixes
de Sp et Sy. L’ensemble non dénombrable {0, 1} C (R/ Z)" est formé de points
fixes de Sy situés sur des orbites disjointes de G. L’action de G a donc un nombre
non dénombrable d’orbites a 1 bout. La suspension de cette action an dessus de
la bouteille de Klein fournit Pexemple cherché. O

3. Preuves des théorémes 1, 2 et 3
Cette section qui constitue le coeur de cet article est consacrée a la preuve du
théoreme 1 et & celles de ses corollaires (théorémes 2 et 3).

3.1. Preuve du théoréme 1

Le point de départ de la preuve est le lemme suivant qui est 'analogue du
“Lemme de 'hypersurface” dE. Ghys dans le cadre mesurable [11]. Il montre que
si un ensemble résiduel de feuilles ont 2 bouts (ou plus) alors il existe une hypersur-
face dans une feuille sans holonomie qui, relevée aux feuilles voisines, disconnecte
“presque toujours” la feuille qui la contient en deux composantes connexes non
bornée. Ce lemme est implicite dans le travail de J. Cantwell et L. Conlon [6]. On
peut également retranscrire sa preuve de celle d'E. Ghys dans le cas mesurable
[11]. Nous en donnons ici une preuve directe.

Lemme 3.1. 5 (X, F) est une lamination minimale résiduellement & 2 bouts et T
est un systeme de transversales alors il existe une hypersurface connexe compacte
pointée (3, x), de dimension 1 de moins que les feuilles, et un plongement & : Ux Y
ot U est un ouwvert non wide de T tel que :
----- pour tout point x de U, ¥, = ®({z} x X) est une hypersurface de L, ;
pour tout point x de U, ®(x,x) = a;
----- pour tout point x dans un ensemble G' résiduel dans U et saturé pour F
dans U, Ly a 2 bouts et ¥, disconnecte L, en 2 composantes conneres non
hornées.

Notez que quand on dit “saturé pour F dans U”, on entend : “saturé pour la
relation d’équivalence induite par F sur U”.

Preuve. Soit done (X, F) une lamination minimale résiduellement & 2 bouts sur
un espace compact et 7 un systéme de transversales.

Soit G ensemble des points z de 7 tels que L, a 2 bouts et est sans holonomie.
D’apres hypothese et le lemme 1.1, G est résiduel dans 7. Pour tout point x de
G, il existe un entier M, tel que L, — By(x, M) a 2 composantes connexes non
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bornées. Autrement dit :

G

U ¢u

MeN

oll Gy est Uensemble (de Baire) des points = de G tels que L, — By{z, M) a 2
composantes connexes non bornées. L’ensemble ¢ étant résiduel dans 7, il existe
un entier M et un ouvert non vide U de 7 tel que Pensemble Gy NU est résiduel
dans U (cf. section 1.2).

On fixe alors * un point de Gy NU et D, un domaine compact de L, contenant
Byr(x, M) dans son intérieur et dont le bord a 2 composantes connexes Y1 et Y.
Un tel domaine existe car L, n’a que 2 bouts. )’apres le théoréme de stabilité de
Reeb (voir par exemple [5]), quitte & réduire 'ouvert U, il existe un plongement
b Ux D, dans X, tel que, pour tout x € U, &, = &/{x} x D, est un plongement
de D, dans L, dépendant continuement de z pour la topologie C2. Quitte & réduire
& nouveau 'ouvert U/, on peut de plus supposer que, pour tout z de U, D, =
d({x} x D,) contient By(x, M) dans son intérieur. Soit alors Y. une hypersurface
connexe de [),, passant par % et cobordante a >, et notons, si z € U, ¥, =
$({z} x ¥). Supposons que z soit un point de 'ensemble Gy; NI/ résiduel dans U,
Le complémentaire de By (z, M) dans L, a 2 composantes connexes non bornées.
Il en est de méme pour L, — D,. Par suite, toujours sous hypothése x € Gy N
U, %), disconnecte L, en 2 composantes connexes non bornées. Notre lemme est
démontré a ceci pres que l'ensemble Gy N U n'est pas nécessairement saturé.
Remarquons alors que 'ensemble des points y de Gy N U qui ne vérifient pas le
point précédent est maigre dans 7. Il en est de méme de son saturé par F dans U.
Le complémentaire noté 7 de cet ensemble dans Gy N U satislait les propriétés
demandées. Ul

Nous passons maintenant a la preuve du théoréme 1 proprement dite.

