
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 78 (2003)

Artikel: Application of Koszul complex to Wronski relations for U(gln)

Autor: Umeda, Tôru

DOI: https://doi.org/10.5169/seals-58775

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-58775
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helv. 78 (2003) 663-680 @ 2003 ßirkhäuser Verlag, Basel
0010-2571/03/040663-18
DOI 10.1007/s00014-003-0784-7 I Commentarii Mathematici Helvetici

Application of Koszul complex to Wronski relations
for U(Qln)

Tôru Umeda

Abstract. Explicit relations between two families of central elements in the universal enveloping
algebra t/(jjln) of the general linear Lie algebra gtn are presented. The two families of central
elements in question are the ones expressed respectively by the determinants and the permanents:
the former are known as the Capelli elements, and the latter are the central elements obtained
by Nazarov. The proofs given are based on the exactness of the Koszul complex and the Euler—

Poincaré principle.

Mathematics Subject Classification (2000). 17B35, 15A15, 16Exx.
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Introduction

For the universal enveloping algebra U(gln) of the general linear Lie algebra Qln,
several explicit families of central elements are known. In the present paper we
treat the relations between the two well-known families: one expressed in terms of
determinants, known as the Capelli elements, and the other in terms of permanents
(see, e.g., [Ca2], [HU], [Nal], [MN] and [U4]). Explicit forms of these central
elements are given as follows:

ME E

h E E
,ik<n

Here m is a parameter and {Eij} are the standard basis elements of gln given by the
matrix units. The factors in the product with index s 1, 2, ¦ ¦ ¦ ,k are arranged
from left to right.

The C]. and D]. and their relations may also be described using Yangians (see

Theorem 3 in [Nal], and also [MN], [M2], [OO]). Classically such relations have
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well-understood counterparts in the theory of symmetric polynomials. In this
connection, Ck Ck(0) and Dk -Dfc(O) correspond respectively to the elementary
symmetric polynomials and the complete homogeneous polynomials, so that their
generating functions are essentially reciprocal. The explicit relations for the coefficients

of the generating functions are sometimes attributed to Wronski (see p. 114

of [A] and p. 71 of [Tl]). We thus call the analogous relations between the central
elements Ck(u) and Dk(u) the Wronski relations for U(qIu).

Another interesting aspect of the Wronski relations is seen in a cohomological
interpretation via the Koszul complex. They may be deduced from the exactness
of the Koszul complex and the Euler-Poincaré principle (cf. §9.3 in [B]). In this
paper, we use these ideas to find the explicit relations between the Ck{u) and

Dk(u).
The main results in the present paper are the following:

Wronski Relations (Theorem 4.3). For N > 1, we have

N

fc=O

N

1=0

(-)* Dk(u) CN_k(N - 1 - u) 0, (1)

(2)

Wronski Formulas (Theorem 4.4). The central elements Dk{u) are Ck{u) are
respectively written in terms of each other by means of the following determinantal
formulas:

Dk(u) =det

Ck{u) =det

0

0

C2(l-u)

u) D2(l-u)
1 Di(l-u)

1

Ck_l(k-2-u) Ck(k-l-u)
G\_2(k-2-u) Cu^k-l-u

Ci{k-2-u) C2(k-l-u)
1 Ci(k-l-u)

Dk-iik-2-u) Dk(k-l-u)
Dk_2{k-2-u) Dk-iik-1-u)

Di(k-2-u) D2(k-l-u)
1 Di(k-l-u)
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1. Generalities on the trace

In this section, to make our discussions clear, we gather general properties on the
trace with values in non-commutative algebra. The statements are quite obvious,
so that we omit their proofs.

Throughout this paper, we will work over a fixed ground field IK of characteristic

0. Let V be a K-vector space and A a K-algebra. We consider linear maps $
from V to its coefficient extension V<S) A V<S)k

Our object in this section is the A-valued trace Tr($) of linear maps of this type.
When V is finite-dimensional, the trace Tr($) is defined in the usual manner that

for 3>(vj) Y^=i vt1^1 ^«j) where {vt}™=l is a basis of V, and it is obvious that the
definition does not depend on the choice of basis. Hereafter when we consider the
traces, we always assume that the base vector spaces V are finite-dimensional.

Lemma 1.1. Assume that the following diagram commutes:

V —f-^ W

$ *
V(g>A > W(g>A.

