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Axiomatic homotopy theory for operads

Clemens Berger and Ieke Moerdijk

Abstract. We give sufficient conditions for the existence of a model structure on operads in
an arbitrary symmetric monoidal model category. General invariance properties for homotopy
algebras over operads are deduced.
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Introduction

Operads are a device for describing algebraic structures. Initially, they served to
define algebraic structures on topological spaces with constraints holding only up
to a coherent system of homotopies. Stasheff’s A..-spaces resp. Boardman, Vogt
and May’s F,.-spaces are spaces with a “homotopy associative” resp. “homotopy
commutative” multiplication, cf. [24], [4], [17]. The corresponding A..- resp. Foo-
operad is a deformation of the operad acting on strictly associative resp. strictly
commutative monoids. This method of deforming algebraic structures via operads
has recently received new interest, cf. Mandell [13], Kontsevich-Soibelman [12],
Hinich [10], and others.

Symmetric operads may be defined in any symmetric monoidal category. We
propose here a general homotopy theory for such operads by means of Quillen
closed model categories [19]. We show that under certain conditions the (reduced)
operads of a symmetric monoidal model category carry a model structure, with
weak equivalences and fibrations defined on the level of the underlying collections.
These conditions concern the existence of a suitable “interval” with comultipli-
cation; they are easy to verify, and are well known to hold in many standard
situations. In particular, they hold for topological, simplicial and chain operads.
Our approach may be compared with Hinich [10], Spitzweck [23] and Vogt [25],
but is much more elementary, since it relies on the existence of path-objects rather
than on an intricate analysis of pushouts. Our method also immediately extends
to coloured operads.
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The principal benefit of a model structure on operads is an intrinsic definition
of homotopy algebras over an operad, namely as the algebras over a cofibrant
replacement of the given operad, cf. Markl [15]. The algebras over cofibrant oper-
ads carry a model structure for which a variant of the Boardman—Vogt homotopy
invariance property holds. A larger class of operads, here called admissible -
cofibrant, will be shown to induce the same homotopy theory for their algebras
as any of their cofibrant replacements. This is important, since most of the com-
monly used E,.-operads are actually Y-cofibrant, but not cofibrant. As main
comparison theorem, we show that the base-change adjunction with respect to
a weak equivalence of admissible Y-cofibrant operads induces an equivalence of
the corresponding homotopy categories of algebras. We also compare homotopy
algebras in different symmetric monoidal model categories: for instance, the ho-
motopy category of simplicial F.-algebras is equivalent to the homotopy category
of topological F.-algebras.

The plan of this article is as follows:

Section 1 first reviews the basic concepts involving operads and algebras over
an operad in an arbitrary closed symmetric monoidal category. We then discuss
the dual notions of a cooperad and a coalgebra and define two convolution pairings
subsequently used for the construction of path-objects.

Section 2 recalls the basics of (monoidal) model categories with special emphasis
on the transfer of model structures.

Section 3 establishes the two main theorems giving sufficient conditions for the
existence of a model structure on operads with weak equivalences and fibrations
defined at the level of the underlying collections. We also discuss Boardman and
Vogt’s W-construction as well as a model-theoretic formulation of their homo-
topy invariance property. We finally discuss the standard examples (simplicial,
topological, chain and sheaf operads) where our method yields model structures.

Section 4 contains two comparison theorems: the first shows that the base-
change adjunction with respect to a weak equivalence of admissible -cofibrant
operads is a Quillen equivalence. The second shows that under mild assumptions, a
monoidal Quillen equivalence between monoidal model categories induces a Quillen
equivalence between mutually corresponding categories of “homotopy algebras”.

The Appendix contains complete proofs for some key properties of »-cofibrant
operads used in Section 4.
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P. May, B. Shipley, J. Smith and B. Toen for helpful discussions. The detailed
comments of the referee have been much appreciated. This work has been sup-
ported by the SFB at Bielefeld/Osnabriick, the EU-project Modern Homotopy
Theory and the Netherlands Science Organisation (NWO).
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1. Operads, algebras and convolution products

The main purpose of this section is to discuss the “convolution operad” associated
to a cooperad and an operad, as well as the “convolution algebra” associated to
a coalgebra and an algebra. We begin by recalling some standard notation and
terminology concerning operads and algebras.

Throughout this paper, £ = (£, ®,1,7) is a fixed closed symmetric monoidal
category. We assume that £ has small colimits and finite limits. The closedness of
& means that the functor — ® X has a right adjoint, denoted (—)~. Every sym-
metric monoidal category is equivalent to one with a strictly associative monoidal
structure. Therefore, the bracketing convention for multiple tensor products is not
really important; we adopt a bracketing from left to right, which seems best suited
with respect to the adjunction with the internal hom.

For a discrete group G, we write £ for the category of objects in £ with a
right G-action. It is again a closed symmetric monoidal category, and the forgetful
functor £4 — & preserves this structure and has a left adjoint, denoted (—)[G].
This applies in particular to each of the symmetric groups ».,,, where for consis-
tency Yo and Y1 both denote the trivial group. The product of the categories £~
is called the category of collections, and denoted

Coll(€) = [ €™

n>0

Its objects are written P = (P(n))p>0. Each collection P induces an endofunctor
(again denoted) P : £ — &, by

P(X) =] P(n) @z, X"
n>0

This endofunctor has the structure of a monad if the defining collection is an
operad, which means that P comes equipped with a unit / — P(1) and with a
family of structure maps

Plk)® P(ny)® - -® P(n,) — P(ny+ -+ ng)

satisfying well known equivariance, associativity and unit conditions. For more
details, see e.g. Boardman—Vogt [4, lemma 2.43], May [17, def. 1.1] and Getzler—
Jones [7, def. 1.4]. The category of operads in £ is denoted by Oper(E).
A cooperad is a collection C equipped with a counit C(1) — I and structure
maps C(ni1+---+ng) — Clk)®C(n1)®- - -@C(ny) satisfying the dual conditions.
If C is a cooperad and P is an operad, then the collection P¢ defined by

PC(n) = P(n)°™

(with the usual ¥,-actions by conjugation on the exponent) has a natural convo-
lution operad structure with structure maps given by
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PPk)®P%(n1) ®--- @ P°(ng) = (P(k) ® - - - ® P(ny))C(R®®C(x)
— Plny+ -+ nk)c(”1+"'+nk)

A (commutative) Hopf object is an object H = (H, m, 7, A, €) such that (H, m, n)
is a (commutative) monoid, (H, A, €) a comonoid and m, 7 are maps of comonoids
(resp. A, e maps of monoids). Here, the symmetry 7 of £ enters in an essential
manner. The category of commutative Hopf objects in £ is denoted by Hopf(E).
If the tensor of £ is the cartesian product, any monoid H has a canonical Hopf
structure, given by the diagonal A : H — H x H and the unique mape: H — I
to the terminal object.

Each commutative Hopf object H defines a cooperad T'H with underlying col-
lection given by (T'H)(n) = H®". For n = mnq + - -- + ng, the structure map

H® - H®% @ %™ & ... H®

is the composite of the comonoid structure H®" — H®" @ H®" on H®" with the
map p® 1, where i : H®" =~ H®™ ... H®" is the canonical isomorphism, and
p: H® — H®F is the composite of i with the product on each of the k tensor
factors. The commutativity of H guarantees that the equivariance conditions for
the cooperad T'H are satisfied.

For any operad P, a P-algebra A is an object of £ equipped with structure
maps P(n) ® A®" — A n > 0, satisfying well known equivariance, associativity
and unit conditions, cf. [4], [17], [7]. Dually, a P-coalgebra B is an object of &£
equipped with structure maps P(n) ® B — B®" satisfying the dual conditions.

