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Geodesic flow on the diffeomorphism group of the circle

Adrian Constantin and Boris Kolev

Abstract. We show that certain right-invariant metrics endow the infinite-dimensional Lie
group of all smooth orientation-preserving diffeomorphisms of the circle with a Riemannian
structure. The study of the Riemannian exponential map allows us to prove infinite-dimensional
counterparts of results from classical Riemannian geometry: the Riemannian exponential map is
a smooth local diffeomorphism and the length-minimizing property of the geodesics holds.

Mathematics Subject Classification (2000). 35Q35, 58B25.
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1. Introduction

The group D of all smooth orientation-preserving diffeomorphisms of the circle S
is the “simplest possible” example of an infinite-dimensional Lie group [1]. Its Lie
algebra TryD is the space C°(S) of the real smooth periodic maps of period one.
Since C*°(S) is not provided with a natural inner product, to endow D with a
Riemannian structure we have to define an inner product on each tangent space
T, D, n € D. For a Lie group the Riemannian exponential map of any two-sided
invariant metric coincides with the Lie group exponential map [1]. It turns out
that the Lie group exponential map on D is not locally surjective cf. [12] so that a
meaningful’ Riemannian structure cannot be provided by a bi-invariant metric on
D. We are led to define an inner product on C*°(S) and produce a right-invariant
metric? by transporting this inner product to all tangent spaces T,D, ne€ D, by
means of right translations.

In this paper we show that certain right-invariant metrics induce noteworthy
Riemannian structures on D. Despite the analytical difficulties that are inher-

1A prerequisite of a rigorous study aimed at proving infinite-dimensional counterparts of facts
established in classical (finite-dimensional) Riemannian geometry is the use of the Riemannian
exponential map as a local chart on D.

2 To carry out the passage from right-invariant metrics to left-invariant ones, note that a
right-invariant metric on D is transformed by the inverse group operation to a left-invariant
metric on D with the reverse law (o x¢¥ = ¢ 0 ).
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ent3 the existence of geodesics is obtained and their length-minimizing property
is established. The paper is organized as follows. In Section 2 we discuss the
manifold and Lie group structure of D, Section 3 is devoted to basic properties
of the Riemannian structures that we construct on D (existence and local chart
property of the Riemannian exponential map), while in Section 4 we prove the
length-minimizing property of geodesics. In the last section we present® a choice
of a right-invariant matric endowing D with a deficient Riemannian structure (the
corresponding Riemannian exponential map is not a local C'-diffeomorphism), to
emphasize the special features of the previously discussed Riemannian structures.
Note that for diffeomorphism groups the existence of geodesics is an open ques-
tion® so that it is of interest to have an example (M = S) where an attractive
geometrical structure is available.

2. The diffeomorphism group

In this section we discuss the manifold and Lie group structure of D.

If () is a tangent vector to the unit circle S at z € S C C, then R [ {(2)] =0
and ,

u(x) = 3t T ¢(x) e R.

This allows us to identify the space of smooth vector fields on the circle with
C°(S), the space of real smooth maps of the circle. The latter may be thought
of as the space of real smooth periodic maps of period one and will be used as a
model for the construction of local charts on D. Note that C*°(S) is a Fréchet
space, its topology being defined by the countable collection of C™(S)-seminorms:
a sequence u; — w if and only if for all » > 0 we have u; — w in C™(S) as j — 0.
D is an open subset of C™(S;S) C C*°(S;C), as one can easily see considering the
function defined on C*°(S;S) by

We will describe a Fréchet manifold structure on D. If ¢ +— ¢(¢) is a C'-path in
D with ¢(0) = Id, we have ¢’(0)(z) € T,,S. Therefore ¢’(0) is a vector field on S
and we can identify TryD with C*°(S). If ¢ € D is such that ||¢ — Id|co(sy < 1/2,

3 D is a Fréchet manifold so that the inverse function theorem and the classical local existence
theorem for differential equations with smooth right-hand side are not granted cf. [12]. Moreover,
we deal with weak Riemannian metrics (the family of open sets of D contains but does not
coincide with the family of open sets of the topology induced by the metric) so that even the
existence of a covariant derivative associated with the right-invariant metric is in doubt cf. [15].

4 For a detailed analysis see [7].

5 For any smooth compact manifold M, both the group of smooth diffeomorphisms of M,
Diff(M), and its subgroup formed by the volume-preserving diffeomorphisms, have a Lie group
structure [16]. Progress towards the existence of geodesics was made but the understanding is
still incomplete [1].
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we can define

u(z) = —— Log (@ Lp(x)) € C°(S:R).

