Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 78 (2003)

Artikel: Presentations of the first homotopy groups of the unitary groups
Autor: Pattmann, Thomas / Rigas, A.

DOl: https://doi.org/10.5169/seals-58774

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-58774
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 78 (2003) 648-662 © 2003 Birkhiuser Verlag, Basel
0010-2571/03/030648-15 ’
DOIT 10.1007/s00014-003-0770-0 [ Commentarii Mathematici Helvetici

Presentations of the first homotopy groups of the unitary
groups

Thomas Piittmann and A. Rigas

Abstract. We describe explicit presentations of all stable and the first nonstable homotopy
groups of the unitary groups. In particular, for each n > 2 we supply n homotopic maps that
each represent the (n — 1)!-th power of a suitable generator of 72,,SU(n) & Z,;. The product of
these n commuting maps is the constant map to the identity matrix.
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Introduction

The homotopy groups of compact Lie groups have been of continuous interest since
the discovery of homotopy groups at around 1935. There is now a tremendous
amount of computational tools available and many groups have been determined.
On the other hand, intellectually and practically satisfying presentations of these
groups are only known in comparatively few cases. Our goal in this paper is to
describe such presentations for the first homotopy groups of the unitary groups.

For the stable groups we mainly, but not entirely, review some known results
and procedures in an easily accessible and most explicit way. Particular emphasis
is given to the last stable groups ms,,_1U(n). A highlight of this part is a strik-
ingly simple formula for a minimal embedding of S® into SU(3) that represents
a generator of 75SU(3) and has a natural interpretation in terms of the complex
cross product.

The main achievement of the paper concerns the first nonstable homotopy
groups 72,SU(n) & Z,;. These groups played an important role in the first proofs
of the fact that the only parallelizable spheres are S', S®, and S7. We figure in
an elementary and explicit way how a suitable generator of m3,SU(n) becomes
null-homotopic in the n!-th power. Namely, we supply n homotopic maps that

The joint work of the authors was supported by CNPq and the International Bureau of the
BMBF in the scope of the former CNPq/GMD-agreement.
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each represent the (n — 1)l-th power of the generator. The product of these n
commuting maps is the constant map to the identity matrix. The generators of
9, SU(n) are then used to produce similar presentations of the homotopy groups
79, SU(n — 1) with even n.

In the final section we obtain presentations of certain stable homotopy groups
of the symplectic groups and a structure theorem for certain nonstable homotopy
groups of the symmetric spaces SU(n)/SO(n).

Throughout this paper we use the well-known fact that the homotopy group
7 (G) of a compact connected Lie group G is isomorphic to the group of free
homotopy classes of maps S* — G. Here, the product between two free homotopy
classes is given by multiplying the representing maps value by value with the
product of G. We also often use the elementary fact that the inclusions SU(n) —
U(n) induce isomorphisms between 7,.SU(n) and «,.U(n) for r > 2.

1. The stable homotopy groups of the unitary groups
1.1. Bott periodicity

It has been known since around 1940 that the inclusion of U(n) into U(n + 1)
induces an isomorphism between the homotopy groups 7, U(n) and =, U(n + 1) if
r < 2n. The homotopy groups in this range are called stable. Their simple struc-
ture became visible at the end of the 50’s by Bott’s famous periodicity theorem
[3]: The stable groups =, U are trivial if r is even and isomorphic to Z if r is odd.
In fact, Bott constructed isomorphisms

7 U(n) — m,4.95U(2n)

for r < 2n and thus all stable groups are determined by w1 U(1) ~ Z and the trivial
group maU(2). The periodicity isomorphisms can be given in the following explicit
way: One assigns to a map 0 : S” — U(n) the map B(0) : S™*2 — SU(2n) defined
on the unit sphere in C x R™*! by

