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Sur une conjecture de Mukai

Laurent Bonavero, Cinzia Casagrande, Olivier Debarre et Stéphane Druel

Résumé. Généralisant une question de Mukai, nous conjecturons qu’une variété de Fano X de
nombre de Picard px et de pseudo-indice ¢x vérifie px(¢x — 1) < dim(X). Nous démontrons
cette conjecture dans plusieurs situations : X est une variété de Fano de dimension < 4, X est
une variété de Fano torique de dimension < 7 ou X est une variété de Fano torique de dimension
arbitraire avec ¢tx > dim(X)/3 + 1. Enfin, nous présentons une approche nouvelle pour le cas
général.

Abstract. Generalizing a question of Mukai, we conjecture that a Fano manifold X with Picard
number px and pseudo-index ¢x satisfies px(tx — 1) < dim(X). We prove this inequality in
several situations : X is a Fano manifold of dimension < 4, X is a toric Fano manifold of dimension
< 7 or X is a toric Fano manifold of arbitrary dimension with ¢x > dim(X)/3 + 1. Finally, we
offer a new approach to the general case.

Mathematics Subject Classification (2000). 14J45, 14E30, 14M25.

Mots clés. Variétés de Fano, théorie de Mori, géométrie torique.

Introduction

Soit X une variété de Fano, c’est-a-dire une variété projective lisse dont le fibré
anticanonique —K x est ample, définie sur C (certains des résultats ci-dessous sont
valables en toute caractéristique). Notons ¢x le pseudo-indice de X, c’est-a-dire le
plus petit entier de la forme —Kx - C' ot C est une courbe rationnelle de X, et px
le nombre de Picard de X. L’indice rx de X est le plus grand entier m tel qu’il
existe un fibré en droites L satisfaisant —Kx = mL dans Pic(X) ; ¢’est un nombre
particulierement adapté a 1’étude des variétés de Fano X avec px = 1, tandis
le pseudo-indice nous semble plus adapté a 1’étude des variétés de Fano X avec
px > 2 (penser par exemple aux produits d’espaces projectifs). Mukai a proposé
dans [Mu88] l'inégalité px(rx — 1) < dim(X), vérifiée en dimension < 3 a ’aide
de la classification. Nous proposons plus généralement la conjecture suivante.

Conjecture. Si X est une variété de Fano, on a linégalité

px(tx —1) < dim(X) (%)
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avec égalité si et seulement si X ~ (PX—1)rx,
Cette conjecture est en partie motivée par le théoreme suivant.

Théoréme ([Wi90]). Soit X une variété de Fano de dimension n, d’indice rx et
de pseudo-indice 1x. Si2tx >n+2, onapx =1. Si2rx =n+2, onapx =1
sauf si X o~ (P*x—1)2,

D’apres la théorie de Mori, une variété de Fano X de dimension n vérifie tou-
jours tx <n+1.Sitx =n+1, ona X ~P" dapreés un résultat de Cho, Miyaoka
et Shepherd-Barron ([CMS00]) dont une démonstration simplifiée se trouve dans
[KeO1].

Dans ce travail, on se propose de montrer 'inégalité (x) lorsque X est une
variété de Fano de dimension 3 ou 4 (I'inégalité (%) est vérifiée directement en
dimension 2) et lorsque X est une variété de Fano torique de pseudo-indice au
moins égal & dim(X)/3 + 1.

L’inégalité (x) peut étre vérifiée directement pour les variétés de Fano de di-

mension 4 et d’indice au moins 2, dont la classification est établie par exemple
dans [IP99].

Nous démontrons, sans utiliser les résultats de classification des variétés de
Fano de dimension 3 ou 4, le résultat suivant, nouveau dans le cas des variétés
d’indice 1 et de pseudo-indice au moins 2.

Théoreme. Si X est une variété de Fano de dimension 3 ou 4, de pseudo-indice
vx et de nombre de Picard px, on apx(tx—1) < dim(X). Si px(1x—1) = dim(X),
on a X ~ (Px—1yrx,

Dans la situation torique, nos résultats principaux sont les suivants.

Théoreme. Soit X une variété de Fano torique de dimension n, de pseudo-indice
tx et de nombre de Picard px. Si 3tx > n+3, on a px(tx —1) < n. Si de plus
px(tx —1)=n, on a X ~ (Px—1)rx,

Théoréme. Soit X une variété de Fano torique de dimension n <7, de pseudo-
indice vx et de nombre de Picard px. On a px(tx — 1) <n. Si px(tx — 1) =n,
on a X ~ (Px—1yrx,

Les méthodes utilisées sont celles de la théorie de Mori, dont nous rappelons
plus bas quelques uns des résultats ou définitions. Mentionnons les trois résultats
suivants obtenus au cours de la démonstration des théoremes précédents et qui ont
leur intérét propre.

Proposition. Soit X une variété de Fano de dimension n, de nombre de Picard
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px > n et de pseudo-indice 1x > 2. Si toutes les contractions extrémales de X
sont des fibrations, X est isomorphe a (P*)".

Théoréme. Soit X une variété de Fano de dimensionn > 4. Si toutes les contrac-
tions extrémales de X sont ou bien des éclatements lisses de centre une courbe
lisse ou bien des fibrations de dimension relative 1 et que X posséde au moins une
contraction extrémale birationnelle, on a px < 3.

Théoreme. Soient X une variété de Fano de dimension n et Z une variété lisse
de dimension m avec tx > m + 1. Sl existe un morphisme surjectif a fibres
connexes [ : X — Z, alors 7 est isomorphe a P™ et il eriste une variété lisse Y
de dimension n — m telle que X est isomorphe a Y x P™.

Nous présentons enfin une approche possible, en toute dimension, ou I'inégalité
() découlerait de D’existence de certaines chaines de courbes rationnelles. Le
résultat suivant fournit une motivation supplémentaire en direction de la conjec-
ture de Mukai généralisée.

Théoréme. Soit X une variété de Fano de dimension n, de nombre de Picard px
et de pseudo-indice 1x. S’il existe des familles propres irréductibles V1, ... VPX
de courbes rationnelles irréductibles sur X dont les classes dans Ni(X)g sont
linéairement indépendantes et des courbes Ct, ... CPX auec [CI] € VI pour tout
1<j<px et CINCITL £ @ pour tout 1 < j < px —1, ona px(tx —1) < n.

1. Notations
1.1. Si X est une variété projective lisse, on note

Ni(X)g = { Z a;C; | a; € Q,C; courbe irréductible de X}/ =

ol = désigne 1’équivalence numérique. Le cone de Mori, ou cone des courbes effec-
tives, est le sous-céne de Ny (X )g défini par

NE(X) = {Z eENi(X)g | Z=) aiCia; > o}.

Si F est un diviseur et R une aréte de NE(X), la notation E-R > 0 (resp. E-R = 0)
signifie £ - C > 0 (resp. F - C' = 0) pour toute courbe C de X telle que [C] € R.
La partie de NE(X) située dans le demi-espace ouvert {—Kx > 0} est localement
polyédrale et pour toute aréte R de NE(X) telle que —Kx - R > 0, il existe un
morphisme ¢r : X — X a fibres connexes, appelé contraction extrémale, de X
sur une variété projective normale Xy tel que les courbes irréductibles contractées
par ¢g sont exactement celles dont la classe dans N1(X)g appartient & R.
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e Soit dim(Xpg) < dim(X); on dit que ¢ est une fibration, et px, = px — 1.

e Soit g est birationnelle et son lieu exceptionnel est un diviseur irréductible
FE tel que F- R < 0 : on dit que g est une contraction divisorielle, et
pxr = px — L.

e Soit pp est birationnelle et son lieu exceptionnel est de codimension > 1 dans
X : on dit que ¢g est une petite contraction.

Si X est une variété de Fano, le cone NE(X) est polyédral et si ¢ : X — Xp
est une contraction extrémale, NE(XR) est engendré par les pr(R’) ou R’ décrit
I’ensemble (fini) des arétes de NE(X).

