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Sur une conjecture de Mukai

Laurent Bonavero, Cinzia Casagrande, Olivier Debarre et Stéphane Druel

Résumé. Généralisant une question de Mukai, nous conjecturons qu'une variété de Fano X de

nombre de Picard px et de pseudo-indice ix vérifie px(lX ~ 1) < dîm(X). Nous démontrons
cette conjecture dans plusieurs situations : X est une variété de Fano de dimension < 4, X est

une variété de Fano torique de dimension <7oul est une variété de Fano torique de dimension
arbitraire avec ix > dîm(X)/3 + 1. Enfin, nous présentons une approche nouvelle pour le cas

general.

Abstract. Generalizing a question of Mukai, we conjecture that a Fano manifold X with Picard
number px and pseudo-index ix satisfies px{t-X ~ 1) < dîm(X). We prove this inequality in
several situations : X is a Fano manifold of dimension < 4, X is a toric Fano manifold of dimension
< 7 or X is a toric Fano manifold of arbitrary dimension with ix > dim(X)/3 + 1. Finally, we
offer a new approach to the general case.

Mathematics Subject Classification (2000). 14J45, 14E30, 14M25.

Mots clés. Variétés de Fano, théorie de Mori, géométrie torique.

Introduction

Soit X une variété de Fano, c'est-à-dire une variété projective lisse dont le fibre
anticanonique —Kx est ample, définie sur C (certains des résultats ci-dessous sont
valables en toute caractéristique). Notons ix le pseudo-indice de X, c'est-à-dire le

plus petit entier de la forme —Kx ¦ C où C est une courbe rationnelle de X, et px
le nombre de Picard de X L'indice rx de X est le plus grand entier m tel qu'il
existe un fibre en droites L satisfaisant —Kx rnL dans Pïc(X), c'est un nombre

particulièrement adapté à l'étude des variétés de Fano X avec px 1, tandis
le pseudo-indice nous semble plus adapté à l'étude des variétés de Fano X avec

px > 2 (penser par exemple aux produits d'espaces projectifs). Mukai a proposé
dans [Mu88] l'inégalité px(rx — 1) < dïm(X), vérifiée en dimension < 3 à l'aide
de la classification. Nous proposons plus généralement la conjecture suivante.

Conjecture. Si X est une variété de Fano, on a l'inégalité

ix - 1) < dim(X) (*)
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avec égalité si et seulement si X — (¥"'x^1)px.

Cette conjecture est en partie motivée par le théorème suivant.

Théorème ([WÎ90]). Soit X une variété de Fano de dimension n, d'indice rx et
de pseudo-indice ix- Si 2tx > n + 2, on a px 1. Si 2rx n + 2, on a px 1

sauf siX ~ (P^"1)2.

D'après la théorie de Mori, une variété de Fano X de dimension n vérifie
toujours ix < n+ 1. Si ix n+ 1, on a X ~ Pn d'après un résultat de Cho, Miyaoka
et Shepherd-Barron ([CMS00]) dont une démonstration simplifiée se trouve dans
[KeOl].

Dans ce travail, on se propose de montrer l'inégalité (*) lorsque X est une
variété de Fano de dimension 3 ou 4 (l'inégalité (*) est vérifiée directement en
dimension 2) et lorsque X est une variété de Fano torique de pseudo-indice au
moins égal à dim(X)/3 + 1.

L'inégalité (*) peut être vérifiée directement pour les variétés de Fano de

dimension 4 et d'indice au moins 2, dont la classification est établie par exemple
dans [IP99].

Nous démontrons, sans utiliser les résultats de classification des variétés de

Fano de dimension 3 ou 4, le résultat suivant, nouveau dans le cas des variétés
d'indice 1 et de pseudo-indice au moins 2.

Théorème. Si X est une variété de Fano de dimension 3 ou A, de pseudo-indice

ix et de nombre de Picard px, on a px(ix~ 1) < dim(X). Si px(ix~ 1) dim(X)7
on aX ~ (p<-*-i)P*.

Dans la situation torique, nos résultats principaux sont les suivants.

Théorème. Soit X une variété de Fano torique de dimension n, de pseudo-indice

ix et de nombre de Picard px- Si 2>ix > n + 37 on a pxi'^x ~ 1) < n- Si de plus
Pxi'^x - 1) n, onaX ~ (P1*-1)«.

Théorème. Soit X une variété de Fano torique de dimension n < 7, de pseudoindice

ix et de nombre de Picard px¦ On a px(i-x — 1) < n. Si px(i-x — 1) n,
onaX- (P1*-1)«.

Les méthodes utilisées sont celles de la théorie de Mori, dont nous rappelons
plus bas quelques uns des résultats ou définitions. Mentionnons les trois résultats
suivants obtenus au cours de la démonstration des théorèmes précédents et qui ont
leur intérêt propre.

Proposition. Soit X une variété de Fano de dimension n, de nombre de Picard
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Px ^ n et de pseudo-indice ix > 2. Si toutes les contractions extrémales de X
sont des fibrations, X est isomorphe à (P )n.

Théorème. SoitX une variété de Fano de dimension n > 4. Si toutes les contractions

extrémales de X sont ou bien des éclatements lisses de centre une courbe
lisse ou bien des fibrations de dimension relative 1 et que X possède au moins une
contraction extrémale birationnelle, on a px < 3.

Théorème. Soient X une variété de Fano de dimension n et Z une variété lisse
de dimension m avec ix > m + 1. S'il existe un morphisme surjectif à fibres
connexes f : X —> Z, alors Z est isomorphe à Pm et il existe une variété lisse Y
de dimension n — m telle que X est isomorphe àYx Pm.

Nous présentons enfin une approche possible, en toute dimension, où l'inégalité
(*) découlerait de l'existence de certaines chaînes de courbes rationnelles. Le
résultat suivant fournit une motivation supplémentaire en direction de la conjecture

de Mukai généralisée.

Théorème. Soit X une variété de Fano de dimension n, de nombre de Picard px
et de pseudo-indice ix- S'il existe des familles propres irréductibles V1, Vpx
de courbes rationnelles irréductibles sur X dont les classes dans Ni(X)q sont
linéairement indépendantes et des courbes C1,. ,CPX avec [C3] G V3 pour tout

l<j<Px et C3 n C3+1 ^ 0 pour tout l<j<px~^, on a pxi'^x -!)<"-¦

1. Notations

1.1. Si X est une variété projective lisse, on note

Ni(X)q < yjajCj | at G Q, Ct courbe irréductible de X >/

où désigne l'équivalence numérique. Le cône de Mori, ou cône des courbes
effectives, est le sous-cône de Ni(X)q défini par

NE(X)=

Si E est un diviseur et R une arête de NE(X), la notation E-R > 0 (resp. E-R 0)

signifie E ¦ C > 0 (resp. E ¦ C 0) pour toute courbe C de X telle que [C] G R.
La partie de NE(X) située dans le demi-espace ouvert {—Kx > 0} est localement
polyédrale et pour toute arête R de NE(X) telle que —Kx ¦ R > 0, il existe un
morphisme <pr : X —> Xr à fibres connexes, appelé contraction extrémale, de X
sur une variété projective normale Xr tel que les courbes irréductibles contractées

par ifR sont exactement celles dont la classe dans Ni(X)q appartient à R.
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• Soit dim(Xß) < dim(X) ; on dit que (fiR est une fibration, et pxR px — 1-

• Soit ifR est birationnelle et son lieu exceptionnel est un diviseur irréductible
E tel que E ¦ R < 0 : on dit que (çr est une contraction divisorielle, et

PxR Px - 1.

• Soit <pn est birationnelle et son lieu exceptionnel est de codimension > 1 dans

X : on dit que (fiR est une petite contraction.