We denote the category of P-algebras by Alg, and the category of P-coalgebras
by Coalgp. A P-algebra structure on A corresponds also to an operad map
P — &4 with values in the endomorphism-operad, defined by Ea(n) = ALA®™)
with the natural compositional operad structure, cf. Smirnov [22]. Dually, a P-
coalgebra structure on B corresponds to an operad map P — £7° with values in
the coendomorphism-operad, defined by £7F (n) = (B®™)P. The product P ® Q of
two operads is defined by (P ® Q)(n) = P(n) ® Q(n) with the obvious structure
maps.

Proposition 1.1. There are natural convolution pairings
Hopf(&€)°P x Oper(€) — Oper(€)

Coalgyy x Algp — Algpgg.

Proof. The first pairing maps a commutative Hopf object H and an operad P to
the convolution operad PTH. The second pairing maps a Q-coalgebra B and a
P-algebra A to the object AP equipped with the following P® Q-algebra structure:
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(P ®Q)(n)® (AP)®™ = P(n) ® (A®)®" @ Q(n)
— AW®M o (A®n)(B®") ® (B®™)B
—>: AB. |:|

Note that, in particular, if P is an operad with diagonal A : P — P® P (e.g.
P is a Hopf operad), the second pairing for P = @ together with the pullback
along A defines a convolution product Coalg?’ x Algp — Algp.

There is also a convolution product of a P-algebra A and a C-coalgebra B (for
a cooperad C) yielding a P®-algebra A, but we will not use this construction in
this paper.

2. Background on model categories
2.1. Model categories

In this paper, a model category always means what Quillen calls a closed model
category [19, 1.5]. An adjoint pair between model categories is a Quillen pair if
the left adjoint preserves cofibrations and the right adjoint preserves fibrations.
This implies that the adjoint pair passes to the homotopy categories. If the de-
rived adjoint pair between the homotopy categories is an equivalence, the original
Quillen pair is called a Quillen equivalence.

A model category is left proper, if the class of weak equivalences is closed under
pushouts along cofibrations. A sufficient condition for left properness is that all
objects of the model category be cofibrant.

In any model category, the colimit functor sends weak equivalences of directed
Reedy-cofibrant diagrams to weak equivalences, cf. [6, prp. 11.5]. This implies
in particular that a horizontal ladder of cofibrations between cofibrant objects in
which all vertical maps are weak equivalences yields a weak equivalence in the
colimit, a fact needed in the Appendix.

2.2. Monoidal model categories

A monoidal model category is a closed symmetric monoidal category endowed with
a model structure subject to the following pushout-product axiom (cf. [21]):

For any pair of cofibrations f : X — Y and f’ : X’ — Y”, the induced map
(XY )Uxegx (Y ® X') = Y ®Y'is a cofibration, which is trivial if f or f’ is
trivial. In particular, tensoring with cofibrant objects preserves cofibrations and
trivial cofibrations. However, the tensor product of two (trivial) cofibrations is in
general not a (trivial) cofibration, cf. (3.6).
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We shall repeatedly use the following basic lemma:

Lemma 2.3. Let f : X — Y be a map between cofibrant objects of a monoidal
model category. If f is a weak equivalence, then for every fibrant object Z, the
induced map * : ZY¥ — Z% is a weak equivalence. The converse holds as soon as
the unit of the monoidal model category is cofibrant.

Proof. For a trivial cofibration f, the first assertion is true by exponential trans-
position and the dual of pushout-product axiom. K. Brown’s lemma allows us to
conclude the proof, cf. [11, lemma 1.1.12]. Conversely, assume that f* is a weak
equivalence for fibrant objects Z. Then, since the unit I of the monoidal model
category & is cofibrant, f* induces a bijection Ho(&)(I, ZY) — Ho(&)(I, ZX) in
the homotopy category. The tensor-hom adjunction is compatible with the homo-
topy relation, so that we obtain a bijection Ho(£)(Y, Z) — Ho(&)(X, Z) for every
fibrant object Z. Therefore, Ho(£)(f) is an isomorphism, which shows that f is
a weak equivalence. O

2.4. Symmetric monoidal functors and fibrant replacement functors

A functor F: (D, ®p, Ip, ™) — (€, ®¢, l¢, Te) between symmetric monoidal cat-
egories is symmetric monoidal if F' comes equipped with a unit I — F(Ip) and
a binatural transformation F'(X)®g F(Y) — F(X @p Y) satisfying familiar unit,
associativity and symmetry conditions, cf. [14, I111.20]. A symmetric monoidal
functor maps commutative monoids to commutative monoids, and operads to op-
erads. A symmetric monoidal functor is said to be strong if the structure maps
are isomorphisms. For instance, any product-preserving functor between cartesian
closed categories is strong symmetric monoidal.

A fibrant replacement for an object X is a weak equivalence X —— X with
fibrant codomain. If this weak equivalence is part of a natural transformation
idg — (—) we say that the model category admits a fibrant replacement functor.
This fibrant replacement functor is called symmetric monoidal if the functor (—)
is symmetric monoidal and the structure maps X ® ¥ — (X ® Y) are defined
under X ® Y.

2.5. Cofibrant generation and transfer of model structures

A model category is cofibrantly generated if the category is cocomplete and admits
generating sets of (trivial) cofibrations with small domains, cf. Dwyer—Hirschhorn—
Kan [6, 11.7.4] and Hovey [11, II.1], who use a slightly more general concept.
“Small” means A-small for some regular cardinal A and “generating” means that
the fibrations (resp. trivial fibrations) are characterized by their right lifting prop-
erty with respect to the generating trivial cofibrations (resp. cofibrations).
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With respect to a given set of generating (trivial) cofibrations, a (trivial) cellu-
lar extension is a sequential colimit of pushouts of generating (trivial) cofibrations.
A cellular object is a cellular extension of the initial object. In a cofibrantly gener-
ated model category, each (trivial) cofibration is a codomain-retract of a (trivial)
cellular extension. In particular, each cofibrant object is a retract of a cellular
object.

Cofibrantly generated model structures may be transferred along the left ad-
joint functor of an adjunction. The first general statement of such a transfer in
the literature is due to Crans [5].

Transfer principle: Let D be a cofibrantly generated model category and let
F:D S £ G be an adjunction with left adjoint F' and right adjoint G. Assume
that £ has small colimits and finite limits. Define a map f in £ to be a weak
equivalence (resp. fibration) iff G(f) is a weak equivalence (resp. fibration). Then
this defines a cofibrantly generated model structure on £ provided

(i) the functor F' preserves small objects;

(ii) any sequential colimit of pushouts of images under F' of the generating
trivial cofibrations of D yields a weak equivalence in &.

Condition (i) holds for instance if G preserves filtered colimits.

2.6. Quillen’s path-object argument

In practice, the condition (ii) above is the crucial property to be verified. This
is often hard, but there is one special case in which an argument of Quillen’s
vields (ii). Recall that a path-object for X is a factorisation of its diagonal into a
weak equivalence followed by a fibration X — Path(X) — X x X. Assume, the
following two conditions hold:

(a) € has a fibrant replacement functor;
(b) &€ has functorial path-objects for fibrant objects.

Then condition (ii) for transfer is satisfied, cf. [19, 11.4], [20, 7.6], [21, A.3]. If
all objects in &£ are fibrant, (a) of course becomes redundant, since the identity
serves as fibrant replacement functor.

3. Model structure on operads

This section gives sufficient conditions for the category of operads of a monoidal
model category to have a model structure. We shall see below that these conditions
are easy to verify in many standard examples. If the model structure on & is
cofibrantly generated, the transfer principle (2.5) implies that for any discrete
group G, the model structure on & lifts to a model structure on £%, in which a
map is a weak equivalence (resp. fibration) iff it is so once we forget the G-action.
It follows that Coll(£) is a cofibrantly generated model category, in which a map
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P — @ is a weak equivalence (resp. fibration) iff for each n, the map P(n) — Q(n)
is a weak equivalence (resp. fibration) in £. Using the path-object argument (2.6),
we shall transfer this model structure along the free-forgetful adjunction

F : Coll(€) & Oper(€) : U

(or a similar adjunction between reduced collections and reduced operads as de-
fined below).