2mi
Note that u(z) is a measure of the angle between x and ¢(z). Define a lift F, :
R — R of ¢ such that
uoll(z) = F,(2) —2, ZeR,
where IT : R — S is the cover map. In the neighborhood

Upo = {llo — wollcosy < 1/2}
of o € D we are led to define
1 S
u(x) = o Log ((po(x) Lp(:l?))7 z €S,
and
uoll(Z) = Fy(Z) — Fp (2), Z€R

For ¢ € Uy, let ¥, (¢) = u. We obtain the local charts {U,,, ¥, }, with the
change of charts given by®

_ 1 _
Vo, 0 \I}Lpll(ul) =uy + i Log(®2 #1).

The previous transformation being just a translation on the vector space C°°(S),
the structure described above endows D with a smooth manifold structure based
on the Fréchet space C*°(S).

A direct computation shows that the composition and the inverse are both
smooth maps from D x D to D, respectively from D to D, so that the group D is
a Lie group. Note that the derivatives of the left-translation

LW:D_>D7 LW(SD):TIOLP7 W€D7
and right-translation
R,:D—D, Ry(p)=¢on  neD,

are given by
Lys :TrgD = 1T,D, wr—ng-u, neD,

respectively
Ry :T1yD —1T,D, w—uon, neD.

The Lie bracket on the Lie algebra TryD = C°°(S) of D is
[w,v] = —(uzv — wvy), u,v € C™(8). (2.1)

6 With ug = Wy, (¢) and ug = Wy, () for ¢ € Uy, N Uy, we have
(2mi) ug = Log(@a¢p) = Log(@zp1P1¢) = Log(pz1) + Log(Piy) = Log(@ze1) + (2mi) us.

1
Hence W, () = Wy, (@) + Bk Log(®2 ¢1) and the change of charts is plain.
™

%
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Each v € Ty4D gives rise to a one-parameter group of diffeomorphisms {n(¢,-)}
obtained solving
ne=v(n) in C(S) (2.2)

with data n(0) = Id € D. Conversely, each one-parameter subgroup ¢ — 5(t) € D
is determined by its infinitesimal generator v = % n(t) OE Tr¢D. Evaluating the
e

flow ¢ — (¢, ) of (2.2) at t = 1 we obtain an element exp; (v) of D. The Lie-group
exponential map v — exp; (v) is a smooth map of the Lie algebra to the Lie group.
Although the derivative of exp; at 0 € C*°(S) is the identity, exp; is not locally
surjective cf. [16]. This failure, in contrast with the case of Hilbert manifolds (see
[15]), is due to the fact that the inverse function theorem does not necessarily hold
in Fréchet spaces cf. [12]. This inconvenience might seem to indicate that it is
preferable to work with the Hilbert manifolds”

D" = {5 € H*(S) is bijective, orientation-preserving, and =t € H¥S)}, k>2,

instead of D. However, D* is only a topological group and not a Lie group since
for n € D* the right composition R, : DF — DF is smooth but both the left
composition L, and the inverse map ¢ — ¢ ! are merely continuous on DF,
without being smooth (see [2]). Therefore, in order to obtain a Lie group structure,
we have to consider the Fréchet manifold D.

Let F(D) be the ring of smooth real-valued functions defined on D and X (D)
be the F(D)-module of smooth vector fields on D. For X € X(D) and f € F(D),
the Lie derivative Lx f is defined in a local chart as

. +hX -
£x f(p) = lim fle () - ).
h—0 h
If U ¢ Disopenand X,Y : U — C°(S) are smooth, let
h—0 h
This leads to a covariant definition of the Lie bracket of X,Y € X (D),
LxY =[X,Y]=DxY - DyX.

Note that if X®(D) is the space of all right-invariant smooth vector fields® on
D, then the bracket [X,Y] of X, Y € X(D) is a right-invariant vector field and

peD.

peD.

7 HP(S), k > 0, is the space of all 4L2(S)-functions (square integrable functions) f with distribu-
tional derivatives up to order k, 9% f with ¢ =0,...,k, in L2(§)‘ Endowed with the norm

k
171 = Y [ @in2)n,
i=0
HP*(S) becomes a Hilbert space. Note that if {f(j)};ez is the Fourier series of f € H*(S), then
IA1Z = D2 (14 @ri)? + - ++2m5)*) | £G) 1

JEL

8 X € XE(D) is determined by its value v at Id, X, = Rysu for n € D.
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[X,Y]ra = [u,v], where w = X4, v = Ypq cf. [16]. This feature explains the
minus sign entering formula (2.1) — the commutation operation is defined by this
construction carried out with right-invariant vector fields.