Then we see

(1) $(Ker/)cKer/<g).47
(2)
(3)

Corollary 1.2 (Euler-Poincaré Principle). Assume that dldl 1 0 holds for all
i in the first row of the following commutative diagram:

Vl®A > Vt+l®A
d*(g)l
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Then ¥ induces a linear map iP($) : Hl(V) -> Hl(V® A) Hl(V)®A of the

cohomologies, and the following equality holds if the complex is finite

For two linear maps $ : V —> V^ <g> A and ^ : VF —> VF <g> «4., we define their
product

$x* : V®W —> V®W®A

via the multiplication of A. To be more explicit, let (3>j») and ('Jqj) be the matrix
expressions of $ and ^ with respect to bases {v{\ and {wj} of V^ and of W. Then
we have

($x*)(^<g)Wj) ^wp<g)wg<g)$pî*gj. (1.1)

We can also flip the multiplication through the isomorphism ": V <%>W c^W <%>V,

and define ^rx$=~'((i>x^')". The explicit expression for this flipped product is

given by

(* x <$>){vi <g) wj) ^2vp(E) wq(E) *gj$pj. (1.2)

p,q

The associative laws for these products are seen as

($1 x $2) x $3 $1 x ($2 x $3), (1.3)

($3 x $2) x $1 $3 x ($2 x *i). (1-4)

More generally, we may consider similar products composed with the permutations
of the base vector spaces when the the number of the factors is more than two.
But we will not go into further details for such generalizations here.

For the trace of the product, the following are easily seen from the expressions
(1.1) and (1.2).

Lemma 1.3. For linear maps $ : V —> V <g> A and * : W —> W <g> A, the
traces of their products x and x are given by Tr($ x ^) Tr($) Tr(^) and

2. Koszul complex

In this section, we review first basic facts on the usual Koszul (or polynomial
coefficient de Rham) complex (cf. [HI] and [H2]) to fix the notation for the coefficient
extension.
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Let Vn K[xi, X2, • • • xn] be the polynomial ring in n variables and An the
exterior algebra generated by the n elements e\, €2, ¦ ¦ ¦ ,en subject to the relations

ete0 + eJel 0. We consider the polynomial coefficient exterior algebra iln
Vn <S> An endowed with the usual algebra structure, where the two subalgebras Vn
and An commute. Both Vn and An have the natural graded structures, and we
denote their homogeneous pieces of degrees k and / by Vk and Aln respectively.
The degree operators on these gradation are written as deg-p and deg^. We write
^n'1 =rPn® A'ni and we sometimes abbreviate to write them as ilk'1 Q^1.

We denote the exterior derivative by d and its dual operation by d* :

n n

d V^ et di, d* V^ xi J i
r=l r=l

Here et and xt are the multiplication operators in Qn, and dt and J4 are respectively
the operators of partial derivation and inner derivation. Among them the canonical
commutation and anti-commutation relations hold:

i y j % iy ¦} \ï 3 3 J * %3 '

Here the symbol Jy is Kronecker's delta. From these relations, we see d?

0, d*2 0 and
dd* + d*d degr + degA (2.1)

Let us consider the following two complexes:

and

k*n: o<— nN'° S- ß«-1'1 S- ¦¦¦ S- n°'N <— o.

From (2.1), these complexes are exact except for N 0.

For an associative K-algebra A, we make the coefficient extension Q <g> A of
Q. Then with the differentials d <g> 1, d* <g> 1 acting trivially on A, we can regard
Q<S>A as complexes. For simplicity, we use the notation d, d* for these d<g> 1, d* <g> 1.

Also the gradings and the degree operators degp and deg^ in Q can be naturally
extended to Q <g> A.

For <f,tp& £2n <8) A, the following derivation rules are seen from the définitions:

The exactness of the Koszul complex and Corollary 1.2 imply the following
general result:

Lemma 2. // a set of linear maps
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commutes with the differential d (or d*), then for N > 1 we have

N

fc=O

In the next section, for the case of the universal enveloping algebra A U(Qln),
we will construct explicitly such families of linear maps commuting with the
differential operators d and d*.

3. Linear maps with coefficients in U(gln)

In this section, we work in the algebra Qn <g> t/(g[n), in which the algebra structure
is defined so that two subalgebras Qn and U(Qln) commute.