In the underlying category &, the unit I is a commutative Hopf object, by the
canonical isomorphism I ® I — I and its inverse. The coproduct [ U [ is also
a Hopf object in a natural way. Indeed, if we label the two summands with the
elements of Z/2Z, then the multiplication on I U [ is induced by that of I and the
one on Z/27Z, while the comultiplication is induced by that of I and the diagonal
of Z/2Z. Furthermore, the folding map IUI — [ is a map of Hopf objects. We say
that & admits a (commutative) Hopf interval if this folding map can be factored
into a cofibration followed by a weak equivalence

Tul—H =T

where H is a (commutative) Hopf object and both maps are maps of Hopf objects.

The homotopy theory of operads suffers from the fact that by the very definition
of an operad, the O-th term P(0) is the initial object of the category of P-algebras,
and that moreover the P-algebras under a fixed P-algebra A are the algebras for
another operad, whose 0-th term is A. Therefore, the homotopy theory of operads
subsumes the homotopy theory of algebras over a given operad, and inherits the
difficulties of the latter. For instance, for monoidal model categories which are not
cartesian closed, commutative monoids in general do not admit a well behaved
homotopy theory, so that general operads do not have a well behaved homotopy
theory either. In order to avoid this mixture of the operad and algebra levels,
we introduce the category of reduced operads. An operad P is reduced if P(0)
is the unit of £. A map of reduced operads is a map of operads ¢ : P — Q
such that ¢(0) : P(0) — Q(0) is the identity. Observe that the action (1.1) of
commutative Hopf objects on operads restricts to reduced operads, and that the
collection underlying a reduced operad is in fact a collection in £/1.

Theorem 3.1. Let £ be a monoidal model category with unit I such that

e & is cofibrantly generated and its unit is cofibrant;

e £/1 has a symmetric monoidal fibrant replacement functor;

e £ admits a commutative Hopf interval.
Then, there is a cofibrantly generated model structure on the category of reduced
operads, in which a map P — Q) is a weak equivalence (resp. fibration) iff for each
n >0, the map P(n) — Q(n) is a weak equivalence (resp. fibration) in E.

Proof. We shall construct the model structure on operads by transfer (2.5) using
the path-object argument (2.6). The category of reduced operads is cocomplete
and finitely complete, since the same is true for the category of reduced collections
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in £/1, and since the forgetful functor from reduced operads to reduced collections
in £/1 is monadic and preserves filtered colimits.

Let P be a reduced operad and P be the collection defined by P(0) = P(0)
and P(n) = P(n)if n > 0, where X — X is the symmetric monoidal fibrant
replacement functor in £/I. Then the operad structure on P induces an operad
structure on P, so that P is a fibrant replacement for P in the category of reduced
operads. Thus, (2.6a) holds.

Assume now that P is a fibrant reduced operad. The construction (1.1) applied
to the Hopf interval H and to P yields a functorial path-object:

p=prl >, prd _, prUul) , plypl_pxp

Indeed, the n-fold tensor product (IUI)®" — H®" is a cofibration by the pushout-
product axiom and the assumption that I is cofibrant. Therefore, PTH# — pTUUI)
is a fibration. The canonical map PTUUD — PT x PT induces for each n the
projection P(n)") — P(n)? onto the first and last factor. Since P is fibrant, this
is a fibration for » > 1. This shows that PTH — P x P is a fibration. Moreover,
since H — I admits a trivial cofibration as section, the n-fold tensor product
H®" — [®" is a weak equivalence between cofibrant objects, whence P — PTH
is a weak equivalence by (2.3). Thus, (2.6b) holds and the transfer applies. O

If the monoidal structure is cartesian closed, we can weaken the hypotheses.
Furthermore, the restriction to reduced operads isn’t necessary in this case:

Theorem 3.2. Let € be a cartesian closed model category such that
e & is cofibrantly generated and the terminal object of £ is cofibrant;
e &£ has a symmetric monoidal fibrant replacement functor.

Then, there is a cofibrantly generated model structure on the category of operads,
in which a map P — () is a weak equivalence (resp. fibration) iff for each n, the
map P(n) — Q(n) is a weak equivalence (resp. fibration) in &.

Proof. The first part is identical to the preceding proof, except that we put ]3(0) —
P(07 this time, and use unreduced operads and collections. For the construction
of a functorial path-object for fibrant operads, we use the fact that in a cartesian
closed category exponentiation is product-preserving and hence strong symmetric
monoidal. This implies that for any interval I U — J — I, mapping into a

fibrant operad P yields a path-object in the category of operads: P = PT =
Pl plUl=pxp, O

The above proof can be adapted to a slightly more general situation: Indeed,
Theorem 3.2 remains true for a cofibrantly generated monoidal model category £
having a cofibrant unit, a symmetric monoidal fibrant replacement functor and an
interval with a coassociative and cocommutative comultiplication.
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3.3. Examples

3.3.1. Simplicial operads. The category of simplicial sets is a cartesian closed
model category, in which the cofibrations are the monomorphisms and the weak
equivalences are the realization weak equivalences. The pushout-product axiom
is well known in this case. The model structure is cofibrantly generated by the
boundary-inclusions (resp. horn-inclusions) of the standard n-simplices. As sym-
metric monoidal fibrant replacement functor, we can choose either Kan’s EFz*
functor or the singular complex of the geometric realization functor, since both are
product-preserving. Therefore, simplicial operads form a model category by (3.2).

This fact could also have been deduced from Quillen’s theorem [19, I1.4] that
the simplicial objects of a (cocomplete, finitely complete) category with a set of
small projective generators admit a canonical model structure. Indeed, operads
in sets form such a category. Since the projective generators represent evaluation
at n, Quillen’s structure coincides with ours. There is another model structure
on simplicial operads, obtained by restricting Rezk’s model structure [20, 7.5] on
simplicial theories to simplicial operads. The class of weak equivalences for this
model structure is smaller: in particular, two simplicial operads are weakly equiv-
alent for Rezk’s model structure if and only if they define equivalent homotopy
categories of algebras [20, 8.6], which is in general not true for our model structure,
cf. however (4.4) below.

3.3.2. Topological operads. The category of compactly generated spaces is
a cartesian closed model category, in which the weak equivalences are the weak
homotopy equivalences and the fibrations are the Serre fibrations, cf. [19, 11.3].
The pushout-product axiom follows from the fact that this model structure on
topological spaces is obtained by transfer from the model structure on simplicial
sets along a product-preserving realization functor. The model structure is cofi-
brantly generated by the sphere (resp. ball) inclusions and all objects are fibrant.
Therefore, topological operads form a model category by (3.2).

3.3.3. Chain operads. For any commutative ring R with unit, the category
Ch(R) of Z-graded chain complexes of R-modules is a cofibrantly generated monoi-
dal model category with quasi-isomorphisms as weak equivalences and epimor-
phisms as fibrations, cf. [11, 2.3]. The normalized R-chain functor N : Sets®” —
Ch(R) is symmetric monoidal. The structure maps are given by the Eilenberg-
Zilber shuffle map. The normalized R-chain functor also carries a comonoidal
structure given by the Alexander—Whitney diagonal; the latter is however not sym-
metric. Moreover, there is a mixed associativity relation relating the monoidal and
the comonoidal structure, which implies that N2 sends Hopf objects to Hopf ob-
jects; in particular, the image NE(A[1]) of the standard simplicial interval A[1] is
a commutative (but not cocommutative) Hopf interval in the category of R-chain
complexes. The unit of Ch(R) is R concentrated in degree 0, which is clearly cofi-
brant. All objects have a fibrant replacement over the unit. Therefore, reduced
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R-chain operads carry a model structure by (3.1).