Si X est une variété de Fano, le cône NE(X) est polyédral et si (fiR : X —> Xr
est une contraction extrémale, NE(X#) est engendré par les (Pr(R') où R' décrit
l'ensemble (fini) des arêtes de NE(X).
1.2. Rappelons un résultat de Wisniewski ([Wi91], Theorem (1.1)) sur le lieu d'une
contraction extrémale. Soit (çr : X —> Xr une telle contraction, d'arête R. Notons

Er le lieu de X couvert par les courbes contractées par (çr et

l(R) min{—Kx ¦ C \C courbe rationnelle contractée par (Pr}

la longueur de R. Pour toute composante irréductible F d'une fibre non triviale
de ifR, on a

2dim(£fi) > dim(ER) + dim(F) > dim(X) + l(R) - 1 > dim(X) + lx-1.
1.3. Nous utiliserons aussi le résultat suivant : soient X une variété de Fano, R
une arête de NE(X) et <pn : X —> Xr la contraction associée. Si toutes les fibres
de (fiR sont de dimension 1, Xr est lisse ([An85], Theorem 3.1 (ii)) et une fibre
générale F de (fiR est une courbe rationnelle lisse qui vérifie —Kx ¦ F 2 > ix-
Deux cas sont alors possibles :

• soit (ßn est une fibration en P1 et Xr est une variété de Fano ([KMM92],
Corollary 2.9) ;

• soit ifR a au moins une fibre singulière et ix 1.

2. La dimension trois

2.1. Vérifions l'inégalité (*) en dimension 3. Le seul cas non trivial et non couvert

par le résultat de Wisniewski est donné par la proposition suivante.

Proposition 2.2. Soit X une variété de Fano de dimension 3. Si ix 2, on a

Px <3.

Démonstration. Supposons px > 4. La variété X possède au moins 4 contractions

extrémales distinctes qui ne peuvent pas toutes être des fibrations ([Wi91],
Theorem (2.2)). Les contractions extrémales sont complètement décrites par Mori
([Mo82], Theorem 3.3) et seule la contraction birationnelle lisse de centre un point
est de longueur au moins 2. Cette possibilité est par exemple exclue par la
classification des variétés dont l'éclatée en un point est de Fano ([BCW01]). D
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Toujours en dimension 3, le cas d'égalité dans l'inégalité (*) est caractérisé par
la proposition suivante.

Proposition 2.3. Si px{ix ~ 1) dim(X) 3, on a X ~ (P1*-1)«.

Démonstration. Si px 1 et ix 4, la variété X est isomorphe à P3 ([CMS00],
[KeOl]). Supposons px 3 et ix 2 et considérons une contraction extrémale

(fi : X —> Z. Si y est divisorielle de lieu exceptionnel £7, alors y(i?) est une courbe
(c/. 1.2) et (fi s'identifie à l'éclatement d'une courbe lisse dans la variété lisse Z
([Mo82], Corollary 3.4.1), ce qui est absurde puisque ix 2. Les contractions
extrémales sont donc toutes des fîbrations et le résultat annoncé est donné par la

proposition qui suit. D

Proposition 2.4. Soit X une variété de Fano de dimension n, de nombre de

Picard > n et de pseudo-indice > 2. Si toutes les contractions extrémales de X
sont des fibrations, X est isomorphe à (P1)™.

Démonstration. Montrons la proposition par récurrence sur n, le cas n 1 étant
immédiat. Par [WÎ91], Theorem (2.2), toutes les contractions extrémales sont de

dimension relative 1 et il y en a exactement n : le cône NE(X) est donc simplicial.
Notons R\,..., Rn ses arêtes. Pour 1 < i < n — 1, le cône Vi Ri + • • • + Ri
est une face extrémale de NE(X) dont on note (fii : X —> Zi la contraction. Par
le lemme de rigidité, yj+i se factorise en X -4 Zt —> Zt+i. L'inclusion Vt C Vt+i
étant stricte, on a dim(Zj) > dim(Zj+i). On en déduit dim(Zn_i) 1 et Zn-\ est

isomorphe à P1.

Pour 1 < i < n, on considère la contraction (fiRz : X -^Wi. Les fibres de yn_i
et de (fiRn se coupent en un nombre fini de points. Le morphisme <pRn est donc
équidimensionnel de dimension relative 1. Il en résulte que Wn est une variété de

Fano lisse (cf. 1.3) et que (pnn est une fibration en P1 puisque ix > 2. Comme
toute arête de NE(Wn) est image d'une arête de NE(X), le cône NE(VFn) est

simplicial et toute contraction extrémale de Wn est une fibration.

Lemme 2.5. Soit i\ : X —> Y une fibration en Pr entre variétés projectives et
lisses. On suppose que X est une variété de Fano. Alors,

(a) Y est une variété de Fano et iy > ix ',

(b) si Y vérifie (*), il en est de même de X ;
(c) si Ly <<x et que P1 —? Y est une courbe de degré anticanonique iy, le

produit P1 Xy X est isomorphe à F1 xF.

Démonstration. Par [KMM92], Corollary 2.9, Y est une variété de Fano. Soit P1 —>

Y une courbe de degré anticanonique iy. Comme H2 (P1, OJi est nul, il résulte
de [Gr68], § 8, que la fibration P1 Xy X —> P1 est isomorphe au projectifié d'un
fibre vectoriel E ®[=0Cp1(aj) sur P1, où les ai sont des entiers positifs avec
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ao 0. Si Ci est la section de F(E) —> P1 définie par le fibre quotient öpi(aj) de

E, on a —ifp(_E)/pi • Ci —rai, d'où, en notant g la composée P1 —> Cj —> X,

(-x < --Kx • 3*Cj -7t*Ky ¦ g*Ct - Kx/y ¦ g*Ct iY - g*Kx/y ¦ Ci

by - KV(Eyri ¦ Ci by - rat

ce qui prouve (a) et (c).
Montrons (b). On a py px — 1, d'où, en utilisant (a),

(px - l)(bX - 1) < py(<-y - 1) < dim(y) dimX - r.

Si C est une droite contenue dans une fibre de tt, on a —Kx • C r + 1, de sorte

que bx < r + 1 et

Px(i-X - 1) < bX - 1 + dim(X) - r < dim(X),

ce qui prouve (b). D

On a donc bwn > 2 et par hypothèse de récurrence, Wn est isomorphe à

(P1)" '. De plus, l'image réciproque de toute droite du type P1 x {(t2, • • • ,tn-i)}
est isomorphe à (P1)2. Puisque NE(X) est simplicial, la contraction y^+ß^ est
la composée de <pRn et d'une projection p : Wn —> (P1)™^2 ; de même, yn_i est
la composée de <pRn et d'une projection Wn —> P1. On a ainsi un diagramme
commutatif

où pi et £>2 sont les deux projections. L'image réciproque d'un point de (P1)™ 2

par (pR1+Rri est isomorphe à (P1)2, les restrictions de tp^ et <pRn étant les

projections sur chacun des facteurs. En d'autres termes, une fibre de <^Rn est envoyée
isomorphiquement par lprx sur le facteur P1 de W\. Cela signifie que le degré du
morphisme produit

qui est le degré de la restriction de yn_i à une fibre générale de <fnn, vaut 1.

Ce morphisme étant fini, c'est un isomorphisme et la preuve de la proposition est
achevée. D

3. La dimension quatre

3.1. Montrons l'inégalité (*) en dimension 4. Une remarque essentielle est que sur
une variété de Fano de dimension 4 et de pseudo-indice > 2, il n'y a pas de petite
contraction (cf. 1.2).
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Proposition 3.2. Soit X une variété de Fano de dimension A. Si ix 3, on a

px <2.

Démonstration. Supposons px > 3. Les fibrations extrémales sont de dimension
relative au moins 2 (cf. 1.2) et il y en a donc au plus 2 ([WÎ91], Theorem (2.2)). Il
existe ainsi au moins une contraction divisorielle contractant son lieu exceptionnel
sur un point (cf. 1.2). Il en résulte l'existence sur X d'une contraction lisse de

centre de codimension 2 ([WÎ91], Corollary (1.3)), ce qui est absurde puisqu'une
telle contraction est de longueur 1. D

Le résultat principal de cette section est le théorème suivant.

Théorème 3.3. Soit X une variété de Fano de dimension A. Si ix 27 on a

Px <4.

3.4. Quelques lemmes intermédiaires. La démonstration du théorème 3.3

repose sur les lemmes suivants.

