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Analogies between group actions on 3-manifolds and number

fields

Adam S. Sikora

Abstract. Let a cyclic group G act either on a number field L or on a 3-manifold M. Let sp, be
the number of ramified primes in the extension LE C L and s3; be the number of components of
the branching set of the branched covering M — M/G. In this paper, we prove several formulas
relating sp, and sp; to the induced G-action on CI(L) and Hi(M), respectively. We observe
that the formulas for 3-manifolds and number fields are almost identical, and therefore, they
provide new evidence for the correspondence between 3-manifolds and number fields postulated
in arithmetic topology.

Mathematics Subject Classification (2000). 57N10, 57317, 11R29, 11R37, 11R34.
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1. Introduction and statement of the main results

Denote the ring of algebraic integers in a number field K by Og. Mazur’s calcu-
lations of the étale cohomology groups of rings of algebraic integers, [Ma2], show
that for number fields K the groups HZ,(Spec Ok, G.,) vanish (up to 2-torsion) for
n > 3, and that they are equal to Q/Z for n = 3. Since, furthermore, the groups
H,(Ok, Gy,) satisfy Artin—Verdier duality which is reminiscent of 3-dimensional
Poincaré duality, B. Mazur and D. Mumford suggested a surprising analogy be-
tween the spaces Spec O and 3-dimensional manifolds. The points in Spec O
(which are immersions of spectra of residue fields, Spec Ok/p, into Spec Ok) can
be viewed as 1-dimensional objects and hence compared to knots in a 3-manifold.
Note that the fundamental group of a circle is Z and the absolute Galois group
of a finite field is the profinite completion of Z. Further analogies between num-
ber fields and 3-manifolds were described by B. Mazur in [Mal], and later, by A.
Reznikov, M. Morishita and others in [Mal, Mol, Mo2, Ra, R1, R3, W], making a
foundation for “arithmetic topology.” At the heart of it lies a “dictionary” (which
we call the MKR dictionary after Mazur, Kapranov, and Reznikov) matching the
corresponding terms from 3-dimensional topology and number theory, [R2, Si].
Despite its limitations and inconsistencies, the dictionary can be used for translat-



Vol. 78 (2003) Group actions on 3-manifolds and number fields 833

ing statements from 3-dimensional topology into number theory, and vice versa,
often with a surprising accuracy.

In this section we state the main results of this paper, which were motivated
by the following two problems:

Let €}, be a cyclic group of prime order p.

Problem T. Let C), act on a smooth, closed, connected, oriented 3-manifold M by
orientation preserving diffeomorphisms. In this situation the projection 7w : M —
M/C, is a branched covering. Given the induced Cp-action on the torsion and
free parts of Hi(M,Z), denoted by Hyor(M) and Hpree(M) = Hi(M,Z)/Hyor (M),
find the best lower and upper estimates on the number, s, of components of the
branching set.

Upon translation into number theory, Problem T assumes the following form:

Problem N. Let C), act on a number field L and let K = LS. Given the induced
Cp-action on the ideal class group, CIU(L), and on the group of units, Of , find the
best lower and upper estimates on the number of ramified primes in the extension
K c L. We will denote by sq and s the numbers of finite ramified primes and all
ramified primes (including the infinite ones), respectively. (For p # 2, so = s.)

Our particular interest in these two problems stems from the fact that none
of them has an elementary solution, and furthermore, our solutions are based on
methods which are beyond the current scope of arithmetic topology. Therefore,
we hope that the consideration of these two problems will provide a new insight
into arithmetic topology.

According to the MKR dictionary ([R2]) Hior(M) and H pree(M) correspond
to Cl(L) and Of /torsion, respectively. For that reason, we will denote the latter
two groups by Hy,, (L) and H,..(L).

Let If, denote the field of p elements. We will prove the following estimates
for s.

