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Cohomology of toric bundles

P. Sankaran and V. Uma

Abstract. Let p: E— B be a principal bundle with fibre and structure group the torus T' =
(C*)™ over a topological space B. Let X be a nonsingular projective T-toric variety. One has
the X-bundle 7 : E(X)— B where E(X) = E x7 X, 7(|e,z]) = p(e). This is a Zariski locally
trivial fibre bundle in case p : F— B is algebraic. The purpose of this note is to describe
(i) the singular cohomology ring of E(X) as an H*(B;Z)-algebra, (ii) the topological K-ring
of K*(E(X)) as a K*(B)-algebra when B is compact. When p : E— B is algebraic over an
irreducible, nonsingular, noetherian scheme over C, we describe (iii) the Chow ring of A*(E(X))
as an A*(B)-algebra, and (iv) the Grothendieck ring K°(E(X)) of algebraic vector bundles on
E(X) as a K%(B)-algebra.

Mathematics Subject Classification (2000). 14M25, 14F15.
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1. Introduction

Let T' = (C*)™ denote the complex algebraic torus. Let M = Homg, (T, C*) = Z"
and N = Homygo(C*,T) = Z™ denote the group of characters and the group of
1-parameter subgroups of T respectively. Note that M = NV := Hom(N;Z) under
the natural pairing { , ) : M x N—Z, given by x* oA\, (z) = 2{%? for all z € C*.
(Here x* € C(T') = C[M] denotes the character corresponding to v € M and A,
the 1-parameter subgroup corresponding to v € N.)

Let A be a fan in N such that the T-toric variety X := X(A) is complete and
non-singular. Let p : F—— B be a principal bundle with structure group and fibre
the torus T' over an arbitrary topological space B. When the bundle p : F— B is
algebraic, it is well-known that the bundle — B is Zariski locally trivial.

Consider the fibre bundle 7 : E(X)— B with fibre the toric variety X, where
E(X) is the fibre product £ x7 X, and the projection map is defined as 7([e, z]) =
p(e). Note that the bundle = : F(X)— B is Zariski locally trivial whenp : E—B
is algebraic. In this paper, we describe the integral singular cohomology ring
H*(E(X);Z), and the K-ring K(E(X)) when B is a compact topological space.
Also, when p : E— B is algebraic and B an irreducible nonsingular noetherian
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scheme over C, we describe the Chow ring A*(E(X)), and the Grothendieck ring
K°(E(X)) of algebraic vector bundles of the complex variety F(X).

Suppose that ¢ : V—X is a T-equivariant vector bundle over X, then we
obtain a vector bundle E(V) over F(X) with total space F x7V where the bundle
projection is the map [e,v] — [e, g(v)]. In case V is a T-equivariant line bundle
associated to a character x* : T—C*, the bundle E(V) is isomorphic to the
pull-back bundle 7*(&,) where &,— B is the line bundle got from E—B by
‘extending’ the structure group via x*. After fixing an isomorphism, T = (C*)",
u € M corresponds to an element (ay,---,a,) € Z". The bundle E is then the
principal bundle associated to the Whitney sum of line bundles &;,1 < ¢ < n, and
E(V) can then be identified with the tensor product £j* @ --- ® £2». (Here it is
understood that, when a < 0, £% = (£V)7%.)

When B is a non-singular variety any line bundle & over B is isomorphic to
O(Y) for some divisor Y in B. The divisor class [Y] is the first Chern class
e1(¢) € AL(B) of ¢,

We use the notations of [12] throughout the paper.

For & > 1, A(k) will denote the set of & dimensional cones in A. We let
d = #A(1), and write vy, -- - ,v4 for the primitive elements of N along the edges
in A. Let p; € A(1) be the edge R>qv;. Recall that our hypothesis that X is
smooth is equivalent to the statement that the set of the primitive vectors along
the edges of any cone in A is part of a Z-basis for N.