1.2. Rappelons un résultat de Wisniewski ([Wi91], Theorem (1.1)) sur le lieu d’une
contraction extrémale. Soit pr : X — Xp une telle contraction, d’aréte R. Notons
FEr le lieu de X couvert par les courbes contractées par ¢r et

I(R) = min{—Kx - C | C courbe rationnelle contractée par ¢r}

la longueur de R. Pour toute composante irréductible F' d’une fibre non triviale
de ¢p, on a

2dim(Fr) > dim(Eg) +dim(F) > dim(X) + (R) — 1 > dim(X) + ¢x — 1.

1.3. Nous utiliserons aussi le résultat suivant : soient X une variété de Fano, R
une aréte de NE(X) et pg : X — Xpg la contraction associée. Si toutes les fibres
de ¢r sont de dimension 1, Xg est lisse ([An85], Theorem 3.1(ii)) et une fibre
générale F' de ¢pr est une courbe rationnelle lisse qui vérifie —Kx - F' =2 > 1x.
Deux cas sont alors possibles :

e s0it ¢p est une fibration en P et Xy est une variété de Fano ([KMM92],
Corollary 2.9) ;

® soit pp a au moins une fibre singuliere et vx = 1.

2. La dimension trois

2.1. Vérifions 'inégalité () en dimension 3. Le seul cas non trivial et non couvert
par le résultat de Wisniewski est donné par la proposition suivante.

Proposition 2.2. Soit X wune variété de Fano de dimension 3. Si tx = 2, on a
px < 3.

Démonstration. Supposons px > 4. La variété X possede au moins 4 contrac-
tions extrémales distinctes qui ne peuvent pas toutes étre des fibrations ([Wi91],
Theorem (2.2)). Les contractions extrémales sont compleétement décrites par Mori
([M082], Theorem 3.3) et seule la contraction birationnelle lisse de centre un point
est de longueur au moins 2. Cette possibilité est par exemple exclue par la classi-
fication des variétés dont I’éclatée en un point est de Fano ([BCWO1]). O
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Toujours en dimension 3, le cas d’égalité dans I'inégalité () est caractérisé par
la proposition suivante.

Proposition 2.3. Si px(1x —1) =dim(X) =3, on a X ~ (Px—1)rx,

Démonstration. Si px = 1 et 1x = 4, la variété X est isomorphe & P? ([CMS00],
[Ke01]). Supposons px = 3 et tx = 2 et considérons une contraction extrémale
p: X — Z.Si ¢ est divisorielle de lieu exceptionnel F, alors p(F) est une courbe
(¢f. 1.2) et ¢ s’identifie & I’éclatement d’une courbe lisse dans la variété lisse Z
([Mo82], Corollary 3.4.1), ce qui est absurde puisque :x = 2. Les contractions
extrémales sont donc toutes des fibrations et le résultat annoncé est donné par la
proposition qui suit. (Il

Proposition 2.4. Soit X wune wvariété de Fano de dimension n, de nombre de
Picard > n et de pseudo-indice > 2. Si loutes les contractions exlrémales de X
sont des fibrations, X est isomorphe a (P*)".

Démonstration. Montrons la proposition par récurrence sur n, le cas n = 1 étant
immédiat. Par [Wi91], Theorem (2.2), toutes les contractions extrémales sont de
dimension relative 1 et il y en a exactement n : le cone NE(X) est donc simplicial.
Notons Rq,..., R, ses arétes. Pour 1 < i <n-—1,lecone V; = Ry +---+ R;
est une face extrémale de NE(X) dont on note ¢; : X — Z; la contraction. Par
le lemme de rigidité, ¢;, 1 se factorise en X RO/ AN Zit1. Linclusion V; C V44
étant stricte, on a dim(Z;) > dim(Z;41). On en déduit dim(Z,,_1) =1 et Z,,_; est
isomorphe & P!,

Pour 1 < i <mn, on considere la contraction ¢g, : X — W,. Les fibres de ¢,,_1
et de pp, se coupent en un nombre fini de points. Le morphisme ¢pg_ est donc
équidimensionnel de dimension relative 1. Il en résulte que W,, est une variété de
Fano lisse (cf. 1.3) et que g, est une fibration en P! puisque tx > 2. Comme
toute aréte de NE(W,,) est image d’une aréte de NE(X), le cone NE(W,,) est
simplicial et toute contraction extrémale de W, est une fibration.

Lemme 2.5. Soit m : X — Y une fibration en P" entre variétés projectives et
lisses. On suppose que X est une variété de Fano. Alors,

(a) Y est une variété de Fano et 1y > 1x ;

(b) si Y wérifie (x), il en est de méme de X ;

(¢) si 1ty = tx et que P* — Y est une courbe de degré anticanonique ty, le
produit P! xy X est isomorphe ¢ P! x P7.

Démonstration. Par [KMM92], Corollary 2.9, Y est une variété de Fano. Soit P! —
Y une courbe de degré anticanonique ty. Comme H?(P', 51) est nul, il résulte
de [C168], § 8, que la fibration P! xy X — P! est isomorphe au projectifié d'un

fibré vectoriel £ = @._, Op1(a;) sur P!, ou les a; sont des entiers positifs avec
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ag = 0. Si C; est la section de P(E) — P! définie par le fibré quotient Op1(a;) de
E,on a —Kpgyp - C; = —ra;, d’oli, en notant g la composée P! - C; — X,

ix £ —Kx - 9.C; = ="Ky - 9.C; — Kx v - 9:Cs = vy — g" Kx/v - C;
=Ly _K[P’(E)/]P’l . Ci = ly —Tra;

ce qui prouve (a) et (c).
Montrons (b). On a py = px — 1, d’oli, en utilisant (a),

(px = D(ex = 1) < py(ty — 1) <dim(Y) =dim X —r.

Si C est une droite contenue dans une fibre de 7, on a —Kx - C = r 4+ 1, de sorte
que tx <r—+1et

px(ix — 1) <ux — 1 +dim(X) —r < dim(X),
ce qui prouve (b). O

On a donc vy, > 2 et par hypotheése de récurrence, W, est isomorphe a
(P~ 1. De plus, 'image réciproque de toute droite du type P! x{(ts, ..., t, 1)}
est isomorphe & (P!)2. Puisque NE(X) est simplicial, la contraction ¢, 1 g, est
la composée de pg, et d’une projection p : W,, — (P1)"2; de méme, ¢, est
la composée de ¢, et d’une projection W,, — P!. On a ainsi un diagramme
commutatif

— e W, = (P!

Pn—1 l $Ri+Rn l
YRy P

pl o B W, ~ P! % (]Ipl)n—Z P2 (]Pn)n—z
oil py et py sont les deux projections. L’image réciproque d'un point de (P)»—2
par ¢p, g, est isomorphe & (P1)?, les restrictions de g, et pp, étant les pro-
jections sur chacun des facteurs. En d’autres termes, une fibre de ¢, est envoyée
isomorphiquement par ¢, sur le facteur P* de Wy. Cela signifie que le degré du
morphisme produit
Pn-1 X PR, : X =P x (P)*71,

qui est le degré de la restriction de ¢,,_1 a une fibre générale de g _, vaut 1.
Ce morphisme étant fini, ¢’est un isomorphisme et la preuve de la proposition est
achevée. O

3. La dimension quatre
3.1. Montrons 'inégalité (x) en dimension 4. Une remarque essentielle est que sur

une variété de Fano de dimension 4 et de pseudo-indice > 2, il n’y a pas de petite
contraction (cf. 1.2).
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Proposition 3.2. Soit X wune variété de Fano de dimension 4. Si vx = 3, on a
px <2

Démonstration. Supposons px > 3. Les fibrations extrémales sont de dimension
relative au moins 2 (¢f. 1.2) et il y en a donc au plus 2 ([Wi91], Theorem (2.2)). Il
existe ainsi au moins une contraction divisorielle contractant son lieu exceptionnel
sur un point (¢f. 1.2). Il en résulte 'existence sur X d’une contraction lisse de
centre de codimension 2 ([Wi91], Corollary (1.3)), ce qui est absurde puisqu’une
telle contraction est de longueur 1. (Il

Le résultat principal de cette section est le théoreme suivant.

Théoréme 3.3. Soit X une variété de Fano de dimension 4. Si 1x = 2, on a
px < 4.