Theorem 1.1. (1) Under the assumptions of Problem T, and the additional as-
sumption Hpree(M/Cp) =0, we have
s < 1+dimp, H*(Cp, Hyor(M)) + dimp, H'(Cp, Hpree(M)).
(2) Under the assumptions of Problem N
s <1+ dime H2(0p7 Htor(L)) + dimle Hl(Cp7 Hfree(L))~
Recall that if H is an abelian group with a Cp-action, Cp, =< 7|77 = 1 >,
then H*(Cp, H) = KerN/ImS for odd i > 0 and H*(C,, H) = KerS/ImN, for

even ¢ > 0, where N and S are homomorphisms from H to H given by the
multiplication by 1+ 7 + --- + 7271 and by 7 — 1, respectively. Furthermore, the
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method of Herbrand quotient ([Ko, Prop. 2.53]), implies that
H'(Cp, H) = H*(C,, H) (1)

for finite H.

We do not have a satisfying explanation for the coincidence of the formulas of
Theorem 1.1. Their proofs (given in Sections 3 and 4) are based on two very dif-
ferent methods. Examples 5.2 and 5.1 show that the extra assumption of Theorem
1.1(1) is necessary and its inequality cannot be improved. Similarly, the inequality
of (2) cannot be improved — see comments following Theorem 1.3.

Here is an upper bound for s, which does not need the additional assumption
of Theorem 1.1(1).

Theorem 1.2. Under the assumptions of Problem T,
s < 1+dimp, H*(Cp, Hi(M)) + dimp, H'(Cp, H pree(M)).

Searching for lower estimates for s one encounters the following problem: A G-
action on a 3-manifold M induces G-actions on Hy (M), Hior (M), and Hgyee(M).
However, Hi(M,Z) and H pyee(M) @ Hiop (M) do not need to be isomorphic as G-
modules! (See Example 5.2.) Since this problem does not occur in number theory,
the next result requires that Hy(M,Z) = Hfree(M) ® Hior (M) as G-modules.

Theorem 1.3. (1) If conditions of Problem T are satisfied, s > 0, and Hy(M,Z) =
Hfr@e(M) ©® Htar(M) as C'p—modules then

s > 1+ dimp, H*(Cp, Hyor (M)).

(2) If conditions of Problem N are satisfied, s > 0, and CI(K) has no elements
of order p then
s > 1+ dimg, H*(Cp, Hyor(L)).

To illustrate these results we consider quadratic number fields. Let L = Q(v/d)
where d > 0 is a square-free integer. Gal(L/Q) = C5 acts on CI(L) by the
involution I — I—!. Hence, by (1), H(Cq, CI(L)) = H?(Cy, CI(L)) = CI(L)“=.
A simple calculation yields H'(Cy, H free(L)) = Fa and, therefore, Theorems 1.1(2)
and 1.3(2) imply the following estimates (similar to a formula of Gauss):

1 < s —dimp, CI(L)“? < 2.

These estimates cannot be improved. In fact s — dimp, CI{(L)“? is either 1 or 2
depending if the norm of fundamental unit in Of is —1 or 1 (d = 10 represents
the first case, d = 15 the second).

The topological examples are more laborious and, therefore, they are postponed
to Section 5. Example 5.2 shows that the extra assumption in Theorem 1.3(1)
(saying that Hy(M,Z) = Hpree(M) @ Hyor (M) as Cp-modules) is necessary and
that the inequality of Theorem 1.3(1) is sharp.
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The situation with cyclic extensions of @ of dimensions greater than 2 is much
simpler. The following generalization of the Gauss formula follows from [La,
Lemma 13.4.1].

Theorem 1.4. If L is a Galois extension of Q of prime degree p # 2 then
Hior (L) = (Z/p)* .

The topological counterpart of the above formula is the following restatement
of a result due to Reznikov, [R3, Thm. 15.2.5]. It follows from our Theorems 1.3(1)
and 1.1(1), see the proof in Section 3.