3. Riemannian structures on D

We define an inner product on the Lie algebra 174D = C*°(D) of D, and extend
it to D by right-translation. The resulting right-invariant metric on D will be a
weak Riemannian metric. In this section we discuss the existence of the geodesic
flow associated with this metric.

Consider on 114D = C*°(S) the H*(S) inner product

k 5 F:
(u, vy, = Z/S(a;u) (o) de, u,ve CP(S),

and extend this inner product to each tangent space T,D, n € D, by right-
translation, i.e.

(VWi = <Rn_1*V, Rn_l*W>k7 V,W e T,D. (3.1)

We have thus endowed D with a smooth right-invariant metric. Note that the
right-invariant metric (3.1) defines a weak topology on D so that the existence of
a covariant derivative which preserves the inner product (3.1) is not ensured on
general grounds cf. [15]. We will give a constructive proof of the existence of such
a covariant derivative. Let us first note that

{a, ) = / Aw)ode, wueHYS), k20,
S

where for every n > 0, Ay : H"?*(S) — H"(S) is the linear continuous isomor-
phism

d2 d2k
44 (=1)F .
dz? oo+ dx?k

This enables us to define the bilinear operator By : C*°(S) x C(S) — C*°(S),

Ap=1- (3.2)

Bi(u,v) = — A7 ! (Q%Ak(u) n vAk(uw)>7 u,v € C%(S), (3.3)
with the property that
(B (u,v), w) = (u, [v,w]), u,v,w € C(S).

We can extend Bj to a bilinear map By, on the space X#(D) of smooth right-
invariant vector fields on D by

Bk(X7 Y)n - Rn*Bk(XId7}/Id)7 n = D? X7Y < XR(D)
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For X € X(D), let us denote by Xf the smooth right-invariant vector field on D
whose value at 7 is X,,.

Theorem 1. Let k > 0. There exists a unique Riemannian connection V* on D
associated to the right-invariant metric (3.1), with

1
(V&Y )y = (XY = YRy + 5 (165 Y = Be(XE, Y, — Bu(VR, X, ),
for smooth wvector fields X, Y onD.

Proof. The uniqueness of V* is obtained like in classical Riemannian geometry
(see e.g. [15]) and all the required properties can be checked from its explicit
representation, using the defining identity for By. O

The existence of V¥ enables us to define parallel translation along a curve on D
and to derive the geodesic equation of the metric defined by (3.1). Throughout the
discussion, let J C R be an open interval with 0 € J. For a C'-curve o : J — D,
let Lift(a) be the set of lifts of o to T'D. The derivation D,, : Lift(a) — Lift(«)

along « is given in local coordinates by
Do,¥ =% — Qilazoa™t,yoa ) oa, ~ € Lift(a), (3.4)
where @y, : C°(S) x C*°(S) — C*°(S) is the bilinear operator

1
Qrlu,v) = - (uzv + wvg + Bi(u,v) + Bk(@,u)), u,v € C(8).

For a Cl-curve « : J — D we have

d

7 (71,7206 = (Do, v, 720k + {71, Doy v2) ks ted, (3.5)

for all v1,v2 € Lift(a).
If a:J— DisaC?-curve, alift v : J — TD is called a-parallel if D,,v =0
on J. This is equivalent to requiring that

1
U= o (vuz — vyt + By (u,v) + Bp(v, u))7 (3.6)
where u,v € C1(J; C(S)) are defined as a; 0 o' = u, respectively yoa ™! = v.

A C%*-curve ¢ : J — D satisfying Dy,,or = 0 on J is called a geodesic. If
u=p, 09t €TryD=C>(S), then u satisfies the equation

uy = Bp(u,u), teJ (3.7)

Equation (3.7), called the Euler equation, is the geodesic equation transported
by right-translation to the Lie algebra T74D. Equations of type (3.7) arise in
mathematical physics.
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Example 1. For k = 0, that is, for the L? right-invariant metric, equation (3.7)
becomes the inviscid Burgers equation

us + 3uu, = 0.

This equation is a simplified model for the occurence of shock waves in gas dynam-
ics and can be studied quite explicitly [13]: all solutions but the constant functions
have a finite life span. (Il

Example 2. For k = 1, that is, for the H' right-invariant metric, equation (3.7)
becomes cf. [17] the Camassa—Holm equation

Uy +uty + Oy (1 — 9y2) 7L <u2 + %uT/z) =0.
This equation is a model for the unidirectional propagation of shallow water waves
[3] as well as a model for axially symmetric waves on hyperelastic rods [9]. It has
a bi-Hamiltonian structure [11] and is completely integrable [8]. Some solutions
of the Camassa—Holm equation exist globally in time [5], whereas others develop
singularities in finite time [6]. The blowup phenomenon can be interpreted as a
simplified model for wave/rod breaking — the solution (representing the surface
water wave or the deformation of the hyperelastic rod) stays bounded while its
slope becomes vertical in finite time [4]. O

