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Laminations minimales résiduellement à 2 bouts

Kmmanuel Blanc

Résumé. On décrit toutes les feuilles des laminations minimales dont un ensemble résiduel de
feuilles ont 2 bouts.
Abstract. We give a complete description of all the leaves of a minimal foliated space with a

residual set of 2-ended leaves.
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Keywords. Lamination, bout, ensemble résiduel, propriété générique.

Introduction et énoncé des résultats

Une lamination est essentiellement une partition d'un espace métrique compact
en feuilles qui sont des variétés en général non compactes de dimension fixée (une
définition précise sera donnée en section 1). Une lamination est minimale si toutes
ses feuilles sont denses. Les ensembles minimaux des variétés feuilletées compactes
sont des exemples naturels de laminations minimales. Le lecteur trouvera d'autres
exemples dans [12] et [5|. Un théorème de J. Cantwell et L. Corilon [6], inspiré
par un travail antérieur d'É. Gliys [11], montre que les laminations minimales se

séparent en 4 classes selon qu'un ensemble résiduel de leurs feuilles ont 0, 1, 2

ou un Cantor de bouts. Rappelons qu'il s'agit là précisément des 1 espaces de

bouts possibles pour un groupe de type fini, résultat dû à H. Hopf [15]. Parmis ces

groupes, ceux ayant 2 bouts sont très particuliers : il s'agit des extensions finies
de Z et Z/2Z*Z/2Z ([15], [9], voir aussi [19]). De manière analogue, É. Ghys
a décrit en terme d'extensions compactes de flots mesurés, les laminations dont
presque-toutes les feuilles relativement à une mesure transverse invariante ont 2

bouts [11]. Dans cet esprit, ce travail montre que les laminations minimales
résiduellement à 2 bouts, œ celles dont un ensemble résiduel de feuilles ont 2 bouts.
sont très particulières.

Les premiers exemples de laminations minimales résiduellement à 2 bouts sont
donnés par les orbites des flots minimaux sur les variétés compactes et les ensembles

minimaux non triviaux des flots sur les variétés compactes. Dans ces exemples,
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toutes les fouilles, homéomorphos à la droite réelle, ont 2 bouts. Il se tarouve qu'il
existe des exemples de laminât ions et de feuilletages minimaux résiduellemont à 2

bouts mais dont certaines feuilles ont 1 seul bout (voir section 2). L'objet central de

cet article est le résultat suivant qui montre que ce phénomène est le seul possible.

Théorème 1, Soit (X,J-) une lamination minimale résiduellement à 2 bouts sur
un espace X compact. On a les faits suivants

- toutes les feuilles de T ont 1 ou 2 bouts ;

- les feuilles à 2 bouts sont les feuilles sans holonorme. Elles sont quasi-isorné-
triques à Z :

les feuilles à 1 bout sont les feuilles avec holonorme. Elles sont quasi-isométriques

à N. Leur holonomie est à support compact et isomorphe à Z/2Z.

D'après H. Ghys [11], si (X.J-) est une lamination, ses feuilles génériques
relativement à une mesure tranverse invariante ou plus généralement une mesure
harmonique (voir |10|) ont 0, f, 2 ou un Cantor de bouts. Le résultat suivant
donne un lien entre les travaux d'É. Ghys et ceux de J. Cantwell L. Conlon [6],

Théorème 2. Si (X,J-) est une lamination minimale résiduellem&nt à 2 bouts et
si (à est une mesure harmonique sur \X.J~) alors ^-presque toute feuille de J- a 2

bouts.

Un des intérêts de ce résultat tient au fait que l'auteur a construit un exemple
de lamination minimale munie d'une mesure transverse invariante /.», dont
l'ensemble des feuilles à 1 bout est résiduel et l'ensemble des feuilles à 2 bouts est

/A-générique [1].
A l'aide de la classification des surlaces, le théorème 1 entraine le résultat

suivant qui donne la liste, finie, des surfaces pouvant être uniformément équivalentes

(voir section 1 pour une définition) à une feuille d'une lamination minimale
résiduellement à 2 bouts Leb diflérentes surfaces apparaissant dans l'énoncé sont
décrites par les figures 1 et 2. De plus, les exemples donnés dans la section 2

montrent que toutes ces surfaces peuvent effectivement être réalisées (à uniforme

équivalence près) comme feuilles de laminations minimales résiduellement à 2

bouts.

Théorème 3. Une lamination minimale, par surfaces, résiduellement à 2 bouts,

sur un espace compact X, a toutes ses feuilles uniformément équivalentes à l'une
des surfaces suivantes :

le cylindre :

l'échelle de Jacob à 1 ou 2 bouts J\ ou J% ;

l'échelle de Jacob infiniment non orientable à 1 ou 2 bouts J[ ou J!2 ;

la somme connexe P2 # (M~ x S1 ;

la somme connexe K2 jf J\\
- la somme conn ere P- ff- ./[.

Dans [4], l'auteur montre que si une lamination minimale a une feuille quasi-
isométrique à N ou Z alors cette lamination est résiduellement à 2 bouts. Le théo-
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rème 3 donne ainsi la liste (à uiiiforme-équrvaleiice près) dos surfaces quasi-isométriques

à N ou Z et feuilles de laminations minimales On retrouve ainsi un résultat
dû à D. M. Gass [7]. Il avait en effet construit une surface quasi-isométrique à Z et

non uniformément équivalente à une feuille d'une lamination minimale : on part
d'un cylindre et on ajoute une infinité d'anses s'accumulant sur les 2 bouts niais de

telle sorte que la distance entre 2 anses consécutives soit non bornée Cette surface,
bien que homéomorphe à J-2, n'apparait pas dans la liste précédente. Xotons par
contre que ce théorème ne dit rien sur le type d'homéomorphisme d'une feuille
d'une lamination minimale. L'auteur a en effet montré que toute surface non-
compacte est homéomorphe à une feuille d'une certaine lamination minimale ([4|
et [3])

Bnfin. on étude les lamimations minimales résiduellement à 2 bouts transversalement

Cantor : celles dont les transversales sont homéomorphes à l'espace de

Cantor. On définit une notion de suspension et de suspension singulière dans ce

cas. Le théorème 1 et l'abondance des transversales fermées permettent d'obtenir
l'énoncé suivant :

Théorème 4. Les laminations 'minimales résiduellement à 2 bouts tranversale-
rnent Cantor sont les extensions compactes des suspensions des actions minimales
de Z/2Z * Z/2Z svr l'espace de Cantor K.