For a cone o € A, U, denotes the affine toric variety defined by o and V(o)
denotes the closure in X of the variety whose local equation in U, is x* = 0 for
all u ¢ o, w € 0¥. The V(o),0 € A, are the orbit closures for the action of T
on X.

For 1 < j < dlet L; denote the T-equivariant line bundle over X which
corresponds to the piecewise linear function ¢; defined by ¢;(v;) = —6; ;. The
line bundle L; admits a global T-equivariant section s; whose zero locus is the
variety V(p;).

Let o1, -+, 0, be an ordering of the cones in A(n). Let 7; € A be the inter-
section with o; of those cones o;, j > 4, such that dim(o; No;) = n — 1. Thus
71 =0, and 7, = 0,. Consider the condition:

T¢<Uj:>i§j. (*)

Set 7/ < 0; to be the cone such that 7, N7/ = 0,dim(7;) +dim(7/) =n, 1 <i < m.
Also consider the condition

T Loy =] L (+")
Note that 7/ is the intersection with o; of those cones o; with j < ¢ and dim(o;) N
dim(o;) = n— 1 and so condition (') is the same as () for the reverse ordering
on A. It is well known that when X is (nonsingular) projective, then there exists
an ordering of the cones in A(n) such that both conditions (x) and (*') hold. We

shall assume that there exists an ordering of A(n) such that property (*) holds.
(See [12], §5.2.)
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By relabelling the v;’s if necessary, we assume that v{,--- ,v, € N are primitive
vectors along the edges of ¢, and let uy,--- ,u, be the dual basis of M.

Definition 1.1. Let S be a ring with 1. Let r;,1 <4 < n, be in the centre of S.
Consider the polynomial algebra S[xi,---,z4]. We denote by Ig the two-sided
ideal generated by the following two types of elements

Ty -y, 1 <jp < d, (i)
where v, ,- -+ ,v;, do not span a cone of A, and,
Y = Z (ug,v5)z; — 1y, 1 < i< n. (ii)
1<5<d

Denote by Tg the two-sided ideal generated by elements of type (i) above and the
elements

z= ] Q-zpt? - J] -z 1<i<n (i)

Ji{us,v5) >0 Ji{us,v;)<0

Define R = R(S7A) :S[xl7~~~ 7xd]/IS and R = R(S7A) :S[:El?~~ 7:Ed]/Is.

Note that the S-algebras R and R depend not only on the fan A, but also
on the the isomorphism N = Z" resulting from the choice of ¢, € A and the
elements r; € S. The only non-commutative ring S we need to consider is the
integral cohomology ring of B.

Note that for any cohomology theory H, H*(E(X)) is an H*(B)-algebra via
the induced map =* : H*(B)—H*(E(X)). The following is our main theorem:

Theorem 1.2. Let 7 : E—B be a principal T'-bundle over an arbitrary topolog-
ical space B. Assume that X is a smooth complete T-toric variety and that A(n)
has been ordered so that () holds. With above notations,

(i) The singular cohomology ring of E(X) is isomorphic as an H*(B;Z)-algebra
to R(H*(B;Z),A), withr; = c¢1(£)) € H*(B; Z).

(ii) When B is compact, the K-ring K*(FE(X)) of complezx vector bundles over
E(X) 4s isomorphic as a K*(B)-algebra to R(K*(B); A) where r; = [£)] € K(B),
1<i<n.

Suppose p . B——B is algebraic where B irreducible, non-singular and noethe-
rian over C. Furthermore, assume that (+') also holds. Then:

(iii) The Chow ring A*(FE(X)) of E(X) is isomorphic as an A*(B)-algebra to
R(A*(B),A) where r; = c1(€)) € AY(B), 1 <i <n.

(iv) The ring K(E(X)) is isomorphic as a K(B)-algebra to R(K(B),A) where
ri = €] € K(B).

