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Stable modules and Wall’s D(2)-problem

F. E. A. Johnson

Abstract. The D(2)-problem is to determine whether for a three-dimensional complex X, the
vanishing of 3-dimensional cohomology, in all coefficients, is enough to guarantee that X is
homotopically two-dimensional. We show that for finite complexes with finite fundamental group,
a positive solution to the D(2)-problem is obtained precisely when all stably free algebraic 2-
complexes are geometrically realizable.

The proof makes very strong use of techniques which apply to finite fundamental groups but
not more generally; in particular, Yoneda’s Theorem that, for finite groups, group cohomology
is representable by stable modules of finite type, and also the Swan—Jacobinski Cancellation
Theorem for such stable modules.

Mathematics Subject Classification (2000). Primary: 57M20, 57M05; Secondary: 20C05,
18G10, 18E25, 16E05.

Keywords. Cohomologically 2-dimensional 3-complex, algebraic 2-complex, stable module, k-
invariant, geometrical realization.

1. Introduction

In Wall’s fundamental study of Poincaré Duality [30], a finite Poincaré complex of
dimension n is envisaged as a cell complex of the following standard form

() M(a) =X Uy e

where X is a finite complex of dimension < n—1 and o : S"~! — X is a continuous
map. This approach encounters a difficulty in dimension three, where it is unclear
whether we can take X to be of geometrical, rather than merely cohomological,
dimension two (see also [29]). This prompts the celebrated

D(2) problem. Suppose that X is a finite three dimensional cell complex such
that H3(X;B) = 0 for all local coefficient systems B on X. Is X homotopy
equivalent to a finite 2-dimensional complex?

The D(2)-problem is naturally parametrized by the fundamental group of the
complex involved; we say that a finitely presented group G possesses the D(2)-
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property when every finite 3-complex X with 71(Xg) = G which is cohomolog-
ically two dimensional is indeed homotopy equivalent to a finite 2-complex. For
n > 3 the corresponding D(n)-problem was solved in the affirmative by Wall [30].
Our main result, the Realization Criterion below, is an interpretation, for finite
groups, of the D(2) problem in purely two-dimensional terms, or more precisely,
in terms of the homotopy types of two dimensional chain complexes over ZG. If G
is a finitely presented group, by an algebraic 2-complex over G we mean an exact
sequence of modules and homomorphisms over Z[G] of the following form

E:(O—>J—>Eg—>E1—>EO—>Z—>O)

where F, is finitely generated and stably free over Z[G] for 0 < r < 2. We denote
by Alg. the category whose objects are such algebraic 2-complexes, and whose
morphisms are chain maps. The module J is an invariant of chain homotopy
equivalence and plays the role of an algebraic second homotopy group.

To any finite 2-dimensional (geometric) cell complex K with 71 (K) = G one
associates functorially an object in Alg., namely the ‘cellular chain complex’

Co(K) = (0 > my(K) — Cy(K) — C1(K) — Co(K) — Z — 0);
here K denotes the universal covering of K, and since K is simply connected,
we identify Ho(K;Z) with mo(K) = 72 (K) by means of the Hurewicz Theorem.
We reduce the problem of two -dimensional geometric homotopy type to purely
algebraic terms:

Algebraicity Theorem. Let G be a finitely presented group, and let K, L be
connected finite based 2-compleres with m (K) = w1 (L) = G; then there is a based
homotopy equivalence f : K — L inducing the identity on w1 if and only if Ci(K)
is chain homotopy equivalent to C,(L).

Let E € Alg. be an algebraic 2-complex; by a geometric realization of E, we
mean a finite connected based 2-complex K with 71 (K) = G together with an
algebraic chain equivalence ¢ : C4(K) — E. A natural question is whether every
algebraic 2- complex is geometrically realizable in this way; for finite fundamental
groups, we show this is equivalent to the D(2)-problem:

Realization Criterion. If G is a finite group, the D(2)-property holds for G if
and only each algebraic 2-complex E € Alg. admits a geometric realization.

For finite GG, the Realization Criterion thus gives a complete reduction of the
D(2) -problem to one involving only two dimensional data. We shall say that a fi-
nite group is 2-tame precisely when every algebraic 2-complex in Alg,, is geometri-
cally realizable. The question of which finite groups are 2-tame is discussed in [16],
[17]. By a change of emphasis, the result of Beyl, Latiolais and Waller [1], classify-
ing geometrical homotopy types over fundamental groups of certain 3-manifolds,
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can also be interpreted in this light. In particular, cyclic groups, dihedral groups
of order 4n + 2, the binary Euclidean groups T*, O*, I*, the quaternion groups
Q(8), Q(16) and Q(8n+4) (n > 1) are all known to be 2-tame, whereas over the
quaternion groups @Q(2") (n > 5), there exist algebraic 2-complexes for which no
geometrical realization is as yet known. In [15] the discussion is specialised to the
problem which provided the original motivation for this work, namely the theory
of Poincaré 3-complexes with finite fundamental group.

One should point out that the Algebraicity Theorem stated above is stronger
than the familiar statement of ‘Whitehead’s Theorem’, namely that a based map
[+ K — L inducing an isomorphism on 7y is a homotopy equivalence if and only
if Co(f) 1 Co(K) — Cy(L) is a chain equivalence. Here one must construct a
geometrical homotopy equivalence starting from purely algebraic data. Despite
the fact that it is well known, nevertheless, it does not seem to occur, stated
explicitly in this form, anywhere in the literature.

One can, though not without at least a little effort, retrieve the Algebraicity
Theorem in the form above either from Whitehead’s general formulation of homo-
topy systems in [31] or the rather more specifically low-dimensional formulation
given in [19]. In fact, both these formulations (‘crossed modules’, ‘k-invariants’)
have slightly more structure than we need; properly speaking they refer to ‘po-
larised homotopy’, wherein isomorphisms to the higher homotopy groups, not
merely 71, are specified in advance. Although we shall meet k-invariants in Sec-
tion 4, to avoid the unnecessary complications of a premature encounter we begin
by giving a direct proof of the Algebraicity Theorem in Section 2.

In addition, we employ two specific techniques which render algebraic homotopy
theory for finite fundamental groups considerably more tractable than is the case in
general. The first is Yoneda’s classification of module extensions [32]; the second is
the detailed cancellation theory of Z[G]-modules provided by the Swan—Jacobinski
Theorem [25], [12]. In Sections 3—4, we sketch both of these in the context of the
‘derived object’ formulation of homological algebra.

The results of this paper also depend heavily upon the fundamental advances of
several authors. In addition to those already mentioned, there are the many other
works of Swan [22], [23], [24], [26], and the pioneering contributions of Cockroft
and Swan [6], and Dyer and Sieradski [7], [8].

No introduction to the subject would be complete without mention of the
theory of Browning, generalizing the Swan—Jacobinski Theorem to the context
of chain complexes. His work, having languished in obscurity for twenty years,
is at last being accorded some of the recognition which its fundamental character
deserves. Browning did not publish his results, and his work is available only in the
form of his thesis [2], and some difficult-to-obtain ETH pre-prints [3], [4]. In fact,
we do not employ Browning’s results directly, with the sole exception of a single use
of a weak version of Browning’s Stability Theorem in Section 6. Nevertheless, the
existence of his work has informed our investigations throughout. In this context,
we should also mention the extremely helpful explications of Browning’s work by
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Gutierrez and Latiolais [11], and from a rather different perpective, the paper of
Gruenberg [10].