3.4. Quelques lemmes intermédiaires. La démonstration du théoreme 3.3
repose sur les lemmes suivants.

Lemme 3.5. Une wvariété de Fano X de dimension 4, de pseudo-indice 2 et de
nombre de Picard > 5 n’a pas de fibration extrémale ¢ : X — Y dont toutes les
fibres sont de dimension 1.

Démonstration. Raisonnons par l’absurde. Le morphisme ¢ : X — Y est une
fibration lisse car 1x = 2, de sorte que Y est une variété de Fano lisse de dimension
3 d’apres 1.3. Puisque py > 4, il existe une contraction lisse 7 : ¥ — Z de centre
une courbe lisse ([MM81], Theorem 5). Toute courbe de Y contractée par m est
une courbe rationnelle de fibré normal dans Y égal & O(—1) @ O, done de degré
anticanonique 1. Ceci, avec le lemme 2.5, contredit I’hypothese 1x = 2. O

Lemme 3.6. Soit X une variété de Fano de dimension 4, de pseudo-indice 2 et
de nombre de Picard > 5. Toute contraction extrémale X — Y est ou bien une
contraction divisorielle lisse de centre une courbe, autrement dit est [’éclatement
d’une variété lisse Y le long d’une courbe lisse de Y, ou bien une fibration de
dimension relative 1.

Dans le cas d'une fibration, le lemme 3.5 montre qu’il y a au moins une fibre
de dimension 2.

Démonstration. Remarquons tout d’abord que les fibrations extrémales X — Y
vérifient toutes dim(Y) = 2 ou dim(Y) = 3. En effet, si dim(Y) = 0 (resp.
dim(Y) = 1), on a px = 1 (resp. px = 2). D’autre part, comme dim(X) = 4
et px > 5, il y a au moins une contraction extrémale divisorielle ([Wi91], Theorem

(2.2)).
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Soient ¢ : X — Y une telle contraction et F son diviseur exceptionnel. Les
fibres non triviales de ¢ sont de dimension > 2 (¢f. 1.2). Si dim(e(F)) = 0, il
existe sur X une fibration extrémale dont toutes les fibres sont de dimension 1 ou
une contraction extrémale birationnelle lisse de centre de codimension 2 ([Wi91],
Corollary (1.3)), ces deux situations étant exclues respectivement par le lemme
3.5 et par I’hypotheése t1x = 2. Ainsi, dim(p(F)) = 1 et ¢ s’identifie & 1’éclatement
d’une variété lisse Y le long de la courbe lisse ¢(F) ([AW9S8], Theorem 4.1).

Vérifions enfin qu’il n’existe pas de fibration extrémale 7 : X — S ou S est
une surface. Supposons qu’une telle fibration existe ; S est alors une surface lisse
([ABW92], Proposition 1.4.1) et une fibre non triviale I’ de ¢ est isomorphe &
P?. Puisque o o ' — S est fini, S est également isomorphe a P?, de sorte que
px = 2, ce qui est absurde. (Il

Le résultat suivant précise le cas des éclatements de centre une courbe lisse.

Proposition 3.7. Soit X une variété de Fano de dimension n > 4 et de pseudo-
indice Lx > 2. Sim: X — Y est l’éclatement d’une variété lisse Y le long d’une
courbe lisse, Y est une variété de Fano et vy > vx.

Démonstration. Si Y n’est pas une variété de Fano, le centre de 1’éclatement =«
est une courbe rationnelle lisse de fibré normal Op1 (—1)%7—1 ([Wi91], Proposition
(3.5)), de sorte que vx = 1, ce qui contredit '’hypothese.

Vérifions ensuite I'inégalité 1y > 2. Soient C' le centre de n et E son diviseur
exceptionnel. Si C’ est une courbe rationnelle de Y distincte de C, et si on note
encore C’ sa transformée stricte dans X,ona —Ky-C’' = —Kx-C'+(n—-2)E-C" >
tx. Sity < itx,on ne peut donc avoir —Ky - C' = 1y, de sorte que C est une
courbe rationnelle qui satisfait —Ky - C = 1y.

Soit Neyy = @;:11 Op1 (a;) son fibré normal. On a d’une part

n—1

Ly = _KY'C:Zai+27

i=1
et d’autre part, si C; C F est la courbe définie par le fibré quotient Opi(a;) de
Negyy,

—Kx - Cy =1y — (n—2)a; > 1x.

On en déduit vy > vx, sauf si tous les a; sont strictement négatifs, ce qu’exclut
Pégalité S0 a; = 1y —2> —1. O

3.8. Variétés de Fano spéciales. Nous nous intéressons ici a certaines variétés
de Fano, que nous appelons « spéciales », faute d’'une meilleure terminologie. Cette
notion est introduite dans le seul but d’alléger les énoncés qui la suivent.

Définition. Une variété de Fano de dimension n sera dite spéciale si toutes ses
contractions extrémales sont ou bien des éclatements lisses de centre une courbe
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lisse ou bien des fibrations de dimension relative 1 et si elle possede au moins une
contraction extrémale birationnelle.

Exemple. La variété X = P? x P!, ot P? désigne I’éclatement de P de centre a,
est une variété de Fano spéciale, de pseudo-indice 2 et de nombre de Picard 3. En
effet, X posséde 3 contractions extrémales : X — P? et X — P*~! x P!, fibrations
en P! et X — P* x P!, contraction lisse de centre {a} x P'.

Cet exemple est d’une certaine facon extrémal comme le montre le résultat
suivant.

Théoréme 3.9. Une variété de Fano spéciale X de dimension > 4 vérifie px < 3.
La démonstration de ce résultat occupe la fin de ce paragraphe.

Lemme 3.10. Soit X une variété de Fano spéciale de dimension > 4 et de nombre
de Picard > 4.

(a) La variété X posséde au plus une fibration extrémale de dimension rela-
tive 1.

(b) Si X posséde une fibration extrémale de dimension relative 1, d’aréte R,
les contractions extrémales birationnelles ont pour centre une courbe ration-
nelle a fibré normal trivial, leur diviseur exceptionnel F/ vérifie F - R =0
et Lx < 2.

Démonstration. Soient m : X — W une contraction extrémale birationnelle de
centre une courbe lisse C C W et de diviseur exceptionnel F et ¢ : X — Y une
fibration extrémale d’aréte R et de dimension relative 1. Nous allons montrer que
7w détermine R, donc ¢.

Le morphisme ¢ : E — Y n’est pas surjectif car pp = 2 et py > 3; comme
I'intersection d'une fibre de o) avec une fibre de | est finie, chaque fibre de ¢ g
est de dimension 1. En particulier, ¢(F) est de codimension 1 dans Y ; I'image
réciproque par ¢ d’un point général de o(F) est de dimension 1, donc coincide
avec son image réciproque par ¢|g. C’est en particulier une courbe rationnelle qui
domine C, de sorte que cette derniére aussi est rationnelle.

Le diviseur E est isomorphe a ]P’(Né/w)7 ol Nogyw = EB?:_ll Op1(a;). La fi-
bration induite @5 : F — $(F), ou $(F) est la normalisation de p(F), est
équidimensionnelle, de fibre générale P! : c’est une contraction extrémale puisque
pE = 2. Le cone de Mori de P(V /W) est engendré par deux courbes : une droite
d'une fibre de m g : ¥ — C et une section de 7 g. Il s’ensuit que I est isomorphe
AP 2 x P!, que 7 g et ¢ p sont les deux projections et que R est engendré par
une courbe du type {*} x P!. Comme n > 4, il y a donc au plus une fibration
extrémale de dimension relative 1.
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Ce qui précede montre aussi que si X posséde une fibration extrémale de di-
mension relative 1, les contractions extrémales birationnelles ont pour centre une
courbe rationnelle de fibré normal trivial. En effet, on a vu que P(N7, /W) est iso-
morphe & P2 x P!, de sorte que Ng/w est isomorphe & Opi(a)®"~! pour un
entier a convenable et, puisque les courbes du type {+} x P! ont un fibré normal
(dans X) trivial (ce sont les fibres d’une fibration), c’est que a = 0. O

Lemme 3.11. Soit X wune variété projective lisse de dimension 4 et soitm: X —
W (resp. 7’ : X = W/, 7" : X — W) une contraction extrémale birationnelle
lisse de centre une courbe lisse C C W (resp. C' ¢ W', ¢ € W) d’aréte R
(resp. R, R") et de diviseur exceptionnel E (resp. E', E").
(a) SsRAR et ENE £, onaE-R >0et B -R>0.
(b) Si R, R’ et R" sont deuz & deux distinctes et si ENE' # @ et ENE" #+ @,
ona B NE"+£2.