BO(%) = (3ol) (o 7ok ) () = (jotey ™55 )-

Here, z stands as an abbreviation for the unit vector % € S” and 1 denotes the

n X n identity matrix. This assignment B provides the periodicity isomorphism.
We refer to [7], [8], and [10] for (essentially) this form of B. In [7], [8] it is deduced
by the relation to Hurwitz—Radon matrices with the help of K-theory. In [10],
Bott’s original arguments [3] are turned into an explicit formula.
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1.2. Totally geodesic presentations

Iterating the periodicity isomorphism B above starting with the parametrization
¢ :St=U1), 202

provides embeddings (j, : S?*~1 — U(2*~1) that represent generators of the groups
mar—1U(2F71) and take values in SU(2F~1) if & > 2. For example,
(2:8* - SU@Q), (%)~ (Y 2)

z w

is the standard parametrization of SU(2) and

. 2 201 0 —2zZ3 —Z3
e —su, (3)-(5 2 55)
z3  Za 0 zZ1
The embeddings ( are totally geodesic and R-linear in the sense that they extend
to R-linear maps from R?* to the space of complex 2F~1 x 28=1 matrices. By
placing several copies of (i or its inverse along the diagonal in a sufficiently large
square matrix one can realize all elements of the homotopy group 7o 1U by totally

geodesic, R-linear embeddings. For all these and additional facts we refer to [7],
[8], and [10].

We have just seen that the homotopy groups my;_1U(n) admit very simple
presentations if k is very small compared to n. The question we are now going to
answer is how one can obtain presentations of the last stable groups o, 1U(n) in
the sequence 7, U(n) with fixed n.

1.3. A deformation

Consider the subset of SU(n+ 1) that consists of matrices whose lower right entry
vanishes. There is the following map from this subset to the group SU(n):

(?58) — A —be.

Here A is an n X n-matrix and b, ¢ are unit vectors in C"™. The map above can be
obtained by the following deformation in SU(n 4 1):

(Afbétsint bcost>. (1)

c* cost sint

For ¢ = 0 we get the initial matrix above and for ¢ = % we obtain the target

matrix embedded in the upper left n x n-block of SU(n + 1). This deformation
exists analogously in SO(n + 1) and Sp(n + 1).
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1.4. Factorization of the periodicity isomorphism

Because of stability the original periodicity isomorphism B admits the following
factorization:

- U(n) L 7y 9SU(n 4+ 1) — 7, oSU(2n).

In order to obtain this factorization explicitly, we review essentially an algorithm
of Lundell [16]. There are, however, modifications in the details and we substitute
some of his arguments by the simple explicit deformation above. The algorithm
itself is very short: In a first step one deforms the map B(6) with values in SU(2n)

by multiplying the matrix
((])lcoostfsoint) (2)

0 sint cost

from the left. For ¢ = % the lower two rows in each value of B(f) are exchanged
(one changes the sign). Hence, the lower right entry of the resulting matrix valued
map vanishes. In a second step one now applies the deformation to SU(2n — 1)
described above. It is not complicated to check that these two deformation steps
can be iterated until the map takes values in SU(n +1). This yields the factorized
isomorphism B’ : m,.U(n) — m12SU(n+1) for r < 2n — 1. Note that for arbitrary
r the map B’ is still a homomorphism. The effect of this homomorphism on the
nonstable homotopy groups of the unitary groups is studied in [16]. For example,
it is shown that a generator of ms,SU(n) &~ Z,, is mapped to (n + 1) times a
generator of ma,+2SU(n + 2).