Lemme 3.5. Une variété de Fano X de dimension A, de pseudo-indice 2 et de

nombre de Picard > 5 n'a pas de fibration extrémale ip : X —> Y dont toutes les

fibres sont de dimension 1.

Démonstration. Raisonnons par l'absurde. Le morphisme y : X —> Y est une
fîbration lisse car ix 2, de sorte que Y est une variété de Fano lisse de dimension
3 d'après 1.3. Puisque py > 4, il existe une contraction lisse -k : Y —> Z de centre

une courbe lisse ([MM81], Theorem 5). Toute courbe de Y contractée par -k est

une courbe rationnelle de fibre normal dans Y égal à O( — 1) © O, donc de degré

anticanonique 1. Ceci, avec le lemme 2.5, contredit l'hypothèse ix 2. D

Lemme 3.6. Soit X une variété de Fano de dimension A, de pseudo-indice 2 et
de nombre de Picard > 5. Toute contraction extrémale X —> Y est ou bien une
contraction divisorielle lisse de centre une courbe, autrement dit est l'éclatement
d'une variété lisse Y le long d'une courbe lisse de Y, ou bien une fibration de

dimension relative 1.

Dans le cas d'une fibration, le lemme 3.5 montre qu'il y a au moins une fibre
de dimension 2.

Démonstration. Remarquons tout d'abord que les fibrations extrémales X —> Y
vérifient toutes dim(y) 2 ou dim(y) 3. En effet, si dim(y) 0 (resp.

dim(y) 1), on a px 1 (resp. px 2). D'autre part, comme dim(X) 4

et px > 5, il y a au moins une contraction extrémale divisorielle ([WÎ91], Theorem
(2.2)).
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Soient (fi : X —> Y une telle contraction et E son diviseur exceptionnel. Les
fibres non triviales de (fi sont de dimension > 2 (c/. 1.2). Si dim(y>(i?)) 0, il
existe sur X une fibration extrémale dont toutes les fibres sont de dimension 1 ou
une contraction extrémale birationnelle lisse de centre de codimension 2 ([WÎ91],
Corollary (1.3)), ces deux situations étant exclues respectivement par le lemme
3.5 et par l'hypothèse ix 2. Ainsi, dim(<p(E)) 1 et y s'identifie à l'éclatement
d'une variété lisse Y le long de la courbe lisse <p(E) ([AW98], Theorem 4.1).

Vérifions enfin qu'il n'existe pas de fibration extrémale tt : X —> S où S est

une surface. Supposons qu'une telle fibration existe ; S est alors une surface lisse

([ABW92], Proposition 1.4.1) et une fibre non triviale F de (fi est isomorphe à

P2. Puisque <p\p : F —> S est fini, S est également isomorphe à P2, de sorte que

px 2, ce qui est absurde. D

Le résultat suivant précise le cas des éclatements de centre une courbe lisse.

Proposition 3.7. Soit X une variété de Fano de dimension n > 4 et de pseudoindice

ix > 2. Si TV : X —> Y est l'éclatement d'une variété lisse Y le long d'une
courbe lisse, Y est une variété de Fano et iy > <-x-

Démonstration. Si Y n'est pas une variété de Fano, le centre de l'éclatement tt
est une courbe rationnelle lisse de fibre normal 0pi( — l)®"^1 ([WÎ91], Proposition
(3.5)), de sorte que ix 1, ce qui contredit l'hypothèse.

Vérifions ensuite l'inégalité iy > 2. Soient C le centre de -k et E son diviseur
exceptionnel. Si C est une courbe rationnelle de Y distincte de C, et si on note
encore C sa transformée stricte dans X, on a —KyC —Kx-C' + (n — 2)E-C >
ix- Si iy < ix, on ne peut donc avoir —Ky ¦ C iy, de sorte que C est une
courbe rationnelle qui satisfait —Ky ¦ C iy.

Soit Ne/y ©™=i Ofi{a{) son fibre normal. On a d'une part

n-l
iy -Ky -C=J2ai + 2>

i=\
et d'autre part, si Cj C E est la courbe définie par le fibre quotient Ori (at) de

No/Y,
-Kx ¦ Ci iy - (n - 2)at > iX-

On en déduit iy > ix, sauf si tous les aj sont strictement négatifs, ce qu'exclut
l'égalité Y!i=i at iY -2> -1. D

3.8. Variétés de Fano spéciales. Nous nous intéressons ici à certaines variétés
de Fano, que nous appelons « spéciales », faute d'une meilleure terminologie. Cette
notion est introduite dans le seul but d'alléger les énoncés qui la suivent.

Définition. Une variété de Fano de dimension n sera dite spéciale si toutes ses

contractions extrémales sont ou bien des éclatements lisses de centre une courbe



Vol. 78 (2003) Sur une conjecture de Mukai 609

lisse ou bien des fibrations de dimension relative 1 et si elle possède au moins une
contraction extrémale birationnelle.

Exemple. La variété X P™ x P1, où P™ désigne l'éclatement de P™ de centre a,
est une variété de Fano spéciale, de pseudo-indice 2 et de nombre de Picard 3. En
effet, X possède 3 contractions extrémales : X -? P™ et X -? P™"1 x P1, fibrations
en P1, et X -? P™ x P1, contraction lisse de centre {a} x P1.

Cet exemple est d'une certaine façon extremal comme le montre le résultat
suivant.

Théorème 3.9. Une variété de Fano spéciale X de dimension > 4 vérifie px < 3.

La démonstration de ce résultat occupe la fin de ce paragraphe.

Lemme 3.10. Sott X une variété de Fano spéciale de dimension > 4 et de nombre
de Picard > 4.

(a) La variété X possède au plus une fihration extrémale de dimension rela¬

tive 1.

(b) Si X possède une fihration extrémale de dimension relative 1, d'arête R,
les contractions extrémales birationnelles ont pour centre une courbe rationnelle

à fibre normal trivial, leur diviseur exceptionnel E vérifie E ¦ R 0

et iX < 2.

Démonstration. Soient -k : X —> W une contraction extrémale birationnelle de

centre une courbe lisse C C W et de diviseur exceptionnel E et y : X —> Y une
fibration extrémale d'arête R et de dimension relative 1. Nous allons montrer que
TV détermine R, donc y.

Le morphisme <p\E '¦ E —> Y n'est pas surjectif car pe 2 et py > 3 ; comme
l'intersection d'une fibre de tp\E avec une fibre de tï\e est finie, chaque fibre de tp\E
est de dimension 1. En particulier, <p(E) est de codimension 1 dans Y; l'image
réciproque par y d'un point général de <p(E) est de dimension 1, donc coïncide

avec son image réciproque par tp\E. C'est en particulier une courbe rationnelle qui
domine C, de sorte que cette dernière aussi est rationnelle.

Le diviseur E est isomorphe à V(N^,W), où Nc/W ®"=1 Opi(aj). La
fibration induite tp\E : E —> ^p{E), où <p(E) est la normalisation de <p(E), est

équidimensionnelle, de fibre générale P1 ; c'est une contraction extrémale puisque
Pe 2. Le cône de Mori de F(N^,,W) est engendré par deux courbes : une droite
d'une fibre de tt^e '¦ E —> C et une section de 7t\E. Il s'ensuit que E est isomorphe
à Pn~2 x P1, que tt^e et <p\E sont les deux projections et que R est engendré par
une courbe du type {*} x P1. Comme n > 4, il y a donc au plus une fibration
extrémale de dimension relative 1.
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Ce qui précède montre aussi que si X possède une fibration extrémale de
dimension relative 1, les contractions extrémales birationnelles ont pour centre une
courbe rationnelle de fibre normal trivial. En effet, on a vu que V(N^,W) est

isomorphe à Pn~2 x P1, de sorte que Nc/w est isomorphe à Ofi{a)®n~1 pour un
entier a convenable et, puisque les courbes du type {*} x P1 ont un fibre normal
(dans X) trivial (ce sont les fibres d'une fibration), c'est que a 0. D

Lemme 3.11. Soit X une variété projecüve lisse de dimension A et soük : X —>

W (resp. ty' : X —> W, -k" : X —> W") une contraction extrémale birationnelle
lisse de centre une courbe lisse C C W (resp. C C W, C" C W") d'arête R
(resp. R', R") et de diviseur exceptionnel E (resp. E', E").