On part des conclusions du lemme 3.1 dont on reprend les notations : pour tout
point = de G, L, a 2 bouts et X, disconnecte L, en 2 composantes connexes non
bornées.

Pour toute feuille L de F, soit @y, la trace de $(U x X} sur L. Clest la réunion
dénombrable des hypersurfaces Y., pour x parcourant L N U. Pour simplifier; si
L = L,, on note &, == $;_. Notons de plus R un réel associé par le lemame 1.2 &
Fouvert U : tout point de X est & dp-distance an plus Rde U N L.

Fixons maintenant une feuille I, quelconque et considérons une composante
connexe C'de L —®;,. A partir d’ici, la preuve se décompose en 2 parties : décrire
la topologie de C, puis, en “recollant les morceaux”, en déduire la topologie de L.

La topologie de C

Une hypersurface 3, de ®; incluse dans C vérifie un des 2 faits suivants : c’est
une composante connexe du bord du domaine C ou elle est incluse dans Int(C) (la
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topologie considérée ici est celle de L). Commencons par montrer que ce dernier
cas ne se présente jamais.

Fig. 3. £;, C Int{C)

Supposons done que Y, , une des hypersurfaces de @, soit incluse dans Int(C)
(voir la figure 3). Il existe alors une courbe s : [0,1] — C telle que 51(]0,1]) C C
51(0) = s1(1) = @1 et qui forme un lacet dual & ¥,, dans C. D’autre part, si C
ne rencontre U qu’au point z1, on a : & = X, et donc C est la feuille L. Ceci
est en contradiction avec le fait que [ est dense et donc intersecte une infinité
de fois U. 1l existe donc un point zo de U distinct de zy tel que 3, C . Soit

alors 85 : [0,1] — C une courbe sy de L telle que s5(]0, 1

) C C, 52{0) = z; et
aux feuilles voisines, on obtient une contradiction avec le fait que, si z est dans G,
¥ disconnecte L,. On peut donc trouver z} un point de G/, €’ une composante
connexe de L, — @, et 2 courbes s{ : [0,1] — C7 et s : [0,1] — C7 telles que
$1(]0,1]) € €7, $45(]0,1]) € 7, $4(0) = s5(0) = &, $1(1) = a4, $5(1) = @) et i,
xh et zh sont trois points distincts de €/ N U. Le bord de €’ a don¢ au moins
3 composantes connexes. Comme zf, 24 et x5 sont trois points distincts de G,
les hypersurfaces ¥.,;, ¥4, et 3, disconnectent chacune L’ en deux composantes
connexes non bornées. Remarquons qu’alors L' — C7 a au moins trois composantes
connexes non bornées. On obtient une contradiction avec le fait que Ly n'a que
2 bouts.

Un raisonnement en tout point analogue montre que le bord de € est constitué
d’au plus 2 hypersurfaces ¥,. Sl en a au moins 3, on peut trouver un Y (réunion
de 3 segments issus du méme point) dans C qui les relie. En le relevant dans une
feuille L, voisine avec z un point de G, on trouve une composante connexe C’ de
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Ly — &, dont le bord a, au moins, 3 composantes connexes. Ceci a été exclu. Le
hord de C' a done une ou deux composantes connexes compactes qui le séparent
chacune d’autres composantes connexes de L — &

Rapellons que tout point de I, est & dp-distance au plus R de U. D’apres ce
qui précede, C rencontre IV en au plus 2 points. Les dr-boules centrées en ces 2
points recouvrent €. Il s’en suit que que le diametre de C est majoré par 4R et
que C est compact.

Montrons que si ¢C a 2 composantes connexes Y, et .., alors C n’a pas
d’holonomie. S’il en a, considérons une courbe fermée s : [0, 1] — C telle que s(1)
s(0) € xy, s(1/2) = x4 et qui a de '’holonomie. Relevée dans un voisinage, la courbe
s donne, dans une feuille in avec x) un point de ¢/, une courbe s’ : [0,1] — L-'l’i
qui n'est plus fermée, qui est incluse dans 'adhérence d'une composante connexe
¢’ de Lgi — @4 et qui connecte 3 composantes connexes distinctes YNgr gy et
Yy de JC’. On obtient la méme contradiction que précédement (voir figure 4).