Let us introduce some notation. For the element £^ of gln corresponding to
the matrix unit, we put

EtJ (u) EtJ + uötJ

with a parameter u. Define the two types of elements by
n

p=\
n

"i(v) Y, eqEqÀv) eA„® U{Q[n) cß„« t/(fl[„).
9=1

Their commutation relations are given as follows:

Lemma 3.1. For any parameters u,v and z, we have

r]i(u - l)rij{v) - r\3(u - l)r]i(u) 0, (1)

Lüt(v)ujo(v - l)+ujo(v)ujt(v - 1) 0, (2)

Proof. These three assertions can be proved by direct computations, which are
similar to each other. Since the proofs for (1) and (2) are found, e.g., in [U1-U4]
and [IU], we give only the proof of (3) here. Compute the commutator:

p,q

/ xp^q \ 3P qt î>q P3

p,q

— /_^xjeqEqi 7jeqEqi 7
p

- 'f]3{z)el
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This proves (3) as desired. D

Let / (ii, «2, • • • ir) be an r-tuple of non-negative integers with 1 < %]. < n.
We write r \I\. The symmetric group &r of r letters naturally acts on the set

of such r-tuples by

(«1, «2, • • • VT (V(1)j *<7(2)> ' ' ' > *<r(r))-

We write x1 xnxn ¦ ¦ ¦ xlr and e1 enen ¦ ¦ ¦ elr. It is clear that

x1 x1, e1 =sgn(<r)e/.

Furthermore we define for r |/|,

From the commutation relations (1) and (2) in Lemma 3.1, we see

These relations assure that the two assignments given by

E(u)v : x1 ^ n{1) (u), E(v)A : e1 ^ J1) (v)

are well-defined, so that we obtain the linear maps

E(u)r :Vn^Vn® U(gln), E(v)A ;An^An® U(gln).

The restrictions of these maps to the homogeneous pieces will be simply denoted

by E(u)' E(u)' \-pk and h(u) h(u) \Ak-
From the définitions of these E(uy and E(u)A and the products x and x in

§1, we see the following product formulas according to the decompositions ~pk+h

Vk <g> Vh and Ah+l =Ah®Al:

E(ufk+h E(u - hfk x E(uf\ (3.4)

E(ufk+h E(u - kfh x E(ufk, (3.4V)

E(v)Ah+l E(v)Ah x E(v - h)A\ (3.5)

E(v)Ah+l E(v)A' x E(v - l)Ah. (3.5V)

Combining these two linear maps E(u)P and E(u)A, we can construct the linear
maps of the following type:

E(uf x E(v)A :ttn^ttn® U(Qln),

E(v)A x E(uf :ttn^ttn® U(Qln).



670 T. Umeda CMH

From the associativity (1.3) and (1.4) of the products and the formulas (3.4), (3.5),
(3.4V), (3.5V) above, we also have the following product formulas.

x E(vf E(u - Kfh x (E(v)v\E(v)Al), (3.6)

E{u)vh x E(v)Ah+l {E{u)v\ E(v)Ah) xE(v - h)A\ (3.7)

E(v)A' x E(ufk+h (E(v)A' x E(u - kfh) x E(uf\ (3.8)

E(v)Ah+l x E(ufk E(v)A' x (E(v - l)Ah x E(ufk). (3.9)

We remark that the maps of this type with arbitrary parameters do not commute
with the differentials d, d* in general. However, if we chose the parameters u, v
correctly, the maps Eiu)^ x E(v)A do commute with the differentials. We will
establish this kind of commutativity in Theorem 3.3 and Theorem 3.3* after several

computations. We point out here that our goal is somewhat delicate. As stated
in §2, the differentials d, d* for the complex whose coefficients are extended by
U(gln), are to act trivially on U(gln). By definition we have dr]i(u) u>i{u) and

d*ujj{v) r]j(v). From these and the derivation rule (2.2), we see that, for example,
drf1' (u) is computed as the sum of the terms

'i]h (u - r + 1) • • • 'i]îpl (u - r + p - l)wîp {u-r+ p)mp+1 (u - r + p + 1) ¦ ¦ ¦ r)îr(u)

for 1 < p < r \I\. For the proof the commutativity of the differential d with
the map of the form E{uy x E(v)A thus needs manipulation of the commutation
relations among the factors, which are by no means obvious.