Démonstration. Vérifions le point (a). Soit z un point de £ N E’. La surface
7Y (x)), isomorphe & P?  n’est pas contenue dans E’ car R # R'. Il existe
done une courbe dans 7~ (n(x)) passant par p et non contenue dans E’, d’ol1 (a)
en échangeant les roles de E et I,

Vérifions le point (b). Soit y € C. Les courbes 7~ 1(y) N E’ et 7~ (y) N E” sont
contenues dans 7~ !(y), qui est isomorphe & P?, de sorte que 7~ (y)NE'NE" # @,
d’ott (b). 0

3.12. Démonstration du théoréme 3.9. Supposons px > 4. Par hypothese,
il existe une contraction extrémale birationnelle = : X — W d’aréte Ry et de
diviseur exceptionnel Fy, d’image une variété de Fano lisse (proposition 3.7) et de
centre une courbe lisse C C W.

Soit Cy une courbe telle que F;-Cp > 0. Cette courbe est numériquement, com-
binaison linéaire a coefficients rationnels strictement positifs de classes engendrant
des arétes. [’une d’entre elles, notée Ro, satisfait Fy - Ry > 0. Le lemme 3.10(b)
entraine que la contraction ¢pg, est birationnelle.

Notons Ry, Ro, ..., Ry, Rpy1,. .., Ry, Rp les arétes de NE(X), ol

e les contractions ¢p, sont birationnelles de diviseur exceptionnel F; (noter

que 7 = @R, );

e op, est ’éventuelle unique fibration et, d’aprés le lemme 3.10(b), E;- Rp = 0

pour tout 1 < < m;
o BN E; # & pour 2 <i <k doun, dapres le lemme 3.11(a), Fy - R; > 0;
e BiNE; = @ pour k+1 < i <m,d’ol, d’aprés le lemme 3.11(b), ExNE; = &.

Supposons n > 5. L’intersection 4y N Ey n’est pas vide, de dimension au moins
n—22>3:il y a donc des courbes de E; N E contractées a la fois par ¢pg, et par
©¥R,, ce qui est absurde.
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Supposons n = 4 et vérifions que C est extrémale dans NE(W'). Rappelons que
ce cOne est engendré par w(Rp) et les w(R;) pour ¢ > 2. Pour 2 < i < k, la classe
de C appartient & w(R;), ainsi qu’a w(Rp) : en effet, chaque fibre non triviale de
¢R, intersecte Fy le long d’une courbe C; telle que n(C;) = C, de méme, toute
fibre F' de g, intersectant F; est contenue dans F; et satisfait donc n(F) = C.
Si la classe de C n’est pas extrémale, NE(W) est donc engendré par les arétes
7(R;) pour i > k+ 1. L'image 7(Fsy) est un diviseur effectif de W numériquement
trivial puisque F, - Rp = Fy - R; = 0, ce qui est absurde.

Etudions la contraction extrémale ¢ W — Y d’aréte engendrée par C et
montrons que le diviseur 7( Fy) est contracté sur un point par . Notons Wy 'image
de ¢g, et Co C W son centre. Pour tout y € C», la fibre cpﬁj (y), isomorphe & P2,
contient une courbe dont I'image par 7 est C et qui est donc contractée par ¢ sur
le point ¢(C). D’autre part, w(apgi(y)) est également contracté sur le point ¢(C).
La contraction ¢ : W — Y est donc ou bien divisorielle ou bien une fibration. Soit
C’ € Ry une courbe rationnelle de X telle que Iy - €' = —1. 1l existe un entier
r > 1 tel que

7(Es) - m(C") = 7*(n(Ey)) - C' = (By +7E) - C' = -14rE - C".

Or E-C" > 1; on en déduit n(Es) - m,(C’) > 0 puis, puisque les courbes C et
74 (C") sont numériquement proportionnelles, 7(F,) - C' > 0.

Comme 7(F3y) est contracté sur un point par ¢, le calcul d’intersection précédent
montre que ¢ est une fibration. En particulier, dim(Y) <1 et pw < 2, ce qui est
absurde puisqu’on a supposé px > 4. Il

3.13. Démonstration du théoréme 3.3. Le lemme 3.6 montre que si X est
une variété de Fano de dimension 4, de pseudo-indice 2 et de nombre de Picard
> 5, la contraction extrémale associée a toute aréte extrémale de X est soit une
contraction divisorielle lisse de centre une courbe lisse, soit une fibration de dimen-
sion relative 1. De plus, comme px > 5, il existe sur X au moins une contraction
extrémale birationnelle ([Wi91], Theorem (2.2)). C’est donc que X est spéciale et
le théoreme 3.9 permet de conclure a une absurdité. O

3.14. Familles propres de courbes rationnelles. Nous renvoyons au livre
[Ko96] pour plus de détails sur les notations et les rappels qui suivent. Soit X
une variété complexe, projective et lisse. Soit Homp;, (P*, X) le schéma des mor-
phismes birationnels de P! vers X et soit Hom{, (P!, X) sa normalisation. Le
groupe linéaire PGL(2,C) agit sur Hom}; (P*, X) et Hom}; (P!, X) x P'. Les
quotients géométriques au sens de Mumford existent et seront respectivement
notés RatCurves”(X) et Univ™®(X). Soit V C RatCurves™(X) une famille propre
irréductible de courbes rationnelles irréductibles sur X et soit & C Univ"(X) la
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famille universelle
U —="-Xx

Vv
Notons lieu(V') = ev(U) I’ensemble des points de X par lesquels il passe une courbe
rationnelle C' de X telle que [C] € V. Soit = € lieu(V) ; on note V,, = w(ev=1(z)) C

V les courbes de V passant par z, puis U, = 7 1(V,) et lieu(V,) = ev(U,). Les
dimensions de ces différentes variétés satisfont

dim(V) > —Kx -V +n-3 (1)
dim(V,) > -Kx -V -2

ou —Kx -V désigne l'intersection —Kx - C pour une courbe rationnelle C de X
telle que [C] € V. Si z est un point général de lieu(V), on a

dim(lieu(V)) 4+ dim(V,) = dim(V) + 1 (2)
et, par le lemme de cassage ([Mo79], Theorem 6),
dim(lieu(V;)) = dim(V,)+1 > —Kx -V — 1.

Nous utiliserons de fagon répétée le résultat suivant ([Ko96], 11.4.21).

Lemme 3.15. Soit V. C RatCurves™(X) wune famille propre et irréductible de
courbes rationnelles irréductibles sur une variété X projective et lisse et soit x €
lieu(V'). Toute courbe tracée surlieu(V,) est numériquement proportionnelle & une
courbe C telle que [C] € V.

3.16. La famille V' détermine une relation d’équivalence sur X pour laquelle des
points z et 2’ de X sont équivalents s’il existe une chaine connexe de courbes
rationnelles de V passant par z et z’. Il existe un ouvert Xg C X et un morphisme
propre Xg — Zg a fibres connexes vers une variété normale dont les fibres sont des
classes d’équivalence pour la relation précédente ([Ko96], IV.4.16).

3.17. Les cas d’égalité. L’objet de ce paragraphe est I’étude des cas d’égalité
dans (x).

Proposition 3.18. Soit X une variété de Fano de dimension 4. Si px(1x—1) =4,
la variété X est isomorphe a (P*X~1)Px

Démonstration. Si py = 1 et 1y =5, la variété X est isomorphe a P* ([CMS00],
[Ke01]).

