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Four-manifold systoles and surjectivity of period map

Mikhail Katz*

Abstract. P. Buser and P. Sarnak showed in 1994 that the maximum, over the moduli space of
Riemann surfaces of genus s, of the least conformal length of a nonseparating loop, is logarith-
mic in s. We present an application of (polynomially) dense Euclidean packings, to estimates
for an analogous 2-dimensional conformal systolic invariant of a 4-manifold X with indefinite
intersection form. The estimate turns out to be polynomial, rather than logarithmic, in x(X),
if the conjectured surjectivity of the period map is correct. Such surjectivity is targeted by the
current work in gauge theory. The surjectivity allows one to insert suitable lattices with metric
properties prescribed in advance, into the second de Rham cohomology group of X, as its integer
lattice. The idea is to adapt the well-known Lorentzian construction of the Leech lattice, by
replacing the Leech lattice by the Conway—Thompson unimodular lattices which define asymp-
totically dense packings. The final step can be described, in terms of the successive minima \;
of a lattice, as deforming a As-bound into a Aj-bound, illustrated by Figure 9.1.

Mathematics Subject Classification (2000). Primary 53C23; Secondary 57TM50, 52C17.

Keywords. Conformal invariants, Conway—Thompson lattices, period map, systole.

Contents

1. Schottky problem, surjectivity conjecture, and main theorem 773
2. Conway—Thompson lattices C'T,, and idea of proof 775
3. Norms in cohomology and successive minima A; of lattices 775
4. Conformal length and systolic flavors 776
5. Systoles of definite intersection forms 77
6. Buser—Sarnak theorem 778
7. Sign reversal procedure SR and Aut(I, 1)-invariance 778
8. Lorentz construction of Leech lattice and line CT,LL 779
9. Three quadratic forms in the plane 781
10. Replacing A; by the geometric mean (A ;)2 782
11. Period map and proof of main theorem 784
References 785

*Supported by the Israel Science Foundation (grant no. 620/00-10.0).



Vol. 78 (2003) Four-manifold systoles and surjectivity of period map 773
1. Schottky problem, surjectivity conjecture, and main theorem

The work of P. Buser and P. Sarnak [BS94] on Riemann surfaces in connection
with the Schottky problem shows that the maximum, over the moduli space, of
the least conformal length of a nonseparating loop behaves logarithmically in the
genus, cf. (6.1) below and also M. Gromov’s result [Gro83, Theorem 5.5.C"].

We provide a lower bound which is polynomial in the second Betti number,
for the analogous 2-dimensional conformal systolic invariant for a 4-manifold X
with indefinite intersection form, modulo the conjectured surjectivity of the period
map, targeted in the current work [ADK]. Our bound currently depends on such
surjectivity, but see 1.3. In the case b (X) = 1 targeted in [ADK], such surjectivity
is expressed in Hypothesis 1.1.

Let (X, g) be a Riemannian 4-manifold. Let x : H7,(X) — H2Z,(X) be the
Hodge star operator in de Rham cohomology identified with the space H of har-
monic 2-forms on X. Assume that b (X) = 1, so that the selfdual subspace (i.e.
the (41)-eigenspace of the Hodge star operator) is 1-dimensional. Recall that the
cup-product form in H?(X) is dual to the intersection form in Ho(X).

Hypothesis 1.1. For every line V in the positive cone in Hg (X)) defined by the
cup product form, there is a metric g on X whose selfdual subspace is exactly V.

Given a lattice L equipped with a norm || ||, we denote by
(L) = ML D (1.1)

the least norm of a nonzero lattice vector. The A{ notation fits in with the succes-
sive minima \; of a lattice, studied in lattice theory, ¢f. [Grul87, p. 58], [BanK03,
Section 4], and Definition 3.2.

Theorem 1.2. Let n € N and consider the complex projective plane blown up at

n points, P, = (CPQ#n@Z7 where bar denotes reversal of orientation, while # is
connected sum. Assume that Hypothesis 1.1 is satisfied for such manifolds. Then

Cn < sup {\ (HX (P, Z), | |12)} < Cn, ¥n >0, (1.2)
g

where C' > 0 is a numerical constant, the supremum is over all smooth metrics g
on sz#n@Q, and | |2 is the norm (3.1) defined by g.