Cet article, qui reprend une partie des résultats de la thèse de l'auteur [4], se

présente comme suit. La section 1 rappelle la définition de la notion de lamination
et les outils de dynamique topologique utiles dans la suite La section 2 donne des

exemples de feuilletages et de laminations résiduellement à 2 bouts dont certaines
feuilles ont ] seul bout. Ces exemples nous permettrons d'introduire les surlaces du
théorème 3. La suite de l'article est consacrée aux preuves des différents résultats.

L'auteur tient a remercier I). Gaboriau. K. Ghys. G. Hector et G. Meigniez

pour leur nombreux encouragements durant la préparation de ce travail.

1. Définitions et outils

1.1. Laminations

["ne structure de lamination (foliated space dans la littérature anglophone) T
de classe C et de dimension n sur un espace met ruine compact X est définie

par la donnée d'un recouvrement de X par un nombre fini d'ouverts précompacts
(Ui)iei et d'une famille d'homéomorphismes ô, : U, —» 1] x D" où T, est un espace
métrique localement compact et D" est le disque unité de R" de sorte que les

changements de cartes, là où il sont définis, aient la forme

4>j o &-1 : (x. y) eT.x D" h-* (gJt(x), Fi'[y)) e T3 x D"

Ici (jj, est un lioméomorpliisme local et F£ est un difféomorphisme local de Dn
de classe C2 dépendant continuement au sens de la topologie G'2 du point j\ Les
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plaques sont les ensembles <j>~] ({t} x D"). On demande de plus que l'intersection
entre 2 plaques quelconques soit ou vide ou connexe La feuille L, de T qui contient
le point x de X est l'ensemble de points de A" qu'on peut atteindre depuis x
par un chemin continu inclus dans un nombre fini de plaques. Les feuilles sont
naturellement des variétés connexes sans bord de dimension n qui forment une
partition de A" La réunion, qu'on suppose disjointe, des ensembles <pt i(Tîx{0}) est

notée T et appelée système de transversales. (Test un espace localement compact,
en particulier un espace de Baire. .Notons que lorsque les espaces ï\ sont des ouverts
de W, on retrouve la définition classique d'un feuilletage (transversalement de

classe C° et tangentiellement de classe C2) de dimension 11 et codinaensioii q. ["ne
lamination est minimale si toutes ses feuilles sont denses.

Four plus de détails, le lecteur pourra consulter le livre [5]. Jl y trouvera en

particulier la définition de la notion d'holonomie..
On fixera une métrique le long des feuilles de classe C2. c'est à dire dépendant

continuement au sens de la topoloçie (72 de la variable transverse Les feuilles
sont alors des variétés riemmaniennes complètes sans bord à géométrie bornée :

leurs rayons d'inject ivité sont uniformément minorés, leurs courbures sectionnelles
uniformément majorées. On note alors dj~ la distance induite sur les feuilles et si

r est un réel positif, on note Bf(.r, r) la boule fermée de centre x de rayon r de la

feuille h,.
Deux variétés riemanniennes sont dites uniformément-équivalentes, qu'on abrégera

par : U-équivaientes, si elles sont diffeo.morph.es via un difféomorphisme /
tel que / et / ] soient lipschitziens. La compacité de l'espace X fait qu'à
Inequivalence près, le type des feuilles est indépendant de la métrique d,£ choisie.
Pour cette raison, les variétés et surfaces que nous considérerons le seront toujours
à U-équivalence près.

1.2. Dynamique topologiquo

Four une introduction à la théorie des espaces de Baire et à ses liens avec-

la dynamique topologique, on peut consulter le livre de A. S. Kechris [16]. Nous

rappelons juste quelques faits et définitions classiques.
On considère un espace de Baire E (typiquement un espace métrique localement

compact). Une partie de E est dite résiduelle si elle contient une intersection

dénombrable d'ouverts denses. Elle est dite maigre si son complémentaire est

résiduel. Les ensembles de Baue sont les éléments de la a-algèbre engendrée par
les parties ouvertes et maigres. Un ensemble de Baire H de E est non maigre si et

seulement si il existe un ouvert non vide U de E tel que B C\ U soif résiduel dans

l'espace de Baire U. De plus, si (À', T) est une lamination minimale. T un système
de transversales et si R est un ensemble de Baire non maigre de T, alors le saturé
de R pour T est résiduel dans X [6|. Inversement la trace sur T d'un ensemble
résiduel de A" saturé par T est résiduelle dans T Enfin, on utilisera les 2 lemmes
suivants.
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Lemme 1.1 ([8] et [14]). Lu réunion Gq des feuilles sans holonoinie d'une
lamination (X,J-") est un ensemble résiduel dans X.

Lemme 1.2 ([2]). Si {X,T) est une lamination minimale et U un ouvert non
vide de T alors il existe un réel R tel que. pour tout x de X. Bjz[%% R)C\U est non
vide.

2. Des laminations minimales résiduelleinent à 2 bouts

Comme on Ta dit, les premiers exemples de laminations minimales résiduel-
lement à 2 bouts sont les laminations minimales de dimension 1 : toutes leurs
feuilles ont 2 bouts. Ces laminations ne permettent pas de comprendre comment
apparaissent des feuilles à f bout dans l'énoncé du théorème 1. Dans cette section.

on donne des exemples de feuilletages et de laminations minimaux résiduellement
à 2 bouts mais qui ont des feuilles avant 1 seul bout. Los constructions de cette
section sont illustrées par la figure 1.