We shall now briefly explain the method of proof. For the first three parts,
we shall use a Leray—Hirsch type theorem to obtain the structure of H*(E(X)) as
a module over H*(B). Then we shall construct a H*(B)-algebra homomorphism
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from the expected H*(B)-algebra to H*(E(X)) and verify that this algebra ho-
momorphism is an isomorphism of H*(B)-modules. The “Leray—Hirsch” theorem
we need in the context of Chow rings is due to D. Edidin and W. Graham [10].
However we give a proof which is more suited to our specific situation. (See also
[11].) The “Leray-Hirsch” in the context of K-theory of complex vector bundles
that we need is Theorem 2.7.8, [5]. For part (iv) we use a result of Grothendieck
[7] to prove the analogue of Leray—Hirsch theorem.

We do not know if parts (iii) and (iv) of the main theorem remain valid without
the hypothesis that (+’) hold. Neither do we know of an example where A(n)
admits an ordering satisfying (x) but no ordering that satisfies both (%) and ().
However, there are complete nonsingular varieties X (A) which are not projective
such that A(n) admits an ordering satisfying both (x) and (*’). The example of a
complete non projective toric variety given in p. 84 [15] is seen to be one such.

Examples of algebraic bundles F(X)— B we consider include as special cases
the toric fibre bundles considered on p. 41, [12].

We were motivated by the work of Al Amrani [2] who has computed the singular
cohomology ring of a weighted projective space bundle. Another motivation for
us was the work of H. Pittie and A. Ram [16] who established the Pieri—-Chevalley
formula in K-theory in the context of an algberaic G/B bundle associated to a
principal B bundle where G is a complex simple algebraic group and B a Borel
subgroup.

2. The rings R and R

In this section we prove certain facts about the rings K and R which will be needed
in the proof of the main theorem.
We keep the notations of §1. We assume that A(n) has been so ordered that

property () holds. Recall that vy, --- ,v4 are the primitive vectors along the edges
of A, that vy, -, v, are in o,,, and that uy, -, u, is the dual basis of M.

For any cone v € A, denote by () the monomial z;, ---z; € Sz, -, x4
where v;, --- ,v;. are the primitive vectors along the edges of ~.

Recall from §1 the definition of the S-algebras R and R. We shall denote by the
same symbol z(v), in R and R, the image of the monomial z(v) € S[z1,--- ,z4]

under the canonical quotient map.

Lemma 2.1. (i) For u=7%,,,., asu; € M, the following equality holds in R.

S G egby =

1<5<d

where 1, — Zlgign a;r;.
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(ii) Ifv € A(r) is spanned by vj,,vj,, - ,vj,., then

T z(y) = — Z(%%W(%) + ruz(y)

k
for some uw € M, where the sum on the right is over those cones vy in A(r +1)
which are spanned by primitive vectors vy, vy, vjy, - - 05,
(iii) If o < v < B are cones in A then there exist cones vi,--- ,vs € A with

a < v such that the v, are not contained in 3, and

2(7) = 3 enaln) + exla)

for some ¢, c, € S.
(iv) The monomials xz(7;), 1 <i < m, span R as an S-module.

Proof. Part (i) follows easily from linearity of the pairing (, ) with respect to the
first argument.

(ii) Suppose v < o where o is n-dimensional. Let vj,, -+ ,v;, be the primitive
vectors which span ¢ such that the first » elements span v, with j; = j. Letu e M
be the dual basis element such that (u,v;,) = J; ;.. One has the relation:

gy Z (u,vp)z — 1y = 0.
k#j1

Multiplying both sides by z(), and using the type 1 relations, we get

wja(y) = = Y (u,on)e(y) + ruz(y)

k
where the sum on the right is over those cones 4 in A(r + 1) which are spanned
by primitive the vectors vy, v, vj,, -+ ,v;,. where k # jyi, -+, jn. This proves (ii).
(ili) Suppose vj,,-- -, v; spans 8 € A(l) such that the first 7 of these span «
and the first p of these span v, p > r. Without loss of generality we may assume
that 3 is an n dimensional cone so that I = n, and wvj;,,--- ,v;, is a basis for V.