1.5. The last stable groups 7a,_1U(n)

Iterating the factorized version of the periodicity isomorphism starting with the
map 71 = (3 above we obtain maps 7, that represent generators of the last stable
groups ma,—1 U(n) and take values in SU(n) for n > 2. Note that 7, = (s still is the
standard parametrization of SU(2). In the case n = 3 one applies the deformation
above to the generator (3 of w5SU(4). This yields the map

7 21+Z322 —z2 —Zytzzm

ns . Ss — SU(3)7 (§2> — ( zg 21—22%3  23+22Z1 )

3 23 Eize —Fe—7F1%3 72
A map of this form was obtained by Chaves and Rigas [5] with a related but
slightly more complicated approach. With a few transformations we simplify the
formula in a way that a striking relation to the complex cross product appears and

: o y e 001
its equivariance properties are revealed. In fact, after multiplying ns by (9 ! 8)

0 1 0
from the left and by (? 87(%) from the right and after passing from z; and

z3 to Z; and Z3 we obtain the map 7 of the next section. There, we introduce
the resulting map directly by the complex cross product. For n > 4 we do not
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know whether any of the maps 7, or any map homotopic to some 7, has any nice
geometric properties or can be found by a more geometric construction. Note that
an elementary induction shows that all 5, have the property that 7, (z) = n,(2)
for all z € 21,

We now point out a property of the generators of ma,,_1U(n) that will be the key
for understanding the first nonstable groups 7o, U(n) & Z, in Section 3. Given a
map 0 : S~ — U(n) we obtain a map p;06 : S 1 — §?"~! using the projection
p; : U(n) — S?"! that maps a matrix to its j-th column.

Lemma 1.1. The assignment
6 — ﬁ deg(p; 0 0)
yields an isomorphism mon_1U(n) — Z. This isomorphism is independent of j.

In other words, a map 6 : S>"~! — U(n) represents a generator of m, 1U(n)
if and only if the composition with the projection to some (and hence any) of the
columns has degree +(n — 1)! where the sign is independent of the column.

Proof. The first part follows immediately from the exact homotopy sequence of
the bundle U(n—1) — U(n) — S?"~! using the fact that 7, 2U(n—1) & Zg, 1y
and stable homotopy groups. In order to see that, say, p,—1 and p,, yield the same
isomorphism, we multiply the values of 8 from the right by the matrix in (2) with
t = . The resulting map 6’ is homotopic to 6 and we get p, 100" =p,00. O

2. A minimal generator of 75SU(3)

Given two vectors z,w € C? their cross product is defined to be
ZoWaz—Z3W2
ZXWw = (Zsi)l—fﬂﬂ )
Z1W2—ZW1

If z and w are unit vectors that are perpendicular with respect to the standard
hermitian inner product on €2 then z x w is the unique vector such that the matrix
whose columns are z, w, and z x w is contained in SU(3). Hence,

(A-2)x (A -w)=A" (2 X w) (3)

for all A € SU(3) and z,w € C3.

We can now define an embedding 5 : S° — SU(3) by setting n(z) - 2 = z and
n(z) - w = z x w if w is perpendicular to z. This map is obviously not null-
homotopic. For if it were homotopic to the constant map from S® to the identity
in SU(3) then the map from S° to itself given by complex conjugation would be
homotopic to the identity map of S®, which is not true. An explicit formula for n
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is given as follows:

0 s s
n(z):zthr( % 0 72)

—Z2 Z1 0
Theorem 2.1. The embedding n : S° — SU(3) generates 75SU(3) ~ Z.

Proof. 1If we compose 1 with the projection to any of the columns of SU(3) we
obtain a map from S° to itself with degree 2. It follows from Lemma 1.1 that
represents a generator of m5SU(3). O

It follows from property (3) that 7 is equivariant with respect to the standard
action of SU(3) on S° C C? and the action of SU(3) on itself given as follows:

SU(3) x SU(3) — SU(3), (B,A)+~ BAB".