This has been proved by Hinich using a different method [10]. Hinich is not
explicit about the 0-th term of his operads. There is however no transferred
model structure for unreduced R-chain operads, because the coproduct with the
operad Com for commutative R-chain algebras does not send trivial cofibrations
of unreduced operads to weak equivalences.

3.3.4. Sheaf operads. Generalizing the examples above, we can consider simpli-
cial objects (resp. R-chain complexes) in the topos Sh(T) of set-valued sheaves on
a small site T of finite type. According to a widely circulated letter from A. Joyal
to A. Grothendieck, there is a cofibrantly generated monoidal model structure on
both categories with monomorphisms as cofibrations and “stalkwise weak equiva-
lences” as weak equivalences. In the simplicial case, the pushout-product axiom is
easy to verify; in the R-chain-complex case, the pushout-product axiom only holds
if R is a field. Morel-Voevodsky [18, 2.1.66] show that the category of simplicial
sheaves on a site T of finite type admits a symmetric monoidal fibrant replace-
ment functor. If R is a field, such a replacement functor can also be constructed
for R-chain complexes in Sh(T). Moreover, in the latter case, the constant sheaf at
NE(A[1]) is a Hopf interval. Therefore, simplicial operads (resp. reduced R-chain
operads) in Sh(T) carry a model structure by (3.2) (resp. 3.1). In particular, there
exists a “continously varying” simplicial (resp. R-chain) F..-operad on T.

Remark 3.4. Boardman and Vogt [4, 111.1] define for each topological operad
P an operad WP with the property that WP-algebras may be considered as
homotopy P-algebras. In Section 4, we define homotopy P-algebras as the algebras
over a cofibrant replacement for P. The relationship between these two notions of
homotopy algebras is established by the following property of the W-construction,
where a topological operad P is called well-pointed (resp. Yi-cofibrant) if the unit
I — P(1) is a cofibration (resp. the underlying collection is cofibrant):

for any well-pointed Y:-cofibrant operad P, the augment-
ation €p : WP —= P is a cofibrant replacement for P.

This statement is essentially proved by Vogt [25, thm. 4.1]. We have shown that
the W-construction for operads can be defined in any monoidal model category
& equipped with a suitable interval H, and that it defines a functorial cofibrant
replacement in this general context. The proof is rather technical, and will be
presented in [3].

Endomorphism-operads are not reduced, since £x(0) = X. However, any ob-
ject X wnder I defines a reduced endomorphism-operad Ex. If P is reduced, a
P-algebra structure on X is also equivalent to a base point I — X together with an
operad map P — Ex. If we dispose only of a model structure for reduced operads,
we tacitly assume that our objects are based, and that our endomorphism-operads
are the reduced ones. The following theorem is a model-theoretic formulation of
Boardman and Vogt’s homotopy invariance property [4, thm. 4.58].
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Theorem 3.5. Let f : X — Y be a (based) map between (based) objects of a
monoidal model category in which the (reduced) operads carry a transferred model
structure; let P be a cofibrant operad.

(a) If Y is fibrant and f®" is a trivial cofibration for each n > 1, then any
P-algebra structure on X extends (along f) to a P-algebra structure on'Y.

(b) If X is cofibrant and f is a trivial fibration, then any P-algebra structure
on'Y lifts (along f) to a P-algebra structure on X.

(¢) If X and Y are cofibrant-fibrant and f is a weak equivalence, then any P-
algebra structure on X (resp. Y ) induces a P-algebra structure on'Y (resp. X ) in
such a way that f preserves the P-algebra structures up to homotopy.

The latter statement means precisely that f admits a factorization into a trivial
cofibration f; : X — Z followed by a trivial fibration fs : Z — Y such that f; is
a P-algebra map with respect to a structure map ¢ : P — &z, fo is a P-algebra
map with respect to a structure map ¢, : P — £z, and the structure maps ¢; and
@9 are homotopic in the model category of operads (the homotopy relation is well
defined since P is a cofibrant operad and £z is a fibrant operad).

Proof. We define a collection £x y by Exy(n) = YX®™) . The endomorphism-
operad &; of f is defined by the following pullback-diagram of collections:

gf —>5X

[l

& — Exy

(Set theoretically, £f(n) = {(¢,%) € Ex(n) x Ey(n)|fo = ¥ f*"}.) From the
operads £x and &y the collection & inherits the structure of an operad. Moreover,
f is compatible with the P-algebra structure maps P — £x and P — &y if and
only if these are induced by an operad map P — &;.

Since trivial fibrations are closed under pullback, the exponential transpose of
the pushout-product axiom shows that under the hypothesis of (a), the horizontal
maps of the above diagram are trivial fibrations. Therefore, since P is a cofibrant
operad, the P-algebra structure map P — £y has alift P — &; — &y which yields
the required P-algebra structure on Y. Dually, the hypothesis of (b) implies that
Er — &y Is a trivial fibration, whence the required lift of the P-algebra structure
map P — &y to P — & — Ex.

Assume now that f is a weak equivalence between cofibrant-fibrant objects and
that X comes equipped with a P-algebra structure. The weak equivalence f factors
into a trivial cofibration f; : X — Z followed by a trivial fibration fy : Z — Y.
Since X and Y are cofibrant, we may assume that fy admits a trivial cofibration
as section; in particular, the tensor powers of fy are weak equivalences between
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cofibrant objects, cf. (3.6), and we get a pullback diagram of fibrant collections

5f2 — gZ

l o) l(fz)*

gy—>g ZY

in which the vertical maps are trivial fibrations and the horizontal maps are weak
equivalences. It follows that for the cofibrant operad P, the upper horizontal map
¢ induces a bijection between homotopy classes

[P7¢] : [P,ng] = [P’gZ]

Since fi is a trivial cofibration, the P-algebra structure map P — Ex extends to a
P-algebra structure map ¢ : P — £z. The latter has a (up to homotopy unique)
lift ¢ : P — &y, such that ¢ and ¢o = ¢p are homotopic. The composite map
P — &, — & yields the required P-algebra structure on Y.

A dual argument shows that a P-algebra structure on Y induces a P-algebra
structure on X in such a way that f preserves the P-algebra structures up to
homotopy in the above mentioned sense. O

Remark 3.6. The slight asymmetry between (3.5a) and (3.5b) is due to the fact
that the tensor powers of a trivial cofibration are in general not trivial cofibrations,
cf. (2.2). The latter becomes true if the domain of the considered trivial cofibration
is cofibrant, or more generally, if the monoidal model category has a generating
set of trivial cofibrations with cofibrant domains, cf. (2.5). Therefore, property
(3.5a) shows that if the generating trivial cofibrations of the underlying model
category have cofibrant domains, then the category of algebras over a cofibrant
operad admits a fibrant replacement functor.

4. Comparison theorems

Throughout this section, £ is a monoidal model category satisfying either the
hypotheses of (3.1) or the hypotheses of (3.2); in particular, £ is assumed to have
a cofibrant unit. Thus, (reduced) operads in £ carry a model structure. An operad
P is called admissible if the category of P-algebras carries a model structure which
is transferred (2.5) from & along the free-forgetful adjunction Fp : £ S Algp : Up.
Under mild assumptions on &, cf. (4.2), cofibrant operads are admissible. For
an arbitrary operad P, we define “the” category of homotopy P-algebras as the
category of P-algebras for some cofibrant replacement P of P. We will show that
this category is well defined up to Quillen equivalence (Corollary 4.5 below).
Recall that an operad P is Y.-cofibrant if the collection underlying P is cofibrant.
The main purpose of this section is to show that for an admissible >:-cofibrant op-
erad P, the category of P-algebras and the category of homotopy P-algebras have
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equivalent homotopy categories. The class of admissible Y-cofibrant operads in-
cludes most of the commonly used A..- and F..-operads. The difference between
cofibrant and admissible Y.-cofibrant operads is reminiscent of the difference be-
tween projective and flat objects in homological algebra.

An operad P is called X-split if P is retract of P® .Ass where Ass is the operad
acting on associative monoids. A definition resembling this occurs in [10].