Now let v € M be the dual basis element so that (u,v; ) = 0, 4. Then we have
2y + Z (u,vp)z) — 1y = 0. (1)

k#d

Multiplying by x;, ---z;,_, and observing that the coefficient of zj in the sum is
zero for k € {41, ,jn} and k # j,, we get z(y) + > {u, vi)z(yx) — ruz(y’) = 0
where + is the cone spanned by vj ,---,v; , and the sum is over those cones
Y € A(p) which are spanned by v;,,vj,, -+ ,v5,_,, v, k # j1, -+, Jn. Note that
each of these v, contains o but is not contained in 3. If v/ = «, we are done.
Otherwise, by an induction on the dimension of v the statement is true for +/.
Substituting this expression for z(v’) in (1), we see that (iii) holds.

(iv) We first prove that the z(7;) span R. In view of (ii), it suffices to prove

that for any v, z(v) is in the S-submodule spanned by the z(7;). Property (x)
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implies that given any v € A, there exists a unique i such that 7; <~ < o0y; indeed
it is the smallest ¢ for which v < o;. (See [12], §5.2.) We prove, by a downward
induction on this i, that x(vy) is in the S-span of z(7;), j > 4. If i = m, then
v = om = Ty, and there is nothing to prove.

Let 7, < v < o; for some i < m. Now, using (iii), we can write z(y) as an
S-linear combination of x(7;) and x(v;) where 7, < v;, and ~; is not contained
in o;. It follows that each «; is such that 7, < v; < o, for some r (depending
on j) with r > i. By inductive hypothesis, each of the x(v;) is in the S-span of
x(7q), q > r. It follows that z(v) is in the S-span of x(7,),r > i, completing the
proof. (Il

Concerning the structure of R we have the following.

Lemma 2.2. Assume that the elements r; € S, 1 <1 < n are invertible. Then
(i) Forw =73 <;<, aiu; € M the following relation holds in R:

Zp = H (1 —a;)v) —p, H (1—z;)~ @) =0
Fr{uvz)>0 Jr{u,v5) <0
where 7y, = [[1<i<n rie.
(ii) Let o < v < B be cones in A. Suppose that v is spanned by vy, - vy,
then

zj2(y) = (1= ru)2(y) + ) ape(yp)

where ap € S, and v, € A are such that o < yp, ~yp are not contained in  and
dim(~y,) > dim(v).
(i) Let oo <y < 3 be cones in A. Then

2(y) = bya(yy) + ba(a)

for some by, b € S and suitable cones v, € A which contain o and are not contained
in 3.

(iv) The monomials x(7;),1 <1 < m span R as an S-module.

Proof. Proof of (i) is an easy exercise.

(ii) Without loss of generality, we may assume that 3 is an n-dimensional
cone. We prove this by descending induction on the dimension of v. Suppose that
V5, , v, span 3, and that v;, ¢ o. Let uw € M be the dual basis element such
that (u,v; ) = d1,,. The relation z, = 0 can be rewritten as

(1 —=j) H (1—xj)(“v”j> =7y H (1_xj)7<u,uj>.
3 {u,v5)>0 J{u,v4) <0

Note that none of the x; ,2 <1 < n occur in the above relation. Multiplying both
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sides by z(v),
(2(7) =252 [ ] = 2) ) =y []( - zg) (2)

P q
where the product is over those p, (resp. ¢) such that vy, (resp. vq), vj, - - -, v;, span
a cone of A, (u,v,) > 0, (resp. (u,vy) < 0). In particular, if v is n-dimensional,
then the above equation reads x; x(y) = (1 — ru)x(7y), which proves the lemma
in this case. Assume that & < n and that the statement holds for all higher
dimensional cones. Then from equation (2), we see that the lemma follows by
repeated application of the inductive hypothesis and by the observation that if
~" < +"” and if 4’ is not contained in /3, then neither is v”.

