Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 78 (2003)

Artikel: An infinitesimal trace formula for the Laplace operator on compact
Riemann surfaces

Autor: Golse, Francois / Lochak, Pierre

DOl: https://doi.org/10.5169/seals-58778

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-58778
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 78 (2003) 731-739
0010-2571/03/040731-9
DOIT 10.1007 /s00014-003-0773-x [ Commentarii Mathematici Helvetici

(© 2003 Birkhauser Verlag, Basel

An infinitesimal trace formula for the Laplace operator on
compact Riemann surfaces

Francois Golse and Pierre Lochak

Abstract. We derive an infinitesimal (or variational) version of the Selberg trace formula for
compact Riemann surfaces, which gives information on the behaviour of the eigenvalues of the
Laplace—Beltrami operator as the surface varies over the appropriate moduli space.
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1. Introduction

In this note we derive a variational form of the Selberg trace formula for compact
Riemann surfaces, as the surface varies over the appropriate moduli space. We
use the real analytic theory of moduli spaces, taking advantage in particular of
Wolpert’s variational formula ([6]) which lies at the heart of his study of the
symplectic geometry of the moduli spaces.

Let X be a compact Riemann surface of genus g > 1, equipped with its Poincaré
metric of constant curvature —1. Let Ax be the attending Laplace operator on
X and {\, }n>0 be its spectrum, that is the sequence of the (positive) eigenvalues
of —Ax labelled in increasing order and with multiplicities. For any n € Z_. we
define as usual the auxiliary spectral numbers p,, via the equalities A, = % + p2;
true this defines p, € C only up to sign but we will consider only even functions
of the p,’s. We let M, denote the moduli space of Riemann surfaces of genus g,
viewed as a complex orbifold (see below for more detail).

A lot of work has been devoted to analysing the variation of the spectra of
Riemann surfaces. However the information which has been collected to-date
mostly concerns the behavior of the low lying eigenvalues as the surface degener-
ates. More precisely M, can be compactified into Mg where the divisor at infinity
D = M, \ M, classifies the Riemann surfaces with nodes — or stable curves as they
are called by algebraic geometers. For any point in D, the corresponding surface
can be thought of as a graph with surfaces of lower genera sitting at the vertices,
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such that the total arithmetic genus is g. Let now X, be a family of surfaces such
that as € tends to 0, X, tends to a surface represented by a graph with k vertices
(2 < k < 2g — 2); then as ¢ tends to 0, the first k eigenvalues (counting 0) of X,
tend to 0 and the (k 4 1)-st one is uniformly bounded away from 0. In this pro-
totypical situation tools have been developed which make it possible to prove the
assertions summarized above and also to study more accurately the behavior of
the k — 1 nonzero but vanishing eigenvalues. We refer to ([1]) for a short history of
the development of this line of thought, references, as well as a recent and precise
result of this type.

Very little seems to be known about the variation of arbitrary (in particular
non vanishing) eigenvalues of arbitrary (in particular non degenerating) surfaces.
We refer to ([8]) for results in the case of degenerating surfaces but non vanishing
eigenvalues. The formula derived in this note can be used, like the original trace
formula, in the vicinity of any surface, not necessarily near the boundary of M,.
However, again like the trace formula, it gives global, not individual information on
the (variation of the) spectrum. It may be that using well-adapted test functions,
in particular functions which are peaked around a given point, one can extract more
local information. We postpone to the concluding section some more speculative
remarks about possible applications and amplifications and presently recall some
additional background material.

Considering again a compact Riemann surface X of genus ¢ > 1, it can
be uniformized as X = H/I', where H denotes the Poincaré upper-half plane
and ' C PSL(2,R) is a hyperbolic Fuchsian group of the first kind. Let ~
be a closed geodesic on X of length £(v); one can also regard v as an element
of I up to conjugacy and the length is given in matrix term wvie the formula:
trace(y) = 2cosh(4(v)/2). Lastly we denote by P the set of oriented primitive
closed geodesics, i.e. the set of non divisible conjugacy classes in I". For any
~v € I, there are unique p € P and m € Z* such that v = p™; note that we
do not distinguish conjugacy classes and representatives in the notation, when no
confusion is liable to arise from this abuse.