Here the upper bound may be replaced by %(n + 1) by the estimate (4.3),
while the lower bound, by 1/k(n), where k(n) is asymptotic to 52 as n — oo,
¢f. Theorem 2.2. The theorem is proved in Section 11. The desired metric is
specified in formula (11.1) in terms of inversion of the period map.

A number of systolic inequalities are now available in the literature. Nontrivial
cup product relations lead to stable systolic inequalities [BanK03] (¢f. inequal-
ity (4.3) below), some of them sharp [BanK04, NV03]. Meanwhile, nontrivial
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Massey products also admit systolic repercussions, ¢f. [KKS]. For ordinary (rather
than stable) systoles, systolic freedom prevails as soon as we go beyond loops. Here
“systolic freedom” refers to the absence of systolic inequalities, i.e. the existence
of sequences of metrics violating such potential inequalities. Such a phenomenon
for the middle dimensional systole was first described in detail by the author in
[Ka95B]. M. Gromov’s original seminal example of 1993 is described in [Gro99,
p. 268], as well as [CrKO03, section 4.2]. Further generalisations of systolic freedom
were obtained in [BabK98|, [BKS98], [Fr99], [KS99, KS01], [Bab02], [Ka02]. See
the recent survey [CrK03, Figure 4.1] for a 2-D map of systolic geometry, which
places such results in mutual relation.

Question 1.3. Can one eliminate the dependence of our Theorem 1.2 on the sur-
jectivity conjecture? Recent discussions with C. LeBrun and P. Biran suggest that
one may be able to remove the dependence on the conjectured surjectivity of the
period map, at least in the case of the blow-ups of the projective plane, by exploit-
ing the action of the automorphism group of the intersection form, c¢f. Lemma 7.1
and Remark 7.2. This would work if one can show the existence of metrics adapted
to symplectic forms which represent classes from a suitable fundamental domain
for the action, cf. [BiO1, Theorem 3.2] and Remark 9.1.

Question 1.4. Can one improve the lower bound in (1.2) to lnear dependence
on n? Here one could envision an averaging argument, using Siegel’s formula as
in [MH73, Theorem 9.5], over integral vectors satisfying ¢y 1(v) = —p. Here one
seeks a vector v € R™! such that the integer lattice Z™! ¢ R™! has the Conway—
Thompson behavior (2.1) with respect to the positive definite form SR(q, 1,v).

Question 1.5. Is there an asymptotically infinite lower bound similar to Theo-
rem 1.2 for the stable 2-systole in place of the conformal 2-systole? This is related
to understanding the discrepancy between the comass norm and the L? norm in
2-dimensional cohomology. Note that Remark 4.1, concerning the 1-systoles of sur-
faces, suggests that a priori there may exist, instead, an asymptotically vanishing
upper bound for the stable 2-systole, ¢f. (5.2) in the definite case.

The present work is organized as follows. Section 2 introduces the Conway—
Thompson lattices and describes the idea of the proof. Section 3 defines the L2-
norm in cohomology, describes its relation to the intersection form, and discusses
the successive minima of a lattice. Section 4 defines the conformal and stable
systoles. Section 5 discusses the definite case. Note that our main Theorem 1.2
can be thought of as a higher-dimensional analogue of the Buser—Sarnak theorem,
presented in Section 6. Section 7 explains a useful sign reversal relation between
definite and indefinite forms. Section 8 describes a Lorentzian construction of
lattices inspired by a result of J. Conway and N. Sloane, and presents a lower
bound for the second successive minimum. Section 9 presents the necessary linear
algebraic ingredient. Section 10 deforms a lower bound for the second successive
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minimum, into a lower bound for the first successive minimum. The proof is
completed by a successive minimum calculation in Section 11.

2. Conway—Thompson lattices C'T',, and idea of proof

The surjectivity of the period map (see Hypothesis 1.1) furnishes a lot of latitude
in prescribing the position of the integer lattice in middle-dimensional de Rham
cohomology, with respect to the L?-norm. In particular, we show that the least
norm, A1 (H?(X,Z)g,| |;), of a nonzero lattice element, can be made arbitrarily
large as the Betti number grows. Here one relies on the existence of Euclidean
unimodular lattices L with arbitrarily high A;(L), as well as on the (elementary)
classification of indefinite odd unimodular forms, cf. (8.1). We acknowledge the
influence on our approach of the Lorentzian construction (i.e. using indefinite
forms) of the Leech lattice of J. Conway and N. Sloane [CoS99, Chapter 26],
namely the following result.