It is known that the orbit space of the latter action is a closed interval. In order
to give a more detailed description of the orbit structure we use the geodesic

1 0 0

o= { gty s .
The orbit through ¢(0) = 1 is diffeomorphic to the symmetric space SU(3)/SO(3)
and consists precisely of the symmetric matrices in SU(3). It is easy to see that
¢ intersects this orbit perpendicularly (and hence all orbits by Clairault’s theo-
rem that the velocity vectors of a geodesic have a constant inner product with
a Killing field). The orbits through ¢(t) for ¢ €10, 5[ are diffeomorphic to the
seven-dimensional space SU(3)/SO(2). Finally, we have

D=0 0-1)=n(})
o2) =18 9-1)=m3)
Hence, 7 parametrizes the isolated singular orbit through ¢(%). Since isolated

orbits are minimal submanifolds (in the usual sense that they are critical points
for the volume functional, i.e., their mean curvature vanishes) [11], we get:

Proposition 2.2. The embedding n parametrizes a minimal submanifold of SU(3).

We finally mention the following curiosity: Using the embedding 5, the Hopf
fibration S° —>_(CIP2 can be extended to a simple self-map of SU(3), namely, to the
map A — A- A. Indeed, if we multiply # and 7 value by value we obtain the map

S® - SU(3), =z~ 223 —1.
This map is the standard totally geodesic Cartan embedding of CP? into SU(3).
It follows from Lemmab5.1 or by inspecting the orbit space of the adjoint action of

SU(3) that » - 77 is null-homotopic.
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3. The first nonstable homotopy groups 72,SU(n) ~ Z,

Bott [2] showed in 1958 that the image of 7, BU in H,,(BU) is divisible by
precisely (n— 1)!. This refined the previous result of Borel and Hirzebruch [1] that
these classes are divisible by (n — 1)! except for the prime 2. As a consequence of
the refined version, the first nonstable homotopy groups 7, U(n) of the unitary
groups are isomorphic to the cyclic groups of order n!. This result was used
almost immediately by Kervaire [13] and Milnor [4] who independently gave the
first proofs of the fact that the only parallelizable spheres are S, S3, and S.
Generators of the groups 72, U(n) are represented by the characteristic maps of
the bundles U(n + 1) — S?"*!. These maps were known explicitly several years
before Bott’s result [21]. We will deform them in a way that allows us to see how
they become null-homotopic in the n!-th power.

The group SU(n) acts transitively on the unit sphere S>*~1 in C™. The isotropy
group of the j-th canonical basis vector in C” is denoted by SU(n — 1);. It is
the subgroup of SU(n) whose j-th diagonal entry is 1. Natural diffeomorphisms
between SU(n)/SU(n — 1); and S?"~! are given by the projections p; : SU(n) —
S?*~1 that map matrices to their j-th columns. Now consider the maps

¢; 1[0, 2] x SU(n) /SU(n — 1); — SU(n)
given by
$1(t, A) = A - diag (XV"D g7 7). A1

bnlt, A) = A - diag (e, ... e, =1ty 471,

For t = 0 and t = 2% the values of all ¢; are independent of A € SU(n). Hence
the ¢; induce maps S*" — SU(n).

Lemma 3.1. All the maps ¢; above induce the same map ¢ : S*™ — SU(n). This
map represents a generator of wo,SU(n).

Proof. Consider a matrix A whose first column is given by z € S?*~!. Then
A-diag (i1 =% | o). A1
=A-e . (1+diag(e™" —1,0,...,0)) - A~}
= e (1 + 2(e™ - 1)7").

For the other columns the computation is analogous and yields the same result.
We compose the map

$: 10,25 x 871 5 SU(n), (t,2) = e *(1+ 2(e™ — 1)5)
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with the inverse of the suspension
0,Z]x 8" 1 5§ CRxC", (t,2)— (2 -1,2V1—(2-1)).
This yields the map
$:8™ - 8SU(n), (y,z)— e "W/, (1- é—‘(l -+ e”y)z).