We first give some criteria for an operad to be admissible, using again the
path-object argument (2.6). Observe in particular that (4.1b) holds under the
hypotheses of (3.1), and (4.1¢) holds under the hypotheses of (3.2).

Proposition 4.1. Let £ be a cofibrantly generated monoidal model category with
cofibrant unit and symmetric monoidal fibrant replacement functor.

(a) If there exists an operad map j: P — P ® Q and an interval in £ with a
Q-coalgebra structure, then P is admissible.

(b) If there exists an interval in € with a coassociative comultiplication, then
Yi-split operads are admissible.

(c) If there exists an interval in € with a coassociative and cocommutative
comultiplication, then all operads are admissible.

Proof. (a) implies (b) resp. (¢), putting @ = Ass resp. @ = Com, where Com(n) =
1 is the operad for commutative monoids and Ass(n) = I[%,] is the operad for
associative monoids.

For (a), we can use the path-object argument, since the forgetful functor
Algp — & preserves filtered colimits. Let A be a P-algebra. The symmetric
monoidal fibrant replacement functor A — A induces a P-structure on A, where
i P =5 P is the fibrant replacement for P. This yields a fibrant replacement
functor A —> i*A for P-algebras. Moreover, for any P-algebra A, mapping the
Q-coalgebraic interval J into A yields a P ® Q-algebra A7 by (1.1). Thus, j*(A7)
defines a functorial path-object for fibrant P-algebras using (2.3), the pushout-
product axiom and the hypothesis that the unit is cofibrant. Therefore, the model
structure of & transfers to Algp and P is admissible. O

Remark 4.2. Spitzweck [23, thm. 4.3] proves the admissibility of cofibrant op-
erads under the hypothesis that the monoid aziom of Schwede-Shipley [21] holds.
In many examples, the admissibility of cofibrant operads may be established using
(4.1): all topological resp. simplicial operads are admissible by (4.1¢). Cofibrant
chain operads are admissible by a construction of [2, thm. 2.1.1]: indeed, in the

category of R-chain operads there exists a Y-cofibrant resolution &, 5 Com to-
gether with a canonical £.,-coalgebra structure on the standard R-chain interval.

For each R-chain operad P, this induces a trivial fibration P ® & 5 P; for
cofibrant operads P, the latter admits a section so that (4.1a) applies.

Proposition 4.3. Cofibrant operads are Y-cofibrant.
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Proof. Any cofibrant operad is retract of a cellular operad, i.e. a cellular extension
of the initial operad, cf. (2.5). Since Y.-cofibrant operads are closed under retract,
and since the initial operad is Y-cofibrant, it is enough to show that the class of
Y-cofibrant operads is closed under cellular extensions: this is done in (5.2). O

Theorem 4.4. In a left proper monoidal model category (with cofibrant unit), the
base-change adjunction with respect to a weak equivalence of admissible Y:-cofibrant
operads is a Quillen equivalence.

Proof. Let ¢ : P — @ be a weak equivalence of admissible >-cofibrant operads.
The base-change adjunction ¢ : Algp = Algg, @ ¢* is a Quillen pair since by
the definition of the model structures, the restriction functor ¢* preserves weak
equivalences and fibrations, so that its left adjoint ¢, preserves cofibrations. Since
¢* also reflects weak equivalences, the derived adjunction is an equivalence if (and
only if) the unit induces a weak equivalence A — ¢*¢ A for each cofibrant P-
algebra A. Since any cofibrant P-algebra is retract of a cellular P-algebra (2.5)
and we assume that the model category is left proper, this follows from (5.7). O

We define a Y:-cofibrant resolution of P to be a Y-cofibrant operad P, together

with a trivial fibration of operads Poo = P. Recall that the category of homotopy
P-algebras is the category of P-algebras for some cofibrant replacement P of P.

Corollary 4.5. Assume that cofibrant operads are admissible and that the un-
derlying model category is left proper (and has a cofibrant unit). Then for any
admissible Y:-cofibrant resolution Poy of P, the category of Px-algebras is Quillen
equivalent to the category of homotopy P-algebras.

Proof. A trivial fibration Pso = P induces a weak equivalence P = P, for any
cofibrant replacement P of P. Since P is Y-cofibrant, (4.3) and (4.4) imply that
the category of P-algebras is Quillen equivalent to the category of Py-algebras.[]

Remark 4.6. An admissible Y.-cofibrant resolution of the operad Ass (resp. Com)
is a so called Asc-operad (resp. Foo-operad). The corresponding algebras are A.o-
algebras (resp. Eoo-algebras). Under the assumption of (4.5), the homotopy cate-
gories of Ao resp. F.-algebras are up to equivalence of categories independent
of the chosen A..- resp. F.-operad.

Under the assumptions of (3.1) or (3.2), the operad Ass is itself admissible
Y-cofibrant. Indeed, the underlying collection is cofibrant since the unit of £ is
cofibrant. Moreover, there is a diagonal Ass — Ass ® Ass so that (4.1a) implies
that Ass is admissible. In other words, in any left proper monoidal model category
satisfying our hypotheses, associative monoids carry a transferred model structure
and by (4.4) A..-algebras may be rectified to monoids without loss of homotopical
information. In the topological case, this has been established by Stasheff [24],
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Boardman and Vogt [4, thm. 1.26] and May [17, thm. 13.5]. Schwede and Shipley
[21, thm. 3.1] prove the existence of a transferred model structure for associative
monoids under the assumption that the monoid axiom holds.

The homotopy theory of F.-algebras is more involved, since the operad Com
is not -cofibrant. We discuss examples (3.3):

4.6.1. Simplicial F_-algebras. The category of simplicial sets has a canoni-
cal E-operad given by the universal Y.,,-bundles WY,, (not to be confused with
Boardman and Vogt’s W-construction). The operad structure is induced by the
permutation operad, since the simplicial W-construction is product-preserving.
The category of W-algebras has been extensively studied by Barratt and Eccles
[1] for the construction of their infinite loop space machine. The comparison theo-
rem (4.7) below relates their simplicial approach to the more classical topological
approach.

4.6.2. Topological F.-algebras. The geometric realization of W) is a topo-
logical E..-operad. Boardman and Vogt’s little cubes operad C., is unlikely to
be Y-cofibrant for the model structure we consider, because of the lack of a suit-
able equivariant C'W-structure. Nonetheless, since the Y-actions are free, this
operad has similar invariance properties as Y.-cofibrant operads, cf. Vogt [25]. The
importance of the little cubes operad stems from its canonical action on infinite
loop spaces; the latter fully embed in C..-algebras and are characterized up to
homotopy as the group-complete C,.-algebras.

4.6.3. Fo-chain algebras. Since the normalized R-chain functor N is sym-
metric monoidal, it sends operads to operads. The normalized R-chains &, =
NE(WY) form thus a Y-free resolution of Com. Since NF is also comonoidal, we
get a diagonal &, — £, ® £. Fresse and the first named author construct in
[2, thm. 2.1.1] an E.-coalgebra structure on the chains (or dually, a E..-algebra
structure on the cochains) of any simplicial set. It follows from (4.1a), that £, is
admissible, i.e. an F..-operad for the category of R-chain complexes. According
to Mandell [13, main thm. |, an F-structure on the cochains of a nilpotent sim-
plicial set X is a complete invariant of the p-adic homotopy type of X, provided
that R is a field of characteristic p with surjective Frobenius map.

4.6.4. F.-ring spectra. No monoidal model category for stable homotopy can
simultaneously satisfy the first two hypotheses of (3.1), by a well known argument
due to Lewis, cf. [14, XIV]. However, all known models for stable homotopy are
enriched either in simplicial sets or in topological spaces. Therefore, it makes
sense to speak of simplicial (or topological) operad actions on spectra. In the
enriched case, Quillen’s axiom SM7 [19, 11.2] replaces the pushout-product axiom
and guarantees that Theorem (3.5) remains true for a cofibrant simplicial (or
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topological) operad P and a general map of spectra f: X — Y.