Selberg’s trace formula deals with even “test” functions h = h(p), with Fourier
transform h(7) defined by:

A +OO
) = o / h(o) cos(rp)dp.

The even test function ~ has to satisfy certain regularity and growth conditions
which we state in the following

Assumptions
(i) h can be continued into an analytic function over a strip |Im(p)| < ¢ for some

c> L and it satisfies the estimates h(p) = O(|p|™?) as well as h/(p) = O(|p| ="~ 1)
for some B >4, as p goes to infinity inside the strip;
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(ii) The Fourier transform h satisfies h(t) = O(e~7) as 7 goes to infinity on R.

Under the above assumptions h satisfies the Selberg trace formula (¢f. e.g. [3],
section 2.6), to wit:

+oo
> hipn) = (29 - 2)1 ptanh(mp)h(p)dp
n>0 (1)
= Z Z ZSmh 2sinh(m(v)/2) hlm())-

yeEP m=1

The trace formula (1) depends on the surface X, and the aim of this note is so
to speak to “take the derivative of (1) w.r.t. X”7. To this end we introduce the
Teichmiiller space 7, associated with (compact) surfaces of genus g; the moduli
space is then given as the quotient M, = 7,/T'y, where I'; denotes the mapping
class group (or Teichmiiller modular group) of genus g, that is the orbifold funda-
mental group of M,. We recall but a few definitions in order to fix notation and
refer the reader to e.g. [2], [4] or [5] for more information on these objects. So
let S denote “the” differentiable, closed, orientable and compact surface of genus
g. Given a Riemann surface X of genus g, a marking of X is given by a diffeo-
morphism ¢ : S — X, considered up to isotopy. Two marked Riemann surfaces
(X1,¢1) and (X2, ¢2) are equivalent if there exists a conformal diffeomorphism
h: X1 — Xs such that ¢3 = ho¢q, again up to isotopy. A point of 7, is an equiv-
alence class t = [(X, ¢)] of marked Riemann surfaces. We denote by = : 7, — M,
the canonical projection which consists in forgetting the marking: =(t) = X.

Any isotopy class « of closed curves on S determines a function ¢, on 7, such
that £,(t) = €x(¢(a)) is by definition the length of the unique geodesic on X which
is isotopic to ¢(c). If moreover « is simple, meaning that there exists a simple
representative of o (a regular curve in the class of a without self-intersection), it
also determines a vector field 7, on 7, namely the infinitesimal Fenchel-Nielsen
twist along o (see [4], [5] or [7]). For any t € 7, one can explicitly find 6(g — 1)
simple closed curves «;, 1 <4 < 6(g — 1), such that the corresponding 7, (t) span
the tangent space of 7, at t (see [7], Corollary 3.5). Recall also that M, is smooth
at X = «(t) if X has no nontrivial automorphism, in which case the images 7, (74, )
span the tangent space of M, at X. Lastly we mention that the differential of
4, is conjugate to 7, for the symplectic structure defined by the Weil-Petersson
two-form; in other words ¢, is nothing else but Hamilton’s function for the vector
field 7, (see section 8.3 of [4] or [7]).

From now on we do not notationally distinguish « from the geodesic which is
isotopic to ¢(a) on some marked Riemann surface. An important ingredient in
what follows is

Lemma 1 (S. Wolpert, [6]). The variation of the geodesic length along a twist is
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given by:

—

Ta((7)) = Cla,v), where Cla,v) = Z cos (a7'y)p. (2)

peany

Here (o, ), denotes the angle of the two intersecting geodesics at p, with the
following sign convention (see [6]): lift p to p € H and assume w.l.o.g. that «

lifts to the vertical axis; then («,~) is defined to be the angle between this axis
(pointing upward) and the half-line tangent to - pointing towards the right half-

plane. This convention makes the expression cos (e, ) » Skew symmetric in (e, ¥),
thus also the sum C(a;, 7).