[2]
We can remove the factor in front of the paranthesis and obtain a homotopic map
with values in U(n). Moreover, we can substitute the rational parametrization
(%f—g)Q of the unit circle in C for the exponential parametrization e'™¥ without
changing the homotopy class of ¢. This leads to the map
2 _
S —=U(n), (y,2)—1-— 2zmzt.
In Steenrod’s book [21] it is proved that this map represents the characteristic
map of the bundle U(n + 1) — S?**! and hence a generator of 2, U(n). O

At first glance it might seem like one could multiply the n maps ¢, ..., ¢,
value by value and the result is the constant map to the identity. This would
imply that 79, SU(n) is of order at most n contradicting 72, SU(n) &~ Z,1. The
reason why this does not work is that we are not multiplying maps that have the
same domain of definition, since the isotropy groups SU(n — 1); are different. In
order to get maps from the same domain of definition [0, 27”] x §?7~1 one has to
use the identifications between SU(n)/SU(n —1); and S>"~L. But, as we saw, this
always yields the same map ¢ above and ¢" is evidently not the constant map to
the identity.

There is, however, a way to make the previous idea work. The clue is to
use any map 7 : S~ ! — SU(n) that represents a generator of the stable group
man—1SU(n). Such a map has the fundamental property that the composition p;on
with the projection p; to the j-th matrix column has degree (n — 1)! where the
sign is independent of the column (see Lemma1.1). We now obtain maps

b; [0, Z] x §* 1 — SU(n)
by plugging p; o into the second argument of <2>7 i.e., by

le(t? Z) - ¢1(t) 77(2)) - 77(2) : dla’g (ei(nil)a eiit7 ooy eiit) : 77(2)71

Un(t, 2) = dn(t,n(2)) = nlz) - diag (e %, ..., e ", "Dt p(2)~ L.

The following is now evident and shows us explicitly how the n!-th power of a
generator of my,SU(n) is null-homotopic.

Theorem 3.2. The maps ; induce maps S — SU(n) that represent (n — 1)!
times the same generator of w9, SU(n). The maps ; commute mutually and their
product iy - ..., is the constant map to the identity.
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Explicit homotopies between the maps ; are easily given. The formula

coss —sins O . i(n—1)t —it it coss sins O 1
a(e)- (53 55 B) - diag (Ve ey (<ERE S D) ),

for example, yields the map 1 for s = 0 and the map v, for s = 5.

Remark 3.3. Theorem 3.2 and Lemma 1.1 together provide inductively an ele-
mentary proof for the fact that 7o, SU(n) is a cyclic group whose order divides n!.
In order to show that n! divides the order of 79, SU(n), however, cohomological

arguments like those in [2] seem to be inevitable.

Remark 3.4. The map ¢ factors through a map ¢ defined on [0, 27”] x CP" L,
The CP™ ! can be considered to represent the space of shortest curves from the
identity matrix 1 to the matrix e 27/" . 1 in the center of SU(n). The map
¢ appears in Bott’s papers [2], [3] frequently, but not with the meaning that it
provides a generator of the group m,,SU(n).

4. The homotopy groups 72,SU(n — 1)

The homotopy groups m2,SU(n — 1) were first computed by Kervaire [14]. The
following fact is central for the computation: Given a generator ¢ of m2,SU(n)
the composition p; o ¢ : §? — $?"~! with the projection to the j-th column is
null-homotopic if n is odd and homotopic to the (2n — 3)-rd suspension of the
Hopf fibration S — S? if n is even (see [14], [21]). With this fact Kervaire [14]
deduced from the exact homotopy sequence of the bundle SU(n) — S?"~! that
Ton—15U(n — 1) is trivial if n is even and isomorphic to Z if n is odd and that

Zinr /2 if n is even,
o SU(n — 1) &2  Zo ® Zyy  if n > 5 is odd,
Zlg lf n—3.

In other words, if n is odd, ¢ is homotopic to a map with values in SU(n — 1) (it
is, however, not very easy to write this homotopy down explicitly). If n = 2m is
even, ¢ cannot be deformed to a map with values in SU(n — 1), but ¢ can, and
the resulting map represents a generator of 74, SU(2m —1). We will now describe
this deformation explicitly by reducing the equivariance group of ¢ from SU(2m)
to Sp(m).