Le premier exemple se trouve dans le livre de C. Godbillon ([13] p 181). Le tore
de Klein K2 P2//P2 admet un revêtement galoisien de groupe Z/2Z*Z/2Z parle

cylindre S1 xK On considère d'autre part 2 symétries sq et s\ du cercle S1 telles

clue ra »'1° so est une rotation irrationnelle de S1. Elles déterminent une action
de Z/2Z * Z/2Z par isométries sur S1 et donc un feuilletage suspension T^ sur un
fibre en cercles au dessus de K2. La rotation rn étant minimale, le feuilletage T,p

est minimal. Les feuilles de Tw sont, à U-équivalence près, des cylindres R x S1

obtenus comme revêtement galoisien de groupe Z/2Z * Z/2Z de K2, à l'exception
de 4 feuilles, correspondant aux points fixes des symétries s,j et si, qui sont (à
U-équi valence près) des demi-cylindres non orientables P2 // (R x S1) obtenus

comme revêtement non galoisien de K2 (voir figure 1). Le feuilletage obtenu est

donc résiduelleinent à 2 bouts mais 4 feuilles ont 1 bout
De même, la somme connexe K2#1K2 admet un revêtement galoisien de groupe

Z/2Z * Z/2Z par l'échelle de Jacob à 2 bouts J%. La même construction que
précédemment, donne un feuilletage minimal sur un fibre en cercles au dessus
de K2#K? Toutes ses feuilles sont des échelles de Jacob à 2 bouts Jo sauf 4 qui
sont des échelles de Jacob à f bout non orientables K2#i| (voir figure f).

Toujours par la même construction, en partant d'un revêtement galoisien de

T2#T2 par l'échelle de Jacob à 2 bouts J>. de groupe Z/2Z*Z/2Z, on obtient un
feuilletage minimal dont toutes les feuilles sont des échelles de Jacob à 2 bouts J-i

sauf 4 leuilles sont des échelles de Jacob à 1 bout ,/[ (voir figure 1)

Bnfin. en substituant dans les exemples précédents, à un voisinage tabulaire
d'un cercle transverse feuilleté trivialement par disques, un produit (T2)* x S1

(resp. (P2)* x S1) feuilleté horizontalement, où (T2)* (resp. (P2)*) désigne un tore
(resp. un plan projectïf) privé d'un disque, on obtient un feuilletage minimal dont
les feuilles résiduelles sont, toujours à Inequivalence près, des échelles de Jacob
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Fig. ]. Feuilles résiduelles et spéciales

à 2 bouts J'2 (resp. des échelles de Jacob infiniment non orientable J'^) et ayant 4

feuilles U-équivaientes à l'échelle de Jacob à 1 bout non orientable ¥'2 fiJ] (resp.
l'échelle de Jacob infiniment non orientable à 1 bout ,/,). Les surfaces J!2, P2#,/;i.
et J[ ont été représentées sur la figure 2 où les plans projectifs ajoutés par sommes
connexes à S1 x R et P2#(R+ x S1) pour obtenir J^ et J[ sont isométriques
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F2 F2 F2

J'

F2#Ji

Fig 2 Los surfaces J'2, J{ et P"//

et ne sont pasentre eux. On prendra garde au fait que les surfaces P2

homéomorplies
Les différents feuilletages précédemment construits n'ont que 1 feuilles à f bout.

L'exemple suivant est une lamination minimale résiduellement à 2 bouts ayant
une infinité non dénombrable do feuilles à 1 bout. Son espace transverse est de

dimension infinie.

Exemple 2.1, II existe une lamination minimale résiduellement à 2 bouts sur un
espace compact avant une infinité non dénombrable de feuilles à 1 bout.

Construction

L'idée est de construire une action minimale de Z/2Z*Z/2Z sur l'espace compact

(R/ZV ayant une infinité d'orbites à 1 bout.
["ne simple application du théorème de Badre montre qu'il existe un élément a

dans (R/Z) tel que la translation Rn par a (ao.fti. c\n. dans le groupe
(K/Z) soit un homéomorphisme minimal de (R/Z) Considérons alors les deux
svmétries :

So :

Si (R/Z)
(-x0 | xi
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Les symétries Sq et Si engend rent un groupe G d'homéomorphismes de

isomorphe à Z/2Z * Z/2Z et dont l'action est minimale car il contient Ra

S\ o S,-). De manière analogue aux exemples précédents, les orbites de G ont ré-

siduellement 2 bouts et il y des orbites à 1 bout correspondant aux points fixes
de 5*0 et Si. L'ensemble non dénombrable {0. |}H C (R/Z) est formé de points
fixes de 5q situés sur des orbites disjointes de G. L'action de G a donc un nombre
non dénombrable d'orbites à 1 bout. La suspension de cette action au dessus de

la bouteille de Klein fournit l'exemple cherché. D

3. Preuves des théorèmes 1, 2 et 3

Cette section qui constitue le cœur de cet article est consacrée à la preuve du
théorème 1 et à celles de ses corollaires (théorèmes 2 et 3).

3.1. Preuve du théorème 1

Le point de départ de la preuve est le lemme suivant qui est l'analogue du
"Lemme de l'hypersurfaee" d'É. Ghys dans le cadre mesurable [11]. Il montre que
si un ensemble résiduel de feuilles ont 2 bouts fou plus) alors il existe une hypersur-
face dans une feuille sans holonomie qui, relevée aux feuilles voisines, disconnecte
"presque toujours" la feuille qui la contient en deux composantes connexes non
bornée. Ce lemme est implicite dans le travail de J. Cantwell et L. Gonlon [6]. On

peut également retranscrire sa preuve de celle d'E. Ghys dans le cas mesurable
11]. Nous en donnons ici une preuve directe.