The preliminary work for this paper was done between September 1996 and
March 1997, an equivalent, differently stated, version of the Realization Criterion
first being proved in February 1997; this version was announced at the British
Topology Meeting at Oxford in April 1997. The author wishes to thank Karl
Gruenberg both specifically, for donating copies of Browning’s ETH preprints,
and generally for many enlightening conversations over the years; and particularly
Charles Thomas, whose initial suggestion it was to re-examine the problem of
Poincaré 3-complexes, and whose paper [27] provided an important focus at an
early stage of this work.

The paper is organised as follows: the Algebraicity Theorem is proved in Sec-
tion 2; in Sections 3—4 we outline the necessary results from Swan—Jacobinski
cancellation theory and Yoneda’s classification theory of module extensions.

For any finite group G, the second homotopy group of any 2-complex K with
71 (K) = G determines a stable module Q3(Z). In Section 5, we show that that
the general question of realizing algebraic 2-complexes is reducible to the level of
‘minimal’ representatives of Q3(Z). Finally, in Section 6, we relate the discussion
directly to the D(2) problem and prove the Realization Criterion.

2. Reduction of 2-dimensional homotopy to algebra

Let G be a finitely presented group G. For n > 2, CW¢ will denote the category
whose objects are connected finite connected based cell complexes of dimension
< n such that m (K) = G. Morphisms are are based cellular maps; however, in
the context in which we shall work, namely a single (based) homotopy equivalence
f: K — L between given complexes K, L, no generality is lost by imposing the
restriction that maps induce the isomorphism on 7, and without further mention,
we shall always assume this condition is in effect. Without loss, we assume that
basepoints are O-cells. Also, by the usual device of collapsing a maximal tree, no
generality in homotopy arguments is lost by assuming all complexes are reduced,
that is, possess a single 0-cell, and we shall allow ourselves this latitude without
further comment.

By choosing once and for all a lifting of the basepoint to the universal covering,
we associate to K € CW% an exact sequence C, (K) of Z[G]-modules:

C(K)= (0 = Hy(K;Z) — Cy(K) — C1(K) — Co(K) = Z — 0).

Exactness follows from the simple connectivity of K, and by the Hurewicz Theorem
we may identify Hg(f(; Z) with Wg(f() = mo(K). Strictly speaking, we should
regard C, (K) as being a chain complex which is both augmented (by Co(K) —
Z — 0) and coaugmented (by 0 — Hy(K;Z) — Cy(K)). The correspondence

K +— C.(K) is functorial for based cellular maps. Thus if o : K — L is a based
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cellular map there is a commutative diagram of Z[G]-homomorphisms
C,(K) 0— m(K)— Cy(K)— Cy(K)— Z[G] S Z — 0
le = lew  Les len leo 1Id
Ci(L) 0— m(L)— Cy(l)— Cy(L)— Z[G] S Z— 0
Let G = (z1, -+ ,z4 | Wy, -+, W,) be a finite presentation for G, and let y =
y(x1, -+ ,z4) be a word in the generators. Consider the presentation
g(y) - <fl}1, oty Tgt | W17 e 7W‘r+1>

where W, 1 = x;jly. Then G(y) is also a presentation of G; the passage from G
to G(y) is effected by a so-called Tietze transformation of the first kind. 1If K = Kg
is the Cayley complex of G, we denote by K (y) the Cayley complex of G(y); K(y)
is (simply) homotopy equivalent to K.

Proposition 2.1. Let K, L be finite reduced 2-complexes with w1(K) = (L) =
G. Then there erist finite reduced 2-complexes K1, Ly such that

(1) Kl ~ K and Ll e L,‘

(i) KV = L.

Proof. Let {z1, -+ ,zm} (resp. {y1, - ,yn}) be the generating sets of G corre-

sponding to the 1-cells of K (resp. L), and regard y; as a word in {zy, -,z }.
We can regard K as the Cayley complex of some presentation. Starting with the
generating set {z1,- -, xn } and adding the elements y1, - -, y, successively, we
obtain a sequence of presentations
g7 9(91)7 g(y17y2)7 """ P g(y17y27"' 7yn)7

and a sequence of (simple) homotopy equivalences

KCK(y1) CK(y1,92) T+ C K(y1,92, 1 yn) = K1.
Likewise, regarding L as the Cayley complex £ = L of some presentation,
and adding the elements z1,- - - , x,, successively, starting with the generating set
{y1, - ,yn}, We obtain a sequence of presentations

H? H($1)7 H(xth)a """ 9 H(x171:27"' 7xm)7

and a sequence of (simple) homotopy equivalences

L C L(xy) C L{z1,29) CTvvvvv C L(zy, e, yxm) = L.
Then in some ordering, the 1-cells of K1 and those of L correspond to the gener-
ating elements (z1,Za2, - ,ZTm,y1,Y2, * ,Yn); that is, we may identify K;l) with
iy, O

Proposition 2.2. Let K, L be finite reduced 2-complezes with m(K) = (L) =
G, and suppose that K = LU If v« C,(K) — C,(L) is an augmented Z|G]-
chain map, then v is chain homotopic to a chain map p which restricts to the

identity on C1(K) = C1(L).
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Proof. Begin with the chain map
C, (K) )R KL ZIG S Z— 0
lv = L v v lw | 1d
Ci(L) Goldy & RS S B9

where, by hypothesis, Cy(L) = Cy(K) and 8 = 9F = 9. Then Im(Id — ;) C

Ker(e) = Im(81). Choose a Z[G]-homomorphism hgy : Z[G] — Cy(L) such that
O1hg = Id — vp, and put A\; = ho0; + vi, A\ = vo. We obtain a chain map

A Cu(K) — Co(L);

C(K) BEYB (RS zZlo] S Z2— 0
L& = L A2 LA lid | Id
Ci(L) D)3 o(D)S zZlo) S Z— o.

Clearly Im(/dy — A1) C Ker(9;1) = Im(d2). Choose a Z[G]-homomorphism Ay :
Cy1(K) — Cy(K) such that dohy = Id; — Ay. Put pg = h195 + Ay, Then

Sops = 0a(h102 + o)
02h102 + da o
= 07— X\02+ b2
= .

Il

The following commutative diagram defines the desired chain map g

CoEK) % oK) 2 Z[6) S Z— 0
2 LId | Id |Id

v
Co(D) 2 o) 2zl S 2 — o,

and h = (hy, hg) is a chain homotopy from p to v. O

If o : Cu(K) — C.(L) is an algebraic chain map, by a realization of ¢ we
mean a cellular map f : K — L such that C.(f) = . The following Lemma,
gives conditions under which some chain maps are realizable. It is modelled on
the proof of result of Gutierrez and Latiolais ([11] Prop. (2.3)) in a a slightly more
general context, amd is included here for the sake of completeness.