Theorem 2.1 (J. H. Conway, N. J. A. Sloane). If
t=(3,5,7,...,45,47,51|145)
is a vector with qos 1(t) = —1 in oy 1, then tt N1Is41 is a copy of the Leech lattice.

The first step of our approach can be described as adapting the Lorentzian
construction by replacing the Leech lattice by the Conway—Thompson lattices. The
latter are unimodular lattices which define packings of high asymptotic density.
More precisely, we have the following result [MH73, Theorem 9.5].

Theorem 2.2 (Conway, Thompson). For any dimension n, there exists a positive
definite inner product space, denoted CT,,, over Z of odd type and rank n with

inz.ax > .
an;glx z > k(n), (2.1)

where k(n) s asymptotic to n/2re as n — oo.

The second step of our approach is explained in Section 9.

3. Norms in cohomology and successive minima ); of lattices

Let (X, g) be a closed orientable Riemannian (2p)-dimensional manifold. Let
H?(X,Z)x C H = HEi(X) be the lattice defined as the image of HP(X,Z) in
H?(X,R) under the inclusion Z C R of coefficients, 4.e. quotient by its torsion
subgroup. We will sometimes delete the subscript r, by abuse of notation, when
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the torsion subgroup is trivial. Consider the L?-norm | | 12 in 'H, defined by

e = /XfA of (3.1)

for each harmonic p-form f € H, where * is the Hodge operator for the metric g.
The following lemma is obvious, ¢f. [FU84, Lemma 2.21].

Lemma 3.1. Let p be even. Then the L?-norm is related to the cup product form
w(f,g) = fX fUg by means of the “sign reversal” formula

[fle = (£ ) =w(FH f7) —w(f ) (3.2)

where f = f1 -+ f~ is the decomposition given by the splitting H = V1 +V~ into
the (£1)-eigenspaces of the involution *.

Similarly to the notation of formula (7.1) below, we can restate Lemma 3.1 as
follows:

(,)=SR(w, V™). (3.3)

The lattice H?(X,Z)p is equipped with the L?-norm defined by formula (3.1).
The dual norm in the similarly defined lattice H,(X, Z)r C H,(X,R) will also be
denoted | | 2.

The successive minima are defined as follows. Note that the second successive
minimum is exploited in Corollary 8.1 below.

Definition 3.2. Let ¢ be an integer satisfying 1 <4 < rk(L). The i-th successive
minimum A; (L, || ||) is the least X > 0 such that there exist ¢ linearly independent
vectors in L of norm at most A:

(LD :igf{/\ ER‘ Foyg v (L) o] <A lusl < )\}.

4. Conformal length and systolic flavors

In this section, we define several flavors of systolic invariants of a (2p)-dimensional
Riemannian manifold manifold (X,g). The (middle dimensional) conformal p-
systole, denoted confsysp(g)7 of the metric g, is the least norm of a nonzero element
in the integer lattice in p-dimensional cohomology (or, equivalently, homology; see
Remark 4.2), with respect to the L?-norm (3.1) defined by g:

confsys,(g) = A (HP(X*P, Z)g, | |2)
=min {|v|» |v € H?(X,Z)p \ {0}}.
Meanwhile, the stable p-systole is the quantity
stsysp(g) - Al(HP(X2p7 Z)R7 || ”)7
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where || || is the stable norm in homology, dual to the comass norm in cohomology,
ef. [Fe74, 4.10], [BanKO03]. The conformal systole is related to the stable systole
as follows:

29\ 2
stsysp(g)volgp(g)f% < ( p) confsys,(g). (4.1)
p

Here the binomial coefficient appears due to the discrepancy between the linear
comass norm and the natural Euclidean norm on the space of p-forms, ¢f. [BanK03,
section 7]. In the case p = 1, the binomial coefficient may be replaced by 1.

Remark 4.1 (1-systole asymptotics). It should be kept in mind that the asymp-
totic behavior of the (stable) 1-systole as a function of the genus is completely
different from the conformal systole. Thus, M. Gromov [Gro96, 2.C] reveals the
existence of a universal constant C' such that we have an asymptotically vanishing
upper bound
sy,0%)° _ , (log )’
area(Ys) s

?

for every orientable surface ¥ of genus s > 2, with a Riemannian metric, see
[CrK03, (2.9) and (2.10)] for related bounds. In contrast, P. Buser and P. Sarnak
[BS94] provide an asymptotically infinite lower bound for the maximum of the
conformal systole over the moduli space, cf. inequality (6.1).