Corollary 1.5. If M is a rational homology sphere, Hy,,(M/Cp) =0, and s # 0
then
HtOT(M)Cp - (Z/p)571'

Example 5.1 shows that the assumption H py..(M) = 0 is necessary.

Despite the fact that all above formulas are pairwise identical we do not know
any uniform proof of them. In fact, the statements concerning group actions
on manifolds are proved by calculations on spectral sequences associated with
equivariant cohomology, and the statements concerning Problem N follow from
results of P. E. Conner and J. Hurrelbrink, [CH], which are proved by local methods
(ideles) and class field theory. This suggests that the results of class field theory can
be interpreted in terms of 3-dimensional topology. (This suggestion was formulated
before, for example by B. Mazur and A. Reznikov.) Analogously, one might expect
that equivariant cohomology can be formulated and used in the framework of
number theory.

Acknowledgments. We would like to thank C. Allday, J. Hempel, N. Ramachan-
dran, R. Schoof, and L. Washington for helpful conversations. Additionally, we
thank the referee of this paper for his comments and for suggesting [CH] as a basis
for the proofs of the arithmetic results in this paper.

2. Preliminaries

2.1. Transfer and norm maps

For any G-action on M consider the map =, : Hi(M,Z) — H1(M/G,Z) induced
by m : M — M/G and the transfer map ny : Hi(M/G,Z) — Hi(M,Z) defined
as follows: For any x € H{(M/G,Z) represented by a closed curve ¢ disjoint from
the branching set, my(z) = [v~1(c)] € H{(M,Z).

The induced maps

T @ Hfre@(My Z) - HfTee(M/G7 Z)7 Ty - Htm’(M7 Z) - Htor(M/G7 Z)7
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7t Hyreo(M/G) = Hpreo(M), 7 : Hyon(M/G) — Huor (M),

satisfy the following conditions:
(1) mymy is the multiplication by |G|.
(2) mm(@) = Ypeq 9.

In particular we have

rank Hy,oo(M/C,) < vank Hy,o(M). (2)

Given a Galois extension K C L with Gal(L/K) = G, we have the norm map
7y 2 O — Ok, mi(z) = ngG gz and the embedding 7y : Og — Or.. The induced
maps 7y : Hppee(L) = Hpree(K) and 7y @ H pree(K) — Hpee(IL) satisfy properties
identical to those above:

(1) momy(z) = 261

(2) mymi(z) = [ eq 92
Furthermore, we can define 7y and =, for ideals: my(I) = I - O, for I <« O, and
7y (J) = [Ijeq 9 for JaOr. The induced maps

7y : CUK) — CUL), . : Cl(L) — CI(K),

once again satisfy the conditions
(1) memy(I) = 111,
(2) myme(I) = [Igeq 91

2.2. A rough classification of Z[C},]-modules
Let Z,y denote the ring of integers localized at (p), p prime.

Proposition 2.1. If V is a free abelian group and an indecomposable Z[C,]-
module then V' ® Z,) is isomorphic to one of the following Z,)|Cy|-modules:

(F) the free module Z)[Cpl,

(T) the trivial module, Zyy, or

(AI) the augmentation ideal, Kere, for e : Ly [Cpl — Zpy, £(g) = 1.

The proof follows from the classification of indecomposable C',-representations
over Z, due to Diederichsen and Reiner, [CR, Theorem §74.3]. O

For any Cp-module V' the cohomology groups H i(C’p7 V) for ¢ > 0 depend on
the parity of ¢ only and

H™(C,,V) = HYC,,V), H>YC,,V)=HYC,,V), forn>0,

are linear spaces over the field of p-elements, IF,. Here H* (Cp, V) denotes the Tate
cohomology groups.