To make our computations clearer, we introduce some notation. For the r-tuple
I (*li *2i • • • i *r), we denote by

t(p) —

the (r — l)-tuple with the p-th component dropped from /. Using this, we see

\i\ \i\
M ^

p=l p=l
Furthermore as a computational tool, we introduce the difference operator A
defined by A<p(u) <p(u + 1) — <p(u). Then we have

-i{>(u) + <p{u + 1)-Aip(u), (3.11)

-i{>(u + 1) + <p{u) -Aip(u). (3.12)

Note that these are valid even when <p(u) and ip(u) do not necessarily commute.
We apply these formulas repeatedly to the products (3.1) and (3.2). Then we see

m

Ar1{-I\u) YJ^pri{l(P)\y) (3.13)

p=\
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The following computations are crucial in this paper.

Lemma 3.2. We have

dr/^\u) {E{v)r x E(u - \I\ + l)A)(dxT), (1)

and also

d*JV(v) (E(v - \I\ + if x S(«)/l)(d*e/). (2)

Proof for (1). We prove (1) by induction on r \I\. When r 1, the assertion is

clear. Assume that we have proved the formula for the r-tuples / (i\, «2, • • • ir),
and we put J («'i,«2,-'' j*rj*r+l)- In the calculation below, we sometimes

abbreviate i v+l- Then we see rfJ\u) ^'{u — l)r/t(u). By the derivation
rule (2.2), we have

From (3.10) and the définition, our induction assumption turns to be

drfI\u)= J2 r?(/W)(«K(w-r + l).
l<p<r

Then the first term in dr/J(u) can be computed by Lemma 3.1 (3) with z u as:

l<p<r

l<p<r

+ E ^(/P )(W~ l){xipUi{u) -r]lp(u)et)
l<p<r

E V{jip)){u).lp{u - r)
\<p<r

+ ]T XiJlM\u-l)^(u)- E ^\
\<p<r \<p<r

l<p<r

Here for the middle term in the last line, we have used (3.13). For the second term
in dr]j(u), we have an easy relation

rj^Xupiiu - r) - rj^Xu - l)^(w) Arj^Xu ~ I)-^-(m) - rr](-IXu)el.
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Then plugging this into the first term, we see

]T ^(^(t.-rl+^f^ft.-r)
\<p<r

This concludes the induction.

Proof for (2). As above we prove (2) by induction on r \I\ and the proof is

parallel to (1). Let J («o, *'i, • • • ir) and / (i\, • • • ir). We sometimes write
«0 * for simplicity. The induction assumption for r can be given in the form

p=\

Since (J^J>{v) uii^ui^Xv — 1), we have

d*JJXv) rjiiv^Xv - 1) - iv^d^Xv - 1).

From the induction assumption, the second term can be computed by (3) of Lemma
3.1 (3) with z v:

f \ ,7* (l~) \ \~^ \P— 1 \ \ (i^) 1 \

l<p<r
\~^ \p—l \ \ (i^) -\\

\<p<r

\<p<r

\<p<r

+ J2 x^Xv)- J2
\<p<r \<p<r

\<p<r

+ rXiJ^iv) - t),(»)Ao;W(» - 1).

Here for the last term in the last line, we used (3.14). For the first term in d*ivj(v),
note the relation

rn{v)üj^\v - 1) - r]i(v - r)JT\v) rx^Xv) - ^{v)/^^^ - 1).
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Plugging this into the above, we see

l<p<r

0<p<r

This completes the induction as desired. D

Lemma 3.2V. We have

dri^Xu) (E(u)A x E(u - lf)(dxr), (1)

and also

(fJTXv) (E(v - 1)A x E(vf)(d*eI). (2)

Since the proofs for this lemma are quite parallel to those for Lemma 3.2, we
omit the proofs.

Theorem 3.3. The linear maps

E{u)v x E(u - k)A : Ük/ —> Ük/ <g U(gln)

and
E(v)A' x E(v - if" : nk'1 -^ nkj (g. U(gln)

commute with the differential d of the Koszul complex.

Proof. What we need to prove are

d{E{ufk x E(u - k)A') {E{ufk
1

x E(u - k + l)A'+1)d (1)

and
d(E(v)A' x E(v - l)Tk) (E(v)A'+1 xE(v-l- \fh 1)d. (2)

Lemma 3.2 (1) and Lemma 3.2V (1) show that (1) and (2) are true for fik'°. To
obtain the general formulas, we combine the associativity (3.7) and (3.9) with the
formulas (4), (5) below.