In a local chart the geodesic equation (3.7) is

Prr = Pk(SD7 <Pt)>

where Py is an operator that will be specified in the proof of Theorem 2. Assuming
for the moment the local existence of geodesics on D for the metric (3.1), proved
below, let us derive a conservation law for the geodesic flow? Observe that any
v € C(S) = TryD defines a one-parameter group of diffeomorphisms h* : D —
D, h*(p) = ¢ o expy(sv), where exp; is the Lie-group exponential map. The
metric being by construction invariant under the action of h*®, Noether’s theorem

ensures that if g : TD — R stands for the right-invariant metric, then
g dh* () }
Apy (s 2) { ds ls=0

is preserved along the geodesic curve ¢ — @(¢) with ¢(0) = I'd and ¢:(0) = ug €
TraD. We compute

dh*(¢) =y, v, %(%@) [w] =2@wogp ™ wop Yy,

ds s=0

9 For finite-dimensional Lie groups the geodesic flow of a one-sided invariant metric the angular
momentum is preserved [1]. This is a consequence of the invariance of the metric by the action
of the group on itself, in view of Noether’s theorem. The same reasoning can be carried over to
the present infinite-dimensional case.
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obtaining that

(prop g0t vop = (ug, o)k, v ECP(S).

Therefore
/Ak(u)wpzogo’l~vo<p71dx:/Ak(uo)~vdx, v € C™(S),
S S
where, as before, u = @; 0 o~ 1. A change of variables yields

/Ak(u)oapwpimdx:/Ak(uo)~vdx7 v e C™(S)
s s

so that, denoting
my = Ap(u) 0 ¢ - o3, (3.8)
we obtain
mk(t) = Mg (0)7 te [O7T)7 (39)

where p € C%([0,T); D) is the geodesic for the metric (3.1), starting at ¢(0) =
Id € D in the direction ug = ¢, (0) € TryD; as before, v = ¢, 0 @~ L.

To prove the existence of geodesics, we proceed as follows. The classical local
existence theorem for differential equations with smooth right-hand side, valid
for Hilbert spaces (see [15]), does not hold in C°°(S) cf. [12]. However, note
that C*°(S) = Np>ar41H"(S). We use the classical approach to prove that for
every n > 2k + 1, the geodesic equation has, on some maximal interval [0,7},)
with 7, > 0, a unique solution in H"(S), depending smoothly on time. A priori
T, <Thgy1. It turns out that 7, = Thyyq for all n > 2k +1, a fact that will ensure
the existence of geodesics on D endowed with the right-invariant metric (3.1) for
every k > 1. The peculiarities of the special case & = 0 (where this approach is
not applicable) are discussed in the last section.

Theorem 2. Let k > 1. For every ug € C™(S), there erists a unique geodesic
p € C([0,T); D) for the metric (3.1), starting at p(0) = Id € D in the direction
ug = pi(0) € Ty D. Moreover, the solution depends smoothly on the initial data
ug € COO(S)
Proof. Note that

uAg(ug) = Ap(uug) +CR(u), we H™(S), n>2k+1,

where C} : H™(S) — H"?k(S) is a C*°-operator depending quadratically on
U, Ug, . . ., 02Fu. Denoting by Cy : H*(S) — H"?#(S) the C*°-operator

Cr(u) = —=C(u) — 2uy Ap(u),
we obtain that

B (u,u) = Ak_le(u) —utg, w€ H"(S), n>2k+1.
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The geodesic equation (3.7) becomes
U + Uy = A,;lC'k(u)7

where u = p; 0 o=t € C™(S). Letting v = u 0 ¢ = ;, we can write the geodesic
equation in a local chart U in C*°(S) as

Pt — 1,
3.10
{vt - Pk((p7’l))7 ( )

where

Pi(p,v) = |45 Culwo ™) 0.
The operator
(#,0) = (¢, Prlep,v))
can be decomposed into Qy o Ey with
Bi(p,0) = (, By o Oy o Rpmr (0)),
and

Qi) = (o By o Ay 0 Byr (v).

Specifying the explicit form of Fj(p,v), we see that this operator extends to the
space U,, x H™(S), where U, is the open subset of H"(S) of all functions having a
strictly positive derivativel® The same argument can be pursued in the case of the
operator Gy : U, x H*(S) — U,, x H*?k(S),

Gk(@?”) - (507 Rtp o Ak o R@—l(l}))7

the inverse of @ (as a map). Direct calculations confirm that Fj, and Gy, are both
smooth maps from U,, x H™(S) to U,, x H" 2k(S). The regularity of G} ensures
that its Fréchet differential can be computed by calculating directional derivatives.