2. The infinitesimal trace formula

The main result of this note is embodied in the following infinitesimal trace for-
mula:

Theorem 2. Let h be an even function satisfying assumptions (i) and (ii) of sec-
tion 1, and let o be a simple loop on S. Then the following identity holds:

Z h/(Pn)T(f()\n) _ Z Co,7y) (Z ¢%(m€(’y))) ) (3)

n>0 20n ~EP

where ¢y, denotes the map x — x/2(sinh(x/2))  h(z) and 7} (resp. 7, ) denotes
the right (resp. left) derivative along the vector field 7o,.

The pieces of notation C(«, ) and ¢, have been introduced for convenience
only. Explicitly we have:

R T 1 —x/2coth(z/2)
(@) = Grh@ " @ 2sinh(z/2)

h(z).

Note furthermore that the lLh.s. of (3) can also be written in the form
>_j>0 P (pj)7alps), which is more natural, provided this expression is correctly
interpreted; see the remark at the end of section 3 below.

Formula (3), which can be considered as “the derivative of (1) along «”, can
be formally deduced from (1) by means of (2). The next two sections are devoted
to justifying this derivation by showing the absolute convergence of the L.h.s. (the
spectral side) and then of the r.h.s. (the geometric side) of (3).
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3. The spectral side

Let tg be a point of 7; and « a simple closed loop on S. We denote by ty € 7, the
point which is obtained from tq after twisting along « by the angle 6 (see e.g. [4],
section 3.2 and pp. 219-221). Let Xy = #(ty); go denotes the Poincaré metric on
Xp and Ay the Laplace operator on Xy for the metric go. The increasing sequence
of the eigenvalues of —Ay counted with multiplicities reads 0 = Ag(0) < A1(8) <
w2 mll) Lo

Now for any even function h satisfying the assumptions of section 1, there is
a unique function Hjp which is analytic in a neighborhood of the real half-line
] — %, +oo[ and satisfies Hj,(2?) = h(z) for z € C such that 2> €] — %, +oo[. In
this section we show that under the assumptions (i)—(ii) of section 1, the map
0 — >, >0 Hn(M(0) — 1) has left and right derivatives at # = 0 and that the
following holds:

Ta | D Hun(0) = 1) | = D Hi(n(0) — )72 () - (4)

n>0 n>0

We first prove:

Lemma 3. The map 0 +— (I — Ag) ™t is analytic over R, with values in the space
of bounded operators on L?, endowed with the topology given by the operator norm.

Proof. The last two formulas on p. 133 of [6] explicitly describe a one-parameter
family of Beltrami coefficients which define the points ty € 7,. The third formula
on p. 134 of that paper gives explicit formula for the corresponding hyperbolic line
element ds. This formula shows in particular that the dependence of the metric
tensor ds? upon 6 is real analytic. Using the expression of the Laplace operator in
terms of the metric, one finds that (I — Ag)(I — Ap)~! is a linear combination of
the four operators (I — Ag) ™1, 8,(I — Ag)™t, 8:(I — Ag)~! and 8,8:(1 — Ag)™*
with coefficients that are real-analytic functions of 6. Since the four operators
above are bounded on L?(S), this shows that the map 6 — (I — Ag)(I — Ag) !
is real analytic over R with values in the algebra of bounded operators on L?(S),
equipped with the operator norm. Furthermore, for each & € R the bounded
operator (I — Ag)(I — Ag)~! is an invertible element of that algebra. Thus the
map 0 — [(I — Ag)(I — Ap)~ ]! is also real analytic on R, which finishes the
proof of the lemma. O

As the operator Ay is self-adjoint on L?(Xy) for any € € R, lemma 3 combined
with the Kato—Rellich theorem (cf. [9], section XII.13) implies that for anyn € Z,
Ar, is Lipschitz continuous on R w.r.t. 8, with left and right derivatives at every
point. Writing (A,);(8) (resp. (A,).(0)) for the left (resp. right) derivative, we
have the following estimate:
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Lemma 4. For any n € Z1 and any § € R,