(a) SiR^R' etEDE'^0, on a E • R' > 0 et E' • R > 0.

(b) Si R, R' et R" sont deux à deux distinctes et siEnE' ^ 0 et EC\E" ^ 0,
onaE'n E" ^ 0.

Démonstration. Vérifions le point (a). Soit x un point de E D E'. La surface
7r^1(7r(x)), isomorphe à P2, n'est pas contenue dans E' car R ^ R'. Il existe
donc une courbe dans 7r^1(7r(x)) passant par p et non contenue dans E', d'où (a)
en échangeant les rôles de E et E'.

Vérifions le point (b). Soit y e C. Les courbes ty 1(y) n E' et tt x(y) n E" sont
contenues dans 7r^1(y), qui est isomorphe à P2, de sorte que ¦K~1{y)C\E'C\E" ^ 0,
d'où (b). D

3.12. Démonstration du théorème 3.9. Supposons px > 4. Par hypothèse,
il existe une contraction extrémale birationnelle tt : X —> W d'arête Ri et de

diviseur exceptionnel E\, d'image une variété de Fano lisse (proposition 3.7) et de

centre une courbe lisse C C W.

Soit Ci une courbe telle que E\-C\ > 0. Cette courbe est numériquement
combinaison linéaire à coefficients rationnels strictement positifs de classes engendrant
des arêtes. L'une d'entre elles, notée i?2, satisfait E\ ¦ Ri > 0. Le lemme 3.10(b)
entraîne que la contraction <fR2 est birationnelle.

Notons Ri, i?2, • • •, Rk, Rk+i, ¦ ¦ ¦, Rm, Rf les arêtes de NE(X), où

• les contractions <pr. sont birationnelles de diviseur exceptionnel E-% (noter
que TV tpRl ;

• ifRF est l'éventuelle unique fibration et, d'après le lemme 3.10(b), Et ¦ Rp 0

pour tout 1 < i < m ;

• Ei n Et ^ 0 pour 2 <i < k d'où, d'après le lemme 3.11(a), Ex ¦ Rt > 0 ;

• E\C\Ei 0 pour k + l < i < m, d'où, d'après le lemme 3.11(b), EiC\El 0.

Supposons n > 5. L'intersection E\ ni?2 n'est pas vide, de dimension au moins
n — 2>3:ilya donc des courbes de E\ n E^ contractées à la fois par tp^ et par
<Pr2, ce qui est absurde.
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Supposons n 4 et vérifions que C est extrémale dans NE (VF). Rappelons que
ce cône est engendré par -n{Rp) et les vr(iîj) pour i > 2. Pour 2 < i < k, la classe

de C appartient à ir(Ri), ainsi qu'à tv(Rf) '¦ en effet, chaque fibre non triviale de

ifR. intersecte E\ le long d'une courbe Cj telle que tt(Cj) C, de même, toute
fibre F de y>ßF intersectant i?i est contenue dans E\ et satisfait donc 7r(F) C.
Si la classe de C n'est pas extrémale, NE(VI/) est donc engendré par les arêtes

Tr(Ri) pour i > k+1. L'image 7r(i?2) est un diviseur effectif de VF numériquement
trivial puisque E2 ¦ Rp E2 ¦ Ri 0, ce qui est absurde.

Étudions la contraction extrémale tp : W ^ Y d'arête engendrée par C et
montrons que le diviseur ^{E^) est contracté sur un point par (fi. Notons W2 l'image
de (fiR2 et C2 C W2 son centre. Pour tout y G C2, la fibre f^iy), isomorphe à P2,

contient une courbe dont l'image par tt est C et qui est donc contractée par (fi sur
le point f(C). D'autre part, 7r((/5/j,1(y)) est également contracté sur le point y(C).
La contraction f : W ^ Y est donc ou bien divisorielle ou bien une fibration. Soit

C G i?2 une courbe rationnelle de X telle que Ei ¦ C — 1. Il existe un entier

r > 1 tel que

tt(£2) • 7T*(C") 7r*(7r(£2)) • C" (E2 + rE) ¦ C -1 + rE ¦ C.

Or E ¦ C > 1 ; on en déduit ^{E^) ¦ 7r*(C") > 0 puis, puisque les courbes C et
7r*(C") sont numériquement proportionnelles, tt(E2) • C > 0.

Comme 7r(i?2) est contracté sur un point par y>, le calcul d'intersection précédent
montre que y est une fibration. En particulier, dim(y) < 1 et pjy < 2, ce qui est
absurde puisqu'on a supposé px > 4. D

3.13. Démonstration du théorème 3.3. Le lemme 3.6 montre que si X est

une variété de Fano de dimension 4, de pseudo-indice 2 et de nombre de Picard
> 5, la contraction extrémale associée à toute arête extrémale de X est soit une
contraction divisorielle lisse de centre une courbe lisse, soit une fibration de dimension

relative 1. De plus, comme px > 5, il existe sur X au moins une contraction
extrémale birationnelle ([WÎ91], Theorem (2.2)). C'est donc que X est spéciale et
le théorème 3.9 permet de conclure à une absurdité. D

3.14. Familles propres de courbes rationnelles. Nous renvoyons au livre
[Ko96] pour plus de détails sur les notations et les rappels qui suivent. Soit X
une variété complexe, projective et lisse. Soit Hombir(P1,X) le schéma des mor-
phismes birationnels de P1 vers X et soit HomJJir(P1, X) sa normalisation. Le

groupe linéaire PGL(2,C) agit sur Hom^P1, X) et Hom^P^X) x P1. Les

quotients géométriques au sens de Mumford existent et seront respectivement
notés RatCurvesn(X) et Univrc(X). Soit V C RatCurvesn(X) une famille propre
irréductible de courbes rationnelles irréductibles sur X et soit U C Univrc(X) la
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famille universelle
U -^ X

V
Notons lieu(V) ev(W) l'ensemble des points de X par lesquels il passe une courbe
rationnelle C de X telle que [C] G V. Soit x G lieu(V) ; on note Vx 7r(ev^1(x)) C
V les courbes de V passant par x, puis IÀX 7r~1(Vx) et lieu(14) ev(Ux). Les

dimensions de ces différentes variétés satisfont

dim(V) > -Kx ¦ V + n - 3 (f)
dim(14) > -Kx ¦ V - 2

où —Kx ¦ V désigne l'intersection —Kx ¦ C pour une courbe rationnelle C de X
telle que [C] &V. Si x est un point général de lieu(Vr), on a

dim(lieu(V)) + dim (14) dim(y) + f (2)

et, par le lemme de cassage ([Mo79], Theorem 6),

dim(lieu(14)) dim(14) + 1 > -Kx -V -1.
Nous utiliserons de façon répétée le résultat suivant ([Ko96], II.4.21).

Lemme 3.15. Soit V C RatCurvesn(X) une famille propre et irréductible de

courbes rationnelles irréductibles sur une variété X protective et lisse et soit x G

lieu(Vr). Toute courbe tracée sur lieu(14) est numériquement proportionnelle à une
courbe C telle que [C] G V.

3.16. La famille V détermine une relation d'équivalence sur X pour laquelle des

points x et x' de X sont équivalents s'il existe une chaîne connexe de courbes
rationnelles de V passant par x et x'. Il existe un ouvert Xq C X et un morphisme
propre Xq —> Zq à fibres connexes vers une variété normale dont les fibres sont des

classes d'équivalence pour la relation précédente ([Ko96], IV.4.16).

3.17. Les cas d'égalité. L'objet de ce paragraphe est l'étude des cas d'égalité
dans (*).

Proposition 3.18. Soit X une variété de Fano de dimension 4. Si px('^x~^) =4,
la variété X est isomorphe à (¥"'x^1)px.

Démonstration. Si px 1 et ix 5, la variété X est isomorphe à P4 ([CMSOO],

[KeOl]).