Lemme 3.1. Si (X, J-) est une lamination minimale résiduellement à 2 bouts et'T
est un système de transversales alors il existe une hypersurface connexe compacte,

pointée (S, *), de dimension 1 de moins que les feuilles, et un plongeraient <î> : f/xE
où V est un ouvert non vide de T tel que :

- pour tout point x de U} E, $({x} x E) e<>/ une hypersurfa ce de L,
pour tout point x de U, #(x, *) x ;

pour tout point x dans un ensemble G' résiduel dans U et saturé pour T
dans U. Lx a 2 bouts et T,x disconnecte Lx en 2 composantes connexes non
bornées.

Xotez que quand on dit "saturé pour T dans ['". on entend : "saturé pour la
relation d'équivalence induite par T sur U".

Preuve. Soit donc (A',.F) une lamination minimale résiduellement à 2 bouts sur
un espace compact et T un système de transversales.

Soit G l'ensemble des points x de T tels que L, a 2 bouts et est sans holonomie.
D'après l'hypothèse et le lemme 1.1, C? est résiduel dans T Pour tout point x de

G, il existe un entier Mx tel que LT — Bf{x,Mr) a 2 composantes connexes non
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bornées. Autrement dit

G 'M

où Gj\/ est l'ensemble (de Baire) des points x de G tels que LR — Bj-{j\M) a 2

composantes connexes non bornées. L'ensemble G étant résiduel dans T, il existe

un entier AI et un ouvert non vide U de T tel que l'ensemble Gm l~l £/ est résiduel
dans LT (cf. section 1.2).

On fixe alors * un point de G^nU et D* un domaine compact de L*. contenant
Bp{*, M) dans son intérieur et dont le bord a 2 composantes connexes Si et >V
Un tel domaine existe car L* n'a que 2 bouts. D'après le théorème de stabilité de

Iteeb (voir par exemple [5]), quitte à réduire l'ouvert U, il existe un plongement
<i> : U x D* dans X, tel que, pour tout x G U, 4>, (3?/{a;} x D* est un plongement
de Dh dans L, dépendant continuement de x pour la topologie G2. Quitte à réduire
à nouveau l'ouvert U. on peut de plus supposer que, pour tout x de U. D-,

#({.r) x D*) contient Bf{x, M) dans son intérieur Soit alors S une hypersurface
connexe de D*: passant par * et cobordante à Ex et notons, si x G U, Sœ

^({x} x S). Supposons que x soit un point de l'ensemble Gm nf'r résiduel dans U.
Le complémentaire de Bf(x,M) dans Lx a 2 composantes connexes non bornées.
Il en est de même pour Lx — Dx. Par suite, toujours sous l'hypothèse x G Gpi n
U, )]T disconnecte LT en 2 composantes connexes non bornées. Notre lemme est

démontré à ceci près que l'ensemble Gm H (' n'est pas nécessairement saturé.
Remarquons alors que l'ensemble des points y de Gm n U qui ne vérifient pas le

point précédent est maigre dans T. 11 en est de même de son saturé par T dans U.
Le complémentaire noté G' de cet ensemble dans Gm n P satisfait les propriétés
demandées. D

Nous passons maintenant à la preuve du théorème 1 proprement dite.
On part des conclusions du lemme 3.1 dont on reprend les notations : pour tout

point x de G', LT a 2 bouts et Sx disconnecte Lr en 2 composantes connexes non
bornées.

Pour toute feuille L de T, soit (I>/, la trace de 4>((r x S) sur L. C'est la réunion
dénoinbrable des hypersurfaces }], pour x parcourant L n U. Pour simplifier, si

L L,, on note $œ 4>f r Notons de plus /? un réel associé par le lemme 1 2 à

l'ouvert U : tout point de À' est à dj--distance au plus II de U H L,.
Fixons maintenant une feuille L quelconque et considérons une composante

connexe G de L — $^. A partir d'ici, la preuve se décompose en 2 parties : décrire
la topologie de G. puis, en "recollant les morceaux", en déduire la topologie de L.

La topologic do C

Une hypersurface E, de #f/ incluse dans G vérifie un des 2 faits suivants c'est

une composante connexe du bord du domaine G ou elle est incluse dans Int(G) (la
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topologio considérée ici est colle de L). Gommençons par montrer que ce dernier
cas ne he présente jamais

G" si

Fig. 3. Zxs C Int(C)

Supposons donc que EX], une des hypersurfaces de $^, soit incluse dans Int(Cj
(voir la figure 3). Il existe alors une courbe si : [0.1] —» G telle que si(]0.1[) C G
,s'i(0) *"i(l) J"i et qui forme un lacet dual à Eœi dans G. D'autre part, si C
ne rencontre U qu'au point x\, on a : #l Sœi et donc G est la feuille L. Ceci
est en contradiction avec le fait que L est dense et donc intersecte une infinité
de fois U. 11 existe donc un point %i de U distinct de x\ tel que VJX2 C G. Soit
alors 52 [0. 11 —> G une courbe sj de L telle que S2QO, !•[) C f\ 52(0) xi et

55(1) X2 La courbe ,si a nécessairement de Iholonomie. Sinon en la relevant
aux leuilles voisines, on obtient une contradiction avec le fait que. si x est dans O'.
}], disconnecte Lx. On peut donc trouver or\ un point de G'. C une composante
connexe de Ly - <ÏV et 2 courbes s\ : [0.1] —» C et s'7 : [0.1] -» 6" telles que
siQo, i[) c cl 4(]o,i[) c c?', -s-i(o) 4(0) xi, 4(1)'= .4, 4(1) œ2 et x'x,

x-2 et Xg sont trois points distincts de (V n {/. Le bord de fY/ a donc au moins
3 composantes connexes. Comme x'l2 x'2 et x\ sont trois points distincts de G',
les hvpersurfaces E^, Ef^, et £,'_ disconnectent chacune L' en deux composantes
connexes non bornées. Remarquons qu'alors // — G' a au moins trois composantes
connexes non bornées. On obtient, une contradiction avec le fait que Ly n'a que
2 bouts.