Parts (iii) and (iv) follow from (ii) just as in the proof of Lemma 2.1. O

Remark 2.3. One can show that if v, = 0 for all 4,1 < ¢ < n, then :cc;1+1 =
0, 1 <5 <din R and that z(7;),1 < i < m, form a basis for R as a module
over S. Similarly, if r; = 1 for all 1 < i < n, then x?“ =0forl1 <j<dand
z(73), 1 <4 < m form a basis for R as an S-module.

3. Singular cohomology and Chow ring

In this section we shall prove parts (i) and (iii) of the Main Theorem 1.2.

Let A be a complete nonsingular fan in N. We assume that o1, - ,0,, is an
ordering of A(n) such that property (x) holds. (See §1.) This implies that the
toric variety X = X (A) has an algebraic cell decomposition, namely, there exists
closed subvarieties X = Z; D -+ D Zp, of X such that Z; \ Z;41 = V; & Cki
for some integers k;. In fact, with 7; as in §1, the closure of Y; is just the variety
V(7;). See [12]. This yields the structure of a (finite) CW complex on X with cells
only in even dimensions.

Notation. We shall denote V(7;) by V;. If (+’) also holds, then we set V;/ = V(7).

Assume that p : F— B is complex algebraic and B irreducible, nonsingular,
and noetherian over C. Now since the varieties V; are stable under the T-action,
one has the associated bundles 7; : F(V;)— B with fibre V;. Note that F(V;) is
a smooth closed subvariety of E(X). For any closed subvariety Z in an algebraic
variety Y we denote by [Z] its rational equivalence class in A,(Y). If Z and Y are
smooth, we denote by [Z] the cohomology class dual to Z in H?>"(Y;Z) as well as
the element in the Chow cohomology group A”(Y') where r is the codimension of
ZinY.

In case property (') also holds, then [Vi[.[V]/] = 0 if j < i, and [Vi][V]] €
H?"(X;Z) = Z is the positive generator with respect to the standard orientation
coming from the complex structure on X. Also, in the Chow ring, [V;][V/] €
A"(X) = Ap(X) = Z denotes the class of the point [V (o;)] which generates Ag(X).
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Lemma 3.1. Let X be a complete nonsingular T-toric variety and suppose that
property (x) holds for an ordering of A(n). Let 7 : E—B be a principal T-bundle
over any topological space. Then:

(i) The bundle w : E(X)—B admits a cohomology extension of the fibre
in singular cohomology with integer coefficients. H*(FE(X);Z) 4s isomorphic to
H*(B;Z) ® H*(X;Z) as an H*(B;Z)-module.

Assume . E— B is complex algebraic where B an irreducible, nonsingular
noetherian variety over C. Suppose that properties (), (x") hold. Then:

(ii) The Chow group A*(F(X)) is isomorphic as an A*(B)-module to A*(B)®
A*(X).

Proof. We shall fix a base point by € B and identify X with the fibre 7—1(bg) C
E(X). (i). Since the X has a CW decomposition with only even dimensional cells,
its integral cohomology is isomorphic to the free abelian group with basis labelled
by its cells. Indeed the dual cohomology classes [V;] € H?%(X;Z), l; = dim(7;),
form a Z-basis for H*(X;Z).

Let nn € A(r) spanned by the primitive vectors along v;,, - ,v;,. Denote by
L(n) the T-equivariant bundle L; @- - -®L;, , where the L; are as defined in §1. The
class [V(n)] € H*"(X;Z) equals the the Chern class ¢,(L(n)) = ¢1(Ly,) - - - e1(L;,).
The bundle £(n) = E(L(n)) over E(X) restricts to L(n) over X. By the natu-
rality of Chern classes, ¢,(£(n)) € H*"(E(X);Z) restricts to ¢, (L(n)) = [V(n)] €
H?"(X;Z). In particular, it follows that [V(7;)],1 < 4 < m, are in the image of
the restriction homomorphism H*(F(X);Z)— H*(X;Z). The lemma follows by
Leray—Hirsch theorem ([17], p. 258).