The symplectic group Sp(m) can be regarded as the subgroup of matrices
A € SU(2m) with A'JA = J. Here, J € SU(2m) is the matrix whose diagonal
2 x 2-blocks are (? -4 ) A matrix A € SU(2m) with columns vy, ..., va,, belongs
to Sp(m) if and only if vop, = J - v9r_1 for all k =1,...,m. The group Sp(m) acts
transitively on the unit sphere S*™~! in C?™. The isotropy groups of the first
and the second canonical basis vector in C*™ are the same, namely, the subgroup
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Sp(m — 1)1 of matrices in Sp(m) whose first and second diagonal entry is 1. Now
we consider the maps ¢1 and ¢ of the previous section and restrict the second
argument of these maps to symplectic matrices. This way we obtain maps

¢1, ¢35 - [0, 7] x Sp(m)/Sp(m — 1)1 — SU(2m)

with the same domain of definition. Both these maps still induce the generator
¢ S* — SU(2m) of 74, SU(2m) given in the previous section. Their product is
the map

Po 2 [0, =] x Sp(m)/Sp(m — 1); — SU(2m),
(t7A) — A diag (ei(2m72)t7 ei(2m72)t7672z‘t’ e 672”) AL

Lemma 4.1. The map ¢}, and the analogously defined maps ¢sy, ..., &y 1 9m
all induce the same map ¢(2) : S4™ — SU(2m) which represents twice a generator
of TamSU(2m). The deformation to SU(2m — 1) of Section 1.3 can be applied to
&2 and the deformed map represents a generator of TamSU(2m — 1).

Proof. Since ¢/, is the product of ¢ and ¢} it is evident that ¢(*) represents twice a
generator of 74, SU(2m). Computations analogous to that of the previous section
show the following: If the first column of the matrix A is the vector z € C*™ then

ot A) = e (1 + (2™ — 1)(22" — J22"J)),
and the map ¢}, induces the map
¢P - 4™ SU(2m),
(y,2) > e~ tD/m (1-01+ YY) (LA — Jiz_‘J)>.

ENE ERE

The (2, 1)-entry in the values of ¢?) is always zero. Hence, after multiplying ¢(?)
from the left and the right with suitable permutation matrices, the lower right
entry vanishes and the deformation of Section 1.3 can be applied. Il

Analogously to the previous section we can plug a generator of 74, 1Sp(m) ~
Z into the second argument of the maps ¢1,, .. ., ¢/2m7172m. The resulting maps will
be denoted by 919, ..., ¥, 1 9 Like ¢7, they can all be deformed to SU(2m —1)
with the explicit deformation of Section 1.3.

Proposition 4.2. The m maps ¥4, | o, induce maps S*™ — SU(2m — 1) that
represent (2m—1)! times a generator of w4, SU(2m—1) if m is odd and 2-(2m—1)!
times a generator if m is even. They commute and their product is the constant
map to the identity.

Proof. 1t follows from the exact homotopy sequence of the bundle Sp(m) — S*m—1
that the composition of a generator of m4,, 1Sp(m — 1) with the projection to any
of the columns of Sp(m — 1) yields a self-map of S*™ ! whose degree is the order
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of the cyclic group mam—2Sp(m — 1). Kervaire [15] first showed that the order of
this group is (2m — 1)!if m is odd and 2 - (2m — 1)! if m is even. O

Remark 4.3. The map ¢ is homotopic to the map
st U@2m), (y,2)— 11— ﬁ(zét - Jz2'T)

with values in U(2m).

Remark 4.4. The map ¢/, factors through a map defined on
[0, ] x Sp(m)/(Sp(m — 1) x Sp(1)).

In the case m = 1 the factor on the right is trivial and the maps ¢/, and #(*) are
the constant maps to the identity. In the case m = 2 the factor on the right is
diffeomorphic to S* and hence ¢}, induces a map S® — SU(4). It is not difficult to
see that this is the map (3 from Section 1. This means that a generator of mgSU(3)
is given by composing the first suspension of the Hopf fibration S — S* with the
generator of m5SU(3) described in Section 2.