Lemma 2.3. Let G be a finitely presented group, and let K, L be finite reduced
2-dimensional cell complexes such that 7 (K) = 7(L) = G, and K& = L), if
¢ Cu(K) — Cy(L) is an algebraic chain map such that ¢|c,xy = 1d then there
erists a cellular map f: K — L such that

(i) f extends the identity of KW = LW and induces the identity on 71, and

(i) Cu(f) = .
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Proof. By hypothesis, the following diagram commutes:
K
(k) B Cy(K)
L2 I
aL
Cy(L) = Cy(L).
Begin by choosing some cellular map X : K — L with the property that A extends
the identity of K1) = LM and induces the identity on 1. For example, we may
first attach cells of dimension > 3 to L to kill homotopy groups in dimensions
> 3, so forming a K (G, 1) space with K(G,1)® = L. The identity map on K
then extends to a map A : K — K(G, 1) which classifies the universal G-bundle
K — K and which induces the identity on 7;. Without loss of generality, the
cellular approximation theorem allows us to choose A to be cellular, extending the
identity on KV In particular A : K — A(K) ¢ K(G,1)® = L.
The chain map C,(A) induced by A makes the following diagram commute:
yie
Co(K) % Cy(K)
1 A2 I
aL
Co(L) 2> Ci(L).

In particular, 9% (s — A2) = 0, and since the Hurewicz Theorem allows us to
identify Ker(0F) = Hy(L:Z) can be identified with m5(L), then ¢y — Ay gives a
Z|G]-homomorphism

P2 — )\2 : CQ(K) —F WQ(L).
Let {Ey,- -+, E,} denote the 2-cells and let {Ey, - -+, E,} denote the Z[G]-basis of
Cy(K) obtained by to K let h; : 82 — L be a map whose homotopy class [h]
satisfies

N

[hs] = (2 — A2)(E5).
Let ¢; : F; — FE; vV S? denote a ‘pinch map’ obtained by identifying an interior
circle in F; to a point. We may write

< (Ls) -

where ‘~’” makes identifications in the boundaries of the F;. Put

X= (]_[Eivsi?)/w

where ‘~” makes the same identifications as before, observing that F; and FEj; v S?
have the same boundary. One may think of X as formed from K by attaching a
copy of S? at a single interior point within each 2-cell of K. Put \; = Alg, and
define

c= (Hc) /o K= X ; W= (Hxivm)/w X — L,

? ?
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and put f = WVoc: K — L. fis a basepoint preserving map ; it is straightforward
to see that f extends the identity on K™ and induces the identity on my. If
fn : Co(K) — C, (L) denotes the induced map on n-chains, one calculates easily
that

F2(E) = Da(B3) + (]
where we identify [h;] € m2(L) with its image in C3(L). However, by choice,
(2 — X)) (E;) = |h;]. Thus

F2(Es) = Xo(E) + (g2 — Ao)(Ei)

= pa(Ey)
and f» = 9 as required. (Il

Proposition 2.4. Let K, L be finite reduced 2-compleres with m1(K) = m(L) =
G, and suppose that ¢ : C(K) — C. (L) is an algebraic chain homotopy equiva-
lence; then there exists a cellular homotopy equivalence f : K — L whose induced

map on the fundamental group is the identity.

Proof. By (2.1), we may, without loss of generality, assume that KO = LM, Now
Ho(K;Z) and Hy(L;Z) are canonically isomorphic to Z, so that the isomorphism
Oy Ho(f(;Z) — Ho(i;Z) is +Id. By replacing ¢ by —¢, if necessary, we may
suppose that ¢ induces an isomorphism on Hj.

Now by (2.2), we may further assume that p restricts to the identity on
C,(K) = Cy(L). Finally, applying (2.3), we obtain a cellular map f : K — L in-
ducing the identity on the fundamental group and such that f, = p: Hg(f( 1 Z) —
Hy(L;Z). In particular, f, : Ho(K:Z) — Hy(L;Z) is an isomorphism, so that f
is a homotopy equivalence, by Whitehead’s Theorem. (Il

As a corollary, we have:

Algebraicity Theorem. Let G be a finitely presented group, and let K, L be
connected finite based 2-complezes with 71 (K) = 7 (L) = G; then K is homotopy
equivalent to L if and only if C.(K) is chain homotopy equivalent to C,.(L).

3. Stable modules and derived functors

Throughout rest of the paper, G will denote a finite group, although at the
more important points we shall re-emphasize the fact; we denote by F(Z[G]) the
category of Z[G] lattices, that is, finitely generated (right) Z[G]-modules whose
underlying Z-modules are free. We let ‘~’ denote the stability relation on F(Z[G]);
that is

My ~ My <— M| & Z[G]nl ~ My @ Z[G]n2
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for some n1,n9 > 0, and put
Stab(Z[G]) = F(Z|G])/ ~.
For any Z[G]-lattice M, we denote by [M] € Stab(Z[G]) the class of M under ~.
Recall Swan’s generalization of ‘Schanuel’s Lemma’ [22]; if

0—-B—-F,— - —>F—>A-0,

and
0—-B -F —... s F, —-A -0

are exact sequences of Z[G]-modules in which F}, FJ/ are finitely generated and
free, then A = A’ implies that B @ F' = B’ @ F’ for some finitely generated free
Z|GJ-modules F, F’. To each module M € F(Z|G]), we can associate a sequence
(©,)r>0 of stable modules defined by the condition that Q,, (M) is the stable class
[D] of any module D € F(Z[G]) for which there exists an exact sequence of the
form

0O—-D—F, 11— - —I—-M-=—0

where each F, is a finitely generated free module over Z[G]. Likewise, to each
module M € F(Z[G]), we associate a sequence (Q_,(M)),>o of stable modules
defined by the condition that Q_,,(M) is the stable class [D] of any module D €
F(Z|G]) for which there exists an exact sequence of the form

O—-M-—-F—---—F,_1—-D-=0

where each F, is a finitely generated free module over Z[G].

We introduce duality into F(Z[G]) as follows; when M € F(Z[G]) we denote by
M* the right Z[G]-module whose underlying Z-module is Homz (M, Z) and whose
G-action is given by

(f #g)(m) = f(mg™).
Under our hypothesis that G is finite, M* is a model for the Z[G]-dual of M.
This is a special case of the ‘Eckmann—Shapiro Lemma’. As an explicit model
for Homg (M, Z[G]) we may take sequences o = (a)zeq, With each o, €
Homg (M, Z), satisfying the condition ayy(m) = ap(mgt). In this case, the
right G-action is given by (« e x); = a4y, and the mapping

L Homz[G](M7Z[G]) — M*, L((ag)geg) =

is an isomorphism.T There is now a natural equivalence v : M — M** given by
v(z)(e) = a(z). Duality is introduced into Stab(Z[G]) by writing [M]* = [M*].

Proposition 3.1. For any module M € F(Z[G]) we have the following relations:
(i) Om (Qn (M) = Qmn(M);
(ii) O (M*) = Q_,(M)*~.