Supposons px 2 et ix 3. Notons y-y : X —> W\ et y>2 : X —> W^ les

deux contractions extrémales, d'arêtes respectives R\ et i?2- Elles sont ou bien
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divisorielles ou bien des fibrations (cf. 1.2). Supposons par exemple que (fii soit di-
visorielle. Le lieu exceptionnel E\ de y>i est contracté sur un point par y>i (c/. 1.2).
Rappelons que l'intersection de fibres de deux contractions extrémales différentes
est finie. Les fibres non triviales de (pi sont de dimension au moins 2, donc ne
rencontrent pas E\, autrement dit, (pi est également divisorielle de lieu exceptionnel

i?2 disjoint de E\. Le diviseur — E\ est donc numériquement effectif puisque
—Ei ¦ Ri > 0 et —i?i • i?2 0, ce qui est manifestement absurde. Les morphismes
(fil et (fi2 sont donc des fibrations équidimensionnelles de dimension relative 2 (cf.
1.2) et VFi et VF2 sont lisses ([ABW92], Proposition 1.4.1). Une fibre générale Fi
(resp. F2) de (fii (resp. (^2) est de pseudo-indice 3 par la formule d'adjonction et
donc isomorphe à P2. Le morphisme i*\ —> W2 (resp. i*2 —> W^i) est fini et VFi

(resp. W2) est isomorphe à P2 par le théorème de Lazarsfeld ([La83]).

Les fibres de (pi ne sont a "priori pas des sections de y>i. Nous allons montrer
que de telles sections existent. Si l C P2 est une droite générale, X^ y^1^) est
lisse et connexe. Les fibres générales de X^ —> l sont isomorphes à P2. Il existe
donc une section de Xi —> ^ par le théorème de Tsen ([Ko96], Theorem IV.6.5).

Soit donc C C X une courbe rationnelle vérifiant C ¦ (p\ Op2 1 1, de degré
minimal relativement au diviseur ample —Kx- La courbe C détermine une famille
propre irréductible V C RatCurvesn(X) de courbes rationnelles irréductibles sur
X (cf. 3.14). La dimension de V est au moins —Kx • C+ 1 > 4 et celle de Vx, pour
x G lieu (y), au moins —Kx • C — 2 > 1. Si la dimension de lieu(14) est au moins
3, il rencontre une fibre générale de (fii au moins le long d'une courbe et [C] G Ri
(cf. lemme 3.15) ce qui est absurde par le choix de C. Ainsi, dim(lieu(14)) 2 et
le lieu de V est X par la formule (2) de 3.14.

Il existe un ouvert Xo C X, une variété normale Zq et un morphisme propre
q : Xo —> Zo à fibres connexes dont les fibres sont des classes pour la relation
d'équivalence déterminée par V (cf. 3.14). La famille V est couvrante et Zo est

donc de dimension au plus 3. Soient F une fibre générale de q et x un point de F.
Comme dim(lieu(Vra;)) 2, on a dim(i?) > 2. Si F est de dimension au moins 3,

elle rencontre une fibre générale de (fii au moins le long d'une courbe. Comme F
est rationnellement connexe relativement à une sous-famille propre et irréductible
de courbes de V, toutes les courbes de F sont algébriquement équivalentes à un
multiple de C ([Ko96], IV 3.13.3) et [C] G Ri, ce qui est à nouveau absurde. Ainsi
F est une surface de pseudo-indice 3 par la formule d'adjonction, donc isomorphe
à P2 ; on a F lieu(14) pour tout x dans F, les courbes de Vx étant les droites
passant par x. Notons que F est une section de (pi.

Vérifions que l'on peut prendre Xo X. Le fibre normal à F dans X est

trivial et le schéma de Hubert de X est donc lisse au point [F]. Soient H son
unique composante passant par [F] et X' C X x H la famille universelle. Quitte
à remplacer Zq par un ouvert dense, on peut supposer que q est plat et on a un
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diagramme

Zo > H
où le carré est cartésien et où la composée des flèches horizontales supérieures est
l'inclusion. Le morphisme tt s'identifie, au-dessus d'un ouvert Hq convenable de

H, au morphisme Xq —> Zq.

Fixons un point to de H et des points x[ et x'2 de tt"1^)- Notons T —> H un
germe de courbe lisse passant par to et rencontrant Hq. Le schéma tt^ '¦ X'T —> T
obtenu par le changement de base T —> H est irréductible : il existe donc des

courbes ï\ —> X^ et T2 —> Xy dominant T et rencontrant 7r^1(to) uniquement en

x[ et x'2 respectivement. Pour tous points t\ G T\ et £2 € ?2 situés au-dessus du
même point général t de T, les points correspondant de X peuvent être joints par
une (unique) courbe Ctlt2 C vr^1(t) de V. Cette famille étant propre, les courbes

Ctl t2 dégénèrent vers une courbe de V, qui est en particulier irréductible, joignant
x\ et x'2. Les fibres de -k sont donc irréductibles et deux points quelconques sont
reliés par une courbe de V.

Supposons que le morphisme y contracte une courbe irréductible C C X' vers

un point x de X. Celle-ci est horizontale pour tt et le lieu couvert par les (p{X{),
pour t G vr(C), est de dimension 3. Ainsi, le lieu couvert par les courbes de Vx est
de dimension 3, ce qui est exclu par les arguments précédents. Le morphisme y
est donc birationnel et fini : c'est un isomorphisme.

Notons H' —> Hréd la normalisation ; il existe une factorisation tt : X' ^> H' —>

iïred et le morphisme q' tt' o ip^1 : X —> i7' étend </. Le morphisme produit
yi x </' : X —> P2 x H' est birationnel (puisqu'une fibre générale de q' est une
section de y>i) ; puisque px 2, il est fini : c'est un isomorphisme. On en déduit
que H' est lisse et, comme les fibres de y>i, isomorphe à P2.

Supposons px 4 et (-x 2. Par 1.2, toute contraction extrémale birationnelle
est divisorielle et ses fibres non triviales sont de dimension > 2. Vérifions que les

fibrations extrémales, s'il en existe, sont de dimension relative 1. Soit y : X —> Z
une telle contraction ; supposons qu'elle soit de dimension relative au moins 2.

Notons que Z est lisse ([ABW92], Proposition 1.4.1). Puisque px 4, il existe
([WÏ91], Theorem (2.2)) une contraction extrémale birationnelle ip : X —> W ; ses

fibres non triviales sont de dimension > 2, de sorte que y est de dimension relative
2. La variété W est donc lisse et ip s'identifie à l'éclatement d'une courbe lisse

dans W ([AW98], Theorem 4.1). Toute fibre de V>|b : E -? ^(E) est en particulier
isomorphe à P2 et domine Z. Il en résulte que Z est isomorphe à P2 ([La83]) ce

qui est absurde puisque pz px — 1 3.

La variété X n'est pas spéciale (théorème 3.9) et ou bien toutes les contractions
élémentaires sont des fibrations de dimension relative 1, ou bien il existe une
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contraction birationnelle ip : X —> W, divisorielle, dont le lieu exceptionnel E
est contracté sur un point. Vérifions que ce dernier cas ne peut pas se produire.
Il existe alors une contraction extrémale y : X —> Z dont le lieu exceptionnel
rencontre E. L'intersection d'une fibre de y avec E étant finie, cette fibre est
de dimension au plus 1. Puisque ix 2, le morphisme y est une fibration lisse
de dimension relative 1 par 1.3. On en déduit que Z est une variété de Fano
de dimension 3, de nombre de Picard 3 et de pseudo-indice au moins 2 (lemme
2.5) et donc exactement 2 (cf. section 2). Finalement, Z est isomorphe à (P1)3

(proposition 2.3). Posons £ P1 x {(£,£')}, pour t et t' généraux dans P1. La
surface Xi <p~1(£) est une surface de Hirzebruch et la courbe f Ë fl Ij est

exceptionnelle car contractée par ip : c'est donc une section de <p\xe '¦ Xg ^ £. Le

morphisme E —> Z est birationnel et fini : c'est un isomorphisme. On a —Ke ¦£' 2

et —E-£' > 0 puisque £' est exceptionnelle dans Xg. Or, par la formule d'adjonction,
on a —Ke • £' -Kx ¦ £' - E ¦ £' > 2 ce qui est absurde.