MO NOLIORON |4,y

EBN ®)

Proof. Let Ag = (I — Ag)~! and py, = 1/(1 +\,). Pick n € Z, and € > 0. Then
either p,,(6) belongs to the spectrum spec(Ag) of Ag, or it does not. In the former
case the operator I — (1, (8) — Ag) ™' (Ap — Ag) is not invertible, which shows that

1< [[(1n (8) = Ao) | Ap — Aoll = dist(n (0), spec(Ao)) ™| Ap — Aol -

Since A, is known to have a right derivative at # = 0, the above estimate implies
that the right derivative |(1,)..(0)| is bounded from above by the r.h.s. of (5). The
proof for the left derivative at 0 and for the other values of @ is identical. (Il

We now come to the proof of identity (4). For any n > 0 the function 6 —
Hp, (A (0) — 1) has left and right derivatives at every point § € R. Thanks to
assumption (i) the function Hj, satisfies H/ (x) = b'(y/z)/2y/x = O(z~P/?>~1) for
some 3 > 4, so that using the estimate (5) we find that

sup(|(An)g (O)], ()2 (O Hi, (An (8) — DI = O (0)'F/2).

Now the Weyl asymptotic estimate A, (6) = O(n) is locally uniform w.r.t. ; the
estimate above, combined with this fact and the dominated convergence theorem
vindicates formula (4).

Remark. By the Kato—Rellich theorem quoted above, there exists in fact a re-
labeling o : Z, — Z., of the spectrum such that for any j € Z, the map
0 — Xy(;)(0) is real analytic in ¢ over some j-dependent neighborhood of § = 0.
So for # = 0 we may in fact write:

D H O = D7 ) = D (Po)TalPots)

n>0 j>0

R (po(s))
. . . pU(J)
even and analytic in a neighborhood of the real axis, this is also the case for the

function h'(2)/z.

in which »'(ps(;))7a(po(s)) is interpreted as Ta(pg(j)) Indeed since h is

4. The geometric side

We turn to the r.h.s. of the variational trace formula (3), with the aim of proving
the identity:

DY | = Clay) (Z ¢§L(m€(7))> ~ (6)
m=1

YEP m=1 YeP
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Given (2) (see Wolpert’s lemma in section 1) this amounts to justifying the switch-
ing of the sum and the derivative 7,. To this end we need to bound the intersection
term C(a,~) from above. Given the closed geodesics o and «, let I(c,~) be the
number of their intersection points; then clearly |C(a, v)| < I(a,7), so that it suf-
fices to bound the last quantity, with the additional assumption that « is simple.
In order to do this we need some elementary hyperbolic geometry and first define
the quantity 7, = nm(X, @) > 0 as follows. Given n > 0, let B, (1) be the open
strip of width 25 centered around «, in other words the set of points of X whose
distance to « is strictly smaller than 1. We define 7, as the supremum of those
n > 0 such that B,(n) is isometric to the standard annulus of width 25. To put
it slightly differently, for any 1 < 7, and any point z € B,(n), there is a unique
geodesic segment contained in B,(n), originating at x and perpendicular to o
moreover 1,, is maximal with this property.
Then we have the following estimate:

Lemma 5. I{a,v) < (v)/(2n).

Proof. Let p € aN+y and 5 < y; then v traverses the strip B,(n) and defines
there a geodesic segment which we denote by I,,. Clearly the length of I, is at least
2n. Moreover as p runs along the finite set o N+, the segments I, are disjoints,
except possibly for a finite number of transverse intersections corresponding to
self-intersections of « located in the strip B,(n). The lemma follows from these
considerations. O

Remarks. There is a universal lower bound for 7,,, depending only on the length
of the simple geodesic loop a. In fact one can show that 7,,(a, X) > n0(¢(c)),
where the function 7y is defined by the equality cosh(ng(¢)) = 1/tanh(¢/2) (see
[5], section 1.1.5).