T The referee emphasizes the point that this ceases to be true if the hypothesis that G be finite
is dropped. A good example is obtained by taking M = Z, the trivial module over the infinite
cyclic group T. Then M* 2 M but Homg1)(M, Z[T]) = 0.
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The trivial module Z is self-dual over Z[G], so that:

Proposition 3.2. For any finite group G,

(i) MW(Z) = &)
(i) Q_1(Z) = [M&)]

We wish to interpret the constructions € in terms of derived categories. This
is essentially well known. In a different, though parallel, context, there is an
elegant exposition in the monograph of Carlson [5]. A systematic treatment of
group cohomology in the exact context required for this paper can be found in
[14].

Let f,g: M — N be Z|G]-homomorphisms where M, N € F(Z[G]). We write
f ~ g when f — g factors through a projective module; that is, when f — g can be
written as a composite f — g = o «, of Z[G]-homomorphisms « : M — P and
B : P — N. where P is projective over Z|G]. It is straightforward to check that
~ is an equivalence relation compatible with addition and two sided composition.
By the derived category Der(F(Z|G])) of F(Z|G]), we mean the category whose
objects are modules in F(Z[G]), and in which, for any two modules M, N, the set
of morphisms Homqp,, (M, N) is given by

Hompe: (M, N) = Homge (M, N)/ ~ .

Let My, My € F(Z]G]); it is clear that if M1 & Z[G]™ =2 My ® Z[G]™* then M,
and My are isomorphic in the derived category. Thus each stable module (M)
gives rise to an isomorphism class, denoted by the same symbol, in the derived
category. The traditional interpretation of H*(—, —) as the k** derived functor of
Hom(—, —) can be made explicit in this context (see [13]).

Proposition 3.3. On the category F(Z|G)), for all k > 1 there is a natural
equivalence of functors v : H¥ (M, N) — Hompe, (Qx (M), N).

In particular, we see that, in the derived category, Qi (M) is a corepresenting
object for the functor X +— H®(M, X). Moreover, this statement remains true
for k = 0 provided H°(M, N) is ‘correctly interpreted’ as Tate cohomology. We
note that, Q(Z) is the stable class of the augmentation ideal, and Q2(Z) is the
stable class of the so-called ‘second Fox ideal’ of a presentation. Since the category
F(Z|G]) has good duality properties, one sees also that:

Proposition 3.4. On the category F(Z[G]) there are natural equivalences
v:H¥(M, N) — Hompe, (M, Q_4(N)).

all k > 1; that is, in the derived category, Q_(N) is a representing object for the
functor X — H*(X, N).
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If M € F(Z|G]), we denote by [M] the stable module consisting of all modules
in F(Z[G]) which are stably equivalent to A{. Then [M] has a natural combi-
natorial structure, namely that of a directed graph in which the vertices are the
modules N € [M], and where we draw an arrow N — N @ Z[G]. It is clear that
there are no loops in the corresponding undirected graph, so that [M] is a tree. As
we shall see, the structure is rather more specific. A module C € F(Z[G]) is said
to have the cancellation property when, for any N € F(Z[G]), an isomorphism of
the form

NoZ|IG*2CaZIG" == NxCaoZ|G]"°

provided ¢ < n. We say that the finite group G has the cancellation property for
free modules when finitely generated stably free modules over Z[G] are actually
free; that is, when B @ Z[G)°? = Z|G]® implies that B = Z[G]*~#.

Recall that if C € F(Z[G]), we say that C satisfies the Eichler condition when,
in the Wedderburn decomposition of Endgq(C' ® Q), no simple factor is a totally
definite quaternion algebra. The following theorem of Swan ([25] Chap. 9), build-
ing on Jacobinski’s Cancellation Theorem [12], gives a sufficient condition for a
module in F(Z[G]) to possess the cancellation property.

Theorem 3.5. Let G be a finite group, and let M € F(Z|G)). If M & Z|G]
satisfies the Eichler condition, then M & Z[G] has the cancellation property.

By a fork, we mean a locally finite tree of the following type (Fig. 1) with a
single vertex at each positive integral height, and a finite set of vertices at height
zero, so that there is no branching above level 1.

Figure 1
It is a direct consequence of the Swan—Jacobinski Theorem that if M € F(Z[G])
is rationally equivalent to the augmentation ideal I(G), then any N € [M] of non-
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minimal rank has the cancellation property. It follows easily that:

Proposition 3.6. Qq,,((Z) is a fork for eachn > 1.

4. Module extensions

We begin by summarizing Yoneda’s cohomological classification of module exten-
sions [32]; in fact, we shall need a relative version of Yoneda’s extension theory,
where all exact sequences are taken over the category F(Z[G]). This is also well
known in principle, but it is difficult to find an account in the literature which
covers our requirements exactly. In fact, the precise details required here may
be found in [14]. Thus let M, N be modules in F(Z[G]); then Ext g (M, N)
will denote the category whose objects are exact sequences of Z[G]-modules and
homomorphisms

E:(O—> N—-E, {— - - —>E0—>M—>O)

in which all modules lie in F(Z[G]), and whose morphisms are commutative dia-
grams of Z[G]-homomorphisms thus:

E 0> N—->FE, {— - - - Fy— M—0
Lh = Lhe | hna Lho | h-
F 0= N—->F,_ 11— - 2 F—>M-—>0

When G is understood, we abbreviate Ext'yzq) (M, N) to Ext" (M, N).
If E,F € Ext"(A, B), a morphism ¢ : F — F is said to be an elementary
congruence when it induces the identity at both ends thus:

E 0—-B—FE, — - - - FEy—> A—0
Ly = LId | en Lo |1d
F 0—-B—F, 1— - - — Fh— A—0

We write E ~» F when there exists an elementary congruence ¢ : E — F. In
the case n = 1, it is a consequence of the Five Lemma that elementary congruence
is an equivalence relation on Extl(M , V), and we write:

Ext'(M,N) = Ext}(M,N)/ ~ .

By contrast, ~~ is not an equivalence relation when n > 2; in this case, we denote
by ‘=’ the equivalence relation generated by ‘~’; that is E,F € Ext" (M, N) are
said to be congruent, written E = F, when there exists a sequence E,, (0 < r <
m) € Ext"(M, N) such that E = Eq, F = FE,,, and for each r < m — 1, either
E; ~ E; 11 or Expq ~ E;. We denote by Ext™(M, N) the quotient set

Ext™(M,N)=Ext"(M,N)/ =.
Suppose that K € ,, (M), and fix an extension
F=(0—>K—F, 1— - - — Fy— M—0)



30 F. E. A. Johnson CMH

where each F} is finitely generated free Z[G]-module. Suppose that
E=(0->N—FE, 1 — - —FEy—> M —0) € Ext"(M,N)

The universal property of free modules gives a commutative diagram of Z[G]-
modules thus:

F 0—- K— Fpq— - - - Ih—-M-—=0
Lh= Lhg L hn Lho |1d
E 0= N—>FE, {— - - — FEy— M — 0

The essence of Yoneda’s Theorem [32], [14] is that, for fixed F, the correspondence
E — hf € Homg (K, N) gives rise to a bijection

Ext™ (M, N) — Hompe, (K, N) 2 Hompe, (Q, (M), N).