Fig. 4. Pourquoi €' n’a pas d’holonomie

De maniére analogue, si le bord de € est connexe, le domaine C est compact
et a de 'holonomie. Sinon, par stabilité de Reeb, on trouve un point 2’ de G’ tel
qu'une des composantes connexes de L, — 3,/ est homéomorphe & C et est donc
bornée. De plus, cette holonomie est isomorphe & Z/2Z car sinon on trouve une
courbe s de C qui se reléve au voisinage en une courbe s d'une feuille L, avec 2/
un point de &7, incluse dans 'adhérence dune composante connexe C’' de L —®,/
et qui connecte 3 composantes connexes distinctes de 9C’. On obtient & nouveau
la méme contradiction (voir figure 5).

Les conclusions en ce qui concerne la topologie de C sont donc les suivantes :
pour toute composante connexe C' de L —®p, dC a done une ou deux composantes
connexes. S’il en a deux, €' n’a pas d’holonomie. S’il n’en a quune, C a une
holenomie d’ordre 2. De plus € est compact et son diametre a été majoré par 4R,



856 F. Blanc CMH

La topologie de L

A partir de la description obtenue des composantes connexes ', on peut main-
tenant décrire la topologie de la feuille L.

La feuille L est une variété non compacte sans bord obtenue en recollant le long
de leurs bords des domaines compacts (les adhérences des composantes connexes
'} dont le bord a une ou deux composantes connexes. Il n'y a que 2 graphes infinis
dont tous les sommets sont de valence 1 ou 2 : les graphes de Cayley de N et Z.
De la méme maniere, il y a seulement deux possibilités pour L (voir figure 6) :

—le bord de tous les domaines C a deux composantes et L a 2 bouts ;

—un et un seul domaine a un bord connexe et L a 1 bout.

Dans le premier cas, L. — & n'a pas d’holonomie. &5 n’en a pas non plus.
Le groupe w1 (L) étant engendré par les groupes mi(L — &) et 7w (Pr), L na
pas d’holonomie. On peut, moyennant le choix d'un des bouts e de L, totalement
ordonner les hypersurfaces 2, de $y en posant ¥, < i, si et seulement si 3,/
sépare ¢ et ¥,. On obtient un ordre isomorphe a celui de Z. Cet ordre, une fois
choisie une origine, détermine une unique bijection croissante entre Z et &,

Dans le second cas, une et une seule composante connexe notée Cy de L — Py, a
un bord connexe. Cp a une holonomie isomorphe a Z/27Z. Les autres composantes
de L — & n'ont pas d’holonomie, donc en fait L — Cy n’a pas d’holonomie. On
peut, cette fois-ci canoniquement, totalement ordonner les hypersurfaces ¥, de &,
en posant @ ¥, < ¥, si et seulement si X2, est dans la composante connexe bornée
de I — 3./, Lordre obtenu est isomorphe & celui de N et détermine une unique
bijection croissante entre N et $y .

Le fait que tout point de L soit & dp-distance au plus R de &7 entraine que les
bijections définies entre ®; et Z ou N selon le cas induisent des quasi-isométries
entre L et Z ou N selon le cas. O
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La géométrie des feuilles est suggérée par la figure 6.

1 Yo X1 Py}

\ \ \ \
\ \ \ \
| | i |
/ [ t '
! ' ' /

Une feuille 8 2 bouts

Yo ¥y P

\ v \ \

& ) | | |
¥
0 l ! ' i

! / ! /

Une feuille & 1 bout

Fig. 6,

Le théoréeme 1 appelle quelques remarques.

Une variété de classe C? a géométrie bornée quasi-isométrique & Z ou N est
a croissance linéaire. Le théoréme 1 montre done que toutes les feuilles dune
lamination minimale résiduellement a 2 bouts sont a croissance linéaire. Il peut
donc étre vu comme un analogue topologique dun résultat de F. Paulin (18]
voir aussi [17]), démontré dans le cadre d’une relation d’équivalence munie d’une
mesure invariante (R, p) et dont les classes sont des graphes : si p-presque toutes
les classes d'une telle relation d’équivalence sont des graphes & 2 bouts, alors -
presque toutes ses classes sont a croissance linéaire.

Notons aussi le corollaire suivant.

Corollaire 3.1. 5i toutes les fewilles d’une lamination F minimale sur un espace
compact ont 2 bouts alors F est sans holonomie.