En conclusion, toutes les contractions extrémales de X sont des fibrations. Le
résultat cherché est donné par la proposition 2.4. D

La démonstration précédente, où l'on remplace le théorème de Tsen par sa

version générale récente due à Graber, Harris et Starr [GHS03], montre le résultat
suivant.

Théorème 3.19. Soient X une variété de Fano de dimension n et Z une variété
lisse de dimension m avec ix > m + 1. S'il existe un morphisme surjectif à fibres
connexes f : X —> Z, alors Z est isomorphe à Pm et il existe une variété lisse Y
de dimension n — m telle que X est isomorphe à Y x Pm.

4. Le cas torique

Nous montrons dans ce paragraphe que si X est une variété de Fano torique
de dimension n, on a px(i-x — 1) <n lorsque ix > gn+ 1 (n arbitraire) ou n < 7.

4.1. Préliminaires. Soit X une variété torique projective et lisse d'éventail Sx-
Nous renvoyons à [Fu93] ou [Od88] pour les fondements de la géométrie torique.
Soit G(£x) l'ensemble des générateurs primitifs des cônes de dimension 1 dans

Tjx ; son cardinal est px + dim(X). Notons V(a) l'adhérence de l'orbite
correspondant à un élément a de Sx-

Rappelions ([Ba91], § 2 et [Ba99], § 2.1) qu'une collection primitive P est un
sous-ensemble de G(Ex) minimal qui n'engendre pas un cône de Sx- A toute
collection primitive P {x\,..., x^} est associée sa relation primitive

Xi H \-xh aiyi -\ h akyk,

où (yi,..., yk) est le plus petit cône dans Sx contenant le point x\ + • • • + Xh et
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où les ai sont des entiers strictement positifs. Le degré de P est, par définition,
deg(P) h — ~^2t ai, et son ordre est \P\ h.

Le groupe Ni(X) des f-cycles sur X modulo équivalence numérique s'identifie
au groupe des relations entre les éléments de G(Sx) toute relation
^ZxeGCSx) a'xX ^ s'identifie à la classe d'équivalence numérique des 1-cycles

dont l'intersection avec le diviseur V((x)) est ax.
En particulier, la relation primitive x\-\-- ¦ ¦ + X}1 — {a\y\-\-- ¦ -+aj,yj,) 0 définit

un élément r(P) de Ni(X). Cette classe est toujours la classe d'un cycle effectif
et deg(P) -Kx ¦ r{P) ([Ba91], Theorem 2.15, [CaO3], Lemma 1.4). La variété
X est une variété de Fano si et seulement si toute relation primitive est de degré
strictement positif et le pseudo-indice ix vérifie alors \P\ h > deg(P) > ix-

Une collection primitive P, ou sa relation associée r(P), sont dites contrac-
tibles s'il existe un morphisme équivariant (fi : X —> W vers une variété torique
complète W telle que les courbes irréductibles contractées par (fi soient exactement
celles dont la classe est dans Q>or(P) ([CaO3], Définition 2.3). Avec les notations
précédentes, le lieu exceptionnel de (fi est A V{(y\,... ,yk)) et (fi\A : A —> <p(A)

est une fibration équivariante lisse en Fh 1. Si deg(P) < 2ix, la collection P est

contractible ([CaO3], Theorem 4.1).

4.2. Fibres projectifs. Soit X une variété torique projective et lisse. La contraction

(fi : X —> Y d'une arête numériquement effective de NE(X) est un fibre en

espaces projectifs, Y est une variété torique et (fi est équivariant.
Le lemme 2.5 permet de traiter facilement le cas des variétés toriques X pour

lesquelles toutes les collections primitives de Sx sont disjointes. Cette condition
combinatoire est équivalente à l'existence d'une suite X X\ —> Xi —> • • • —> Xr
où Xr est un espace projectif et Xi est une fibration en espaces projectifs sur
Xî+i pour i 1,..., r — 1 ([Ba91], Corollary 4.4). Rappelons enfin que les variétés

toriques de nombre de Picard 2 sont précisément les fibres en espaces projectifs
sur l'espace projectif ([K188], Theorem 1) et qu'elles satisfont donc aux hypothèses
du

Corollaire 4.3. Soit X une variété de Fano torique. Si toutes les collections
•primitives de Sx sont disjointes, on a px^x — l) <dim(X) ; de plus, si pxi^x — ^-)

dim(X)7 onaX ~ (P1*-1)«.

Démonstration. Il existe donc des fibrations

X Xx -* X2 -* > Xr W-

où Xi est une fibration en espaces projectifs sur Xi+i de fibre Ps* pour i
1,..., r — 1. En appliquant le lemme 2.5, on obtient, par récurrence sur {, l'inégalité
Px(i-x — 1) < dim(X). Supposons px(i-x — 1) dim(X). Comme px r,
dim(X) si + • • • + sr et (-x — 1 < min{si,..., sr}, on a

si H h sr r(tx - 1) < rminjsi,..., sr} < si H h sr,
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et donc si • • • sr ix — 1- On vérifie enfin que X est un produit d'espaces

projectifs par récurrence descendante sur l'entier 1 < i < r — 1. D

4.4. Le cas Six > dim(X) + 3. Soit X une variété de Fano torique. La preuve
du résultat principal repose sur les deux lemmes suivants.

Lemme 4.5. Soit A C X une sous-variété irréductible invariante de codimension
k. Si k < ix — 27 alors A est une variété de Fano de nombre de Picard px et de

pseudo-indice > ix — k.

Démonstration. Il suffit de prouver le lemme pour k 1 et ix > 3 : le résultat
général s'ensuit par récurrence sur k. Soit donc A V((x}) un diviseur irréductible
invariant et supposons ix > 3. Si P est une collection primitive dans S^, ou bien
P est une collection primitive dans Sx et degA(P) > degx(P) > ix, ou bien

PU{x} est une collection primitive dans Sx, et degA(P) degx(P) — 1 > ix — L
Comme tx > 2, le diviseur A est une variété de Fano de pseudo-indice > ix — 1.

Puisque tx > 3, il n'y a pas de collection primitive d'ordre 2 (c/. 4.1) : S^ a donc
exactement un cône de dimension 1 de moins que Sx et pA px ¦ O

Lemme 4.6. Soit X une variété de Fano torique de dimension n, de pseudoindice

ix et de nombre de Picard px- Si Aix > n + A, il existe dans X une
collection primitive contractible telle que la codimension du lieu exceptionnel de la
contraction associée soit < ix — 2.

Démonstration. Supposons que toute relation primitive contractible de X soit de la
forme x\ + - ¦ -+Xh a,\yi + - ¦ -+a,kyk avec k > ix — 1. On a alors h—k > h—^2l at >

ix, d'où h > ix + k > 2ix — 1- D'autre part, si P est une collection primitive non
contractible, on a \P\ > deg(P) > 2ix (cf. 4.1). Il n'existe donc pas de collection
primitive d'ordre < 2ix~2 dans Sx, de sorte que fj-\ (/•) pour tout j < 2ix~2
(cf. 4.8). Puisque X n'est pas isomorphe à P™, on a 2(x — 2 < [n/2] + 1 par la

proposition 4.11, ce qui contredit les hypothèses. D

Théorème 4.7. Soit X une variété de Fano torique de dimension n, de pseudoindice

ix et de nombre de Picard px- Si Six > n + 3, on a px(i-x — 1) < n (et
donc px < 3j; de plus, si px(iX - 1) n, on a X ~ (P1*-1)«.

Démonstration. Le théorème se montre par récurrence sur px- Si px 1, on a

X ~ P™ et le résultat est démontré. Sinon, d'après le lemme 4.6, il existe dans X
une relation primitive contractible qui s'écrit

xi-\ \-xh a-iy-i -\ h akyk

avec k < ix — 2. Soit A V((yi,..., yk)) le lieu exceptionnel de la contraction
associée. D'après le lemme 4.5, A est une variété de Fano, pA Px et iA > ix —k.
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De plus, la contraction fait de A une fibration A —> B en Fh^1, où B est une
variété de Fano torique satisfaisant ps px — 1, dim(B) n — k — h + 1 et
t-B > t'A > f-X - k.