Remark 4.2 (Conformal length). The Poincaré duality map induces an isometry

PD : (HP(X,Z)r, | |z2) = (Hp(X, Z)r, | |12), (4.2)

proving that the integer lattice in middle dimension is isodual in the sense of
[CoS94, BeM95]. Thus for p = 1, the invariant confsys, is the conformal length of
the surface.

We have the following upper bound on conformal systole:
2
MHP(X?, DR, | |12)? < < 3 bp(X?P) for by(X) > 2, (4.3)

see [BanKO03] for stable systolic generalisations based on multiplicative relations
in cohomology, and [CrK03] for an overview.

5. Systoles of definite intersection forms

Our main result is Theorem 1.2, which may be viewed as a higher dimensional gen-
eralisation of the Buser—Sarnak theorem (6.1). We briefly discuss the definite case.
Consider the family of manifolds nCP2, defined as the connected sum of n copies
of the complex projective plane with the standard orientation. Recall that these
exhaust the smooth positive definite case by Donaldson’s theorem, cf. [Ka95A].
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In contrast to Theorem 1.2, the maximal conformal systole in the definite case is
bounded as the second Betti number grows:

M (H*(nCP?,Z),| |12) = M(H?*(nCP?,Z), VW) = M (Z™) = 1, (5.1)

for every Riemannian nCP?, n = 1,2, .... This is immediate from formula (3.2)
which identifies the L?-norm and the intersection form w if the latter is positive
definite. By inequality (4.1), we obtain the following result, pointed out by C. Le-
brun: every Riemannian nCP? satisfies the inequality

stsys, (nCP?)” < 6 voly (nCP?). (5.2)

6. Buser—Sarnak theorem

Our Theorem 1.2 may be viewed as a higher dimensional analogue of the theorem
of P. Buser and P. Sarnak [BS94, formula (1.13)]. Let X, be a closed orientable
surface of genus s. Then the conformal 1-systole satisfies the bounds

Ctlogs < sup { A (HY(Ss,Z), | |12)} < Clogs, ¥s > 2 (6.1)
g

where C' > 0 is a numerical constant, the supremum is over all metrics g on 35, and
| |2 is the norm (3.1) associated with g. An explicit upper bound of 2 log(4s+ 3)
is provided in [BS94, formula (1.13)].

Note that a (weaker) upper bound of C'y/s ( in place of C'log s) results from
R. Lazarsfeld’s work [La96, p. 441, Proposition, part (i)]. The systolic quantity
Al (Hl(ES, Z), | |L2) may be viewed as the conformal length of the surface, in view
of the isomorphism of formula (4.2). By conformal invariance, the supremum in
(6.1) may be restricted to the moduli space of hyperbolic metrics on the surface.

7. Sign reversal procedure SR and Aut(l,)-invariance

Let ¢ be an indefinite quadratic form of index +1 (i.e. with a single negative
direction) on a vector space E over R, and let v € F be a vector satisfying
q(v) < 0. Denote by v* C E the g-orthogonal complement of v € E, or, more
precisely, the Q-orthogonal complement, where Q(u,w) = %(q(u +w) — q(u — w))
is the polarisation of g. Thus, we have a decomposition F = v+ @ Rv. The sign
reversal, SR(q,v), is the positive definite form on F obtained by reversing the sign
of ¢ in direction v, while keeping it fixed on v C E:

SR(g,v)(z) = q(z™) — q(z™), (7.1)
where z = 2T 4 2~ is the decomposition of z € E following the splitting F =

vt @ Ru, ¢f formula (3.3). Let RP9 denote the standard real vector space with
quadratic form

qpyq(x):x%Jr...erg—xf,H—...—x?Hq, (7.2)
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and let I, , C RP? denote its integer lattice. For the purposes of the proof of
Theorem 1.2, it is convenient to reverse the orientation and work instead on the

manifold n(CPQ#@Q7 while hoping that such a step may not prove baffling to an
algebraic geometer.

— =2
Recall that the intersection form on n(CPQ#(CP is qn,1, and the integer lattice
in two-dimensional homology becomes a copy of I, ;.