Property (3.5a) implies the existence of a fibrant replacement functor for the
category of spectra with P-algebra structure, provided that the generating trivial
cofibrations of the monoidal model category have cofibrant domains, cf. (3.6). The
suspension spectrum functor endows the category of spectra with an interval with
coassociative and cocommutative comultiplication. The argument of (4.1¢) then
yields a model structure on the category of spectra with P-algebra structure. In
particular, there is a model structure on A..- resp. E..-ring spectra in any of the
considered models for stable homotopy, provided that the chosen simplicial (or
topological) A.- resp. E-operad is cofibrant. Also, by the same argument as
above, any A..-ring spectrum may be rectified to an associative ring spectrum.

We conclude this section with the following comparison theorem for algebras
in Quillen equivalent model categories. For the precise statement we need the fol-
lowing definition: A monoidal Quillen equivalence between monoidal model cat-
egories (2.2) is a Quillen pair, which is simultaneously a Quillen equivalence and
a monoidal adjunction. An adjunction between symmetric monoidal categories is
said to be monoidal if the left and right adjoint functors are symmetric monoidal,
cf. (2.4), and moreover the unit and counit of the adjunction are monoidal trans-
formations. Observe that if the left adjoint of an adjoint pair is a strong symmetric
monoidal functor (2.4), then the right adjoint carries a natural symmetric monoidal
structure for which the adjunction is monoidal.

Theorem 4.7. Let (L, R) be a monoidal Quillen equivalence between monoidal
model categories in which the (reduced) operads carry a model structure. Let P
be a (reduced) operad in the domain of L. Assume either that L preserves weak
equivalences or that P(n) is cofibrant for all n. Then, the homotopy categories of
homotopy P-algebras and of homotopy LP-algebras are equivalent.

Proof. Since L is symmetric monoidal, L. maps operads to operads. Let P be
a cofibrant replacement of P. It follows by adjunction that LP is a cofibrant
operad, which by either of the two hypotheses is a cofibrant replacement for LP.
In particular, both P and LP are admissible. The functor L maps P-algebras
to Lp—algebras. The functor R maps LP-algebras to RLP-algebras, which we
consider as ﬁ—algebras via the unit P — RLP. Therefore, the adjunction (L, R)
lifts to an adjunction between ﬁ’—algebras and Lﬁ’—algebras.

The given Quillen equivalence (L, R) has the characteristic property that for
cofibrant objects A and fibrant objects B, a map LA — B is a weak equivalence if
and only if the adjoint map A — RB is, cf. [11, prp. 1.3.13]. Assume now that A is
a cofibrant ﬁ—algebra and B a fibrant Lﬁ—algebra. Since, according to (4.3), P has
an underlying cofibrant collection, it follows from (5.5) that A has an underlying
cofibrant object; moreover, B has an underlying fibrant object. Therefore, a LP-
algebra map LA — B is a weak equivalence if and only if the adjoint P-algebra
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map A — RB is, which establishes the equivalence of the homotopy categories of
homotopy P-algebras and homotopy LP-algebras. [l

The preceding theorem shows in particular that the notion of an F,.-algebra
is invariant under a monoidal Quillen equivalent change of the base category. In
particular, the homotopy category of simplicial F..-algebras is equivalent to the
homotopy category of topological F..-algebras.

5. Appendix

This Appendix establishes several key properties of Y-cofibrant operads which
are used in Section 4. These properties may to a large extent be derived from
Spitzweck’s work [23, 1.3.5 and 1.4.5]. Since his treatment uses the language of
semi-model structures, a topic we have not treated in this article, we give self-
contained proofs of those model-theoretic properties we need. The hard work is
actually concentrated in the proofs of (5.1) and (5.6), which we defer to the end
of this Appendix.

A map of operads ¢ is called a Y-cofibration, if U(¢p) is a cofibration, where
U : Oper(E) — Coll(€) is the forgetful functor from operads to collections. Recall
that an operad P is called >-cofibrant, if U(P) is cofibrant. A map of operads is
called a free cofibration if it is the image of a cofibration of collections under the
free functor F : Coll(£) — Oper(£). Any pushout of a free cofibration is called a
cellular extension, cf. (2.5). The reader may observe that the concept of a cellular
extension makes sense even if there is no model structure on operads.

Given an operad P and a cofibration of collections « : U(P) — K, we introduce
a special notation for the pushout of F(u) : FU(P) — F(K) along the counit
FU(P) — P, namely P — Plu], emphasizing that this pushout represents the
cellular extension of P generated by w.

Similarly, if A is a P-algebra and  : Up(A) — Z is a cofibration, we denote
by Alu] the cellular P-algebra extension of A generated by w, i.e. the pushout of
Fp(u) : FpUp(A) — Fp(Z) along the counit Fplp(A) — A of the adjunction
Fp:ES Algp :Up.

Proposition 5.1. For any Y.-cofibrant operad P and any cofibration of collections
w:U(P) — K, the cellular extension P — Plu] is a Y-cofibration.

We postpone the proof to (5.11).

Corollary 5.2. A cellular extension of operads with %:-cofibrant domain is a Y-
cofibration. The class of Y:-cofibrant operads is thus closed under cellular extension.

Proof. Given a cofibration of collections £; — £5 and a map F(Ly) — P, the
cellular extension P — PUz(,,yF(L2) may be identified with the cellular extension
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P — Plu] with respect to w : U(P) — U(P) Ug, Lo. The latter map is a pushout
in collections along the adjoint £y — U(P) of the given map F (L) — P. Since
the category of collections carries a model structure, « is a cofibration so that (5.1)
proves the assertion. (Il

For an operad P and a cofibration «(0) : P(0) — Z, define a collection Py
by Pz(0) = Z and Pz(n) = P(n) for n > 0 and extend «(0) to a cofibration of
collections u : U(P) — Py setting u(n) = idp(,) for n > 0.

Lemma 5.3. For an operad P endowed with a cofibration vw(0) : P(0) — Z, the
category of Plu]-algebras is equivalent to the category of P-algebras under the
cellular P-algebra extension P(0)[u(0)].

Proof. Recall that P(0) comes equipped with a natural P-algebra structure making
it the initial P-algebra. The asserted equivalence of categories breaks into two
equivalences

Algppy) ~ u/Algp ~ P(0)[u(0)]/Algp

The category u/Algp has as objects the pairs (A, v) consisting of a P-algebra A
and a map v : Z — Up(A) such that v o u(0) underlies the unique A-algebra map
P(0) — A. Morphisms (A,v) — (B,w) in w/Alg, are given by maps f: A — B
such that w = Up(f)v. The first equivalence above is induced by pulling back the
Plu]-algebra structure along the canonical operad maps P — Plu] and FP; —
Plu]. The second equivalence follows merely from the definition of the P-algebra
extension P(0)[«(0)]. O

Proposition 5.4. Let P be a Y-cofibrant operad and A be a cellular P-algebra.
Then there exists an operad P[A] and a Y-cofibration of operads ¢4 : P — P[A]
such that the category of P-algebras under A is equivalent to the category of P[A]-
algebras, and such that the following diagram commutes:

A/Alg, 5 Algppa)

Ua|

Algp

Proof. The proof is by induction on A, and naturally falls apart into three steps:

(i) If A is the initial P-algebra P(0), we define P[A] = P and ¢4 = idp.

(ii) Assume that B is a cellular P-algebra extension of A, constructed as a
pushout of Fp(X) — Fp(Y) along Fp(X) — A in Algp, where X — Y is a
generating cofibration of the underlying model category £. Assume by induction
that we have already constructed a Y-cofibration ¢4 : P — P[A] with the required
properties.