Using the corepresentability result of (3.3), we obtain the following version of
Yoneda’s Theorem:

Proposition 4.1. For each M € F(Z|G]), the functors N — Ext™(M,N) and
N w— H"(M,N) are naturally equivalent for all n > 1.

This bijection imposes a (slightly unnatural) group structure on Ext™(M, N).
We note however, that in the case n = 1, the group structure is entirely natural,
being given by Baer sum ([18] Chap. 3), and in that case the Yoneda map is an
equivalence of group valued functors.

For any M, N € F(Z|G]) we denote by Free" (M, N) the subclass of Ext™ (M, N)

consisting of extensions of the form
0—-=N—=A4, {1— - — A —=A)—-M—=0

with A4; € F(Z|G]) in which each A; is free. Likewise Proj” (M, N) (resp.
SF"(M, N)) will denote the subclass of Ext™(M, N) which each A; is projective
(resp. stably free). We have inclusions

Free"(M, N) C SE"(M,N) C Proj"(M,N) C Ext" (M, N).

Proposition 4.2. Let M, N € F(Z[G]); then for each n > 1, the following con-
ditions are equivalent:

(i) SF"(M,N) #0;

(ii)) N e Q,(M);

(iii) M € Q_,(N).
Moreover, when either n > 2 or n =1 and G has the cancellation property for free
modules, these conditions are equivalent to

(iv) Free™ (M, N) # 0.

Proof. We first assume that n > 2 and prove the equivalence of (i)—(iv). The
equivalence of (ii) and (iii) is obvious, as are the implications (iv) == (i) and (iv)
= (ii). Thus it suffices to show that (ii) = (i), and (i) = (iv).
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(ii) = (i). First note that if F' is a finitely generated free module over Z[G],
and Fy C F is a free Z[G] submodule, then F'/F; is stably free over Z[G] if and
only if F'/F, is torsion free over Z; this is an easy argument using the injectivity
of I, relative to F(Z[G]) or, what is the same, by double dualization using the
universal property of free modules. Now suppose that N € Q,,(M); by definition,
there exists a module DD which occurs in an exact sequence

0—-D—ZG" - F, 92— —F—M-=0.
with v > 0, each F, finitely generated free over Z[G], such that
Ne&Z[G]*= D& Z[G]
for some a,b > 0. Now D @ Z[G]® occurs in the exact sequence
0-DoZGP - Z[G"™* - F, g — - —= Fp— M —0,
so that N @ Z[G]* occurs in the exact sequence
0-N@ZG* - ZIGP™ - F, 3= = Fy - M —0,
We split this last sequence as a pair thus:
(I 0= N3Z[G* = Z[G]™* - K =0
(I1) 0—-K—=F,s— -—Ij—M-=—0.
Dividing through (I) by Z[G]™ gives an extension
(I11) 0— N — Z[G]"T/Z[G]* - K — 0
in which N, K € F(Z[G]). Thus, Z|G]"?/Z[G]* is torsion free over Z, so that,
by the remark above, Z[G]7T*/Z[G]* = S is stably free over Z[G]. Splicing (II)
and (III) gives an element 0 — N — S — F,_ 9 — .- -. — Iy — M — 0, of
SF"(M, N) as required. This completes the proof that (i) = (i).

(i) = (iv). Suppose that 0 = N —- S, 1 — -+ = Sy = M — 0 is an
element of SF"(M, N) where each S; is finitely generated stably free. If n = 2
(this is only place where we need the hypothesis that n > 2) then there exists
a > 0 so that S; @ Z[G]? is free for i = 1,2. Adding a summand of Z[G]* to the
middle terms gives an extension

0->N—-S1®ZIG|" = Se@ZIG|* - M —0

which defines an element of Free?(M, N). If n > 2, we may first add a suitable
free summand to S7 and Sy to make Sy free; the result follows by induction after
an easy splicing argument. This completes the proof that (i) == (iv).

Now suppose that n = 1; again the equivalence of (ii) and (iii) is obvious, and
the proof that (ii) == (i) given above goes through with a a minor change of
indexing, so that it suffices to show that (i) = (ii). Thus suppose that 0 —
N — S — M — 0 is an extension in which S is a finitely generated stably free
module. Then for some a > 0, S @ Z[G]* is free, and from the exact sequence

0—-NaZG* =58 ZIG* =M —0
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we see that N @ Z[G]* € Q1(M). Thus N € Q,(M), showing that (i) = (ii), and
hence the equivalence of (i), (ii) and (iii) in the case n = 1.

Finally, if G has the cancellation property for free modules then (i) is equivalent
to (iv). O

We denote by Proj”(M,N) (resp. SE"(M,N), Free™(M,N)) the image of
Proj” (M, N) (resp. SF"(M, N), Free" (M, N)) under the canonical map

Ext™(M, N) — Ext"(M, N).

Evidently Free™ (M, N) C SF"(M, N); one may extend the argument of (4.2) to
show that for n > 2, SF"(M, N) and Free” (M, N) represent the same congruence
classes; that is:

(4.3) For all n > 2, Free"(M,N) = SF"(M, N).

~

For any finite group G, we proceed to give a description of Ext™(Z,Q,(Z)) =
H™(Z,9Q,(Z)) when Z denotes the trivial module over Z|G] and N € Q,,(Z).

We begin by computing the ring Endpe,(Z). Note that Endz¢(Z) = Z under
the isomorphism « — «a(1); also there are Z[G]-homomorphisms X : Z — Z[G]
and e : Z|G| — Z given by

En)=n(d_g) ; D agg) = a,

geG geG geG
Moreover,
(4.4) If ¢ : Z — Z|G] is a Z|G]-homomorphism then ¢ = n)} for some n € Z;
(4.5) If ¥ : Z|G] — Z is a Z]|G]-homomorphism then ¢ = ne for some n € Z.

Suppose « : Z — Z factors through Z[G]™ for some m > 1 thus:
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blﬁ
We may write ¢ = (1%, -+ ,a,2) and ¢ = : so that

b€

o = (Zab) €Y = (Zm) [&].

Conversely, if @ = a|G| then « factors through Z[G] since o = ae 0 3. Thus we
see that

(4.6) « factors through some Z[G]" <= o =n|G| for some n.

Clearly o factors through a projective if and only if it factors through some Z[G]",
so that

Proposition 4.7. Let Z denote the trivial module over Z|G] where G is a finite
group; then there is an isomorphism of rings

Endpe.(Z) = Z/|G|.

However, each €y, is a self-equivalence of the derived category ([13]), so that
more generally we have:

Proposition 4.8. [f N € Qi(Z) then there is an isomorphism of rings
Endpe:(N) = Z/|G|.

and by

If M € F(Z|G)), if N € Qu(M) then H*(M,N) = H"(M,Q,(M)),
,Qn(M)).

the corepresentation formula (3.3), H"(M,Q,(M)) = Hompe (€2, (M)
Since €, is a self-equivalence of Der(F(Z[G])),

Homper (9, (M), @, (M)) = Hompe, (M, M) = Endpe,(M).
Thus in the case where M = Z we obtain
(4.9) Ext™(Z,N) = Z/|G|
when N € Q,,(Z), and more generally, by dimension shifting,
(4.10) Ext™(M, N) = Z/|G]
for M € Q,,,(Z) and N € Q,(M).