Un raisonnement en tout point analogue montre que le bord de C est constitué
d'au plus 2 hvpersurfaces }],. S'il en a au moins 3, on peut trouver un Y (réunion
de 3 serments issus du même point) dans G qui les relie En le relevant dans une
feuille LT voisine avec x un point de G', on trouve une composante connexe C de
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La — $a dont le bord a, au moins, 3 composantes connexes. Ceci a été exclu. Le

bord de G a donc une ou deux composantes connexes compactes qui le séparent
chacune d'autres composantes connexes de L — $/-,.

Rapellons que tout point de L est à djp-distance au plus R de f<r. D'après ce

qui précède. G rencontre V en au plus 2 points. Les dj^-boules centrées en ces 2

points recouvrent G II s'en suit que que le diamètre de G est majoré par AR et

que G est compact.
Montrons que si <9CY a 2 composantes connexes Eœi et Eœ2! alors C n'a pas

d'holonomie. S'il en a, considérons une courbe fermée s : [0,1]—* G telle que s()
,s(0) € xi; s(l/2) .i*2 et qui a de l'holonomie. Relevée dans un voisinage, la courbe
s donne, dans une feuille Lx> avec x\ un point de G', une courbe s' : [0,1] —> Lœ;

qui n'est plus fermée, qui est incluse dans l'adhérence d'une composante connexe
G' de Lx> — <$x; et qui connecte 3 composantes connexes distinctes T>x> Sx' et

Ef' de dG". On obtient la même contradiction que précédement (voir figure 1).

Fig. 1. Pouiquoi C n'a pas d'holonomie

De manière analogue, si le bord de G est connexe, le domaine C est compact
et a de l'holonomie. Sinon, par stabilité de Reeb. on trouve un point x' de G' tel
qu'une des composantes connexes de Lvy — S^ est homéomorphe à C et est donc
bornée. De plus, cette holonomie est isomorphe à Z/2Z car sinon on trouve une
courbe s de G qui se relève au voisinage en une courbe s' d'une feuille L-,j avec x'
un point de G', incluse dans l'adhérence d'une composante connexe C de Lx> —<&x'

et qui connecte 3 composantes connexes distinctes de ß(". On obtient à nouveau
la même contradiction (voir figure 5).

Les conclusions en ce qui concerne la topologie de C sont donc les suivantes :

pour toute composante connexe G de L — <i>^, dG a donc une ou deux composantes
connexes. S'il en a deux, G n'a pas d'holonomie S'il n'en a qu'une. G a une
holonomie d'ordre 2. De plus G est compact et son diamètre a été majoré par ÏR.



856 K. Blanc GMH

Fig. 5. T/lioloiiomie de G est isomorphe à r7/2

La topologio do L

A partir de la description obtenue des composantes connexes (\ on peut
maintenant décrire la topologie de la feuille L.

La feuille L est une variété non compacte sans bord obtenue en recollant le long
de leurs bords des domaines compacts (les adhérences des composantes connexes
C) dont le bord a une ou deux composantes connexes. Il n'y a que 2 graphes infinis
dont tous les sommets sont de valence 1 ou 2 les graphes de Cayley de N et Z.
De la même manière, il y a seulement deux possibilités pour L (voir figure 6) :

-le bord de tous les domaines CY a deux composantes et L a 2 bouts ;

-un et un seul domaine a un bord connexe et L a 1 bout.
Dans le premier cas. L — <t>L n'a pas d'holonomie. <!>/, n'en a pas non plus.

Le groupe tt]_(.!/) étant engendré par les groupes ^\{L — 4>fJ et rj\{^>j1). ij n'a
pas d'holonomie. On peut, moyennant le choix d'un des bouts r de L. totalement
ordonner les hypersurfaees SK de <î>^ en posant SK < >V si et seulement si >V
sépare e et T,x. On obtient un ordre isomorphe à celui de Z. (Jet ordre, une fois
choisie une origine, détermine une unique bijeetion croissante entre Z et #/,.

Dans le second cas. une et une seule composante connexe notée yq de L —#l a

un bord connexe. C*o a une holonomie isomorphe à Z/2Z. Les autres composantes
de L — 3>i, n'ont pas d'holonomie, donc en fait L — Cq n'a pas d'holonomie. On

peut, cette fois-ci canoniquement, totalement ordonner les hypersurfaces >]y de <t>L

en posant : Ex < Ex< si et seulement si SK est dans la composante connexe bornée
de L — X-,'. L'ordre obtenu est isomorphe à celui de N et détermine une unique
bijeetion croissante entre N et <î>^.

Le fait que tout point de L soit à (/^-distance au plus H de <!>/ eut raine que les

bijections défîmes entre $^ et Z ou N selon le cas induisent des quasi-isométries
entre L et Z ou N selon le cas. D
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La géométrie des feuilles est suggérée par la figure 6.

Une feuille à 2 bouts

Une feuille à 1 bout

Fig. 6.

Le théorème 1 appelle quelques remarques.
[ ne variété de classe C à géométrie bornée quasi-isométrique à Z ou N est

à croissance linéaire. Le théorème 1 montre donc que toutes les feuilles d'une
lamination minimale rébiduellement à 2 bouts sont à croissance linéaire. Il peut
donc être vu comme un analogue topologique d'un résultat de F. Paulin ([18].
voir aussi [17]), démontré dans le cadre d'une relation d'équivalence munie d'une
mesure invariante (7?./i) et dont les classes sont des graphes : si //-presque toutes
les classes d'une telle relation d'équivalence sont des graphes à 2 bouts, alors p-
presque toutes ses classes sont à croissance linéaire.