The type of a Z[Cpl-module V' (as described in Proposition 2.1) can be deter-
mined by the Tate cohomology of €, with coefficients in V. If V' is a free abelian
group and an indecomposable Z[C]-module then V' is of type
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(F) iff H(Cp, V) =0 for i = 0,1,

(T) ift H°(Cp, V) = Z/p, HY(Cp, V) =0,

(A1) iff H°(C,,V) =0, H'(C,, V) =Z/p.

Any Cp-module V' gives rise to two other Cp-modules, V* and V#, defined
as follows: V* = Hom(V,Z), and g € C, acts on Hom(V,Z) by sending f(-) to
f(g~%). The second module, V#_ is equal to V as an abelian group and the action
of g€ Cp on v e V¥ is given by g~ lv.

Lemma 2.2. For any Cp-module V,
(1) H*(Cp7v#):H*(CP7v) R R
(2) if V is a free abelian group then H*(Cp, V*) = H*(Cy, V).

Proof. (1) As before, let 7 be a generator of C}, and let N,.S : V — V be given
by ~Zf;01 7t and by (7 — 1) respectively. H"(C,,V) is equal to Ker N/Im S or
Ker S/Im N, depending if n is odd or even. Similarly, ﬁ"(Cp, V#) is equal to
Ker N# /Im S# or Ker S# /Im N7, depending if n is odd or even, where N7 S# :
V — V are given by ~Zf;01 77% and by (77! — 1) respectively. Now (1) follows
from the fact that N# = N, Ker S# = Ker S, and Im S# =Im S.

(2) Let V = Z%. Since H*(C’p7 V) is a p-group, Tor(ﬁf*(C'}07 V), Zpy) = 0 (see
[We, Calculation 3.1.1]) and by the universal coefficient theorem,

Hi(Cp, V ® Zp)) = H(Cp, V) ® Zyy = H(Cp, V).

Therefore, it is sufficient to show that V ®Z,) and Hom(V, Z)®Z are isomorphic
as Cp-modules, and for that it is enough to consider indecomposable C),-modules
V only. Such modules are classified in Proposition 2.1. We leave it to the reader
to check that in each of the three possible cases we get

V& Z(p) ~ Hom(V ® Z(p), Z(p)) ~ Hom(V,Z) ® Z(p)
as needed. O

3. Cyclic group actions on manifolds

In this section we will prove the results concerning cyclic group actions on 3-
manifolds which were announced in the introduction. As references for the homo-
logical algebra (group cohomology and spectral sequences) we recommend [Bro,
We].

3.1. Equivariant cohomology

Let (X, A) be a relative C,~CW-complex. In other words, let X be a CW-complex
with a Cp-action, A be a subcomplex, and let the Cp-action on X preserve A and
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be compatible with the CW-structure on X. Additionally, we require that ifg € C,
maps a cell o C X into itself then g acts trivially on o; compare [AP]. For any
smooth Cp-action on a manifold M, (M, M%) is a relative C,,~CW-complex, [I1].
Denote the cochain complex for the cellular cohomology of (X, A) with coef-
ficients in Z by (C*(X, A),d). Let (P*,4¢") be a complete projective resolution of
Z considered as a Z[Cp|-module with the trivial Cp-action, cmp. [Bro, Ch. VL3].
Then D**(X,A) = Homgc, (P*,C*(X, A)) is a double complex with two dif-
ferentials (a) 6, = ¢ : DF(X,A) — DMFYX,A) and (b) 6, : DM(X, A) —
DFLI(X ] A) dual to §'. The cohomology of the associated total complex,

D*(X,A) = @ DM(X, A),
k+l=s
d(e) = dp (@) + (=1)*d,(a), for a € D¥(X, A)

is the Tate equivariant cohomology.

Consider the “first” spectral sequence (Fi*(X,A),d,) associated with
(D**(X, A), 0n, d,,) — that is the spectral sequence induced by the vertical filtration
of (D*(X, A),d). Its first term is Ef'(X, A) = H'(X, A; Z), for k,l € Z.