One finds that
Id 0
DG (p,v) = i
o=V gt o)

with

and ag,...,as_1, all of the form

Pk(% Py - 78§k<)0)
4k
P

10 Note that n» > 2k +1 > 3 so that H"™(S)-functions are of class C2. Explicit calculations show
that if 7 € Uy, then 7 is a H™(S)-homeomorphism of the circle with n~1 € H™(S).
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for a polynomial p; with constant coefficients, while * is a linear differential oper-
ator of order 2k with coefficients rational functions of the form

9(p, 0, P, Vg, - . - aikga agkv)
4k
P

for some constant coefficient polynomial q. Observellthat for every f € H"2k(S)
there is a unique solution « € H"™(S) of the ordinary linear differential equation
with H"2k(S)-coefficients

2%

Zai(go) dyv=f.

=0

Taking into account the form of DGy, we infer that
DGi(i,v) € Isom (U" x H™(S), U™ x H"*%(S)).

Since the differential of the smooth map Gy : U, x H*(S) — U, x H*?k(S) is
invertible at every point, from the inverse function theorem on Hilbert spaces [15]
we deduce that its inverse Qy, : U, x H"72#(S) — U,, x H™(S) is also smooth. The
regularity properties that we just proved for the maps @, E%, show that Py is a
smooth map from U,, x H"(S) to H"(S).

Regard (3.10) as an ordinary differential equation on U, x H™(S), with a smooth
right-hand side, viewed as a map from U,, x H"(S) to U,, x H"(S). The Lipschitz
theorem for differential equations in Banach spaces [15] ensures that for every ball
B(0,£,) C H™(S) there exists T,, = T},(£y,) > 0 such that for every ug € B(0,¢y,),
the equation (3.10) with data ¢(0) = Id and v(0) = wg has a unique solution
(p,v) € C([0,T,); U, x H*(S)). Moreover, this solution (¢, v) depends smoothly
on the initial data v and can be extended to some maximal existence time 77" > 0.
If T} < oo, we have either that limsup ||v(t)||,, = oo or there is a sequence ¢; T T}

T

such that ¢(t;) accumulates at the boundary of U, as j — oo.

Choose some ball B(0,e9;+1) C H?***1(S). We prove now that for any ug €
B(0,e9511) N C°(S) there exists a unique geodesic ¢ € C°°([0, To,41); D) for the
metric (3.1), starting at ¢(0) = Id in the direction ug. Since ug € H"™(S) for
every n > 2k+ 1, it suffices to prove that the solution (¢, v) of equation (3.10) on
each U,, x H"(S), with data ©(0) = Id and v(0) = ug, has the maximal existence
time T,, = Thp1. Assuming that Topyo < Topi1, note that (@(T2k+2)7 U(T2k+2))
is defined in Usg 1 x H?#H1(S) and (Thy2) is a C'-diffeomorphism of the circle.
Recall the notation v = v o @™,

To prove that ¢(t) converges in Usg2(S) as ¢ T Togyo, let us use ¢ = uop to

compute 92Fp;, t € (0,Tog1). We obtain

Po - 0250y — 1o - 02F o = (—1)*@2 | 2P P mu(t) + Ex(v, )|,  t € (0, Taps1),

11 This can be proved using the Fourier representation of functions in H7(S), 5 > 0.
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where &;(v, ¢) is a smooth expression containing only z-derivatives of ¢ of order
1 < 2k — 1 and z-derivatives of v of order 7 < 2k — 1. Hence

%(%) = (-1)* [ G 'mk(t)Jng(Uﬂp)}

= (=DF [@2F i (0) + Eulo, )], € (0, Tour),

in view!%f (3.9). For ¢ € (0, Th;+1) we obtain that

0e(t) = (-0 ult) [ [0 i) +Eo)] ds (1)

Since my(0) € C*°(S) and
(p,v) € C([0, Taps1); Uspr X H*¥T1(S)) N C™([0, Thi2); Uappa x HFFA(S)),

differentiating (3.11) twice with respect to x, we infer that (¢(t), p:(¢)) converges
in U2k+2 (S) X H2k+2(S) ast T T2k+2. The limit can only be (Lp(TQk+Q)7 U(T2k+2)).
Therefore Thy 2 = Thp41. This procedure can be repeated for n = 2k 4 3 etc. and
the existence of the smooth geodesics on D is now plain. (Il

The previous results enable us to define the Riemannian exponential map egp
for the H* right-invariant metric (k > 1). If ¢(t;uo) is the geodesic on D, starting
at Id in the direction ug € C*°(S), note the homogeneity property

p(t; suo) = p(ts; uo) (3.12)

valid for all ¢, s > 0 such that both sides are well-defined. In the proof of Theorem 2
we saw that there exists 6 > 0 so that all geodesics ¢(¢;ug) are defined on the same
time interval [0,7] with 7" > 0, for all ug € D with ||ug||2z+1 < . Hence, we can
define exp(ug) = ¢(1;up) on the open set

)
{uo eD: ||uo||2k+1 = T}

of D, and the map wg — erp(ug) is smooth.