Supposons pxy = 2 et tx = 3. Notons ¢1 : X — Wi et o5 : X — Wy les
deux contractions extrémales, d’arétes respectives Ry et Ry. Elles sont ou bien
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divisorielles ou bien des fibrations (¢f. 1.2). Supposons par exemple que ¢4 soit di-
visorielle. Le lieu exceptionnel Fy de ¢y est contracté sur un point par ¢1 (cf. 1.2).
Rappelons que l'intersection de fibres de deux contractions extrémales différentes
est finie. Les fibres non triviales de 9 sont de dimension au moins 2, donc ne
rencontrent pas Fy, autrement dit, @y est également divisorielle de lieu exception-
nel F5 disjoint de Fj. Le diviseur —F; est donc numériquement effectif puisque
—F1 - Ry >0et —F7 - Ry =0, ce qui est manifestement absurde. Les morphismes
1 et g sont done des fibrations équidimensionnelles de dimension relative 2 (cf.
1.2) et Wy et Wy sont lisses ([ABW92], Proposition 1.4.1). Une fibre générale F}
(resp. F5) de ¢ (resp. ¢2) est de pseudo-indice 3 par la formule d’adjonction et
done isomorphe & P2. Le morphisme F; — W5 (resp. Fy — W) est fini et W,
(resp. W3) est isomorphe & P? par le théoreme de Lazarsfeld ([La83]).

Les fibres de ¢y ne sont a priori pas des sections de ¢. Nous allons montrer
que de telles sections existent. Si £ C P? est une droite générale, X, = Lpfl(é) est
lisse et connexe. Les fibres générales de X, — ¢ sont isomorphes & P2. Il existe
donc une section de X, — ¢ par le théoreme de Tsen ([Ko96], Theorem IV.6.5).

Soit done C' C X une courbe rationnelle vérifiant C' - iOpz2(1) = 1, de degré
minimal relativement au diviseur ample —K x. La courbe C' détermine une famille
propre irréductible V' C RatCurves™(X) de courbes rationnelles irréductibles sur
X (¢f. 3.14). La dimension de V est au moins —Kx -C+1 > 4 et celle de V,, pour
z € lieu(V'), au moins —Kx - C —2 > 1. Si la dimension de lieu(V,,) est au moins
3, il rencontre une fibre générale de 1 au moins le long d’une courbe et [C] € Ry
(¢f. lemme 3.15) ce qui est absurde par le choix de C. Ainsi, dim(lieu(V,)) = 2 et
le lieu de V est X par la formule (2) de 3.14.

Il existe un ouvert Xy C X, une variété normale Zy et un morphisme propre
q : Xo — Zy a fibres connexes dont les fibres sont des classes pour la relation
d’équivalence déterminée par V (¢f. 3.14). La famille V' est couvrante et Zy est
donc de dimension au plus 3. Soient F' une fibre générale de g et z un point de F.
Comme dim(lieu(V,,)) = 2, on a dim(F') > 2. Si F est de dimension au moins 3,
elle rencontre une fibre générale de ¢; au moins le long d’une courbe. Comme F'
est rationnellement connexe relativement a une sous-famille propre et irréductible
de courbes de V', toutes les courbes de F' sont algébriquement équivalentes a un
multiple de C' ([Ko96], IV 3.13.3) et [C] € Ry, ce qui est & nouveau absurde. Ainsi
F est une surface de pseudo-indice 3 par la formule d’adjonction, donc isomorphe
aP?2;ona F = lieu(V,) pour tout = dans F, les courbes de V,, étant les droites
passant par z. Notons que F' est une section de .

Vérifions que 'on peut prendre Xg = X. Le fibré normal a F' dans X est
trivial et le schéma de Hilbert de X est donc lisse au point [F]. Soient H son
unique composante passant par [F] et X/ € X x H la famille universelle. Quitte
a remplacer Zy par un ouvert dense, on peut supposer que g est plat et on a un
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diagramme

Zo —— H

ol le carré est cartésien et ol la composée des fleches horizontales supérieures est
I'inclusion. Le morphisme 7 s’identifie, au-dessus d’un ouvert Hy convenable de
H, au morphisme Xy — Zo.

Fixons un point ¢ de H et des points 2} et = de 7 *(¢y). Notons 7' — H un
germe de courbe lisse passant par tg et rencontrant Hy. Le schéma 7y : XJ. — T
obtenu par le changement de base T" — H est irréductible : il existe donc des
courbes Ty — X7 et Ty — X/ dominant 7" et rencontrant W;l(tg) uniquement en
z} et zf respectivement. Pour tous points ¢; € T4 et t9 € T5 situés au-dessus du
méme point général ¢ de T', les points correspondant de X peuvent étre joints par
une (unique) courbe Cy, ,, C 7y (t) de V. Cette famille étant propre, les courbes
C, 1, dégénerent vers une courbe de V', qui est en particulier irréductible, joignant
z et zf. Les fibres de 7 sont donc irréductibles et deux points quelconques sont
reliés par une courbe de V.

Supposons que le morphisme ¢ contracte une courbe irréductible C' C X’ vers
un point z de X. Celle-ci est horizontale pour = et le lieu couvert par les (X)),
pour t € w(C), est de dimension 3. Ainsi, le lieu couvert par les courbes de V,, est
de dimension 3, ce qui est exclu par les arguments précédents. L.e morphisme ¢
est donc birationnel et fini : ¢’est un isomorphisme.

Notons H’ — H,¢q la normalisation ; il existe une factorisation 7 : X’ = H —
Hy¢q et le morphisme ¢/ = 7/ oo~ ! : X — H’ étend ¢. Le morphisme produit
w1 x ¢+ X — P? x H' est birationnel (puisqu'une fibre générale de ¢’ est une
section de ¢1) ; puisque px = 2, il est fini : ¢’est un isomorphisme. On en déduit
que H' est lisse et, comme les fibres de ¢4, isomorphe & P?.

Supposons px = 4 et tx = 2. Par 1.2, toute contraction extrémale birationnelle
est divisorielle et ses fibres non triviales sont de dimension > 2. Vérifions que les
fibrations extrémales, s’il en existe, sont de dimension relative 1. Soit ¢ : X — Z
une telle contraction ; supposons qu’elle soit de dimension relative au moins 2.
Notons que Z est lisse ([ABW92], Proposition 1.4.1). Puisque px = 4, il existe
([Wi91], Theorem (2.2)) une contraction extrémale birationnelle ¢ : X — W ; ses
fibres non triviales sont de dimension > 2, de sorte que ¢ est de dimension relative
2. La variété W est donc lisse et ¢ s’identifie a I’éclatement d’une courbe lisse
dans W ([AW98], Theorem 4.1). Toute fibre de ¢ : E — ¢(F) est en particulier
isomorphe & P? et domine Z. Il en résulte que Z est isomorphe & P? ([La83]) ce
qui est absurde puisque py = px — 1= 3.

La variété X n’est pas spéciale (théoreme 3.9) et ou bien toutes les contractions
élémentaires sont des fibrations de dimension relative 1, ou bien il existe une
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contraction birationnelle ¢» : X — W, divisorielle, dont le lieu exceptionnel E
est contracté sur un point. Vérifions que ce dernier cas ne peut pas se produire.
Il existe alors une contraction extrémale ¢ : X — Z dont le lieu exceptionnel
rencontre F. L’intersection dune fibre de ¢ avec F étant finie, cette fibre est
de dimension au plus 1. Puisque tx = 2, le morphisme ¢ est une fibration lisse
de dimension relative 1 par 1.3. On en déduit que Z est une variété de Fano
de dimension 3, de nombre de Picard 3 et de pseudo-indice au moins 2 (lemme
2.5) et donc exactement 2 (¢f. section 2). Finalement, Z est isomorphe & (P')3
(proposition 2.3). Posons £ = P! x {(¢,#/)}, pour ¢ et t’ généraux dans P'. La
surface X, = ¢ 1(£) est une surface de Hirzebruch et la courbe ¢ = E N X, est
exceptionnelle car contractée par ¢ : c’est donc une section de ¢|x, : X¢ — £. Le
morphisme F — Z est birationnel et fini : ¢’est un isomorphisme. On a —Kg-¢' = 2
et —F-¢' > 0 puisque ¢ est exceptionnelle dans X,. Or, par la formule d’adjonction,
ona—Kg-V/=—-Kx ¥ —FE - >2ce qui est absurde.

En conclusion, toutes les contractions extrémales de X sont des fibrations. Le
résultat cherché est donné par la proposition 2.4. O

La démonstration précédente, ot 'on remplace le théoréeme de Tsen par sa
version générale récente due & Graber, Harris et Starr [GHS03], montre le résultat
suivant.