3.2. Feuilles générigues au sens d’une mesure, théoréme 2

A Paide d’un résultat d’I. Ghys ([11], Proposition Fondamentale), le théoréme
2 s’obtient comme un corollaire du théoréme 1.

Prewve du théoréme 2. Soit (X, F) une lamination minimale résiduellement a 2
bouts sur un espace compact, 4 une mesure harmonique sur F et 7 un systeme de
transversales. La mesure p permet de définir naturellement une classe de mesure
(] quasi-invariante par holonomie sur 7 (voir [11]).

Reprenons les notations du lemme 3.1 : on a une variété compacte connexe
pointée de dimension un de moins que les feuilles (22, %) et un plongement & : U x 3
ol U est un ouvert de 7 tel que ®(ax, %) = x et X, = ${{z} x 3) disconnecte
presque-siirement au sens de Baire la feuille L. Le théoreme 1 (en fait, sa preuve)
montre que pour toute feuille I de F, I, a 1 on 2 bouts et L a 1 bout si et
seulement si L contient un point @y de U, qui est alors unique, tel que 3, borde




&858 F. Blanc CMH

une composante connexe bornée Cy de L — $p. La réunion des tels points zp est
un borélien de 7 qui intersecte de facon compacte ou vide toute feuille de F.
La proposition fondamentale d’E. Ghys nous dit qu’il est de [¢]-mesure nulle. La
description locale des mesures harmoniques, due & L. Garnett [10], montre que le
saturé de ce borélien par F qui est 'ensemble des feuilles & 1 bout de F, est de
p~-mesure nulle. Par suite, p-presque toutes les feuilles de F ont 2 bouts. O

3.3. Le cas des laminations par surfaces, théoréme 3

On considere ici une lamination minimale résiduellement a 2 bouts par surfaces
(X, F). Rappelons que, d’aprés [6], la réunion des feuilles qui sont sans holonomie
et homéomorphes a des cylindres, des échelles de Jacob a 2 bouts ou des échelles
de Jacob & 2 bouts infiniment non orientables est un ensemble résiduel de X. Ces
feuilles seront appelées les feuilles résiduelles de F.

Preuve du théoréme 3. On reprend les notations de la preuve du théoreme 1 et
du lemme 3.1 : on a, dans chaque feuille L, une réunion $1 d’hypersurfaces (ici
des cercles). Le diametre des composantes connexes de I — @, est uniformément
majoré. Soit C' une de ces composantes. Son bord est constitué de 1 ou 2 cercles.
S'il est constitué d’un seul cercle, €' a une holonomie isomorphe & Z/2Z. Sl est
constitué de 2 cercles, C est sans holonomie.

Commencons par le cas le plus simple : celui ol les feuilles résiduelles sont
homéomorphes a des cylindres. Considérons une feuille I ayant 2 bouts. Elle est
sans holonomie {Théoréme 1) et est donc homéomorphe & un cylindre. En effet,
une éventuelle anse (ou un plan projectif) dans cette feuille se releverait dans un
voisinage et apparaitrait par minimalité dans toute feuille de F. La feuille L est
quasi-isométrique & Z, homéomorphe & St x R et & géométrie bornée. Elle donc
U-équivalente au cylindre S x R muni de sa métrique standard. Soit maintenant 1/
une feuille ayant 1 bout. Elle est obtenue en recollant le long d™un cercle une com-
posante bornée Cy avec un domaine qui par le méme argument que pour L est U-
équivalent & RT x S'. La compacité de Cj fait qu’il ne reste plus qu’s déterminer sa
topologie. Son holonomie étant d’ordre 2, (5 se releve dans les feuilles résiduelles,
qui sont des cylindres, en des domaines Cy qui sont des revétements d’indice 2 de
Cp et dont le bord est constitué de 2 cercles (voir figure 5). Ces domaines sont donc
homéomorphes & [0, 1] x S'. La considération de la caractéristique d’Euler montre
que Cy est un ruban de Moébius. La feuille L’ est U-équivalente & P?#(Rt x §1).