Theorem 3. The Riemannian exponential map for the H* right-invariant metric

on D, k > 1, is a smooth local diffeomorphism from a neighborhood of zero on
TryD to a neighborhood of Id on D.

Let us first establish

12 Relation (3.9) was derived assuming the existence of geodesics on D. In the present con-
text, it can be proved as follows. Define my by (3.8) and note that it is a polynomial
expression in v, @, vz,%,.”,agkv,agw, divided by some power of ;. Therefore my €
C>=([0, Tar+1); HY(S)) and, using (3.10), it can be checked by differentiation with respect to
t that my(t) = my(0) for all ¢t € [0, To41)-
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Lemma 1. Letn > 2k+1 and let (p,v) be a solution of (3.10) with data (Id,ug) €
Uy, x H"(S), defined on [0,T). If there existst € [0,T) such that p(t) € Up11 then
ug € HnJrl(S)

Proof. From (3.11) we get

é)gle(p(t)i_km . tzkggs o ¢ . i
(1) =(-1) k(0) /04,0Z ds + (1) /(;Sk( ) ds, telo,T).

If for some t € [0,T) we have ¢(t) € H""1(S), the fact that ¢, is strictly positive
forces my(0) € H"T172k(S) and therefore ug € H™T1(S). O

Proof of Theorem 3. Viewing erp as a smooth map from a small neighborhood of
0 e H™(S) to U, n > 2k + 1, its differential at 0 € H™(S), Derp,, is the identity
map. Indeed, for v € H"(S) we have by (3.12) that exp(tv) = ¢(t;v) so that

d
= Ew(t;v) =,

d
Pl o

=0
As a consequence of the inverse function theorem on Hilbert spaces, we can find
open neighborhoods Va1 and Oy of 0 € H?*TY(S) and Id € Uy, respec-
tively, such that exp : Vagi1 — O2gq1 is a C°° diffeomorphism with Derp,,, :
H?MY(S) — H?FTL(S) bijective for every ug € Vaj+1. We already know from the
proof of Theorem 2 that

erp <V2k+1 N COO(S)) C O2p41 NC™(S),

while Lemma 1 ensures that egp is a local bijection between these open sets. It
remains to show that erp is a smooth diffeomorphism from Va1 N C(S) to
02k+1 N COO(S)

Let ug € Vo1 NC*(S). We know that Derp,,, is a bounded linear operator
from H"(S) to H™(S) for every n > 2k + 1 and we will prove that it is actually
a bijection. Then, in view of the inverse function theorem on Hilbert spaces,
both erp and its inverse are smooth maps on small H™(S)-neighborhoods of ug €
Var11 NC™(S), respectively erp(ug) € Oap1 NC(S). Letting n | oo, this would
show that erp is locally a smooth diffeomorphism.

To prove this last step, we use an inductive argument. To start with, Dexp,, isa
bijection from H?*T1(S) to H***1(S) asug € Vagy1. For a fixed n > 2k-+1, assume
that the map Degp,,, is a bijection from H7(S) to HI(S) for all j =2k +1,...,n,
and let us show that Degp,,, is a bijection from H"T1(S) to H™T1(S). First of all,
Dexp,,, is injective as a bounded linear map from H™(S) to H"1(S) since its
extension to H™(S) is injective. To prove its surjectivity as a map from H"T1(S)
to H™TL(S), it suffices’®to see that there is no w € H™(S), w ¢ H™"(S), with
Deyp,,, (w) € H"1(S). Assume there is such a w. For & > 0 small enough let ¢# (¢)

13 Since exp is a smooth map on Vg1 NH"L(S) we have Derp,, (H™T1(S)) € H™1(S) while
the inductive assumption ensures Degp,, (H™(S)) = H™(S).
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be the solution of (3.10) on U, starting at Id in the direction ug 4 sw, with the
corresponding v* € H"(S)). We know that the map (¢°(¢),v°(¢)) € U,, x H"(S)
depends smoothly on £ and ¢ € [0,1]. From (3.11) we obtain

9t (1) . . e YAk ® o e
2 = (mk(o,uo)+gmk(o,w))/o CAR 3ds+/o En(vF, ¢°) ds.

d
Differentiating with respect to ¢, a calculation shows that Derp,,, (w)= Egog(l) ‘

€ H™HL(S) is possible only if my(0;w) € H*" 2k+L(S), i.e. w € H"(S). The
obtained contradiction concludes the proof. (Il

4. Minimizing property of the geodesics

Throughout this section we prove the length minimizing property for the geodesics
of the right-invariant metric (3.1) on D for some fixed k& > 1.