One can also notice that because two geodesics always intersect transversally,
the intersection number I(c, 7) is in fact constant over 7,. Moreover this constant
coincides with the topological intersection number of the isotopy classes « and « on
the model topological surface S. Recall that this number is defined as the minimal
number of intersection points of two representatives of the classes o and . The
fact that I(c, ), which was first defined via hyperbolic geometry, coincides with
that purely topological quantity is one of the basic results in Thurston’s theory of
surfaces, leading in particular to his compactification of Teichmiiller spaces (see
[10], Exposé 3).

We come to the by now easy proof of (6). Wolpert’s lemma recalled in section 1
ensures that |7,({(7))] = |C(e,v)| < I(e,7), and this last quantity is bounded
from above as in lemma 5. On the other hand, assumptions (i)-(ii) on the test
function  show that ¢/ (mi(v)) = O(e=<™ M) for all ¢ €]1, c+3[. The dominated
convergence theorem then justifies term-by-term differentiation of the r.h.s. of (6),
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finishing the proof of the validity of (6).

Putting together the results of section 3 and section 4 finishes the proof of the
theorem, showing the validity of (3).

5. Amplifications, possible applications, remarks

Let us close with some of the remarks the above might trigger. First we note
that we have adopted the point of view of hyperbolic geometry along with the
real analytic description of the Teichmiiller and moduli spaces. One can at least
partially introduce the conformal viewpoint for surfaces along with the complex
analytic theory for the classifying spaces by replacing (2) with an analogue in
terms of Poincaré series (see in particular 7], theorem 2.9).

The input on the geometric side of the trace formula (1) is the length spectrum
of the surface, that is the collection of the numbers £(«) for all primitive geodesics
v € P (counting with multiplicities). By a classical remark originally due to
H. Huber and A. Selberg, the trace formula itself implies that the spectrum and
the length spectrum determine each other. Now working around a given surface X,
the input of the variational trace formula (3) consists of either of the two spectra
supplemented by the geometric information conveyed by the numbers C(«, 7).
Now for any test function h satisfying the assumptions stated in section 1, (3)
provides a linear relation between the derivatives 72 ()\,) (see also the remark
at the end of section 3). Varying h, one finds that (3) actually determines the
collection of these numbers, i.e. it determines so to speak the derivative of the
spectrum of the surface along any given twist. So either of the length spectrum
or the spectrum, supplemented with the intersection data C(c, ) for all pairs of
primitive geodesics «, v € P determine both the derivatives of the length spectrum
(by lemma 1) and of the spectrum (by (3)).

We have discussed only the comparatively elementary case of closed Riemann
surfaces. From a more general viewpoint the above is certainly a rank 1 phe-
nomenon, because in higher ranks rigidity results precisely say that the analog
simply does not exist. It would however be interesting to investigate the possibil-
ity of adapting the above to other base fields (still rank 1 but not over the complex
numbers). Coming back to Riemann surfaces (alias complex curves) one can add
elliptic elements for free, because these are rigid. In other words the first term on
the r.h.s. of (1) corresponds to the identity element of the uniformizing group I’
and disappears upon taking the derivative, as it is independent of the curve. In
exactly the same way the additional terms which appear when I is not assumed to
be torsion free depend only on the signature of the group (see e.g. [11], theorem
9.1 with x = 1); so they also disappear in the variation. The extension to the
noncompact case however is of course highly non trivial and hopefully interesting,
and so is the degenerating process corresponding to —depending on the viewpoint —
squeezing a simple closed geodesic, going to the boundary of the moduli space and
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the emergence of parabolic elements in the uniformizing Fuchsian group.

It is to be hoped that (3) and possible extensions or variations therof can be
useful in several situations. Here are a few tracks, including possible dead ends.
One may want to study the variation of the Selberg zeta function or other gener-
ating functions. The formula can in principle be iterated or even exponentiated,
s0 as to get information about what happens along a finite twist (see [7], theo-
rem 3.4). One can also try to investigate various bifurcation phenomena such as
the study of the spectrum near a surface with nontrivial automorphisms, or the
splitting of a multiple eigenvalue as the surface varies.

Acknowledgements. We thank Eric Leichtnam and the referee for helpful re-
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