Passons maintenant au cas ou les feuilles résiduelles sont homéomorphes &
I'échelle de Jacob & 2 bouts. Considérons une anse (homéomorphe & un tore privé
d’'un disque noté TQ') dans une telle feuille. Par stabilité de Reeb, cette anse
admet dans X un voisinage homéomorphe & U x T2* feuilleté trivialement ot U
est un ouvert de 7. Le lemme 1.2 donne un majorant uniforme a la dg-distance
entre tout point de X et ce voisinage. Cette remarque associée au fait que les
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feuilles & 2 bouts sont a géométrie bornée et quasi-isométriques & Z montre que
toutes les feuilles a 2 bouts sont U-équivalentes a .Jo. Considérons maintenant une
feuille & 1 bout L'. Elle est obtenue en recollant une surface compacte Cp dont
le bord est un cercle et une surface non compacte qui, pour les mémes raisons
que précédemment, est U-équivalente & J; privée d’un disque. La classification des
surfaces non nécessairement orientables (voir par exemple [1]) montre que, selon
la topologie de Cy, I/ est U-équivalente & Jy, P?#.J; ou K?#.J;. Dans le cas ol
les feuilles résiduelles sont homéomorphes & des échelles de Jacob non orientables
a 2 bouts, un raisonnement tres analogue montre que les feuilles & 2 bouts sont
U-équivalentes & .J] et les feuilles & 1 bout U-équivalentes & .J7. O

Il est sans doute utile de rassembler les résultats de cette section dans un
tableau. Il décrit suivant le type des feuilles résiduelles d’une lamination minimale
résiduellemnent a 2 bouts, le type des feuilles spéciales possibles. Notons que nous
avons montré dans la section 2 que tous ces types étaient effectivernent réalisés.

Feuilles résiduelles S'xR

Feuilles spéciales | P?44(RT x S!)

Notons pour conclure cette section que dans les laminations de dimension 3
ou plus, une telle classification est impossible. E. Ghys a par exemple construit
une lamination minimale dont toutes les feuilles ont 2 bouts et telle que 2 feuilles
quelconques distinctes ne sont pas homéomorphes [11].

4. Laminations & 2 bouts et suspensions, théoreme 4

Au vu du théoreme 1, il est naturel d’essayer de comparer les laminations
minimales résiduellement & 2 bouts, et les laminations minimales de dimension 1,
ces dernieres vérifiant trivialement les conclusions du théoreme 1 : leurs feuilles sont
isométriques a R et n’ont pas d’holonomie. Le résultat modele dans cette direction
est di a E. Ghys ([11] Théoreme C p. 390) : si (X, F) est une lamination munie
d’une mesure transverse invariante dont presque toutes les feuilles ont 2 bouts alors
(X, F) est une extension compacte mesurable d’une lamination de dimension 1.

Pour des raisons techniques, on se restreint aux laminations minimales trans-
versalement Cantor, ¢’est a dire celles dont les transversales T; sont homéomorphes
a ’espace de Cantor K. La lamination possede alors de nombreuses transversales
a la fois ouvertes et fermées. Rappelons que dans K tout point a une base de
voisinages homéomorphes a K.

En s’ingpirant du travail dE. Ghys [11], on donne la définition suivante d’exten-
ston compacte de lamination.
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Definition 4.1. La lamination (X, F) est une extension compacte de la lamina-
tion (Y, @) s'il existe une application continue 7 : X — Y, surjective, & fibres
compactes, telle que, pour toute feuille L de G, #~'(L) est une feuille de F sur
laquelle 7 induit une quasi-isométrie avec L.

Notre but est de montrer qu'une lamination minimale transversalement Cantor
résiduellement & 2 bouts est une extension compacte d'une suspension dune action
de Z/2Z+7Z/27Z. Avant d’aborder ce cas, rappelons celui plus classique de Z. Soit ¢
un homéomorphisme minimal de K. Il induit une action de Z minimale sur K. On
considere alors K x [0, 1] muni de la lamination horizontale, et on identifie tout
point (z,1) avec (¢(z),0). L'espace Y obtenu est séparé et muni naturellement
d'une lamination minimale G de dimension 1 orientable, dont les feuilles peuvent
etre vues comme des segments recollés a leurs extrémités. La lamination G est la
suspension de Uaction de Z donnée par ¢ (voir figure 7).

Etudions maintenant le cas de Z )27 « ZJ2Z. Soit ¢g et ¢ deux homéomor-
phismes sans point fixe de K tels que ¢3 = #7 = Idx engendrant une action
minimale de Z/2Z « Z/2Z sur K. L’espace K x [0,1] est muni de la lamination
horizontale, et on identifie tout point (z, 0) avec (¢o(x),0) et tout point (z, 1) avec
(¢1(x),1). L’espace Y’ obtenu est séparé, compact et muni naturellement d’une
lamination minimale G’ de classe C°, de dimension 1, en général non orientable,
dont on peut voir les feuilles comme des segments recollés a leurs extrémités. [es-
pace (Y, G) est la suspension de Uaction de 7./ 27+ Z /27 associée aux générateurs
¢o et ¢y (voir figure 8).