Let V; be a vector tangent at a(0) = ag to a C?-curve o : J — D. The parallel
transport of V along the curve « is defined as a curve v € Lift(a) with v(0) = V;
and D,,v=0on J.

Lemma 2. Let o : J — D be a C? curve. Given Vy € Ty, D, ag = a(0) € D,
there exists a unique lift v . J — TD which is a-parallel and such that v(0) = V,.
Moreover, if v1, v are the unique c-parallel lifts of o withv;(0) =V, € T, D, i =
1,2, then

(@), 2Ok = Vi, Vo), €L

Proof. In view of (3.3) and (3.6), the equation of parallel transport is
1 1 1
=3 (vuy — uwvy) — A,;l {vak(u) + uy Ag(v) + 3 vAg(ug) + 3 wAg(vs)|,

where v = oy 0! and v = y o . Note that the operators

(u,v) — A;l[vak(u) + ug Ap(v)],
(u,v) — %A;l [vAk(uz) + udgp(vg)| — % (vuy + uvy )

are smooth from H™(S)x H"™(S) to H™(S) for every n > 2k+1. Denote by ©(u,v)
their sum. The equation of parallel transport can be written as

v + wvg + O (u,v) = 0. (4.1)

For a fixed v € C'(J;D), the map v — O(u,v) is a bounded linear operator
from H™(S) to H™(S) for every n > 2k + 1. Viewing (4.1) as linear hyperbolic
evolution equation in v with fixed w € C''(.J; D), it is known (see [14]) that, given
Vo € H™(S), n > 2k + 1, there exists a unique solution

veC(J; H(S))n CY(J; HL(S))
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of (4.1) with initial data v(0) = V. Letting n T oo, we infer that, given Vj o
ol € TryD = C™(S), there exists a unique solution v € C'(J;D) to (4.1) with
v(0) = Vyoag .

From (3.5) we deduce that {v1(t), v2(¢))r is constant for any a-parallel lifts
and the second assertion follows. O

Choose open neighborhoods W of 0 € C*°(S), respectively U of Id € D, such
that Derp,, : H**T(S) — H?*T1(S) is bijective for every ug € W and erp is a
smooth diffeomorphism from W onto U, cf. Theorem 3. The map

G:DXxW—=DxD, (nu) (n,Ryerp(w),

is a smooth diffeomorphism onto its image. Let U(n) = R, U = R, egp(W). If
v € Un) — {n}, then ¢ = erp(v) oy for some v € W. Let v = rw, where
(w,w)r, =1 and r € R, to define the polar coordinates (r,w) of ¢ € U(n).

8o o 8o
—, =—— and ——
i o o Or?’ otor arot
denote by @10 the partial derivative with respect to r and define similarly dqo.
Both curves r — 9y0(r,t) and r — dy0(r,t) are lifts of r — o(r,t). Generally, if
v is a lift of r — o(r,t), let (D17y)(r,t) = (Da,+7v)(r) and define Doy similarly. In
a local chart we have by (3.4) that

D1820 = 81820 — Qk(8107 820) = Dgala' (42)

If ¢ : J; x Jo — D is a map such that are continuous,

since @y, is symmetric. On the other hand, from (3.5) we infer
O (010, 010 ), = 2 (D010, 10 ).
The previous relation combined with (4.2) yields
0y (010, 010 )y, = 2(D10s0, 010 ). (4.3)

Lemma 3. Let v : [a,b] — U(n) — {n} be a piecewise C'-curve. Then

ly) z |r(b) —r(a)l,

where [(vy) s the length of the curve and (r(t),w(t)) are the polar coordinates of
~v(t). Equality holds if and only if the function t — r(t) is monotone and the map
t— w(t) € W is constant.

Proof. We may assume without loss of generality that « is C' (in the general case,
break ~ up into pieces that are C'') and that n = Id (in view of the right-invariance
property of the metric). Observe that w(t) is obtained in a chart by the inversion
of erp followed by a projection so that the functions ¢ — r(t) and ¢ — w(t) are of
class C*.