Théoréme 3.19. Soient X une variété de Fano de dimension n et Z une variété
lisse de dimension m avec 1x > m -+ 1. S%l existe un morphisme surjectif a fibres
connexes [ : X — Z, alors 7 est isomorphe a P™ et il existe une variété lisse Y
de dimension n — m telle que X est isomorphe a Y x P™.

4. Le cas torique

Nous montrons dans ce paragraphe que si X est une variété de Fano torique
de dimension n, on a px(vx —1) < n lorsque tx > %n—i— 1 (n arbitraire) oun < 7.

4.1. Préliminaires. Soit X une variété torique projective et lisse d’éventail Y x.
Nous renvoyons & [Fu93] ou [Od88] pour les fondements de la géométrie torique.
Soit G(X.x) l'ensemble des générateurs primitifs des cones de dimension 1 dans
Y. x ; son cardinal est px + dim(X). Notons V(o) ’adhérence de I’orbite corres-
pondant & un élément ¢ de ¥ x.

Rappellons ([Ba91], § 2 et [Ba99], § 2.1) quune collection primitive P est un
sous-ensemble de G(Xx) minimal qui n’engendre pas un céne de Yx. A toute
collection primitive P = {zy,...,z,} est associée sa relation primitive

Zy+- A+ xp = a1y o+ Y,

ol {y1,...,yx) est le plus petit cone dans ¥ x contenant le point z1 + - - + xp, et
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ou les a; sont des entiers strictement positifs. Le degré de P est, par définition,
deg(P) =h — Y, a;, et son ordre est |P| = h.

Le groupe N1 (X) des 1-cycles sur X modulo équivalence numérique s’identifie
au groupe des relations entre les éléments de G(Xx); toute relation
Zzea(zx)%m = 0 s’identifie & la classe d’équivalence numérique des 1-cycles
dont l'intersection avec le diviseur V' ({z)) est a,.

En particulier, la relation primitive z1+- - -+z, —(a1y1 +- - -+ agy,) = 0 définit
un élément r(P) de N1(X). Cette classe est toujours la classe d'un cycle effectif
et deg(P) = —Kx - r(P) ([Ba91], Theorem 2.15, [Ca03|, Lemma 1.4). La variété
X est une variété de Fano si et seulement si toute relation primitive est de degré
strictement positif et le pseudo-indice vx vérifie alors |P| = h > deg(P) > vx.

Une collection primitive P, ou sa relation associée r(P), sont dites contrac-
tibles s'il existe un morphisme équivariant ¢ : X — W vers une variété torique
complete W telle que les courbes irréductibles contractées par ¢ soient exactement
celles dont la classe est dans Q>or(P) ([Ca03], Definition 2.3). Avec les notations
précédentes, le lieu exceptionnel de ¢ est A =V ((y1,...,yx)) et pja : A — w(A)
est une fibration équivariante lisse en P"~!. Si deg(P) < 2.x, la collection P est
contractible ([Ca03], Theorem 4.1).

4.2. Fibrés projectifs. Soit X une variété torique projective et lisse. La contrac-
tion ¢ : X — Y d’une aréte numériquement effective de NE(X) est un fibré en
espaces projectifs, Y est une variété torique et ¢ est équivariant.

Le lemme 2.5 permet de traiter facilement le cas des variétés toriques X pour
lesquelles toutes les collections primitives de Y x sont disjointes. Cette condition
combinatoire est équivalente a l’existence d’une suite X = X1 — Xy — -+ — X,
ou X, est un espace projectif et X; est une fibration en espaces projectifs sur
Xiz1pouri=1,...,7—1 ([Ba91], Corollary 4.4). Rappelons enfin que les variétés
toriques de nombre de Picard 2 sont précisément les fibrés en espaces projectifs
sur I’espace projectif ([K188], Theorem 1) et qu’elles satisfont donc aux hypotheses
du

Corollaire 4.3. Soit X wune wvariété de Fano torique. Si toutes les collections
primitives de Y x sont disjointes, on a px(1x—1) <dim(X) ; de plus, si px(1x—1)
= dim(X), on a X ~ (Px—1)rx,
Démonstration. 1l existe donc des fibrations

X=X —-X9— - =X, =P

ou X; est une fibration en espaces projectifs sur X, 1 de fibre P* pour : =

1,...,r—1. En appliquant le lemme 2.5, on obtient, par récurrence sur 4, l'inégalité
px(tx — 1) < dim(X). Supposons px(tx — 1) = dim(X). Comme px = r,
dim(X)=s1+ -+ s et tx —1 <min{sy,..., s}, on a

s1t+- s =r(x—1)<rmin{si,..., 8.} <81+ + 8y,
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et donc sy = -+ = s, = 1tx — 1. On vérifie enfin que X est un produit d’espaces
projectifs par récurrence descendante sur l'entier 1 <4 <7 —1. [l

4.4. Le cas 3tx > dim(X) + 3. Soit X une variété de Fano torique. La preuve
du résultat principal repose sur les deux lemmes suivants.

Lemme 4.5. Soit A C X une sous-variété irréductible invariante de codimension
k. Sik <u1x —2, alors A est une variété de Fano de nombre de Picard px et de
pseudo-indice > 1x — k.

Démonstration. 1l suffit de prouver le lemme pour kK = 1 et tx > 3 : le résultat
général s’ensuit par récurrence sur k. Soit donc A = V({z)) un diviseur irréductible
invariant et supposons ty > 3. Si P est une collection primitive dans X4, ou bien
P est une collection primitive dans Y.x et degy(P) > degx(P) > vx, ou bien
PU{z} est une collection primitive dans Yy, et deg4(P) = degy(P)—1 > 1x — 1.
Comme 1x > 2, le diviseur A est une variété de Fano de pseudo-indice > vx — 1.
Puisque tx > 3, il n’y a pas de collection primitive d’ordre 2 (¢f. 4.1) : 34 a donc
exactement un cone de dimension 1 de moins que Xx et py = px. O

Lemme 4.6. Soit X une variété de Fano torique de dimension n, de pseudo-
indice vx et de nombre de Picard px. Si dvx > n + 4, i existe dans X une
collection primitive contractible telle que la codimension du lieu exceptionnel de la
contraction associée soit < 1x — 2.

Démonstration. Supposons que toute relation primitive contractible de X soit de la
forme z1+- - 4ap = a1y1+- - +aryr aveck > 1x—1.Onaalors h—k > h—3". a; >
tx,dou h > 1x +k > 2ux —1. D’autre part, si P est une collection primitive non
contractible, on a |P| > deg(P) > 2ux (¢f. 4.1). 1l n’existe donc pas de collection
primitive d’ordre < 2. x —2 dans Y x, de sorte que f;_; = (f;’) pour tout j < 21 —2
(¢f. 4.8). Puisque X n’est pas isomorphe & P", on a 21x — 2 < [n/2] + 1 par la
proposition 4.11, ce qui contredit les hypotheses. (Il

Théoréme 4.7. Soit X une variété de Fano torique de dimension n, de pseudo-
indice vx et de nombre de Picard px. Si3tx > n+3, ona px(tx — 1) < n (et
donc px < 3); de plus, si px(tx —1) =n, on a X ~ (Px~1)rx,

Démonstration. Le théoreme se montre par récurrence sur px. Si px = 1, on a
X ~ P™ et le résultat est démontré. Sinon, d’apres le lemme 4.6, il existe dans X
une relation primitive contractible qui s’écrit

1+ txp = a1y + o aryi

avec k < tx — 2. Soit A = V({yy,...,yx)) le lieu exceptionnel de la contraction
associée. D’apres le lemme 4.5, A est une variété de Fano, pgy = px et ta > v1x —k.
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De plus, la contraction fait de A une fibration A — B en P*~!, oii B est une
variété de Fano torique satisfaisant pp = px — 1, dim(B) = n—k —h+ 1 et
tg > la >ty — k.

Vérifions 'inégalité 1p > %dim(B) + 1. Notons que h > k+1x > 2k+ 2 et que
dm(B)=n—-k—h+1<n-3k—-1<n-3k dou

1 il 1
LB ZLX—kZ§n+1—k:g(n—3k)+1>§dim(B)+1.
L’hypothese de récurrence donne donc pg(tp—1) < dim(B) et pp = px—1 < 2
puisque ¢p > % dim(B) + 1. Finalement :
(px —Dx —k—1)<ppltp—1)<dim(B)=n—-k—h+1
d’on
px(tx —1)—n<pxk+ix —h—-2k<k+:x —h<O0.