@)

(é(x), 0)

%
Fig. 7. Une suspension de Z

Y
@ $1(y)

dolx)

K

Fig. 8. Une suspension de Z/27 + 7./27

En fait, le cas de Z se rameéne a celui de Z/2Z » Z/27Z. Fn effet, soit ¢ un
homéomorphisme minimal de K, et K’ I'union disjointe de 2 copies de K notées
respectivement Ko et K. L’identité et 'homéomorphisme ¢ de K déterminent 2
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involutions de K’ envoyant Ky et K I'un sur autre. La suspension de action de
ZJ2Z x 7] 27 associée est homéomorphe A la suspension de ¢.

Les laminations construites précédemment sont sans holonomie et toutes leurs
feuilles ont 2 bouts, correspondant respectivement aux 2 bouts de Z et de Z/2Z *
Z/2Z. Elles ne peuvent donc rendre compte du comportement dynamigue des lami-
nations résiduellement & 2 bouts dont certaines feuilles ont 1 bout. Pour cette rai-
son, dans la construction de Y, on s’intéresse aussi au cas ol les homéomorphismes
@0 et @1 ont un ensemble non vide de points fixes mais dont Vaction de Z/2Z+Z /27
associée est toujours minimale. 11 n'est pas difficile de voir que cette hypothese en-
traine que Pensemble des points fixes de ¢g et ¢y est maigre. L’espace Y/ obtenu
par la méme construction que précédemment est séparé et muni d’une lamination
G’ singuliére de dimension 1 ; les points singuliers de la lamination correspondant
aux points fixes de ¢ et ¢. Le type des singularités est le suivant. Certains ouverts
de carte sont homéomorphes & K x] — 1,+1] muni de la lamination horizontale,
ol 'on identifie les points (z, —a) et (¢(z), o) avec ¢ un homéomorphisme d’ordre
2 ayant un ensemble maigre non vide de points fixes. Nous dirons que (Y, G’)
est une suspension singuliére de Z /27 x Z/2Z (voir la figure 9). La géométrie des
feuilles régulieres et singuliéres est sugérée par la figure 9. Elles vérifient les conelu-
sions du théoreme 1 : elles sont quasi-isométriques a Z ou N. Chaque feuille & 1
bout, homéomorphe & R, a une holonomie isomorphe & Z/27Z due 4 la singularité
associée.

z = Polx) y = d1(y)

2

7%
1

[uE]
N

K
-

Fig. 9. Une suspension singuliere de Z./27 « Z./27

On connait des actions minimales de Z sur K : les modifications de Denjoy
des rotations irrationnelles du cercle. Dans la section 2, on a défini une action de
Z/27+ Z)2Z sur S engendrée par 2 symétries sy et s;. La modification de Denjoy
appliquée & cette action fournit une action minimale de Z/2Z «Z /27 sur K et donc
une suspension de cette action telle que définie précédemment. Plus précisément,
la modification de Denjoy consiste & “ouvrit” des orbites de 'action. Si on ouvre
les orbites des points fixes de s et s1, on obtient une action sans point fixe et
donc une suspension réguliere. Si on ouvre une orbite sans point fixe, on obtient
une action avec points fixes et donc une suspension singuliere.

On peut maintenant prouver le théoreme 4.

Preuwve du théoréme 4. Commencons par la partie facile du théoreme. Si la la-
mination minimale F est une extension compacte de la suspension dune action
minimale de Z/2Z « Z,/2Z, les feuilles de F sont quasi-isométriques & Z ou N. Les



862 F. Blanc CMH

feuilles quasi-isométriques a N correspondent aux points fixes de l'action. Elles
forment un ensemble maigre et les feuilles quasi-isométriques & Z forment un en-
semble résiduel. La lamination est résiduellement a 2 bouts.