The explicit parametrization of the congruence classes in (4.10) is effected
by the method of ‘k-invariants’ thus; let M € Q,,(Z) and N € Q,(M). Since
N € Quin(Z), there is a ring isomorphism x : Endpe(N) — Z/|G|. If
P € Proj”(M,N) and E is an arbitrary element of Ext™ (M, N), the universal
property of projective modules leads to a commutative diagram of Z[G]-modules
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thus:
P O—-— N—P, 11—+ -+ P> M-—0
o= Loy |apa lag |1d
E O—- N—-FE, —- -+ o FE—>M-=>0

We define the k-invariant of the transition, k(P — E) € Z/|G|, by
E(P — E) = r(ay).

The k-invariant construction has the following easily verified properties:

Proposition 4.11. Let P,Q € Proj" (M, N), and let E € Ext™(M, N); then
(i) k(P—-E)=kP —-Q)LQ—E),
(ii)) k(P —-P)=1;

(ili) k(P —Qk(Q—P)=1;

(iv) E € Proj"(M,N) <= k(P = E) c (Z/|G|)".

Making a specific choice of projective extension P € Proj” (M, N) we see that:

Proposition 4.12. The correspondence E +— k(P — E) defines a bijective
mapping Proj”™ (M, N) — (Z/|G|)* for M € Q,,(Z) and N € Q,,(M).

5. Algebraic 2-complexes

If K is a finite connected 2-complex with 71(K) = G, then the universal covering
K is simply connected, so that the cellular chain complex C,(K) can be written
as an exact sequence of Z[G] modules thus:

C(K) = (0= m(K) — Co(K) & 1K) & Cy(K) — Z — 0).

In particular, the second homotopy group m2(K) is naturally a Z[G]-module be-
longing to the stable module Q3(Z), and the cell complex itself determines an ele-
ment of Free®(Z, 75 (K)). We have seen already in (4.3) that the set Free¥(Z, 7o K)),
of congruence classes of free extensions coincides with the corresponding set
SF*(Z,75(K)) formed from stably free extensions. By an algebraic 2-complex
we shall mean an extension of the foorm E = (0 — J L B, % By 2} Ey—Z—0)
where each F; is finitely generated stably free; in particular, J € €Q3(Z) and
E e SF3(Z,J).
For any n > 1, the n-fold stabilization of E is the complex

SYE)=(0—JoZlG]" "2 B ezZlc " E, B By~ Z —0)

where 7 : By & Z[G]" — Es is the projection.
This corresponds to the following geometrical construction; if K is a finite 2-
complex, we denote by X"(K) the complex obtained from the one point union of
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K with a collection of n copies of the 2-sphere;

Y K)=KvS?v...v52,
N————’

———~——

It is straightforward to check that C, (37 (K)) 2 S*(C,(K)) .

The discussion can be carried out in the context of group presentations: if
G = (x1, - ,xq | Wi,---,W,) is a finite presentation of G, we denote by C.(G)
the cellular chain complex of @ where K¢ is the Cayley complex of G:

C(G) = (0= m(G) = C2(Kg) B C1(Kg) B Z[G) S Z — 0).

It is clear from Schanuel’s Lemma that the module 72 (G) = mo(Kg) is stably
unique and belongs to Q3(Z). If we wish to emphasise the group presentational
aspects, as against the module theoretic aspects, of the situation we could also,
as was essentially done by Fox [9], observe that the stable uniqueness of 75(G)
already follows from Tietze’s Theorem [28]. In any case, denoting by m3(G) the
stable module [m2(G)], we have:

Proposition 5.1. For any finite group G, m(G) = Q3(Z).

The process of stabilization also has an interpretation in terms of group pre-
sentations; we denote by "G any presentation of G obtained from G by adding
n trivial relations. It is straightforward to see that C.(X"G) is congruent to
S™M(C(9))-

A morphism h: E — F in ExtS(M7 N) is said to be a homotopy equivalence
(strictly speaking, a weak homotopy equivalence) when hyy = Id and hy is an
isomorphism; that is, when it has the form

0—)N—>E2—)E1—>Eo—>M—)O

Lh = Lhn Lha |hy | ho |1d

0—-N—->F > F — I —>M—0

We write E ~ F when there exists a weak homotopy equivalence h : E — F. Weak
homotopy equivalence is always reflexive and transitive, but is not, in general,
symmetric. If A~ : E — F is a weak homotopy equivalence, the mapping cone
M (h) is necessarily acyclic; if, in addition, E, F are projective then M (k) is chain
contractible. By the usual argument ([21] p. 167), h then has an inverse up to
homotopy. Thus ‘weak homotopy equivalence’ is indeed an equivalence relation
when restricted to Proj™(Z, J).

A module J € Q3(Z) is said to be minimal when rkz(J) < rkgz(J’) for all
JeQZ) If JeQ(Z)andE=(0—J > F, > F - F —-7Z—0)is
an algebraic 2-complex then E is said to be minimal when .J is minimal. G is
said to be 2-tame (resp. minimally 2-tame) when for every algebraic 2-complex
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E (resp. every minimal algebraic 2-complex E) there exists a presentation G such

that C,(G) ~ E.

Proposition 5.2. Let G be o finite group; then

G is 2—tame <= (G is minimally 2—tame.

Proof. The implication (=) is clear. Thus suppose that G is minimally 2-tame,
let J € Q3(Z) be a specific choice of minimal module, and let

F={0=2J5 53R RnaZ%an

be a minimal algebraic 2-complex whose left-hand end is J but whose choice is
otherwise arbitrary. Now let

E=0—-A—Fy—FE —-Fy—Z—0)

be a non-minimal free algebraic 2-complex. By the Swan—Jacobinski Theorem, we
may suppose, without any loss of generality, that A = J & Z[G]™. Put

r = k(S"(F) - E) € (Z/|G])* .

Let D= (0 — J — Dy — Dy — Dy — Z — 0) be an element of Ext®(Z, J) such
that
kK(F—-D)=r

Since r € (Z/|G])" it follows that D € Proj*(Z,.J). Furthermore, we may make
the identifiction

Ext*(Z,J & Z[G]") = Ext}(Z, J ® Z|G]") = (Z/|G])* .