(ii) Our proof follows that of Lemma 2.8 [1
[10].) Clearly the classes [E(V;)] € A*(E(V;)), 1
a Z basis (namely [V;] € A*(X)). Consider the
A*(X)—A*(E(X)), defined as

B 3 noll) = X w0E0.

1<i<m 1<i<m

1

closely. (See also Lemma 6,
< m restrict to elements of

i
*(B)-linear map ® : A*(B) ®

VAN

To prove (ii) we show that ® is an isomorphism. Suppose ® (> b; @ [V;]) =0 €
A*(E(X)). Assume that k is the smallest integer such that b, # 0. Since for
j >k, V; and V] are disjoint unless j = & in which case they intersect transver-
sally and V;NV/ = V(o) scheme theoretically. We see that [E(V})]-[E(V])] =0 if
J >k, and, E(V}), E(V]) intersect transversally and so E(V;)NE(V]) = E(V (o))
scheme theoretically (where the subvarieties are given the reduced scheme struc-
ture). Therefore, [E(V)].[E(V])] = [E(V(0;))]. Note that since V(o) is a T-fixed
point, E(V(c;)) = E/T = B. Denote by 7; the restriction of 7 : E(X)—B to
E(V(0;)). Also let v; be the inclusion E(V(0;)) C E(X). Note that [E(V (0;))] =
e ([B]) € Au(B(X)).
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Now since ® (Zl<j<m b; ® [Vj]) =0, we get

0[E<v,;>1~<1>( 3 bg@[vj]) — Y wb)EW) - BV

1<j<m 1<j<m
= 7" (br)[E(V(ok))] = 7" (b)) -Les T ([ B])-
Applying 7, and using the projection formula we get
0 =y (7" (bi) - a7 ([B])) = bre - atpum ([B]) = by - mhami ([B]) = by, - [B] = by.

This contradicts our hypothesis that by # 0. It follows that ® is injective.
We now prove surjectivity of ®. One has the filtration B =~ E(Z,,) C --- C
E(Zy) = E(X). We claim that ® defines surjections

o, A"(B)® A" (Z;))— A" (E(Z;))

for each 4,1 < i < m. We prove this by downward induction on ¢. This is trivially
true for ¢+ = m, since in this case F(Z,,) =2 B. Consider the diagram

A*(B) @ A*(Ziy1) — Ax (B)® A*(Z) —> A*(B) @ A*(Y;) —0
D | P; | !
A (E(Ziy1)) —  A(E(Z) — AY(E(Y)) —0

where the top horizontal row is obtained from tensoring with A*(B) the ex-
act sequence A*(Z;11)— A*(Z;)— A*(Y;)—0. The homomorphism A*(B) ®
A*(Y;)— A*(E(Y:)) is an isomorphism by Prop. 1.9, Ch. 1, [13]. Therefore the
surjectivity of ®; follows by a diagram chase. Il

Remark 3.2. It follows from the proof of the above lemma that the classes
c1(L;) € HY(E(X);Z),1 < j < d, generate H*(FE(X);Z) as an H*(B;Z)-algebra.
Similarly, when p : F— B is algebraic and B a complete nonsingular variety, then
[E(V(p;)] € ALE(X)),1 < j < d, generate A*(E(X)) as an algebra over A*(B).

We now turn to the ring structure of H*(E(X);Z) and A*(F(X)).

Recall from §1 that the line bundle L; over X admits a T-equivariant section
s; : X—L; whose zero locus is the divisor V(p;).