Réciproquement, supposons que F soit une lamination minimale résiduelle-
ment & 2 bouts sur un espace compact et reprenons les conclusions et notations du
lemme 3.1, & ceci preés qu’on choisit un ouvert transverse qui est un Cantor. On note
donc ce dernier K et non plus /. Le plongement ® se prolonge en un plongement
¥ K x[0,1]x 2 — X qui coincide avec & sur K x {0} x X et envoie {x} x [0, 1] x %
dans L. Si L est une feuille, on note Wy, la réunion des domaines ¥({x} x [0, 1] x >J)
pour z parcourant LN K. Dans X, considérons la relation d'équivalence qui, d’une
part, identifie chacun des ensembles W({z} x {¢t} x ) oli ¢ €]0,1] & un point et
qui, d’autre part, dans chaque feuille L. de F, identifie chacune des adhérences
des composantes connexes de L — ¥y, & un point. L’espace quotient obtenu est
homéomorphe et identifié & K x [0, 1]/ ~ ol les classes de la relation d’équivalence
~ sont des paires de points ou des singletons de K x {0, 1} selon que le bord de la
composante connexe de L — ¥ associée a deux ou une seile composante connexe.
Soit alors ¢ I'involution telle que, pour tout z € K x {0,1}, {z, ¢(2)} est la classe
de = pour ~. [’application ¢ est un homéomorphisme. L’ensemble des points =
tels que = = @¢(x) est maigre car son saturé est Pensemble des feuilles & 1 bout
dé: F,

Nous ne somimes pas loin de la conclusion : espace K x [0,1]/ ~ est muni
naturellement de la lamination G de dimension 1, éventuellement singuliere, induite
par la lamination horizontale. Les singularités correspondent aux points fixes de
¢. On a une application quotient = : X — K x [0,1]/ ~ & fibres compactes, qui
envoie la lamination F sur la lamination G et qui, le diametre les écrasements étant
uniformément borné d’apres le lemme 1.2, est une quasi-isométrie en restriction
aux feuilles. De plus, F étant minimale, G est minimale. Il ne reste donc plus
qu’a montrer que U'on peut se ramener au cas dune suspension d’une action de
Z[2Z « 2] 27.

Dans le cas ot ¢ envoie K x {0} sur K x {1}, on a terminé. Kn effet, ¢ définit,
via I'identité naturelle entre K x {0} et K x {1}, un homéomorphisme toujours
noté ¢ de K dont G est la suspension. Comime G est minimale, ¢ est un homéomor-
phisme minimal et F est une extension compacte de la suspension d’une action
minimale de Z. On se raméne au cas de Z/2Z* Z /27 par la construction donnée en
introduction. Dans ce cas, I'action n’a pas de point fixe et la lamination G obtenue
est réguliere.

Dans le cas contraire, soit 2 un point de K tel que ¢({z,1)) est un point de
K x {1} différent de (x, 1). L’homéomorphisme ¢ envoie alors un voisinage Ky x {1}
de (z, 1) sur un voisinage K; x {1} de ¢((z, 1)) ott Ky et K, sont deux ensembles
de Cantor disjoints de K. On considere alors K’ Ko U Ky et on reprend la
construction précédente en remplacant K par K’ et en “primant” les notations.
Lapplication ¢’ obtenue ainsi coincide avee ¢ sur K’ x {1}. L’homéomorphisme ¢’
envoie done K’ x {1} sur lui méme et, par suite K’ x {0} sur lui méme. On pose :
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b0 = Py {0} ©t Py = 95§(v'><{ 1} Les applications ¢g et ¢ sont des involutions
de K’. La lamination G’ est la suspension de Paction de Z/2Z x Z/2Z engendrée
par ¢g et ¢y. Comme dans le cas précédent, F est une extension compacte par
Papplication %" de la suspension d’une action minimale de Z/2Z x Z/2Z. Dans ce
cas, la lamination obtenue est singuliére si et seulement si F a des feuilles ayant 1
bout. 1

Pour conclure, considérons une lamination minimale (X, F) transversalement
Cantor dont toutes les feuilles ont 2 bouts. Le cas ot (X, F) est une extension
compacte d'une action minimale de Z sur K peut étre caractérisé comme suit.
Reprenons les notations de la preuve du théoreme 4. Soit x un point de K, le
plongement ¥ détermine un choix parmis les 2 bouts de L,. On note &, (L,)
le bout qui est séparé de W({x}x]0,1[x¥) par ¥({z} x {1} x ¥). Les méthodes
utilisées dans cette section montrent sans difficulté que la lamination (X, F) est
une extension compacte d’une action minimale de Z si et seulement si il existe un
tel plongement ¥ tel que si = et y sont deux points quelconques de K tels que
y € Ly alors & (Ly) = &y (L)
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