Notice first that the P-algebra map A — B makes B into a P[A]-algebra. In
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particular, the category of P-algebras under B is equivalent to the category of
P[Al-algebras under B. Moreover, B can be constructed as the cellular P[A]-
algebra extension A — A[u(0)] where w(0) : Up 4] (A) — Uppa1(A)Ux Y is induced
by the adjoint of Fp(4(X) — A.

Since P[A](0) = A, it follows from (5.3) that the category of P[A]-algebras
under B is equivalent to the category of P[A][u]-algebras. We therefore let P[B] =
P[A][u]. By (5.1), the canonical map ¢p4 : P[A] — P[B] is a Y-cofibration. We
let ¢ be the composite map ¢pada.

(iii) Assume that A is the colimit of a sequence of cellular P-algebra extensions

Ag — AL — Ag — -
indexed by some limit ordinal X, and that we have constructed >:-cofibrations

which identify P[A¢]-algebras with P-algebras under A in a compatible way.
Then we can simply take P[A] to be the colimit of this sequence of operads,
P[A] = colimg«xP[A¢]. The canonical map ¢4 : P — P[A] is a X-cofibration

since the forgetful functor from operad to collections preserves filtered colimits.[]

Corollary 5.5. Any cofibrant algebra over an admissible Y.-cofibrant operad has
a cofibrant underlying object.

Proof. Since over admissible operads P, any cofibrant algebra is a retract of a
cellular P-algebra A, it suffices to prove that the latter has a cofibrant underlying
object. But, according to (5.4), A = P[A](0) and P[A] is Y-cofibrant. O
Proposition 5.6. Let ¢ : P — @ be a weak equivalence of Y.-cofibrant operads,

let w:UP) — K,v:UQ) — L be cofibrations and let i : K — L be a weak
equivalence making the following square commutative:

Then the induced map Plu] — Q[v] is a weak equivalence of operads.

We postpone the proof to (5.12).
Proposition 5.7. In a left proper monoidal model category, the unit of the base-
change adjunction with respect to a weak equivalence of Yi-cofibrant operads ¢ :

P — Q induces a weak equivalence A — ¢* ¢ A at each cellular P-algebra A.

Proof. We shall inductively construct weak equivalences of Y-cofibrant operads
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¢[A] : P[A] — Q[¢1A] such that the map underlying the unit A — ¢*$1A may be
identified with ¢[A](0). As in (5.4), the proof falls apart into three steps:

(i) If A is the initial P-algebra P(0), then ¢[A] = ¢.

(ii) Inductively, we assume given a weak equivalence ¢[A] : P[A] — Q[¢1A]. We
have to consider the case where B is a cellular P-algebra extension AUr,x)Fp(Y)
like in the proof of (5.4ii). This gives rise to the following pushout diagrams, where
X — Y is a generating cofibration of the underlying model category &:

x — PlA10) 24 o1, 410)

u(0) v(0)
i ZlA 4 Z}m

The right pushout square induces by the definition preceding (5.3) a commutative
square of collections

U(P[A]) UelA, UQlpAl)

[ [

P[A]ZA L) Q[d)!A]quzA

The induction hypothesis implies that ¢[A] is a weak equivalence; the left proper-
ness of £ implies that (0) (and hence ) is a weak equivalence. It follows from
(5.6) that the induced map of operads P[A][u] — Q[¢1A][v] is a weak equivalence.
By (5.3), the latter map may be identified with ¢[B] : P[B] — Q[¢1B].

(iii) The case of sequential colimits simply comes down to the fact that if

P[Ag] — P[A;] — P[As] — -

Lo

Qb1 Ao] — QA1) — QprAs] — -

is a ladder with horizontal Y:-cofibrations and vertical weak equivalences, then the
map induced on the colimit operads colimP[A;] — colimQ[¢1A,] is again a weak
equivalence, because the forgetful functor from operads to collections preserves
filtered colimits and all operads of the ladder are Y.-cofibrant, cf. (2.1). O

5.8. The free operad generated by a collection

We discuss some preliminaries on the free functor F : Coll(£) — Oper(£). The
free functor is based on an operation known as grafting of trees, as explained e.g.
in [8], [9, [.1] or [16, def. 1.37]. To describe this grafting operation, we introduce
the groupoid T of planar trees and non-planar isomorphisms:

The objects of T are finite rooted planar trees. We closely follow the convention
of Getzler-Kapranov [8]. Each edge in the tree has a natural orientation, so that
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we can speak of a vertex being at the beginning or at the end of an edge. Any
tree will have three kinds of edges, namely internal edges with a vertex at the
beginning as well as at the end of the edge, input edges with a vertex only at the
end, and one outgoing edge, called the output of the tree, with the root vertex as
its beginning and no vertex at its end. The input edges and the output edge are
together referred to as the external edges of the tree. In addition, we will also need
the tree pictured |, with no vertex and just one edge which is at the same time
input and output; this tree serves as unit for the grafting operation on trees. The
number of edges ending in a given vertex v is called the walence of v and denoted
|v|. A vertex with valence 0 is called a stump. The set of input edges of the tree T’
is denoted in(T'); this set has a natural linear ordering inherited from the planar
structure of the tree. The cardinality of in(T') is denoted |T'|.

Here is a picture of a tree with 4 vertices, 3 internal edges and 5 input edges.
The root has valence 2; there are two vertices of valence 3 and a stump.

mg\‘z.lrf/mzl
N 1/
€9 €3 1Ny
>
N,
M €1

'

1 out

The morphisms of T are isomorphisms of trees, where we forget the planar
structure. In particular, any isomorphism ¢ : T — 7" maps vertices to vertices,
the root to the root, internal edges to internal edges and inputs to inputs, thus
(] = 7] and Jo| = [$(0)]-

Any tree T with a root of valence n decomposes canonically into n trees
Ti,...,T, whose outputs are grafted upon the inputs of the tree ¢, with one
vertex and n inputs. We denote this grafting operation by T = ¢, (T4, ...,Ty).
Observe that the number of vertices of each T; is strictly less than the num-
ber of vertices of T, which allows for inductive definitions. Any isomorphism
¢ T — T decomposes as ¢ = o(¢1, ..., ¢n) With isomorphisms o : ¢, — ¢, and
¢ T; =T, () 1 =1,...,n. We identify the automorphism group of ¢,, with the
symmetric group >,.

For any collection K we define a contravariant functor IC : T°P — & putting
inductively K(]) = I (the unit of the underlying monoidal model category £) and

K(T) = K(tu(T,...., Tn)) = K(n)  K(T)) ® - © K(Ty).
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On morphisms ¢ : T' — T”, we get again by induction

¢* = U(¢17 82 7¢n)* =o" ®¢:-*1(1) Rywss ®¢Z*1(n)'

There is also a covariant set-valued functor A\ : T — Sets associating to each tree
T, the set A(T) of numberings of in(T). A numbering 7 € A(T") consists of a
bijection 7 : {1,...,|T|} — in(T). Any isomorphism ¢ : T" — T induces (by
composition with in(¢) : in(T) — n(T")) a bijection A(¢) : A(T) — A(T"). Since
the category of sets naturally maps to & via S+ [] g I, we can consider A as
a covariant functor with values in £. The classical formula for the free operad
FK generated by the collection K amounts to the following tensor product over
the groupoid T: FI = K ®1 A. Since T falls apart as a disjoint sum of groupoids
T(n) = {T € T||T| = n}, FK is the sum of the objects FI(n) = K&q() A, n > 0;
in particular, it has a natural structure of collection where the symmetric groups
Y| act from the right on the numberings 7 € A(T"). This restricted tensor product
K ®r(n) A again decomposes as a sum, indexed by isomorphism classes of trees in
T(n):

Fm) = ] KT)@awm) 1[5
[T]€T(n)/~
By categorical generalities (using the isomorphism X ® I[3,] = [[ .5 X), the

tensor product may also be identified with the colimit
FK = colimpy Kr

where 7w : T[\] — T is the Grothendieck-construction applied to A : T — Sets.
Explicitly, T[A] is a groupoid whose objects are pairs (T, 7) consisting of a tree
and a numbering of its inputs, and whose morphisms ¢ : (T,7) — (1",7') are
isomorphisms ¢ : T' — T” such that A(¢)7 = 7/. This groupoid is again a disjoint
sum of subgroupoids T[A](n). Grafting of trees according to the given numberings
endows T[A] with the structure of an operad in groupoids. It follows from the
inductive definition of K that FI inherits from T[A] a natural structure of operad
in &, and it is well known that the operad thus defined is the free operad generated
by the collection K, cf. [8] or [16, 1.9].