Vérifions l'inégalité lb > \ dim(B) + 1. Notons que h > k + ix > 2A; + 2 et que
dim(B) n-k-h+\<n-3k-\<n-3k, d'où

tB > t-x ~ k > -n + l - k -(n - 3k) + 1 > - dim(B) + 1.

L'hypothèse de récurrence donne donc pb [iß — 1) < dim(B) et p^ px — 1 < 2

puisque tß > jdim(ß) + 1. Finalement :

(px - l)(t-x - k - 1) <pB{i>B -1) <dim(B)=n-k-h+l
d'où

ix - h - 2k < k + ix - h < 0.

Supposons maintenant px(lx — 1) n- et notons qu'il suffit de montrer A X,
c'est-à-dire k 0. En effet, X est alors une fîbration en espaces projectifs sur
une variété de Fano torique B satisfaisant ps < 2 et le corollaire 4.3 s'applique.
Supposons donc k > 0. Les inégalités précédentes sont des égalités, d'où

t-B t-A t-x — k, pb(i-b — 1) dim(B), px Pa 3, ps 2 et h k + ix.
La variété B est donc isomorphe à f"-^-k-i x ptx-fc-i (corollaire 4.3) et, puisque
A —> B est une fîbration en pt*+fc+1 et t^ ix — k, la variété A est isomorphe à

poc+fc-i x poc-fc-i x p^x-fc-i L'éventail SA est donc déterminé par les relations
primitives

xi H hïtx+i =0, »H YvLX-k =0 et w7i H hwtx_fc =0,
où l'on a noté u le générateur de S^ induit par l'élément u G G(Ex) tel que
(u,yi,... ,yk) G Sx- On a nécessairement

G(Ex) {xi,.. .,xtx+fc,yi,... ,yk,vi,... ,vox-k,wi,.. .,wtx_fc}

puisque px 3. Puisque toute classe extrémale de X se restreint à une classe

extrémale dans A, il doit y avoir dans X trois relations primitives extrémales, de

degré au moins ix, dont les restrictions à A sont les relations primitives ci-dessus.
La seule possibilité est que les relations

vi-\ h vtx-k + yi H h yfc 0 et wi H h wtx_fc + yi H \-yk 0

soient extrémales dans X, ce qui est absurde si k > 0 car ces relations ne sont pas
disjointes ([CaO3], Proposition 3.4). D

4.8. Les petites dimensions. Dans ce paragraphe, on étudie les cas ix [n/2]
et ix [n/2] — f lorsqu'ils ne sont pas couverts par le théorème 4.7, c'est-à-dire
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respectivement pour n < 7 et n < 13. Nous en déduirons que l'inégalité (*) est

toujours vérifiée si n < 7. Nous supposerons dans la suite n > 4.

Proposition 4.9. Soit X une variété de Fano torique de dimension n < 13 et de

•p s eudo-indice [n/2] ou [n/2] — 1. «S« X ra'esi pas «ne fibration en P'^^1, l'entier
px satisfait les inégalités suivantes :

t-x

x m

[fi- i

n

Px

4

< 2

n 5

Px < 2

n

PX

PX

6

< 2

< 4

n

Px

PX

7

< 2

< 4

n

PX <

i

3

n

PX <

3

3

n

PX

10

< 2

n

PX

11

< 3

n

PX

12

< 2

n

PX

13

< 2

Corollaire 4.10. Soit X une variété de Fano torique de dimension n < 13 et de

pseudo-indice [n/2] ou [n/2] — 1. Alors pxi'^x ~ 1) < dim(X) ei on a égalité si et
seulement si X ~ (p^-1)^

Démonstration. L'inégalité px(t-x — 1) < dim(X), dans les cas non couverts par
le théorème 4.7, est équivalente aux bornes du tableau ci-dessous :

1.X

tx [f
f]
- 1

n

PX

4

< 4

n

PX

5

< 5

n

PX

PX

6

< 3

< 6

n

PX

PX

7

< 3

< 7

n

PX <

i

4

n

PX <

3

4

n

PX

10

< 3

n

PX

11

< 3

n

PX

12

< 3

n

PX

13

< 3

Si X n'est pas une fibration en Ptx 1, la proposition 4.9 implique px(t-x — 1) <
dim(X) et il n'y a jamais égalité.

Si X est une fibration en Ptx ^1 sur Z, on a dim(Z) =n+l — ix < {n — l)/2
et iz > t-x > dim(Z) — 1. Si dim(Z) > 5, la variété Z est un espace projectif
(cf. 4.12) et donc px 2 : le résultat est une conséquence du corollaire 4.3. Si

dhn(Z) < 4, on a (,^ > 3 et yO^ < 2, de sorte que le corollaire 4.3 s'applique encore
hX. D

Soit Px le polytope associé à X, c'est-à-dire le polytope simplicial convexe
engendré par les éléments de G (Sx)- Les faces de Px correspondent aux cônes

de Sx- Soit fj le nombre de faces de dimension j de Px- Rappelons l'égalité
/o |G(£x)| Px + n. L'éventail Sx n'a pas de collection primitive d'ordre

j < ix, autrement dit,

/i-1
r
°

pour tout j < iX- (3)

De plus, si Sx possède une collection primitive P {x^,... ,xox} d'ordre ix-,
la relation associée est nécessairement x\ + • • • + xtx 0, puisque son degré est
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au moins ix- Elle est contractible et la contraction associée est une fibration en
pi-x-i Finalement :

ftv-1 < [ si et seulement si X est une fibration enWJ
Nous renvoyons à [MMS71] pour les propriétés fondamentales des polytopes

simpliciaux. Rappelons en particulier qu'il existe des relations linéaires entre les fj,
appelées relations de Dehn-Sommerville, de sorte que les nombres /o,..., /[n/2]-i
déterminent tous les fj. Rappelons aussi le résultat suivant ([MMS71], Chap. 2,

Proposition 24).

Proposition 4.11. Un polytope de dimension n est un simplexe si et seulement

si fj-\ f pour tout j < [n/2] + 1.

4.12. Remarquons en particulier que si ix > [n/2] + 1, la relation (3) et la proposition

entraînent que X est isomorphe à P™. Cela redémontre dans le cas torique
le théorème de Wisniewski cité dans l'introduction.

Les deux lemmes suivants donnent des relations supplémentaires entre les

nombres f0.

Lemme 4.13. Soit X une variété de Fano torique. Si ix > 1, toutes les collections

primitives de Sx d'ordre ix + 1 sont deux à deux disjointes.

Démonstration. Soit P {x\,..., xl-x+i} une collection primitive d'ordre ix + 1.

Elle est nécessairement contractible puisque deg(P) < ix + 1 < Iix (cf. 4.1). Ou
bien deg(P) ix + 1, la relation primitive r(P) est x\ + • • • + Xt.x + i 0 et P est

disjointe de toutes les autres collections primitives de Sx ([CaO3], Proposition 3.4),
ou bien deg(P) ix et la relation primitive r(P) est de la forme xi + - • ¦+xox+i
y. Supposons par l'absurde qu'il existe deux relations primitives

xi H h xr + yi H \-ys z et iH h xr + ux -\ \-us =v
avec r + s (j + 1 et r > 0. Comme P est contractible, {y\,... ,ys,v} doit
contenir une collection primitive ([CaO3], Proposition 3.4), de sorte que s + 1 > ix
et r < 2. Si r 2 et s ix — 1, la collection {yi,... ,ys,w} est primitive, de

relation associée y\ + • • • + ys + -y 0, ce qui est absurde. Si r 1 et s ix, la
collection {y\,..., ys, v} est primitive, de relation associée y\ + • • • + ys + v w.
Par ce qui précède, on a s 1 et ij 1, ce qui est exclu par l'hypothèse. D

Lemme 4.14. Si X est une variété de Fano torique de dimension n, on a

12/n-3 > (3n + ix — 5)/n_2-

Démonstration. Posons dx $^(ieg(Arc/x)) ou la somme porte sur toutes les
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courbes invariantes de X. Si C est une courbe invariante, on a deg(Nc/x)
—Kx ¦ C — 2 > ix — 2, de sorte que dx > (i-x — 2)/n_2. D'autre part, on a

dx 12/n_3 - 3(n - l)/n_2 ([Ba99], Theorem 2.3.7), d'où l'inégalité cherchée. D

Démonstration de la proposition 4-9. Posons k [n/2] et supposons (-x &•

Comme X n'est pas une fîbration en P'^^1, on a fj-\ pout tout j < k. Les

relations de Dehn-Sommerville permettent d'exprimer ff. à l'aide de /o ([MMS71],
§ 2-4) :

a e/-1)^-1 (2\:; D G+1) si "est imp*ir-

Le lemme 4.13 donne l'inégalité

/o \/< /o

d'où les bornes de la première ligne du tableau.