Supposons maintenant py(tx —1) = n et notons qu’il suffit de montrer A = X,
cest-a-dire k& = 0. En effet, X est alors une fibration en espaces projectifs sur
une variété de Fano torique B satisfaisant pp < 2 et le corollaire 4.3 s’applique.
Supposons donc k& > 0. Les inégalités précédentes sont des égalités, d’ott

tp=ta=1tx —k, pp(tp —1)=dim(B), px =pa=3, pp=2et h=k+ 1x.

La variété B est donc isomorphe & Ptx —k=1 5 Pex—k—1 (corollaire 4.3) et, puisque
A — B est une fibration en P*T#+1 et 4 = 1x — k, la variété A est isomorphe 2
Prxth—l o prx—k—1 o Prx—k=1 T éventail ¥4 est donc déterminé par les relations
primitives

El+"'+fbx+k:07 61+"'+5LX—’C:Oetm1+"'+mbx—k:07

ou l'on a noté u le générateur de Y4 induit par Pélément v € G(Xx) tel que
(w,y1,...,y5) € Yix. On a nécessairement

G(EX) - {x17"'7xbx+k7y17' "7yk7v17"'7/ULX7k7w17"'7wLX*k}

puisque px = 3. Puisque toute classe extrémale de X se restreint a une classe
extrémale dans A, il doit y avoir dans X trois relations primitives extrémales, de
degré au moins vx, dont les restrictions & A sont les relations primitives ci-dessus.
La seule possibilité est que les relations

v+ tvyrtyrtooctyg=0etwi + - Fwyrtyr+-+yp=0

soient extrémales dans X, ce qui est absurde si & > 0 car ces relations ne sont pas
disjointes ([Ca03], Proposition 3.4). O

4.8. Les petites dimensions. Dans ce paragraphe, on étudie les cas 1x = [n/2]
et vx = [n/2] — 1 lorsqu’ils ne sont pas couverts par le théoreme 4.7, c’est-a-dire
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respectivement pour n < 7 et n < 13. Nous en déduirons que I'inégalité (x) est
toujours verifiée si n < 7. Nous supposerons dans la suite n > 4.

Proposition 4.9. Soit X une variété de Fano torique de dimension n < 13 et de
pseudo-indice [n/2] ou [n/2] — 1. Si X n’est pas une fibration en P*X~1  Uentier
px satisfait les inégalités suivantes :

n=4|n=5|n=6|n="7 n:8‘n:9‘n:lO‘n:ll‘n:lZ‘n:lS‘

ex =[2]—1 px <4|lpx < 4lpx §3|px §3‘PX§2‘PX §3|px SQ‘px S2|

Corollaire 4.10. Soit X une variété de Fano torique de dimension n < 13 et de
pseudo-indice [n/2] ou [n/2] — 1. Alors px(tx —1) < dim(X) et on a égalité si et
seulement si X ~ (Px—1)px,

Démonstration. L’inégalité px(tx — 1) < dim(X), dans les cas non couverts par
le théoreme 4.7, est équivalente aux bornes du tableau ci-dessous :

n=4|n=5|n=6|n="7 n:8‘n:9‘n:lO‘n:ll‘n:lZ‘n:lS‘

w3

tx =[2] |px <4|px <5|px <3|px <3

tx =[%]—1 px <6lpx <T|px §4‘PX §4‘ﬂx 33‘0)( §3’PX §3‘ﬂx §3‘

Si X n’est pas une fibration en P“X 1 la proposition 4.9 implique px(tx —1) <
dim(X) et il n’y a jamais égalité.

Si X est une fibration en P~ sur Z, on adim(Z) =n+1—1x < (n—1)/2
et 1z > 1x > dim(Z) — 1. Si dim(Z) > 5, la variété Z est un espace projectif
(¢f. 4.12) et donc px = 2 : le résultat est une conséquence du corollaire 4.3. Si
dim(Z) <4, on a 1z > 3 et pz < 2, de sorte que le corollaire 4.3 s’applique encore
aX. O

Soit Px le polytope associé a X, c’est-a-dire le polytope simplicial convexe
engendré par les éléments de G(Xx). Les faces de Py correspondent aux cénes
de Yx. Soit f; le nombre de faces de dimension j de Px. Rappelons 1’égalité
fo = |G(Ex)| = px + n. Léventail ¥x n’a pas de collection primitive d’ordre
J < itx, autrement dit,

fim1= (J;O) pour tout 7 < tx. (3)

De plus, si ¥x possede une collection primitive P = {zy,...,z,, } d’ordre v,
la relation associée est nécessairement zy + --- + z,, = 0, puisque son degré est
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au moins tx. Elle est contractible et la contraction associée est une fibration en
P*x—1. Finalement :

fLX—l < <f0

Lx
Nous renvoyons & [MMS71] pour les propriétés fondamentales des polytopes
simpliciaux. Rappelons en particulier qu’il existe des relations linéaires entre les f;,
appelées relations de Dehn-Sommerville, de sorte que les nombres fo, ..., fin/2)-1
déterminent tous les f;. Rappelons aussi le résultat suivant ([MMS71], Chap. 2,
Proposition 24).

) si et seulement si X est une fibration en P*X 1,

Proposition 4.11. Un polytope de dimension n est un simplexe si et seulement

s fj1 = <];0> pour tout j < [n/2] + 1.

4.12. Remarquons en particulier que si ¢cx > [n/2] 4 1, la relation (3) et la propo-
sition entrainent que X est isomorphe & P"™. Cela redémontre dans le cas torique
le théoreme de Wisniewski cité dans I'introduction.

Les deux lemmes suivants donnent des relations supplémentaires entre les
nombres f;.

Lemme 4.13. Soit X une variété de Fano torique. Si1x > 1, toutes les collections
primitives de Yx d’ordre vx + 1 sont deux a deux disjointes.

Démonstration. Soit P = {z1,...,2,,+1} une collection primitive d’ordre vx + 1.
Elle est nécessairement contractible puisque deg(P) < tx + 1 < 2vx (cf. 4.1). Ou
bien deg(P) = vx + 1, la relation primitive r(P) est 1+ -+ +z,,+1 =0 et P est
disjointe de toutes les autres collections primitives de Y. x ([Ca03], Proposition 3.4),
ou bien deg(P) = vx et la relation primitive r(P) est de la forme z,+-- -4z, 11 =
y. Supposons par 'absurde qu’il existe deux relations primitives

x1++$r+y1+.+yszz et x1++$r+u1++uszv

avec r + s = tx + 1 et » > 0. Comme P est contractible, {y1,...,ys,v} doit
contenir une collection primitive ([Ca03], Proposition 3.4), de sorte que s+1 > tx
et r < 2.Sir=2ets=1x—1, la collection {yi,...,ys,v} est primitive, de
relation associée y1 + --- +ys + v = 0, ce qui est absurde. Si r = 1 et s = 1x, la
collection {y1,...,ys,v} est primitive, de relation associée y1 + -+ + ys + v = w.
Par ce qui précede, on a s =1 et tx = 1, ce qui est exclu par I’hypothese. (Il

Lemme 4.14. Si X est une variété de Fano torique de dimension n, on a

12fpn—3 > (3n+1x —5) fn_2.

Démonstration. Posons dx = ) deg(Ng/x), ou la somme porte sur toutes les
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courbes invariantes de X. Si C est une courbe invariante, on a deg(N¢/x) =
—Kx -C =2 > 1x — 2, de sorte que dx > (tx — 2)fn—2. D’autre part, on a
dxy =12f, 3 —3(n—1)f,_2 ([Ba99], Theorem 2.3.7), d’ou1 I'inégalité cherchée. [J

Démonstration de la proposition 4.9. Posons k = [n/2] et supposons vx = k.
Comme X n’est pas une fibration en P*x 1 on a fie = (fo) pout tout j < k. Les

relations de Dehn—Sommerville permettent d’exprimer fi & l'aide de fo ([MMS71],
§24):

k—1 . )
f = Z(_l)lrj—lij;i <2kk— J) (j]jfl) si n est pair,

E—1 .
s 2k — 1
fr = jEl(_l)k31< A j;L ) (j ]:f 1) si n est impair.
Le lemme 4.13 donne l'inégalité

fo fo
<k+1> ST

d’oll les bornes de la premiere ligne du tableau.