Lemma 7.1. The invariant confsys, (n((l‘PQ#WQ7 g) only depends on the orbit
of the antiselfdual line of g in H(%R (n(CPQ#@Q) under the action of the auto-

morphism group of I 1.

Proof. An endomorphism f of H2 R(n(CPQ#@Q) which is an automorphism of the
indefinite lattice I, 1, induces an isometry of the definite form SR(qy 1,v), since f
maps the subspace v to the subspace f (v)Lq7 and hence

SR(gn,1,0)(x) = SR(qn,1, [(0))( ().

Here if 2 € I, 1, then f(a) € I, 1 by the hypothesis that f preserves the integer
lattice. Now the lemma follows from the formula

confsys,(g) = Ay <H2 (nCPQ#@27Z) , SR (%,17 V*)%) 3

where V'~ is the antiselfdual direction of g. |

Remark 7.2. Note that not all automorphisms of the intersection form can be
realized by a diffeomorphism of the manifold, ¢f. [Ko91].

8. Lorentz construction of Leech lattice and line CT-

Let CT, C R™° be a Conway-Thompson lattice as in Theorem 2.2, i.e. a uni-
modular lattice satisfying A (CT,,)? > k(n). Then the lattice CT,, @ Iy 1 is odd,
indefinite, and unimodular, ¢f. (7.2) and notation there. The classification of odd
indefinite unimodular forms [MH73, p. 22] implies that the lattice I,, ; contains an
isometric copy of C'T,, such that the g, i-orthogonal complement of CT),, in I, 1,
is a copy of the line Ip ;. In formulas, there exists an isomorphism

¢n: CTp @0 — Ing (8.1)

preserving the bilinear forms. We will use the following suggestive notation for
the line identified by isomorphism (8.1): let

G- = By (8.2)
be the gy 1-orthogonal complement of ¢, (CTy & {0}) C I, 1.
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Corollary 8.1. Let I, 1 C R™! be the integer lattice. Let v € 1,1 be a generator
of CT,ll C In1 asin (8.2), d.e. v = ¢,(0,¢), where e € Iy is a generator, as in
isomorphism (8.1). Consider the norm ||z||, = \/SR(qgn 1,v)(x), in the notation of
formula (7.1). Then the integer lattice has successive minima A (I 1, | [|v) = +1,
and

X (Ints || 110)? 2 k(n),

ef. Definition 3.2, where k(n) is as in Theorem 2.2. In other words, all vectors of
square-norm smaller than k(n) are proportional to each other.

Proof. For any lattice L with a positive definite form, we have the identity
SR(L @ Ip1,t(e)) = L @ I o, where ¢ is the inclusion of the second factor. In
particular,

SR(In,1,¢n(i(e))) = CTy @ 110, (8.3)
proving the corollary. (Il

As an indication of how nontrivial the isomorphism ¢ as in formula (8.1) could
be, consider Theorem 2.1, which exhibits an isomorphism A2 @ o 1 — 24,1, where
Agy is the Leech lattice.

With an eye on the lower bound of our main Theorem 1.2, we first prove
Proposition 8.2 below. Recall that the intersection form on n(CPQ#W2 is the
diagonal form ¢y, 1, ¢f. formula (7.2). Let ¢, be the isomorphism (8.1).

D
Proposition 8.2. If g is a metric on nCP?*#CP whose antiselfdual direction
is the vector ¢, (0,€) € Iy 1, then all surfaces of “conformal area” smaller than
v k(n) with respect to g are homologous to multiples of one another.

Proof. The integer lattice in the selfdual subspace VT is isometric to the Conway—
Thompson lattice:

VA H2(nCPHTP ,Z) = CTh.
Moreover, this copy of the Conway—Thompson lattice is a direct summand, where

the second summand is isometric to Ip ;. The sign reversal formula (3.2) shows
that the integer lattice

1
(Hz(n(CPQ#@Q,ZL SR <w7 CT,{) 2) 7

is isometric to the positive definite lattice CT,, @I o, where Iy ; has been replaced
by I g as in formula (8.3). Thus the proposition is a restatement of Corollary 8.1.
O
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9. Three quadratic forms in the plane

The main result of this section is Lemma 9.3 below on the interplay of three
quadratic forms in the plane, an indefinite one, ¢, and and a pair of definite ones,
q1 and gs, where the parameter value s will be judiciously chosen in (10.7).