It is straightforward to deduce from the preceding discussion that for a cofibrant
collection IC, the free operad FK is Y-cofibrant. Proposition (5.1) generalizes this
fact, and we now prepare the proof thereof. We need one more concept which in
this context goes back to Hinich [10], namely trees endowed with a distinguished
subset of coloured vertices. We represent such coloured trees by pairs (7, ¢) con-
sisting of a tree T and subset ¢ of coloured (internal) vertices. This gives rise to
the groupoid T of coloured trees and isomorphisms preserving the colourings. A
coloured tree (7, ¢) is admissible if any internal edge of T has at least one coloured
extremity. For a coloured tree (T, c¢), the grafting operation T = ¢, (Ty,...,T,)
yields canonical colourings for ¢,, and T;, i =1, ..., n.

Given a map v : Ky — Ky of collections, and a coloured tree (7} ¢), we define
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inductively an object u(T, ¢) of the underlying monoidal model category £ by

(T.0) Ki(n)@u(T1,c1) ® - - @ u(Th,, ¢y) if the root is uncoloured,
u ? = . .
Ka(n) @ u(Ti,c1) @ - - @ u(Th, ¢y) if the root is coloured,

where we have the grafting operation T' = ¢, (14, ..., T, ) with colourings ¢; of T;
corresponding to the colouring ¢ of T

For any inclusion ¢’ C ¢ of vertex-sets of T, there is a canonical map u (7', ¢’) —
u(T, ¢) induced by v : K1 — K. If w is a cofibration between cofibrant collections,
then w(T,c) — w(T,c) is a cofibration in £ by the pushout-product axiom, cf.
(2.4). Moreover, the canonical “latching” map

colimy c (T, ¢') = u (T, c) — u(T,c)
is a cofibration, since the colimit may be constructed as an iterated pushout. We
actually need the following stronger result:

Lemma 5.9. For any cofibration of cofibrant collections u : K1 — Ko, the latching
map u (T, c) — u(T, c) is an Aut(T, c)-cofibration.

Proof. Observe first that the latching map is indeed a map of Aut(T) c)-objects,
where Aut(7),c) is the automorphism group of (1), ¢) in T. We assume the graft-
ing operation T' = t,(714,...,T,) with colourings ¢; of T; corresponding to the
colouring ¢ of T.

In order to determine Aut(7T,¢), the set {(T1,c1),...,(Th,cn)} is partitioned

into subsets of pairwise isomorphic coloured trees, say {(T},cl),..., (T} ¢ )} U
e U{(TF, ), (TE ek )Y with g + -+ + ng = n. Tt follows that

Aut(T,¢) = (Aut(Th, )™ x Bp,) x -+ x (Aut(TF, )™ x4 %,,)
= (Aut(Th, )™ x - x Aut(TF, cF)™) x4 (B, x - x Xy,
Laxy
If the root of T' is uncoloured, the map u= (T, ¢) — u(T, ¢) may be identified with
Ki(n) ® (A — B) for a certain map of G x >-objects, denoted A — B, whose
underlying map is a cofibration. If the root of T is coloured, we get ICi(n) ®

B Uk, (nypa K2(n) ® A — Ka(n) ® B for the same A — B. In both cases, this
vields G x Y-cofibrations by (5.10). O

Lemma 5.10. Let G, > be finite groups with 3 acting from the right on G.
For any Y-cofibration X — Y and any map of right G x Y-objects A — B
whose underlying map is a cofibration, the induced map

is a G X Y-cofibration, where G x ¥ acts on'Y ® B by (y ® b)(97) = 47 @ b9:7),
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Proof. Using the adjunction between G x Y-equivariant maps ¥ ® B — Z and
Y-equivariant maps Y — Homg(B, Z), the statement of the lemma is (by expo-
nential transpose) equivalent to the property that for any G x Y-equivariant trivial
fibration Z — W, the canonical Y-equivariant map

Homg (B, Z) — Homg (B, W) Xtome (a,w) Homg (4, Z)
is a trivial fibration. Therefore, we may assume without loss of generality that >
is the trivial group. The statement of the lemma is then equivalent to the property
that the canonical G-equivariant map
ZY S WY xyx ZX

is a trivial fibration. This in turn follows from the pushout-product axiom, since
under the hypothesis of the lemma, the G-equivariant map

(X ® B) UixeAa) Y®A)—-Y®B

has a cofibration as underlying map. Il

5.11. Proof of Proposition (5.1)

We construct P — P[u] as a sequential colimit of cofibrations of collections
Fo— Fy— Fy— -+

Of course,

Fy(n) = P(n), n > 0.

The ¥.,,-object Fj(n) is inductively defined by the pushout-diagram below, where
(T, ¢) ranges over the set Ay (n) of isomorphism classes of admissible coloured irees
with n inputs and k coloured vertices. The vertical map on the left comes from
the operad structure of P and the inductive definition of Fj_1(n):

H 97 (T, C) ®Aut(T,c) I[En] —* H Q(T7 C) ®Aut(T,c) ][Zn]
[T,C]E.Ak (n) [T,C]E.Ak (n)

| l

kal(n) Fk(n)

By (5.9), the latching map v (7, ¢) — w(T,c) is a Aut(T, ¢)-cofibration. The
functor — ® oy (7,e) I[Xn] is the left adjoint of a Quillen pair £A44(T5¢) = £2n and
preserves cofibrations. Therefore, the upper horizontal map is a >, -cofibration,
and the induced map Fj_1(n) — Fy(n) is a Y,-cofibration too. Since all objects
of the sequence are >.,-cofibrant, the sequential colimit

P(n) — Plu](n) € colimy Fy(n)

is a Y,-cofibration. We thus get a cofibration of collections P — Plu]. The
operad structure on P[u] is defined by grafting of coloured trees, using the operad
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structure of P in order to get back tensor products over admissible trees. The
required universal property of the operad map P — P[u] follows from its inductive
construction: at each step we adjoin one more free operation labelled by an element
of K. O

5.12. Proof of Proposition (5.6)

According to the preceding proof, the induced operad map Plu] — Q[v] may be
obtained as the sequential colimit of a ladder of maps of cofibrant collections

Fo—>F1—>F2—>~~~

Lol

Go—>G1—>G2—>

with horizontal cofibrations. It suffices thus to show that the vertical maps of this
ladder are weak equivalences, cf. (2.1). By hypothesis, the left most vertical map
is the given weak equivalence P — (). For each k& > 0 and each n > 0, the vertical
component Fj(n) — Gy(n) is obtained as the pushout of the following diagram:

Fk*l(n) — H u (T7 C) ®Aut(T,c) I[En] — H E(T7 C) ®Aut(T,c) I[En]
[T,c] [T,c]

| 1 1

kal(n) — H yi(T7 C) ®Aut(T,c) I[En] - H 2(T7 C) ®Aut(T,c) I[En]
[T,¢] [T,d]

The vertical maps of the latter diagram are weak equivalences by the induc-
tion hypothesis and the pushout-product axiom; the two right horizontal maps
are Y,-cofibrations by (5.9). Since all objects of the diagram are 3,-cofibrant,
Reedy’s patching lemma [6, prp. 12.11] implies that the induced vertical compo-
nent Fj(n) — G(n) is a weak equivalence too, and we are done. O
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