Let <p £ Qn (g) U{g\n) and ip £ An (g) C/(g[n). Then from the derivation rule (2.2)
and dtp 0, we see

V • dp. (3)
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These assure that the operator d commutes with the multiplications xE(v)A and
E(v)A x In fact, for any linear map $ from Qn to Qn <g> U(gln), we have

E(»)'l) #xE(»)J, (3>xE{v)A)d=$dxE{v)A; (4)

d(E(v)A x $) E(v)A x d$, (£(v)A x $)d £(v)A x $d. (5)

By (4), Lemma 3.2 (1) and (3.7), we see for (1)

d(E(ufk x E(u - k)A') dE(ufk x E(u - k)A'

(E(u)rk x E(u -k+ l)Al)d x E(u - k)A'

({E(u)'pk~1 x E(u -k+ 1)a1) x E(u - k)A')d

{E{u)v xE{u-k+l)A )d,

and for (2) by (5), Lemma 3.2 (2) and (3.9)

d(E(v)A' x E(v - if") E(v)A' x dE(v - if"
E(v)A' x (E(v - l)Al xE(v-l- lfk'1)d
(E(v)A' x (E(v - l)Al xE(v-l- lf^^d

These prove the assertions (1) and (2). D

The following theorem is parallel to Theorem 3.3.

Theorem 3.3*. The linear maps

E(v - ïfk x E{v)Al : nk/ -^ nk/ <g) U(gln)

and

E(u - k)A' x E(ufk : Qkn'1 -^ Qkn>1 ® U(gln)

commute with the differential d* of the Koszul complex.

Proof. The proofs for these assertions are similar to those for Theorem 3.3, so that
we avoid the repetition. Use Lemma 3.2 (2), Lemma 3.2V (2), (3.6) and (3.8) here,
in place of Lemma 3.2 (1), Lemma 3.2V (1), (3.7) and (3.9) for Theorem 3.3. D
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4. Relations between certain central elements in U(qIh)

Theorems 3.3 and 3.3* combined with Lemma 1.3 and Lemma 2 show the following:

Theorem 4.1. For N > 1, we have

N

Y^ Hfc Tr(£(w)pfc) Tr(£(w - k)AN~k) 0, (1)
fc=0

N

]T (-)' Tr(E(vf Tr(E(v - if'' 0, (2)
1=0

and

N

Y^ (-)'' Tr(E(w - lfN~l) Tï(E(v)Al) 0, (3)
1=0

N

]T Rfc T±(E(u - k)AN-k)Tt(E(ufk) 0. (4)
fc=0

Note that the difference between the relations (1) and (4) (or respectively (2)

and (3)) is only in the order of multiplication of Tr(i?(w)^ and Tr(E(v)A
Actually since these traces Tr(i?(w)^ and Tr(E(v)A are seen to be central in
t/(g[n), the equalities (1) and (4) (or respectively (2) and (3)) express substantially
the same identity.

To take a closer look at these traces, recall the action of the symmetric group
&r on the set of r-tuples as described in §3. In the (Sr-orbit IGr of an r-tuple /,
there is a unique r-tuple /b (j\,J2, ••• ,jr) satisfying 1 < j\ < J2 < • • • < jr < n.
Let ap be the multiplicity of the letter p in /. Then the F1 takes the form

t (1~^~T, 2~^3, ••• 'n~~~u).

In this way, the representative Ib of the (Sr-orbit is identified with the multi-index
a (ai,«2, ••• ,ön) consisting of non-negative integers. For a multi-index a,
we denote by Ia the corresponding r-tuple with non-decreasing entries, and by
ia the {-th component of Ia, i.e., Ia (la,2a, • • ¦ ,ra). As usual we put \a

a\ + a2 + - ¦ - + an r and a\ a\\a2\ ¦ ¦ anl. Identifying the multi-index a with
Ia, we use the notation xa xIa x^x^2 x"tn and ea eIa e^e^2 ¦ ¦ ¦ e"tn.
For the latter ea 0 if some of ap is greater than 1. It is clear that the set

{xa |a| k} forms a basis of V^ and that the set {ea ; |a| l,ap G {0,1}} forms
a basis of Al.
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With this notation, we can describe how to use multi-indices to form a matrix
ßaß from a gjven n x n matrix. More specifically, for an n x n matrix A and for
multi-indices a, ß, we denote by Aaß the |a| x \ß\ matrix whose (i,j) component is

given by A"? Aiajß. Note that if all the components of a, ß consist of either 0 or
1, this Aaß is nothing but the submatrix whose rows and columns are respectively
determined by Ia and Iß.