Let o(r,t) = exp(rw(t)). Let ¢(s;2) be the solution of (3.10) starting at Id
in the direction z € C°°(S). Relation (3.12) yields o(r,t) = ¢(r;w(t)), while the
proof of Theorem 2 ensures for every n > 2k + 1 the smooth dependence of ¢(s; z)
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B
on s as well as the smooth dependence of (¢, ¢s) on z in H"™(S). Therefore
2
and 5 e continuous in the H"(S)-setting for every n > 2k 1. Furthermore,
T

ar?

since 1g
Pz =Td+ [ Flede i HE),
0 68
we have )
Oy 9% .
22 (s;2) = . 2) d L(H™S), H"(S
o(eia) = [ goE(E)de i L(H(S), HE)
2 2 2
thus Pe Ty . But ¢t — w(t) € H*(S) is a C'-map so that il is also
0205 080z 7
continuous in the H™(S)-setting for every n > 2k + 1. Letting n T oo we obtain
that 82—0 82—0 and 82—0 are all continuous in the C*°(S)-topolo
o aror " dtor TeReRE
Note that p 4
1y = 29 99
~'(t) = e () + e teJ (4.4)
Since r +— o(r,t) is a geodesic, we obtain by Lemma 2 that
do Jdo
—, ) = 1 th =1. 4.5
(52 57) = twlouie): (45)

Let us now show that

M1l
o
—
-
(=]
2

do Jdo
ar’ at [/,

Indeed, from (4.3) and (4.5) we obtain that

do do 1 do do
<Dlmvm>k§@<mﬁ>k=“

This, in combination with (3.5), leads to

do do do do oo do
e <a—%>k - <Dlm7 m>,ﬁ <W7D1W>k =15

since (D4 g—‘;) =0 as r— o(r,t) is a geodesic. The previous relation yields

do do do Oo
<57¥>k (r,t) = <E7W>k (0,1).

But ¢(0,¢) = Id forces g—a(()7 t) = 0 and therefore (4.6) holds.
r
Combining (4.4)—(4.6), we obtain

do?
! 2 _ 7 2 ) 7 2 a. b
ol =1ors |57 zror e
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so that the length of « is estimated by

b
I(y) / (&) dt > [r(b) — r(a)].

Since ||88—‘Z||k = 0 forces w'(t) = 0 as Derp, () is a bijection from H?FL(S) to
H?M1(S), the characterization of the equality case follows at once. 0O

Let us now prove

Theorem 4. If n,¢ € D are close enough, more precisely, if pon~t € U, thenn
and @ can be joined by a unique geodesic inU(n). Among all piecewise C-curves
joining n to ¢ on D, the geodesic is length minimizing.

Proof. Observe that if v = exp~'(w o n1), then a(t) = exp(tv) o is the unique
geodesic joining 7 to ¢ in U(n) cf. Theorem 3.
To prove the second statement, let won~! = exp(r w) with ||w||; = 1 and choose
€ (0,7). If v is any piecewise C''-curve on D joining 7 to ¢, then v contains an
arc of curve v* such that, after reparametrization,

leso ' (Y ODNlk =&, Nexp™ (¥ (W)l =7,
and
e<leap (Y @Oe <7, te0,1].

Lemma 3 yields {(v*) > r — e, thus I(v) > {(v*) > r —e. The arbitraryness of
¢ > 0 ensures [(y) > r. But l[(a) = r in view of Lemma 3 and the minimum is
attained if and only if the curve is a reparametrization of a geodesic. O

Remark. Specializing £ = 1 in Theorem 4 we obtain that for the Camassa—Holm
model (Example 2 in Section 3) the Least Action Principle holds. That is, a
state of the system is transformed to another nearby state through a uniquely
determined flow that minimizes the kinetic energy cf. [7].

5. Comments

This section is devoted to a discussion of the L%(S) right-invariant metric on D,
case when the geodesic equation (3.7) is the inviscid Burgers equation

us + 3uu, =0

cf. [1]. The crucial difference from the case of a H*(S) right-invariant metric (with
k > 1) lies in the fact that the inverse of the operator Ay, defined by (3.2), is
not regularizing. This feature makes the previous approach inapplicable but the
existence of geodesics can be proved by the method of characteristics.
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Proposition 1 [7]. For the L*(S) right-invariant metric on D there exists a unique
smooth geodesic on D starting at Id in the direction uy € TryD.

This result enables one to define the Riemannian exponential map of the L?(S)
right-invariant metric on D, in analogy to the cases considered in the present
paper. However,

Proposition 2 [7]. The Riemannian exponential map of the L*(S) right-invariant
metric on D is not a Cl-diffeomorphism from a neighborhood of zero in TrgD =
C(S) to a neighborhood of the identity on D.

The question whether another right-invariant metric could provide D with a
nice Riemannian structure has been positively answered in this paper.
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