To go beyond Proposition 8.2 and prove our theorem, the lattice CT,, ® I
is not sufficient, as it contains vectors of unit norm in the second summand I o,
so that the quantity A\ (CT,, @ I o) = 1 is too small. In other words, we need to
replace a lower bound for the successive minimum Ay of the integer lattice, by a
lower bound for the successive minimum A; for the same lattice, but with respect
to a new norm. The idea is to deform appropriately the choice of the negative
definite direction v = ¢,,(0, €), responsible for the Conway—Thompson behavior of
its complement.

Thus, to prove Theorem 1.2, we will apply the surjectivity of the period map,
not to the line CT;- ¢ H2, (n(CPZ#@Q), but rather to the image of C'T under

a suitable “Lorentz deformation”, ¢f. Figure 9.1 and formula (11.1).

Us

Vs

F1a. 9.1. Lorentz transformation A, cf. (10.4)
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Remark 9.1. Since the quantity A; (as in Definition 3.2) is continuous as a func-
tion on the space of positive definite lattices, while the form SR(w, V') is continuous
in both parameters, and V'~ depends continuously on the metric, it follows that
Hypothesis 1.1 can be relaxed to assume the density of the image in place of
surjectivity.

The argument relies on a rather crude bound on the operator norm of the
deformation. The deformation needs to be sufficient to eliminate short vectors, but
with operator norm controlled so as not to negate entirely the Conway—Thompson
effect.

Sign reversal on the line CT,LL C I,,,1 produces a quadratic form with respect to
which most vectors are suitably long, except for a single direction. To weed out the
remaining short vector, we apply a suitable deformation, whose linear algebraic
content is presented in Lemma 9.3 below.

Let 7 be the zy-plane. Let ey, es be the standard basis and z,y the standard
coordinates. Consider the indefinite form ¢ = dzdy, and let s > 0 be a real
parameter.

Definition 9.2. Our “Lorentz transformation” Ag:m — 7 is defined by the matrix

ol

S
= seq + %ez and vy = As(e; —ea) = se; — %62, as illustrated in Figure 9.1.

Ay = (8 0) with respect to the standard basis, and we set us = As(e1+ea)

Lemma 9.3. Consider the positive definite quadratic form qs = SR(q,vs) on ,
obtained from q by reversing the sign in the direction vs, as in formula (7.1). Then
the map As : (m,q1) — (7, ¢s) is an isometry.

Proof. Since the “Lorentz transformation” A, preserves ¢ and sends v to v, it
is clear that it also sends ¢; to g¢s, but we will give a short explicit calculation.
We have g(us,vs) = 0. Let (2/,3’) be the coordinates with respect to the basis
{us,vs} of the plane w. Then the two pairs of coordinates are related by = =
sz’ +9'),y = %(:0/ —9'). Now q = dzdy = s(dz’ + dy’) %(dx/ —dy') = dz'? —dy/Q.
Therefore by definition, ¢s = SR(q,vs) = da’* + dy’Q. Thus gs(us,vs) = 0 and
gs(us) = gs(vs) = 1. Similarly, the vectors u = e; + e2 and v = e; — ey form an
orthonormal basis for ¢;, proving the Lemma. (Il

10. Replacing \; by the geometric mean (\;\;)'/?

Let L = I, 1 C (R™%, g,.1) be the integer lattice. Let v € L be a vector satisfying
gni(v) = —1 and

L=Zvdvt ~Iy; ®vt, (10.1)
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where the sublattice (vl7 (qn71|UL)%) is positive definite. Let SR(gy, 1,v) be the

positive definite form obtained by sign reversal. Let \; = \; (L7 SR(gn,1, v)%) be

the successive minima with respect to the new form. We have Ay = 1 but we
will ignore this in the statement of the proposition below, so as to emphasize the
geometric mean inherent in the proof. Note that

Ao = Ay (v% (g1 !UL)%) : (10.2)

Proposition 10.1. There is a g, 1-preserving transformation A of R™' such that
A <L7 SR (qm,Av)%) = Wiads:

Proof. Let m C R™! be any 2-plane containing the vector v as in (10.1). We choose
coordinates (z,y) in 7 with the following three properties:

(1) the union of the z-axis and the y-axis in 7 is the intersection of the isotropic

cone of ¢, 1 with 7;

(2) the restriction of ¢, 1 to 7 is the form ¢ of Lemma 9.3;

(3) with respect to the standard basis eq, e in 7, we have v = e1 — es.