We use this convention for the matrices

to define

Efk(u) Eaß + laß-(u - diag(r - l,r - 2, • • • 1,0)),

and

E°f^v) Eaß - laß -(u - diag(r - l,r - 2, ••• ,1,0)),

for multi-indices a,ß with r |a| \ß\.
For an r x r matrix A {Aij)r. =1 whose entries are from an associative algebra

A, we define in general its permanent and determinant by

det(A)=

The matrix element of the linear maps Eiu)^ and E(u)A are expressed by
the permanent and the determinant as follows. They are verified by direct
computations.

Lemma 4.2. For \ß\ k, we have the following

E(u)r(xß) J2 x°'

\a\=k

E(v)A(eß)= V ea

As the traces of these linear maps, we define

¦t(u) Tr(E(u)tJ 2. ^rPer

Tr(E(k-l-v)Ak)=
\a\=k
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and Dk Dk(0),Ck Cfc(0). Note that the determinant det(E^(v)) vanishes

if ap > 1 for some p, so that we may put the restriction ap 0,1 on a in the
summation above for Ck(v). We also remark that the expressions of Dk(u) and

Ck{v) introduced above as the traces of the maps i?(w)^ and E(u)A give the
basis of the fact that they are central in U(gln) (cf. [Nal], [Ok], [U3], [U4]). It is

easy to see that these Dk(u) and Ck(u) satisfy the difference relations ADk(u)
(n+k — l)Dk_i(u) and AC^fti) (k — n — l)Ck_i(u), so that they are respectively
expressed by polynomials in u with coefficients Dk and Ck :

r=0

cfc(«)=x;«(
r=0

where w'r) w(w — 1) •••(« — r + 1). For the proofs of these expansions, see

[U4, (2.9)] for the Dk case, and [U3, Prop. 4] for the Ck case. Note also that by
définition Ck(v) 0 for k > n and the expression above for Ck(u) is compatible
with this, because Ck 0 for k > n. From Theorem 4.1 above, we see

Theorem 4.3 (Wronski Relations). For N > 1, we have

N

YJ{-)kDk{u)CN^k{N-l-u) Q, (1)
fc=0

N

Yj(-)lCl(l-l-v)DN_l(v-l)=0. (2)

1=0

One can observe asymmetry in the formulas (1) and (2) in Theorem 4.3. However,

these formulas are converted into the following relations between the two
(infinité) matrices

D{u)C{u) 1, C{u)D{u) 1, (4.1)

where C(u) (C(m)jj)^°=q and D{u) (D(w)jj)^°=q are the matrices with the
entries

C(u)tJ {-y-'Cj-iiJ -1-u), D(u)tJ Dj-iiu - i)

under the conventions Ck(u) 0 and Dk(u) 0 for k < 0. Thus the symmetry and
the equivalence between the two formulas in Theorem 4.3 is now clear. (Note that,
since the matrices C{u) and D(u) are upper triangular (although of the infinité
size), either one of the equations (4.1) does imply the other.) Furthermore, from
(4.1), computing a suitable entry giving Dk(u) and Ci(v) by Cramer's rule, we
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have the following determinant expressions (cf. [He, p. 17], [KW]). Note that the
formulas in Theorem 4.4 are totally symmetric in Dk{u) and C[(v).

Theorem 4.4 (Wronski Formulas). An explicit déterminant expression of Dk(u)
by Ck(u) is given by the following formula:

Dk(u) =det

0

C2{\-u) ¦¦¦ Ck_l(k-2-u) Ck(k-l-u)
Ci(l-u) ••• Ck_2{k-2-u) Cfc_i(A;-l-u

Ci(k-2-u) C2(k-l-u)
1 Ci(k-l-u)

Also a determinant expression of Ci(u) by Di(u) is given by

Di(v) D2(v) ¦¦¦ A-lH
1 Di(v-l) ¦¦¦ Di_2(v-1)

-l-v) =det 1

0

or equivalently

Ci(v) det

0
D2(l-v)

Remark. Via the natural interpretation of the central elements of U(gln) in terms
of symmetric functions, the elements Ck{u) and Dk{u) correspond respectively to
the shifted Schur functions e*k(x\ — u, ¦ ¦ ¦ ,xn — u) and h*k(x\ +«,-•• ,xn + u).
Then the Wronski formula follows from Proposition 11.5 (Jacobi-Trudy formula)
of [OO]. The author would like to thank the referee for pointing out this fact
together with the reference.
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