Since k(S"(F) — E) = k(F — D) = r, and E is free, it follows that D is
stably free, and hence a minimal algebraic 2-complex. By hypothesis, there exists
a presentation G such that C,(G) ~ D. However k(S"F — S"D) = r , so that
S™D is congruent to E and hence S"D ~ E. Let ¥"G be a presentation obtained
from G by adding » trivial relations. Then C,(¥."G) ~ S"(D) ~ E. O

For algebraic 2-complexes, and more generally for projective complexes, the
relation ‘weak homotopy equivalence’ is symmetrical; that is, if E, E are algebraic
2-complexes, and f : E — E’ is a homotopy equivalence, then there exists an
inverse homotopy equivalence g : E' — E. If E is an algebraic 2-complex over
Z[G], say that E is geometrically realized when there is a finite 2-complex L with
71 (L) = G, and a homotopy equivalence ¢ : C,(L) = E; equivalently, when there
is a finite presentation G of G and a homotopy equivalence ¢ : C.(G) = E. A
finite group G is said to be 2-trivial when there exists a single presentation G of G
such that E ~ C,(G) for each minimal algebraic 2-complex E. It is straightforward
to see that

Proposition 5.3. If G is 2-trivial then G is 2-tame.
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At present, it is still unknown whether every finite group G is necessarily 2-
tame. However, we point out that the condition of 2-triviality imposes strong
requirements on G. In particular, the stable module Q3(Z) must then contain a
unique module at the minimal level, so that the tree structure has no branching
at all. Browning [4] classified the minimal 2-complexes of finite abelian groups,
and showed that they arise from suitable presentations; thus finite abelian groups
are 2-tame, but, by results of Metzler [20], definitely not 2-trivial.

6. Virtual homotopy type and the D(2)-problem

We now proceed to reduce the D(2)-problem, for finite fundamental groups, to a
question involving only 2-dimensional algebraic homotopy types.

Proposition 6.1. Let X be a finite 3-complex with 71(X) =2 G, and put K =
X @), then there is a canonical exact sequence of Z[G]-modules

0 — H3(X;Z) — C3(X) B ma(K) — ma(X) — 0.

Proof. We have a pair of exact sequences
0 — Z3(X) — C5(X) & Im(85) — 0

0 — Im(83) — Zo(X) — Hy(X;Z) — 0,
which, spliced together give:

0 — Z3(X) = C3(X) & 2,(X) - Hy(X;Z) — 0.
Since K = X®) we have Hy(K;Z) = Zy(K) = Z5(X), whilst Z3(X) = H3(X;Z),

so that we have an exact sequence

0 — Hy(X;Z) — C5(X) & IL(K;Z) — Ho(X;Z) — 0.

I

The result now follows from the Hurewicz Theorem, since mo(K) = mo(K)

Hy(K;Z) and 7mp(X) =~ mo(X) = Hy(X; Z).

Ol

As a consequence, we have:

Proposition 6.2. Let X be a finite 3-complez with m1(X) =2 G; if H*(X;B) =0
for any local coefficient system B on X then

(i) Im(d3) is isomorphic to the free Z|G)-module Cs(X);
(ii) Im(93) is a direct summand of mo(K), and
(i) m2(X) =2 7o(K)/Im(ds).
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Proof. Since X is three dimensional, Hg()E' ;Z) is torsion free, since by the Universal
Coefficient Theorem, Tor(Hs(X;Z)) = Tor(H*(X;Z)) = 0. Moreover, by the
cohomology hypothesis on X, we have H3(X;Q) = H3(X;Q) = 0. It follows that

H3(X;Z) = 0. Thus d3 : C3(X) — Im(83) is an isomorphism. This proves (i).

Furthermore, the exact sequence of (6.1) reduces to

0 — C5(X) % mo(K) — m(X) — 0.

However,
Tor(my (X)) = Tor(Hy(X;Z)) = Tor(H?*(X; Z))

so that, again by the cohomology assumption on X, mo(X) is torsion free. Thus
we have a short exact sequence in F(Z|[G])

0 — C5(X) & m(K) — ma(X) — 0,
in which C3(X) = Im(ds) is Z|G]-free (of rank n say) and hence relatively injective.
Thus
7T2(K) = Wz(X) %) Im(ag) = 7T2(X) ® Z[G]n

This proves (ii) and (iii) simultaneously. O
It follows from the above that:

Corollary 6.3. Let X be a finite 3-complex with 71(X) = G; if H>(X;B) =0 for
any local coefficient system B on X then wa(X) € Q3(Z).

Throughout the rest of this section, until further notice, X will denote a finite
3-complex with 71(X) 2 G which is cohomologically 2-dimensional in the sense
that H3(X;B)) = 0 for any local coefficient system B on X. Up to homotopy type,
there is no loss of generality in assuming that X is also reduced, so we assume
that as well. K will denote the 2-skeleton of X. We may refine the above analysis
slightly. Firstly, since H3(X;Z) = 0 the boundary map 95 : C5(X) — Cy(X) is
injective. Moreover, we have:

Proposition 6.4. m(X) 2 Ker(dy : Co(X)/Im(d3) — C1(X).

Proof. This follows directly from the exactness of the following sequence of Z[G]-

modules 0 — 75 (K)/Im(s) — Co(X)/Im(ds) B C1(X). O

Proposition 6.5. Im(ds) is a direct summand of Co(X) and Cy(X)/Im(ds) is
stably free over Z|G].

Proof. We have an exact sequence 0 — mo(X) — Co(X)/Im(ds) B Cy(X)
in which 72 (X), being a representative of Q3(Z), is torsion free over Z. However,
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C1(X) is free over Z[G] and hence free over Z. Thus Cy(X)/Im(ds) is also torsion
free over Z. The result now follows from the injectivity of the free module Im(ds)

relative to F(Z[G]), given that Cy(X) is also free. O

Let j : m(X) — Cy(X)/Im (83) be the inclusion obtained by making the
identifications
mo(X) = mo(K)/Im(83) ; C2(X) = Co(K).

We let (X) denote the following algebraic 2-complex;
0 — m(X) L Co(X)/Im(8s) — C1(X) = Co(X) > Z — 0.

Observe that (X) is functorial in the cell structure of X. Clearly (X) belongs
to SF3(Z, m (X)), and we regard it as a ‘virtual’ 2-dimensional homotopy type
representing X. There is a natural Z[G]-chain map ¢ : C,(X) — (X) from the
cellular chain complex of X obtained by collapsing C5(X) 2 Im (93):

0— C3(X) — Cy(X) - C(X) = Co(X)—> Z— 0
l R | Id | Id | Id
0 — Co(X)/Im(d3) — C1(X)— Co(X)— Z— 0

where, since X is reduced, we may identify the epimorphism Cy(X) — Z with the
augmentation map.

By the Hurewicz Theorem, we may identify 7o(X) with Hy(X;Z). The ‘alge-
braic second homotopy group’ of (X) is given by

m((X)) = m2(K)/Im(83).
It is straightforward to check that

Proposition 6.6. ¢ : C,(X) — (X) induces an isomorphism

¢ 2 ma(X) = ma((X)).

We are tempted to restate (6.6) as saying that ¢ : C,(X) — (X) is a weak
homotopy equivalence. The difficulty is that C,.(X) and (X) are slightly different

sorts of objects; (X) is both augmented (by Co(X) — Z) and co-augmented (by
mo(X) — C3(X)) whereas C,(X) is merely augmented. In comparing the two, we
should, strictly speaking, drop the co-augmentation (which will then be remem-
bered simply as Ker(dy : Co(X)/Im(d3) — C1(X)). There is a transformation of

(augmented, coaugmented) chain complexes v : C,(K) — (X), natural in the cell
structure of X, described by the following diagram:

0— 7o (K) — Cy(K) — Cy(
lv A !
0 — ma(IK)/ln(ds) — Co(X)/Tm(3s) — C4(
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Theorem 6.7. Let G be a finite group, and let X be a finite cohomologically 2-
dimensional 3-complex with 71 (X ) = G; then X is homotopy equivalent to o finite
2-complez if and only if the algebraic 2-complex (X)) is geometrically realized.