The next two results describing the properties of (Ef*(X, A), d.) belong to the
folk knowledge.

Lemma 3.1. If X is a connected Cp,—CW-complex and X% £ 0, then all differ-
entials &5~ EBX"HX) — E9(X) are 0 for r > 2. (In other words, the Oth
row of B5*(X) survives to infinity.)

Proof. Let {%} denote the one point space and let zo be a zero cell in X“». The
Cp-equivariant maps: * — 2o : {*} — X and X — {*} induce maps
(B (), dr) — (B5(X), dr) — (E77 (%), dr),
whose composition is the identity. F(X) = H*(Cp, H°(X,Z)) is either 0 or
Fp. Hence, if df7~1 . EF—1(X) — E¥70(X) is not 0 for some k,r then
Efi{’O(X) =0 and EF7"O(X) =F,. Hence, k+ r is even and, hence, Efﬂ”o(*)
= H**7(C,, H()) = F,. Therefore
rra (%) = EX (X)) — BT (%)

cannot be the identity. [l

Lemma 3.2. If (M, B) is a Cp,—~CW-complex such that M is a connected, closed,
oriented n-manifold and B is an n-dimensional ball then all differentials df™ :
EX(M) — EX" (M) are 0 for v > 2. (In other words, the n-th row of
E3* (M) survives to infinity.)

Proof (due to T. Skjelbred). The sequence of cochain complexes
C*"(M,M\int B) —» C*(M) — C*(M \ int B)
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induced by the embedding M \ int B < M yields a sequence of spectral sequences
EX*(M,M \ int B) 33 EX*(M) — E**(M \ int B)
which is exact for » = 1. Since E{"(M \ int B) = H™(M \ int B) = 0, the map
ai™ Ef(M, M \ int B) — E7™"(M) is onto.
Since
ER(M, M \int B) = H*(M, M \ int B) = H*(B",0B") = H,,_(B"),

all non zero elements of E**(M, M \ int B) for » > 1 lie in the nth row. Since
o, commutes with differentials and all differentials in E¥*(M, M \ int B) are 0 for
r>2,d" EFY (M) — EX (M) is zero for r > 2. O

3.2. Cyclic group actions on 3-manifolds

Let M be a smooth, connected, closed, oriented 3-manifold with a smooth orien-
tation preserving Cp-action with a fixed point.

By the result of Illman [I1] recalled above, M can be given a structure of a
relative C,—CW-complex. Furthermore, since M % £ (), one may assume that
there exists a C,—CW-subcomplex B of A homeomorphic to a 3-ball.

In this situation, the second term of EX* (M) is:

F, 0 F,
... B%(C,, H¥(M)) HY(C,, H*(M)) H°(C,, H*(M)) ...
- H°(Cy, HY(M)) HY(C,, HY(M)) HO(Cp, HY(M)) ...
F, 0 F
By Poincaré duality H2(M,Z) = Hy(M,Z)#, H' (M,Z) = Hce(M)* as Cp-
modules, and by Lemma 2.2,
H™(Cy, H*(M, Z)) ~ H™(Cy, Hi(M, Z)), 3)
H"™(Cp, HY(M, Z)) ~ H™(Cy, Hpree(M, 7).
Let
" {™(C,, Hy (M, Z)) — H™(Cyp, H free(M))

denote the homomorphism given by the composition of d}? : E;’Z — E;’H’l with
the isomorphisms (3). One needs to be aware that ¥™ is not the map induced by
the natural homomorphism Hy(M,Z) — H ¢ree(M).

Theorem 3.3. If M #£ 0 (p prime) then M is a union of s circles, where
s =1+ dimyp, Ker U™ + dimp, Coim 9",

for any n.



840 A. S. Sikora CMH

Before giving the proof we note that this result immediately implies Theorem
1.2. It also implies Theorems 1.1(1) and 1.3(1).