5. Symmetric maps into the unitary groups and homotopy groups
of Sp(n) and SU(n)/SO(n)

The Cartan embedding of the symmetric space SU(n)/SO(n) into the Lie group
SU(n) is the map

C :SU(n)/SO(n) — SU(n), A-SO(n)— A- A",

The image of this map is precisely the space of symmetric matrices in SU(n). We
combine this fact with the explicit form of the Bott periodicity isomorphism given
in Section 1. This combination provides first maps that represent non-trivial ele-
ments of certain homotopy groups of the symplectic groups and second a structure
theorem for certain nonstable homotopy groups of SU(n)/SO(n).

We begin with the following statement:

Lemma 5.1. Any map S**~! — U(n) with k < n is homotopic to its transposed
if k is odd and homotopic to its complex conjugate if k is even. Any map from S**
to U(n) or U(n — 1) 4s homotopic to its transposed if n is even and homotopic to
its complex conjugate if n is odd.

Proof. Complex conjugation on SU(k) corresponds to complex conjugation on the
sphere S~ ¢ C* under the projection p; : SU(k) — S?*~1. The complex conju-
gation on S?*~1 is homotopic to the identity map if & is even and not homotopic
to the identity map if k is odd. The lemma follows now from the following part of
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the exact homotopy sequence
ngflsU(k) —_— 7T2/f,1S2k71 _— ng,QSU(/ﬁ — 1) _— Wzk,QSU(k)
Z Z Z(k,l)g 0

and from the fact that a generator of the homotopy group m,, U(n—1) is homotopic
to a generator of g, U(n) or to twice a generator or of order 2 (see Section4). O

Note that in SU(2) complex conjugation is an inner automorphism and thus
any non-trivial map from any sphere S™ to SU(2) is homotopic to its conjugate
and therefore only homotopic to its transposed if it is of order 2. From the higher
homotopy groups of SU(2) ~ S? it is now clear that there exist many maps S?~1 —
SU(2) with odd & that are not homotopic to their transposed.

Let Sp(n) C SU(2n) be the subgroup of matrices of the form (g ’E) (note
that this subgroup of SU(2n) agrees with the Sp(n) used in Section4 only up to
conjugation). The following property of the explicit form of the Bott periodicity

isomorphism B given in (1.1) is now apparent.

Lemma 5.2. Let 6 be a symmetric map S**~1 — U(n), i.e., 8(2)" = 0(z) for all
2 € 8?1, Then B(#) takes values in Sp(n) C SU(2n).

Corollary 5.3. Any symmetric map 0 : S?*~1 — U(n) with even k < n is null-
homotopic.

Proof. If 8 would represent a non-trivial element in the stable group mo;_1U(n),
then B(6) would represent a non-trivial element in mo,11SU(2n) =~ Z. But B(0)
takes values in Sp(n) and the stable group mog.1Sp(n) is trivial or isomorphic to
Zo if k is even. O

Proposition 5.4. If 0 is a generator of wor_1U(n) with k = 2m + 1 < n then
B(0-6") represents a generator of moy1Sp(n) ~ Z if m is odd and twice a generator
if m is even.

Proof. Because of Lemma5.1, 0 - 6* represents in m9;,_1U(n) twice the generator
given by 0. Correspondingly, B(#-6") represents twice a generator of 7oy, 1SU(2n).
Since 6 - ' is symmetric, B(# - 6*) falls into Sp(n). We now inspect part of the
exact homotopy sequence of the bundle that belongs to the homogeneous space
SU(2n)/Sp(n):

W2k+1Sp(n) —3 7T2k+1SU(27’L) — 7r2k+1(SU(2n)/Sp(n)) —> ﬂQkSp(n).