Proof. Suppose that L is a finite 2-complex, and that ¢ : L — X is a homotopy
equivalence over the identity. Then + : mo (L) — mo(X) is an isomorphism. Hence
o, 1 my(L) = mo({X)) is an isomorphism; thus ¢ o4, : C4(L) — (X) is a weak
homotopy equivalence, and so (X) is geometrically realized.

Conversely, suppose that (X) is geometrically realized. This means there is a
finite 2-complex L with 71(L) = G and a weak homotopy equivalence g : Cy (L) —
(X). By symmetry of weak homotopy equivalence on algebraic 2-complexes, we
may suppose there is also a weak homotopy equivalence f : (X) — C,.(L). As
usual, let K denote the 2-skeleton of X; without loss of generality, we may suppose
that:

(i) LW = KW,
and that
(ii) fr =1d: C.(K) = C(L) for r < 1.
Furthermore, assuming X has N cells of dimension three, we may write:

X =K Uy BP Uy, B v v Uay E&.
Observe that f induces an isomorphism f, : m((X)) = mo(X) = my(L). The

chain map fov: C(K) — C.(L) has the property that (fov), =1d: C,.(K) =

C,(L) for r < 1. By (2.3) there exists a cellular map g : K — L such that
(i) fo =1Id:m(K) — mi(L), and
(il) g« = fu 0wy  m(K) — mo(L).

In particular, since f, is an isomorphism, we obtain.

Ker(g, : ma(K) — ma(L)) = Ker(vy) = Im(ds : C5(X) — m(K)) = Z[G]".
Each homotopy class [e;] belongs to Im(9s) = Ker(giy : ma(K) — ma(L)), so that
g : K — L extends over the 3-cells of X to a map h: X — L such that

(iii) hy = Id : 71 (X) — 71(L) and

(iv) hy = fj s (X) —>~7r2(L).

Since H,(X;Z) = H,(L;Z) = 0 for 2 < r, we see by Whitehead’s Theorem
that & is a homotopy equivalence as required. (|

A 2-tame group G is precisely one over which every algebraic 2-complex is
geometrically realized; thus we obtain:

Corollary 6.8. If G is 2-tame then the D(2)-property holds for G.

In [16], we give examples of finite groups which are 2-tame; in the absence of
positive evidence to the contrary, one can presently hope that every finite group
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is 2-tame, and so possesses the D(2)-property. Nevertheless, the possibility of a
constructing a counterexample is an intriguing one. So far, we have had no recourse
to Browing’s results. However, using the first of Browning’s results, the Stability
Theorem, we can establish the converse to (6.7). First we need a criterion for
recognising cohomologically 2-dimensional 3-complexes. We adopt the following
notation:

K: a finite 2-complex with 71(K) =~ G;

m: an integer > 1;

a: a Z[G]-homomorphism Z[G]™ — mo(K) will be;

{€¢;}1<j<m: the canonical Z[G]-basis for Z[G]™;

a;: amap S? — K in the homotopy class a(e;).
Furthermore, X(a) will denote the 3-complex obtained by attaching 3-cells to K
by means of aq, ag, -+, ayy; that is,

Lemma 6.9. Let K be a finite 2-complex with m1(K) = G, and let o : Z|G]™ —
w2 (K) be an injective Z|G|-homomorphism such that wo(K)/Im(c) is torsion free
over Z. Then H*(X(«);B) = 0 for all local coefficient systems B on X(a).

Proof. We can make the following identifications:

o~

Ca(X(a)) — yAlelid
Co(X(a)) — Ca(K)
WZ(K) — ZQ([()

—~—— s

35 : O3(X(a)) — Oa(X(a)) «—  ioa:Z[G]™ — Co(K)

H3(X (a); B) — (ZIGIM)* ® B/Im((i 0 a)* ® 15).

where i : my(K) = Zo(K) C Cy(K) is the inclusion. Since « is injective and
79 (K)/Im(a) is Z-free, the exact sequence

0— Z[GI™ 2 m9(K) — mo(K)/Im(a) — 0

lies within F(Z)[G]; hence its dual sequence is exact, and o* : my(K)* — (Z[G]™)*
is surjective. Likewise, the exact sequence

0 — my(K) — Cy(K) = C1(K) — Co(K) - Z — 0

lies within F(Z)[G], so its dual sequence too is exact, and +* : Cy(K)* — mo(K)*
is surjective. Hence (avoi)* : Co(K)* — (Z[G]™)* is surjective. Thus (ioa)* ® 15 :
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Co(K)* ® B — Z[G]™)* ® B is surjective, by right exactness of — ®zg B. From
the correspondence
H3(X(a);B) «— (Z[G)M)* @ B/Im((ioa)* ® 15)

we see that H3(X (a); B) = 0 for all local coefficient systems B. O

Observe that if E is any algebraic 2-complex, there is a natural chain map
¢ : S(E) — E which is the projection on the top two terms, but is otherwise the
identity. The following is an obvious consequence of Browning’s Stability Theorem
(2], [11].

Proposition 6.10. If Ei, Es are algebraic 2-complexes over Z[G] then
S"(Eqy) = S™(Ey)

for some n,m > 1.

Corresponding to any algebraic 2-complex over Z[G], we can now construct a
three dimensional cell complex which is cohomologically 2-dimensional.

Theorem 6.11. Let E be an algebraic 2-complex over the finite group G; then
there erists a finite 3-dimensional cell compler X such that

(i) m(X)=aG;

(i) H3(X;B) =0 for all local coefficient systems B; and

(iii) (X) 4s homotopy equivalent to E.

Proof. Write E thus
E=(0—J—Z[G 2 2z[6) % zZ[6] S Z - 0).
Let L be a finite 2-complex with 71 (L) = G; then by (6.10),
S*(E) = 8™(C(L))
for some n, m > 1. However, S™(C(L)) = C(LV mS?). Put K = LV mS?, and let
¢ :C(K) — S"(E) be a weak homotopy equivalence. In particular, ¢ induces an
isomorphism
p:m(K) = Jo Z[G]".
If ¢ : S"(E) — E is the natural chain projection, then ¢ o ¢ : C(K) — E has the
property that Ker(yop : ma(K) — J) is isomorphic to Z[G]™. Choose a Z[G] basis
aq, 9,y for Ker(f), and form X (o) by attaching 3-cells E§3)7 E§3)7 e 7E7(2)
to K by means of aq, g, - -+, that is,

It follows from (6.9) that H" (X («); B) = 0 for all » > 3, and it is straightforward
to see that (X)) is homotopy equivalent to E. O
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From (6.7) and (6.11) we obtain:

Realization Criterion. The D(2) property holds for the finite group G if and
only if every algebraic 2-complex over Z[G] is geometrically realized.
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