Supposons tx = k — 1 et que X n’est pas une fibration en P*x 1. On a alors

fi—1= <fo> pour tout j <k —1 et (?) Je—1 < ];O

Les relations de Dehn-Sommerville permettent d’exprimer tous les f; avec j > k
a l’aide de fy et fr_1. Si n est pair, on a ([MMS71], § 2.4)

ot S (D) () () o
s () 1+Z w25 (o) ()
e ) ()

Et si n est impair, on a

oo = (2k+ 1) fi_ 1+Z 2:+' (%ti?g*(:ii)) <kf—oj) “
J=l,

k EN(k+7+1
fn73:k’2fk71+jz:;(_1 kJrj_l((Q)( kE+1 )

=) () ()




622 L. Bonavero, C. Casagrande, O. Debarre et S. Druel CMH

Finalement, en appliquant le lemme 4.14, on obtient fr_1 < Wi (fy), ou, si n est
pair,

k3 — k212
Vi (fo) = TJr(k]E 1)

- Jlk DE+G=3), . N F
+jZ 0 ((k—i—j—l)(k—w—2)k+123)<k_0j>

et, si n est impair,
2k +3k% —2k+ 217 fo
Vilfo) = (k — )(2k+3) (k—l

- Y1k +5 — 2 ,
+Z 12k :3;(/@1)() 7 (26 + (4 = 1R°

J:2

+2(j2—2)k2+(j2+17f+3)’”3j(1_j)> <’ff—oﬂ>

On déduit alors du lemme 4.13 I'inégalité

(1) -2 -t <o

ce qui donne les bornes de la deuxieme ligne du tableau par une étude directe. [

5. Chaines de courbes rationnelles

Soit X une variété projective, lisse et connexe et soient V1, ..., V* des familles
propres irréductibles de courbes rationnelles irréductibles sur X (¢f. 3.14). Fixons
z € lieu(V?'), posons lieu(V1!), = lieu(V}!) et Z; = UL (¢f 3.14) et, avec les
notations

ut = X

wkl
vk
définissons par récurrence pour k > 2 :
Zy =, M (evy Hlieu(VE, ., VETY), Alieu(VF))))
lieu(V1, Vk)z = evi(Zg)
UF = liew(V?, ..., VF) = lieu(V!, . . Vi1,
Le fermé lieu(V!,..., V), est donc I’ensemble des points y de X tels qu'il existe
des courbes C1, ... C* avec

o [CI) eV,
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o les intersections C1 N C2, ..., C* 1N C* ne sont pas vides;
excCletyeCF

Lemme 5.1. Si les classes des familles VY, ..., V¥ dans N{ (X )qg sont linéairement
indépendantes et que lieu(V?, ... V), nest pas vide,
(a) le morphisme d’évaluation evy, : Zj, — liew(V'1, ... V®), est fini au-dessus
de Pouvert UF, qui n’est pas vide ;
(b) toute courbe tracée sur liew(V', ..., VF*), est algébriguement équivalente
dans cette variété a une combinaison linéaire 4 coefficients rationnels de
courbes dans V1, ... V¥,

Démonstration. Le résultat se montre par récurrence sur l'entier £ > 1.Si k=1, le
point (a) est une conséquence du lemme de cassage de Mori ([Mo79], Theorem 6)
et le point (b) est le lemme 3.15. Supposons k > 2.

Démontrons (a). Soit z un point de lien(VY, ... VE=1), Nlieu(V*), qui n’est
pas vide par hypothese. Si lieu(VF) C lieu(V', ..., VF=1),, les classes des fa-
milles V!, ..., V¥ sont linéairement dépendantes dans Ny (X)g par hypothese de
récurrence, ce qui est absurde. Ainsi, UF n’est pas vide. Si un point y de UF vérifie
dim(ev, *(y) N Zx) > 1,

e soit dim(lieu(V,F) nlieu(V!, ..., V*71),) > 1 et, & nouveau par hypothese de
récurrence, les classes des familles V1, ..., V* sont linéairement dépendantes
dans Ny (X)g, ce qui contredit ’hypothese ;

e soit il existe une famille de dimension 1 de courbes rationnelles de V* passant
toutes par deux points distincts de X fixés, ce qui, par le lemme de cassage
([Mo79], Theorem 6), est absurde puisque la famille V* est propre.

Démontrons (b). Soit C' une courbe tracée sur lieu(V',... , V¥), telle que
[C] & VF. Si C est dans lieu(V', ..., V*1), Phypothese de récurrence permet
de conclure. Supposons donc que C n'est pas contenue dans lieu(V?', ... VF=1), .
Soit C C evgl(C )N Z, une courbe irréductible dominant C, soit S C U* la surface
irréductible 7, 1 (74(C)), soit S la surface evy(S) C X et soit C’ C S une courbe
dominant S Nlieu(V', ..., V=1 . Toute courbe tracée sur S est algébriquement
équivalente dans S 4 une combinaison linéaire a coefficients rationnels de la multi-
section C’ et d’une fibre de 735 : § — 7 (S) ([Ko96], 11.4.19). Toute courbe tracée
sur S est donc algébriquement équivalente dans S, donc dans lien(V1, ... Vk),,
4 une combinaison linéaire & coefficients rationnels de ev;(C’) et d’une courbe de
VE ([Ko96], 11.4.4.2). 1l reste & remarquer que evy(C') C lien(V!, ... VE-1)
I’hypothese de récurrence permet de conclure. (Il

On en déduit le résultat suivant.

Théoréme 5.2. Si les classes des familles V1, ..., VF dans N{(X)q sont linéaire-
ment indépendantes, lieu(VY, ..., V¥), est vide ou de dimension > —Z;.z:lKX Viok.
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Démonstration. On procede par récurrence sur l'entier k > 1. Si k& = 1, Desti-
mation sur la dimension a déja été mentionnée en 3.15. Supposons k& > 2 et que

lien(V'', ..., VF), n’est pas vide. Le lemme précédent donne
dim(lieu(VY, ..., V*),) > dim(Zy).
Si y est un point général de lieu(V1,... VE=1), nlien(V*), on a dim(ev, (y)) =
dim(V,}) et, si 'on note
Wy, = ev, H(lien(V', ..., VF 1), nlieu(VF)),
on a, en utilisant I’hypothese de récurrence,

dim(Wy) = dim(V}}) +dim(lieu(V1 LS VED N lieu(VF))

> dim(V, Z Kx - V7 — (k—=1)+ dim(lieu(V*)) —
=

k—1
> dim(Vy) ZKX —k+2—mn,
j=1

d’oti, par 'inégalité (1) de 3.14,
k
dim(Wy) > = Kx VI —k—1.
y=i

Comme dim(Z;) = dim(Wy) 4 1, le lemme précédent permet de conclure. O
On déduit du théoreme le corollaire suivant.

Corollaire 5.3. Soit X une variété de Fano de nombre de Picard px et de pseudo-
indice vx. S’ existe des familles propres irréductibles V1, ..., VPX de courbes
rationnelles irréductibles sur X dont les classes dans N1(X)qg sont linéairement
indépendantes et que lieu(V?1, ... VPX), nest pas vide, on a px (1x —1) < dim(X).

Il n’est évidemment pas facile d’assurer I'existence de familles propres de courbes
rationnelles irréductibles sur X vérifiant les conditions du corollaire précédent. Si
R C NE(X) est une aréte, les courbes rationnelles irréductibles dont la classe ap-
partient & R et de degré anticanonique minimal forment une famille propre. En
considérant ces familles de courbes rationnelles, on montre le résultat suivant.

Corollaire 5.4. Soit X une variété de Fano homogéne. On a px(tx — 1) <
dim(X).

Les résultats récents de Brion [Bri02] montrent que l'inégalité px(cx — 1) <
dim(X) est aussi valable si X est une variété de Fano admettant une action d’un
groupe algébrique semi-simple avec une unique orbite fermée.
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