Notons aussi le corollaire suivant.

Corollaire 3.1. Si toutes les few Ile s d'une, lamination T 'minimale sur un espace

compact ont 2 bouts alors T est sans holonomie.

3.2. Fouilles génériques au sons «l'une mesure, théorème 2

A l'aide d'un résultat d"E. Gliys (|11|. Proposition Fondamentale), le théorème
2 s'obtient comme un corollaire du théorème 1.

Preuve du théorème 2. Soit (X, IF) une lamination minimale résiduellement à 2

bouts sur un espace compact, jj, une mesure harmonique sur T et T un système de

transversales. Fa mesure /i permet de définir naturellement une classe de mesure
[/i] quasi-inva.ria.nte par holonomie sur T (voir |11]).

Reprenons les notations du lemme 3.1 : on a une variété compacte connexe
pointée de dimension un de moins que les feuilles (S, *) et un pion.ge.ment <ï> : ' x }]
où U est un ouvert de T tel que (I>(.r, i-) x et SR <î)({x} x S) disconnecte
presque-sûrement au sens de Baire la feuille L,. Le théorème 1 (en fait, sa preuve)
montre que pour toute feuille L de J7, L a 1 ou 2 bouts et i a 1 bout si et
seulement si L contient un point xv, de fT. qui est alors unique, tel que Sœo borde
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une composante connexe bornée Gr, de h — <!>/,. La réunion des tels points xq est

un borélien de T qui intersecte de façon compacte ou vide toute fouille de T.
La proposition fondamentale d'É. Ghys nous dit qu'il est de [/a]-mesure nulle. La

description locale des mesures harmoniques, due à L. Garnett [10], montre que le

saturé de ce borélien par T qui est l'ensemble des feuilles à 1 bout de T. est de

/(-mesure nulle Par suite, /(-presque toutes les feuilles de T ont 2 bouts. D

3.3. Le cas des laminations par surfaces, théorème 3

On considère ici une lamination minimale résiduellement à 2 bouts par surfaces

(X, J7). Rappelons que, d'après [6], la réunion des feuilles qui sont sans holonomie
et homéomorphes à des cylindres, des échelles de Jacob à 2 bouts ou des échelles
de Jacob à 2 bouts infiniment non orientables est un ensemble résiduel de X. Ces

feuilles seront appelées les feuilles résiduelles de T

Preuve du théorème 3. On reprend les notations de la prouve du théorème 1 et
du lemmo 3.1 : on a, dans chaque feuille L, une réunion (I>/, d'hypersurfaces (ici
des cercles). Le diamètre des composantes connexes de /, — <$>[, est uniformément
majoré. Soit G une de ces composantes. Son bord est constitué de 1 ou 2 cercles.

S'il est constitué d'un seul cercle, G a une holonomie isomorphe à Z/2Z. S'il est

constitué de 2 cercles, G est sans holonomie.
Commençons par le cas le plus simple : celui où les feuilles résiduelles sont

homéomorphes à des cylindres. Considérons une feuille L avant 2 bouts Elle est

sans holonomie (Théorème 1) et est donc homéomorphe à un cylindre. En effet,
une éventuelle anse fou un plan project if J dans cette feuille se relèverait dans un
voisinage et apparaîtrait par minimalité dans toute (ouille de T. La feuille L est

quasi-isométrique à Z, homéomorphe à S1 xi et à géométrie bornée. Elle donc

U-équivalento au cylindre S1 xR muni de sa métrique standard Soit maintenant L'
une leuille ayant 1 bout. Elle est obtenue en recollant le long d'un cercle une
composante bornée Gq avec un domaine qui par le même argument que pour L est U-

équivalent à R^ x S1. La compacité de Gr, fait qu'il ne reste plus qu'à déterminer sa

topologie. Son holonomie étant d'ordre 2^ Go se relève dans les feuilles résiduelles,
qui sont des cylindres, en des domaines yq qui sont des revêtements d'indice 2 de

Go et dont le bord est constitué de 2 cercles (voir figure 5). Ces domaines sont donc
homéomorphes à [0,1] x S1. La considération de la caractéristique d'Euler montre
que Gj est un ruban de Moëbius. La feuille // est ["-équivalente à P2?y(R' x S1).

Passons maintenant au cas où les feuilles résiduelles sont homéomorphes à

l'échelle de Jacob à 2 bouts. Considérons une anse (homéomorphe à un tore privé
d'un disque noté T2 dans une telle feuille. Par stabilité de Reeb, cette anse
admet dans X un voisinage homéomorphe à U x T2 feuilleté trivialement où U

est un ouvert de T Le lemme 1 2 donne un majorant uniforme à la ci^-distance
entre tout point de X et ce voisinage. Cette remarque associée au fait que les
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feuilles à 2 bouts sont à géométrie bornée et quasi-isométriques à Z montre que
toutes les feuilles à 2 bouts sont U-équivalentes à J-2- Considérons maintenant une
feuille à 1 bout L'. Elle est obtenue en recollant une surface compacte Cq dont
le bord est un cercle et une surface non compacte qui, pour les mêmes raisons

que précédemment, est U-équivalente à 3\ privée d'un disque. La classification des

surfaces non nécessairement orientables (voir par exemple [1]) montre que. selon
la topologie de Cq} L' est U-équivalente à J\, P2#Ji ou K2#i|. Dans le cas où
les feuilles résiduelles sont homéomorphes à des échelles de Jacob non orientables
à 2 bouts, un raisonnement très analogue montre que les feuilles à 2 bouts sont
U-équivalentes à J'^ et les feuilles à 1 bout U-équivalentes à ./{. D

11 est sans doute utile de rassembler les résultats de cette section dans un
tableau. Il décrit suivant le type des feuilles résiduelles d'une lamination minimale
résiduellement à 2 bouts, le type des feuilles spéciales possibles. Notons que nous
avons montré dans la section 2 que tous ces types étaient effectivement réalisés.