All the homotopy groups involved here are stable, the first two isomorphic to Z,
the last one trivial, and 7ox41 (SU(2n)/Sp(n)) trivial if m is even and isomorphic
to Zo if m is odd. O
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Corollary 5.5. A generator of the stable group mop_1U(n) with k = 41+ 3 < n
cannot be represented by a symmetric map.

We will now apply the statements above to determine the structure of the
n—3

semistable homotopy groups mg+5(SU(n)/SO(n)) for | < 23, Given a map
0 : S?~1 — SU(n) with odd k, the composition

s2=1 %, §U(n) — SU(n)/SO(n) - SU(n) N Sym (n,C) — SU(n)  (4)
yields the symmetric map @ - 8" which represents twice the element in mo;_1SU(n)

that is represented by 6. Hence, if 6 represents a generator of my,_1SU(n) then
- 0" represents a generator or twice a generator of a Z-factor in

Tok—1 (SU(TL) N Sym (n7 (C)) R Tok—1 (SU(TL)/SO(TL))
This ambiguity remains in the case k = 4[+ 1 < n as we shall see below. However,

if k=4l + 3 < n then 6 -0* cannot represent twice a generator because of the
previous corollary.

Theorem 5.6. If 3 < k =4l + 3 < n then a generator of wa,_1SU(n) projects to
a generator of a Z-factor in woy_1 (SU(n)/SO(n)). Consequently we have

T8I15 (SU /SO ) ZEB?T81+4SO( ) and
7rgl+6(SU /SO ) ’/T81+5SO )

Proof. The first part follows from the factorization (4) of the map 6 -6*, the second
part from the first and the relevant segment of the exact homotopy sequence of
the bundle SO(n) — SU(n) — SU(n)/SO(n). O

This statement was obtained before by Kachi (see [12], Proposition3.5) for
7T < k=443 < n—1. Kachi’s proof is based on computations of Kervaire
[14]. These, in turn, involve certain homotopy groups of the Stiefel manifolds that
were determined by Paechter [20]. Our proof, on the other hand, requires just the
knowledge of stable homotopy groups.

The simplest example where our statement provides information is the homo-
topy group s (SU(?)) /i SO(3)). The exact homotopy sequence leaves the two choices
Z and Z & Zs. Our argument above shows that 75 (SU(3)/SO(3)) is isomorphic to
the second group.

Proposition 5.7. If5 < k=4l+1 < n then a generator of wor_1SU(n) can only
project to a generator or to twice a generator of a Z-factor in wop,_q (SU(n)/SO(n))
In the first case we have

7rgl+1(SU(n)/SO(n)) ~ 7@ 7150 (n).
In the second case, wg;SO(n) s isomorphic to a direct sum G @ Zy such that
7841 (SU(n)/SO(n)) ~# Z @ G.
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In any of the two cases we have

T81+2 (SU(TL)/SO(TL)) ~ 7Tgl+1SO(n).

In the stable range obviously the second alternative holds. On the other hand,
the group mgSO(5) (which occurs in the first case covered by the proposition) is
trivial. For information on m,,(SU(n)/SO(n)) for n > 8 and r < 5 we refer
to [12].

Appendix. The first homotopy groups of the unitary groups

For the convenience of the reader we provide in Table 1 the very first homotopy
groups of the unitary groups. Larger tables can be found in [17]. The black line
in the table indicates the border between the stable and the nonstable groups. A
t or ¢ below a group 7, U(n) indicates that any map S — U(n) is homotopic to
its transposed or to its complex conjugate, respectively.

r\n 1 2 3 4 5 6
il % Z Z Z Z Z
2 0 0 0 0 0 0
3 0 % Z Z Z Z
4 0 %cg 0 0 0 0
5 0 %cg % Z Z Z
6 0 chz ZCG 0 0 0
7 0 %cg 0 % Z Z
s |0 % e E | o o
o ooz om m |3 o2
10 0 Lis Lso Z12o @ Ly Zy2o 0

Table 1. Table of the first homotopy groups 7 U(n)
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