Now let s € R, and set v, = seq — %62. Let g5 be the positive definite quadratic
form obtained by sign reversal g, = SR(qn,1,vs). Thus, for s = 1, replacing ¢ by
g1 has the effect of replacing Iy 1 by 1 in the decomposition (10.1). Hence we
have the following isometry of lattices:

(L)~ hodv (10.3)

We wish to understand the position of the integer lattice L with respect to the
definite form ¢, “deforming” ¢;. By Lemma 9.3, the map

A Id, o, (10.4)
also denoted Ay, is an isometry from ¢; to g5. Thus the pullback lattice (A; (L), ¢1)
is isometric to (L, g;). We have A;!(v) = le; — ses, and hence

gs(v) = ¢1 (A;lfv) =q (%61 — 862) = S% + 8% > §2. (10.5)
Now consider an element z € L = Zv @ v which is not proportional to the
generator v of the first summand. By the Pythagorean theorem applied to formula

i
(10.3), the element x satisfies ¢1(x)2 > Ay (v") = Ay (L, \/q1) , by formula (10.2).
Meanwhile, we have the following bound on the operator norm with respect to the
form gi: [|As|| = [[A; Y] < s, and therefore

TN
gs(z) = q1(A; "z) > 2 (10.6)

Combining (10.5) and (10.6), we obtain the lower bound Ay (L7 \/E) >min {s, ASZ}
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Choosing the parameter value
s =4/ —= =1/, (10.7)
we complete the proof of the proposition. (Il

Corollary 10.2. Let Zv = CT,JL‘ C L = Z™', as in Theorem 2.2 and isomor-
phism (8.1). Then there is a transformation A = A ¥ of R™1 such that

k(n)4
At (L, SR(gn,1, 40)F) 2 k(n)h.

11. Period map and proof of main theorem

We are now in a position to prove Theorem 1.2. The inequality (4.3) proves the
upper bound of estimate (1.2), insofar as by (nCP#CP) = n+1. Let us write down
a formula, (11.1), for a metric g,, satisfying the lower bound. Let X = nCP24#CP?,
so that HZ(X7 Z) = 1,1, with cup-form w = ¢, 1. Recall that the L?-norm in
H?(X,R) is related to the cup product form w(f, g) = [x [ Ug by means of the
“sign reversal” formula | f|3. = (f, ) = w(f*, f)—w(f~, f7), where f = fT+f~
is the decomposition given by the splitting H*(X,R) = VT + V~ into the (£1)-
eigenspaces of the Hodge involution . It is convenient to introduce the notation
SR, for the “sign reversal” procedure, whose effect is to replace an indefinite (n, 1)
form by a positive definite form: (, ) = SR(w, V™), ¢f. formula (3.3).

By the Conway—Thompson theorem [MH73, Theorem 9.5], there exist positive
definite unimodular lattices CT,, of rank n satisfying A\;(CT,)? > k(n), where
k(n) is asymptotic to 57— as n — oo, while A; is the least length of a nonzero lattice
element, cf. (1.1). Furthermore, by the classification of odd indefinite unimodular
forms [MH73, p. 22|, there exists a vector v € I, ; with ¢, 1(v) = —1, whose
orthogonal complement with respect to the polarisation of g, 1 is the lattice CT),,.
Denote by C’Ti C H?(X,R) the negative definite line Rv. Proposition 10.1 yields
a Lorentzian endomorphism A, of R™! which replaces the first two successive
minima, A; and Ag (c¢f. Definition 3.2), of the lattice with respect to the definite
quadratic form SR(w,v), by their geometric mean, when one passes to the new
definite form SR(w, Asv).

Let M(X) be the space of all Riemannian metrics on X, and let G be the
projectivisation of the negative cone of the form w. Let P : M — G be the map
assigning to each metric, its antiselfdual direction. Exploiting the surjectivity of
P, we set

gn=P7IA, (CT,f) 7 (11.1)

where P~! denotes a choice of an inverse image. Finally, the lower bound results
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from the following calculation:

confsysy(gn) = A (H*(X), | |12)

Al <H2 (HCPQ#Wv Z) , SR (qnthk(n)% (CT’%))%>

v

1
Ay (H? (nCP24TP2,Z), SR (qw CT,iL) 2>

= /A (CTy)

> k(n)i.
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