Proof of Theorem 1.1(1). If Hyyee(M/Cp) = 0 then by property (2) of the transfer
map (cf. Subsection 2.1) Hyyee(M) is annihilated by >° . g. By Proposition
2.1, Hypee(M) ® Zpy is a sum of three types of indecomposable Z,)[C},]-modules.
Since Kere is the only indecomposable Z,)[Cp]-module which is annihilated by
decp 9, Hpree(M) ® Zyy is a sum of modules of this type. We compute that

H 2(C'p, Kere) = 0. Since ®Z, is an exact functor in the category of Cp-modules,
H?(Cy, Hpree(M)) = H*(Cp, Hfree(M)®Zp)) = 0. Now, the short exact sequence

0 — Hiop (M) — Hy(M) — Hpree(M) — 0
implies that
dimp, H*(Cy, Hi(M)) < dimp, H*(Cp, Hyor(M)).
Therefore, Theorem 1.1(1) follows from Theorem 1.2. O
Proof of Theorem 1.3(1). If H1(M,Z) = Htree(M)® Hyior (M) as Cp-modules, the
dimension of Ker ¥ is bounded below by

dimg, H™(Cp, Hi(M)) — dimg, H™(Cp, Hree(M))

— dimg, H™(Cy, Hoor (M)).
Il

Proof of Corollary 1.5. By inequality (2) in Section 2.1, Hgree(M) = 0 implies
Hpree(M/Cp) = 0. Hence by Theorems 1.1(1) and 1.3(1),
s =1+ dimg, H*(Cp, Hior (M)).

Since Hior(M/Cyp) = 0, mymu(2) = 3 gcc, 9@ = 0 for all z € Heor(M). Hence
H%(Cp, Hyor (M) = Hyop (M)C. O

We complete this section by proving Theorem 3.3.
By Lemmas 3.1 and 3.2 all differentials in the spectral sequence (Ef*(M),d,),
for r > 2, are 0 except possibly di? : E§2(M) — E5T>'(M). Therefore,

> EE(M)=TF,+Kerd; >?+ Coimd; >? = F, + Ker "% 4 Coim ¥" .
k+l=n
Since (E* (M), d.) converges to ﬁTaD(M7 Z), IQT}}]D(M7 Z)and Y, ., EF (M) have
equal numbers of elements. By the Localization Theorem, [Bro, Ch. VII Prop.
10.1), HZ (M,Z) = H% (MC,Z). Since M is composed of circles, Theorem 3.3
follows from the followi%g lemma.

Lemma 3.4. ﬁgp(MCP,Z) =3, for any n.
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Proof. Since the Cp-action on M is trivial, the total complex of (D**(M©?), 8, 6")
is isomorphic to (P*) ® (C*(M®?,Z),5*) where (P*) is the cochain complex
2727273 . Hence, by Kiinneth formula, H2 (MC, Z)=H"(D**(MC))
is equal to !
P v Py H (M Z)+ @ Tory(HP*),H' (M, Z)).
k+l=n k+l=n+1

Since H*(P*) is either F, or 0 depending if k even or odd, the proof follows. [

4. Cyclic group actions on number fields

This section is devoted to proofs of Theorems 1.1(2) and 1.3(2). Our original proof
of these results was based on the class field theory and the properties of idele group,
cf. [Si]. However, as suggested to us by the referee, the proofs presented here are
based on the work of Conner and Hurrelbrink, [CH]. Given a Galois extension
L/K with Gal(L/K) = C, they have defined a hexagon

(G, CUL)—2— HY(C,, 0F)

R(L/K)

20 Jo

a

H°(C,, 0}) —2— H°(C,, CI(L))

and proved that it is exact!