Supposons ix k — 1 et que X n'est pas une fîbration en P'^^1. On a alors

fj-i (fj) Pour tout j < k - 1 et W _/^ < ^.
Les relations de Dehn-Sommerville permettent d'exprimer tous les fj avec j > k
à l'aide de /0 et fk-i. Si n est pair, on a ([MMS71], § 2.4)

^ lu fk + j\ fk + j-l\\f fo \{k-l)\ + .et\k J V fc JJ\k-jJ

Et si n est impair, on a

?2fc+l (Jk+j + l\ (k+j\\( fo
et

fo
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Finalement, en appliquant le lemme 4.14, on obtient fk-i < ^k(fo), où, si n est

pair,

Kk-1
fc-1

/o

et, si n est impair,

2k3 + 3A;2 - 2k

(A; —

2(j2 - 2

On déduit alors du lemme 4.13 l'inégalité

ce qui donne les bornes de la deuxième ligne du tableau par une étude directe. D

5. Chaînes de courbes rationnelles

Soit X une variété projective, lisse et connexe et soient V1,..., Vk des familles

propres irréductibles de courbes rationnelles irréductibles sur X [cf. 3.14). Fixons
x G lieu(Vrl), posons \\en{Vr)x lieu^1) et Zx Ulx (cf. 3.14) et, avec les

notations
Uk -^^ X

yk
définissons par récurrence pour k > 2 :

Zk ^1(^(ev-1(lieu(l/1,..., V^-1), n lieu(Vk))))

\ieu(V\ ,V% =evk(Zk)
Uk lieu(V\ ,Vk)x-lieu(V\ ,Vk-1)x

Le fermé lieu(Vrl,..., Vk)x est donc l'ensemble des points y de X tels qu'il existe
des courbes C1,..., Ck avec

• [Ci] e Vi ;
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• les intersections C1 n C2,..., Ck~1 n Ck ne sont pas vides ;

• xe C1 et y e Ck.

Lemme 5.1. Si les classes des familles V1, Vk dans Ni(X)q sont linéairement
indépendantes et que lieufV1,. Vk)x n'est pas vide,

(a) le morphisme d'évaluation evj. : Zj. —> lieu(Vrl, Vk)x est fini au-dessus
de l'ouvert Uk, qui n'est pas vide ;

(b) toute courbe tracée sur lieufV1, Vk)x est algébriquement équivalente
dans cette variété à une combinaison linéaire à coefficients rationnels de

courbes dans V1,. Vk.

Démonstration. Le résultat se montre par récurrence sur l'entier k > 1. Si k 1, le

point (a) est une conséquence du lemme de cassage de Mori ([Mo79], Theorem 6)
et le point (b) est le lemme 3.15. Supposons k > 2.

Démontrons (a). Soit z un point de lieufV1,..., Vk~1)x n \ieu(Vk), qui n'est

pas vide par hypothèse. Si lieu(Vzfc) C lieufV1,..., Vk~1)x, les classes des
familles V1,... ,Vk sont linéairement dépendantes dans Ni(X)q par hypothèse de

récurrence, ce qui est absurde. Ainsi, Uk n'est pas vide. Si un point y de Uk vérifie
diin(ev^(y)nZk) > 1,

• soit dim(lieu(VrJ/fc) PilieufV1,..., Vk~l)x) > 1 et, à nouveau par hypothèse de

récurrence, les classes des familles V1,..., Vk sont linéairement dépendantes
dans Ni(X)q, ce qui contredit l'hypothèse ;

• soit il existe une famille de dimension 1 de courbes rationnelles de Vk passant
toutes par deux points distincts de X fixés, ce qui, par le lemme de cassage
([Mo79], Theorem 6), est absurde puisque la famille Vk est propre.

Démontrons (b). Soit C une courbe tracée sur lieufV1,..., Vk)x telle que
[C] <£ Vk. Si C est dans lieufV1,..., Vk~1)x, l'hypothèse de récurrence permet
de conclure. Supposons donc que C n'est pas contenue dans lieufV1,..., Vk~1)x.
Soit C C evsT1(C) HZ/- une courbe irréductible dominant C, soit S C Uk la surface
irréductible tt^^tt^C)), soit S la surface eVfc(<S) C X et soit C' G S une courbe
dominant S n lieufV1,..., Vk~1)x. Toute courbe tracée sur S est algébriquement
équivalente dans S à une combinaison linéaire à coefficients rationnels de la multi-
section C et d'une fibre de iik\s '¦ S ^ ^k{S) ([Ko96], II.4.19). Toute courbe tracée

sur S est donc algébriquement équivalente dans S, donc dans lieufV1,..., Vk)x,
à une combinaison linéaire à coefficients rationnels de eVfc(C') et d'une courbe de
Vk ([Ko96], II.4.4.2). Il reste à remarquer que evfc(C) C lieu(Vrl,..., Vk-r)x :

l'hypothèse de récurrence permet de conclure. D

On en déduit le résultat suivant.

Théorème 5.2. Si les classes des familles V1,. Vk dans Ni(X)q sont linéairement

indépendantes, lieu(Vrl,..., Vk)x est vide ou de dimension > —^2,j=]Kx -V^—k.
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Démonstration. On procède par récurrence sur l'entier k > 1. Si k 1,

l'estimation sur la dimension a déjà été mentionnée en 3.15. Supposons k > 2 et que
lieufV1,..., Vk)x n'est pas vide. Le lemme précédent donne

Si y est un point général de lieu(Vrl,..., Vk~x)x n lieu(Vfc), on a dim(evsT1(y))

â\vn{Vy) et, si l'on note

Wk ev-\lieu(V\ Vh-X)x n \ien{Vk)),

on a, en utilisant l'hypothèse de récurrence,

dim(Wk) dim(V;fc) + dim(lieu(Vrl,..., Vk~l)x n lieu(Vrfc))

fc-i
> dim(V;fc) - ^ ifx • y^' - (k - 1) + dim(lieu(Vrfc)) - n

i=i
fc-i

> dim(Vfc) - ^ ifx • V3' - k + 2 - n,
i=i

d'où, par l'inégalité (1) de 3.14,

k

dhn(Wk) >-J2j
Comme dim(Zfc) dim(T/l/fc) + 1, le lemme précédent permet de conclure. D

On déduit du théorème le corollaire suivant.

Corollaire 5.3. Soit X une variété de Fano de nombre de Picard px et de pseudoindice

ix ¦ S'il existe des familles propres irréductibles V1,.. Vpx de courbes

rationnelles irréductibles sur X dont les classes dans Ni(X)q sont linéairement
indépendantes et gwelieu(Vrl, ,VPX)X n'est pas vide, on a px(^x ~^-) < dim(X).

Il n'est évidemment pas facile d'assurer l'existence de familles propres de courbes
rationnelles irréductibles sur X vérifiant les conditions du corollaire précédent. Si

R C NE(X) est une arête, les courbes rationnelles irréductibles dont la classe

appartient à R et de degré anticanonique minimal forment une famille propre. En
considérant ces familles de courbes rationnelles, on montre le résultat suivant.

Corollaire 5.4. Soit X une variété de Fano homogène. On a pxi'^x ~ 1) <
dim(X).

Les résultats récents de Brion [BriO2] montrent que l'inégalité px(t-x — 1) <
dim(X) est aussi valable si X est une variété de Fano admettant une action d'un
groupe algébrique semi-simple avec une unique orbite fermée.
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