Feuilles résiduelles

Feuilles spéciales

S1 xE

P2#fM* xS1)

¦h
¦h

P2 /f./,
K2//./i

Notons pour conclure cette section que dans les laminations de dimension 3

ou plus, une telle classification est impossible. É. Ghys a par exemple construit
une lamination minimale dont toutes les leuilles ont 2 bouts et telle que 2 feuilles
quelconques distinctes ne sont pas homéomorphes |11|.

4. Laminations à 2 bouts et suspensions, théorème 4

Au vu du théorème 1, il est naturel d'essayer de compare]' les laminations
minimales résiduellement à 2 bouts, et les laminations minimales de dimension 1.

ces dernières vérifiant trivialement les conclusions du théorème f : leurs feuilles sont
isométriques à M et n'ont pas d'holonomie Le résultat modèle dans cette direction
est dû à É. Ghys ([11] Théorème C p. 390) : si (X.J-) est une lamination munie
d'une mesure transverse invariante dont presque toutes les feuilles ont 2 bouts alors

(X, T) est une extension compacte mesurable d'une lamination de dimension 1.

Pour des raisons techniques, on se restreint aux laminations minimales
transversalement Cantor, c'est à dire celles dont les transversales 1] sont homéomorphes
à l'espace de Cantor K. La lamination possède alors de nombreuses transversales
à la fois ouvertes et fermées. Rappelons que dans K tout point a une base de

voisinages homéomorphes à K.
En s'inspirant du travail d'É Ghys [11], on donne la définition suivante d'extension

compacte de lamination.
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Definition 4.1. La lamination (A", J-") est une extension compacte de la lamination

(Y~}Ç) s'il existe une application continue tt : X —> Y. surjeetive, à fibres

compactes, telle que, pour toute feuille L de Q. 7r~1(£) est une feuille de T sur
laquelle it induit une quasi-isoinétrie avec L.

Notre but est de montrer qu'une lamination minimale transversalement Cantor
résiduellement à 2 bouts est une extension compacte d'une suspension d'une action
de Z/2Z*Z/2Z. Avant d'aborder ce cas. rappelons celui plus classique de Z. Soit <f>

un homéomorphisme minimal de K. Il induit une action de Z minimale sur K. On
considère alors K x [0, 1] muni de la lamination horizontale, et on identifie tout
point (.t, 1) avec (ç>(x),0) L'espace Y obtenu est séparé et muni naturellement
d'une lamination minimale Q de dimension 1 orientable, dont les feuilles peuvent
être vues comme des segments recollés à leurs extrémités. La lamination Q est la

suspension de l'action de Z donnée par S (voir figure 7).
Étudions maintenant le cas de Z/2Z * Z/2Z Soit Çr, et Ç\ deux homéonior-

phismes sans point fixe de K tels que d>f, <f>\ Id# engendrant une action
minimale de Z/2Z * Z/2Z sur K. L'espace II' x [0,1] est muni de la lamination
horizontale, et on identifie tout point (x, 0) avec (ô<j(x),0) et tout point (x. 1) avec

(</>i(x),l) L'espace Y' obtenu est séparé, compact et muni naturellement d'une
lamination minimale Q' de classe C de dimension ]. en général non orientable,
dont on peut voir les feuilles comme des segments recollés à leurs extrémités. L'espace

(Y1, G') est la suspension de l'action de Z/2Z#Z/2Z associée aux générateurs
(Po et (pi (voit figure 8).

K

Pïg. 7. Une suspension de '

y

«(i)

K
Fig. 8. Une suspension de Z/22 * S/2'Z

Bn fait, le cas de Z se ramène à celui de Z/2Z t Z/2Z. En effet, soit t/> un
homéomorphisme minimal de Ä', et if l'union disjointe de 2 copies de K notées

respectivement Kg et K\. L'identité et l'homéomorphisme <f> de K déterminent 2
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involutions de K' envoyant Kr, et K\ l'un sur l'autre. La suspension de l'action de

Z/2Z * Z/2Z associée est homéomorphe à la suspension de c
Les laminations construites précédemment sont sans holonomie et toutes leurs

feuilles ont 2 bouts, correspondant respectivement aux 2 bouts de Z et de Z/2Z *

Z/2Z. Elles ne peuvent donc rendre compte du comportement dynamique des
laminations résiduellement à 2 bouts dont certaines feuilles ont 1 bout Pour cette
raison, dans la construction de Y', on s'intéresse aussi au cas où les homéomorphismes
CV) et c?i ont un ensemble non vide de points fixes mais dont l'action de Z/2Z*Z/2Z
associée est toujours minimale. 11 n'est pas difficile de voir que cette hypothèse
entraîne que l'ensemble des points fixes de ôç\ et 01 est maigre. L'espace Y' obtenu

par la même construction que précédemment est séparé et muni d'une lamination
G' singulière de dimension ] ; les points singuliers de la lamination correspondant
aux points fixes de çq et 4>\ ¦ Le type des singularités est le suivant. Certains ouverts
de carte sont homéomorphes à Kx] — 1,+1[ muni de la lamination horizontale.
OÙ l'on identifie les points (x, —o) et (<f>(x)2 a) avec S un lioméomorphisme d'ordre
2 ayant un ensemble maigre non vide de points fixes. Nous dirons que (Y', G')
est une suspension singulière de Z/2Z * Z/2Z (voir la figure 9). La géométrie des

feuilles régulières et singulières est sugérée par la figure 9. Elles vérifient les conclusions

du théorème 1 elles sont quasi-isométriques à Z ou N. Chaque feuille à 1

bout, homéomorphe à R ' a une holonomie isomorphe à Z/2Z due à la singularité
associée.

y —

Fig. 9. L'ne suspension singulière de S/22 * S/2S

On connaît des actions minimales de Z sur K : les modifications de Denjoy
des rotations irrationnelles du cercle. Dans la section 2, on a défini une action de

Z/2Z*Z/2Z sur S1 engendrée par 2 symétries sq et s-\. La modification de Denjoy
appliquée à cette action fournit une action minimale de Z/2Z*Z/2Z sur K et donc

une suspension de cette action telle que définie précédemment. Plus précisément.
la modification de Denjoy consiste à "ouvrir" des orbites de l'action. Si on ouvre
les orbites des points fixes de s0 et s\3 on obtient une action sans point fixe et
donc une suspension régulière. Si on ouvre une orbite sans point fixe, on obtient
une action avec points fixes et donc une suspension singulière

On peut maintenant prouver le théorème 4.