4.1. Proof of Theorem 1.1(2)

Let p, denote the torsion part of Of. Since p, is cyclic, dimy, bis 1(Cp7 ) <1
and the exact sequence

ﬁl(cznﬂ*) - Hl(Cp7 o) — ﬁl(czn O/ k)
implies
dimp, H'(Cp, OF) < 1+ dimg, H'(Cp, Hyree(L)). (4)
(Recall that Hyyee(L) = OF /pus.)
By [CH, Thm. 5.1], the p-rank of R;(L/K) is so (the number of finite ramified

primes) and, therefore, Theorem 1.1(2) follows from (4) and the exact hexagon of
Conner and Hurrelbrink.

1 Note that the Tate cohomology groups are denoted by H*(Cp,-) in [CH].
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4.2. Proof of Theorem 1.3(2)

By [CH, Lemma 9.1] the assumptions of Theorem 1.3(2) imply that j; is onto.
Now the theorem follows from [CH, Thm. 4.2] stating that the p-rank of R°(L/K)
iss—1.

5. Examples

We end this paper with two examples of group actions on 3-manifolds illustrating
various anomalies related to cyclic group actions on 3-manifolds. The first example
shows that the inequality of Theorem 1.1(1) is sharp and that the assumption
Hpee(M) = 0 of Corollary 1.5 is necessary.

Example 5.1. Consider a Cp-action on the lens space L(p,1) with two circles
of fixed points. (L(p, 1) is obtained from two handlebodies identified along their
boundaries. C), acts on each of these solid tori by rotation along their cores. These
actions give rise to the desired Cp-action on L(p,1).) Let U be an open ball in
L(p,1) such that UNglU = for all g # e in C,.

Consider now a C-action on S3 with one circle of fixed points. Let V' be an
open ball in S* such that VN gV = 0 for all g # e in Cp, and let ¥ : 9V —
OU be any homeomorphism. By removing the balls gU from L(p,1) and the
balls gV from S® and by identifying the boundary spheres of L(p, 1)\ Ug gU and
S2\ U , 9V by the homeomorphisms g¥g~! : g0V — goU, we obtain a closed
3-manifold M with a Cj-action. Since L(p,1)/C, = S* and $%/C, = S*, we
have M/C, = L(p,1)/Cp#5%/C, = S*. Simple calculations show that Hy(M) =
Fp®ZE]/(1+E+---+&P71), where Cp acts on Z[€]/(1+&+- - +£P 1) by -€ and it
acts trivially on F,. Hence H?(Cp, Hior(M)) = Fp, and HY(Cp, Hyree(M)) = Fy,.
In this example s = 3.

The second example shows that the assumption H,ee(M/Cp) = 0 in Theorem
1.1(1) is necessary. Furthermore, it shows that the assumption in Theorem 1.3(1)
saying that Hi(M) = Hyor(M)® H frec(M) as Cp-modules is also necessary. (Take
n=1, k= p below.)

Example 5.2. (Based on an idea of J. Hempel.) Let ¢ be a Dehn twist on the
torus T" and let My, be the 3-manifold obtained from 7'x [0, 1] by identifying T'x {0}
with T'x {1} via ¢*. Assume that ¢ fixes neighborhoods of points py, ..., p, and
consider knots {p;} x S! with the framing v; x S*, where v; is an arbitrary tangent
vector to T" at p;. By performing the surgery along these framed knots we obtain a
new manifold Mj, ,,. If p divides k then the map (z,t) — (¢(z)*P,¢ 4+ 1/p mod 1)
defines a C,-action on Mj which survives the surgery. We have H(M;,Z) =
Z®ZD LIk and Hi (Mg, Z) = Z" ® Z/k, for n > 1. Farthermore, H{(M, »,,Z)
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decomposes as a Cj,-module into a sum Z" '@ Z® Z/p, with the trivial action on
the first summand and the action

ZOZLlp—ZOZLlp, (w,y)— (z,2+y)
on the second summand. For this action
H2(0p7 Htor(Mp,n)) - Fm Hl(sz HfT@@(Mpm)) =0,
and s = n. Note also that M, ,/Cp = M .
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