Preuve dm théorème J+, Commençons par la partie facile du théorème. Si la
lamination minimale T est une extension compacte de la suspension d'une action
minimale de Z/2Z * Z/2Z, les feuilles de T sont quasi-isométriques à Z ou N. Les
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feuilles quasi-isométriques à M correspondent aux points fixes de Faction. Elles
forment un ensemble maigre et les leuilles quasi-isométriques à Z forment un
ensemble résiduel. La lamination est résiduellenient à 2 bouts.

Réciproquement, supposons que T soit une lamination minimale résiduelle-
nient à 2 bouts sur un espace compact et reprenons les conclusions et notations du
lemme 3.1, à ceci près qu'on choisit un ouvert transverse qui est un Cantor. On note
donc ce dernier K et non plus P. Le plongement # se prolonge en un plonge ment
$ : Kx [G, 1] x S —> X qui coïncide avec 4> sur K x {0} x S et. envoie {x} x [0. 1| x E
dans La. Si L est une feuille, on note *fjr la réunion des domaines ^({x} x [0, 11 x S)

pour x parcourant LC\ K. Dans X, considérons la relation d'équivalence qui, d'une

part, identifie chacun des ensembles 4*({x} x {t} x S) où t g]0, 1| à un point et

qui. d'autre part, dans chaque feuille L de _F, identifie chacune des adhérences
des composantes connexes de L - f [ à un point. L'espace quotient obtenu est

homéomorphe et identifié à A" x [0,1]/ ~ où les classes de la relation d'équivalence
¦^ sont deb paires de points ou des singletons de K x (0,1} selon que le bord de la

composante connexe de L — #£ associée a deux ou une seule composante connexe.
Soit alors <f> l'involution telle que, pour tout x € K x {0,1}, {.t. ç>(x)} est la classe

de x pour ~. L'application ù est un homéomorphisme. L'ensemble des points x
tels que x (p(x) est maigre car son saturé est l'ensemble des feuilles à 1 bout
de T.

Nous ne sommes pas loin de la conclusion : l'espace K x |0. L]/ -~ est muni
naturellement de la lamination Q de dimension 1. éventuellement singulière, induite
par la lamination horizontale. Les singularités correspondent aux points fixes de

ç. On a une application quotient ir ¦ X —*• K x [0,1]/ ~ à fibres compactes, qui
envoie la lamination T sur la lamination Q et qui, le diamètre les écrasements étant
uniformément borné d'après le lemme 1.2, est une quasi-isométrie en restriction
aux feuilles. De plus. T étant minimale, Q est minimale. Il ne reste donc plus
qu'à montrer que l'on peut se ramener au cas d'une suspension d'une action de

Z/2Z * Z/2Z
Dans le cas où c/> envoie K x {0} sur K x {]}, on a terminé. En effet, c/> définit.

via l'identité naturelle entre K x {0} et K x {]}. un homéomorphisme toujours
noté 4> de K dont Q est la suspension. Comme Q est minimale, <f> est un hoinéomor-
phisme minimal et T est une extension compacte de la suspension d'une action
minimale de Z. On se ramène au cas de Z/2Z + Z/2Z par la construction donnée en
introduction. Dans ce cas, l'action n'a pas de point fixe et la lamination Q obtenue
est régulière.

Dans le cas contraire, soit x un point de K tel que <p{{x, 1)) est un point de

Kx{l} différent de (x, 1 L'homéomorphisme o envoie alors un voisinage Ko x {1}
de (x, 1) sur un voisinage K\ x {1} de e/>((x, 1)) où Ko et K\ sont deux ensembles
de Cantor disjoints de K. On considère alors K' Ko U K\ et on reprend la
construction précédente en remplaçant K par K' et en "primant" les notations.
L'application ô' obtenue ainsi coïncide avec ç> sur K' x {]} L'hornéomorphisrne <p'

envoie donc K' x {1} sur lui même et. par suite K' x {()} sur lui même. On pose :
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ça <yKixir,i et 4>i o'K xni- Les applications 90 <t «1 sont des involutions
de K' La lamination Q' est la suspension de l'action de Z/2Z * Z/2Z engendrée

par ön et cj>i Comme dans le cas précédent, .F est une extension compacte par
l'application ar' de la suspension d'une action minimale de Z/2Z * Z/2Z Dans ce

cas la lamination obtenue est singulière si et seulement si F a des feuilles avant 1

bout. D

Pour conclure, considérons une lamination minimale (X F) transversalement
Cantor dont toutes les feuilles ont 2 bouts Le cas ou (X,F est une extension
compacte d'une action minimal* de- Z sur h peut être caractérisé comme suit.
Reprenons les notations de la pie me du théorème 4 Soit a un point de K. le

plongeaient XP détermine un choix parmis les 2 bouts de Lx. On note <?, _(L,r)
le bout qui est se paie de Sif({x}x]0, l[xS) pai ^({.i} x {]} x S). Les méthodes
utilisées dans cette section montrent sans difficulté que la lamination (X, F) est

une extension compacte d'une action minimale de Z si et seulement si il existe un
tel ploiigement # tel que si r et y sont deux points quelconques de A' tels que
y € L& alors Sx (Lx) £y (Lx)
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