Suppose that vj,, -+ ,v;. does not span a cone in A. Then s = (s5,,---,s;,.)
is a nowhere vanishing T-invariant section of L;, @ ---® L; . By taking associated
construction, we see that the bundle £; @© --- @ £; admits a nowhere vanishing
section. This implies that

c1(Ly)--e(Ly,) =0 (3)
in H (E(X);Z).
When p: F—B is algebraic with B nonsingular, we see that
[EV (pi )]+ [E(V (p5.))] = O (4)
in the Chow ring A*(F(X)).
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Now, let v € M be any element. Consider the T-equivariant line bundle L,,
on X corresponding to the principal divisor >, (u,v5)V(p;) = div(x™).
Clearly L, is isomorphic as a T-equivariant bundle to ng j<d Léu’vj ) as both of
these bundles correspond to the same piecewise linear function —u : |A|—R.
(See [12].) Hence E(L,,) = ngjid £§u’vj>. On the other hand the bundle £, :=
E(L,) = E(x™*) is isomorphic to 7*(£1)? - - - 7%(&, )%, where a; = (—u,v;). This
yields the following relations:

> wv)en(Ly) = D (u,vider(n* (&) =0 (5)
1<5<d 1<i<n
in H2(E(X);Z). In the case when p : E—B is algebraic and B is nonsingular
we obtain, in the Chow group A'(E(X)),

Y (o) [EV(p))] = Y (uwider(n*(&))) =0. (6)

1<j<d 1<i<n

Proof of Theorem 1.2 (i), (iii). We first consider part (iii). In view of equations
(4) and (6) above we see that we have a well defined homomorphism of algebras:
¢ R(A*(B), A)—A*(E(X)) defined by ¢(z;) = [E(V(p;))],1 <j < d.

Note that, by remark 3.2, ¢ is surjective. We need only prove that « is 1 — 1.
In view of Theorem 3.1, A*(F (X)) is a free A*(B)-module with basis [E(V ()],
1 <4< m. It follows from Lemma 2.1 (iv) that ¢ is an isomorphism, completing
the proof of 1.2 (iii).

Proof of part (i) is similar. In view of equations (3), (5) above, z; — ¢1(£;)
defines a homomorphism R(H*(B),A)— H*(E(X);Z) which is indeed an iso-
morphism by 2.1 (iv) and 3.1. O

Remark 3.3. If, instead of A being nonsingular, it is only assumed to be simpli-
cial, then the toric variety X is only an orbifold. In this case Lemma 3.1 holds pro-
vided we replace integral homology by rational homology and the Chow group by
the rational Chow group throughout. In this case we note that [V;].[V]] = ¢;[V (0;)]
for a rational number ¢; and [V;][V/] = 0 for j > k. Computing the integral coho-
mology or Chow ring when the fibre X is only simplicial seems to be much more
difficult. When X is a weighted projective space Al Amrani [2] has computed the
integral cohomology of F(X) in a more general setting.

4. K-theory

In this section we prove parts (ii) and (iv) of the main theorem.

In view of our assumption in 1.2 (iv) that both the base space B and the fibre
X are smooth, the Grothendieck ring K°(E(X)) of algebraic vector bundles may
be identified, via the duality isomorphism, with Grothendieck ring Ko(E(X)) of
coherent sheaves on F(X). We shall denote either of them by K(E(X). Also
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if a smooth variety Y has an algebraic cell decomposition the forgetful map
K°(Y)—K(Y) is an isomorphism of rings. In particular, this holds when X
is a complete nonsingular toric variety satisfying property () (see §1).

Although the K ring of a complete toric variety has been studied earlier, we
could not find in the literature its description in terms of generators and relations.
We obtain such a description in Proposition 4.3 below. When X is the projective
space, such a description is due to Adams [1]. The case when X is a weighted
projective space is more recent, due to Al Amrani [3]. We refer the reader to [8],
[14] for other descriptions of the K ring as well as the equivariant K ring of a toric
variety.

We begin with the following lemma:

Lemma 4.1. Suppose (1, - ,( are complex line bundles over a finite CW com-
plex Y which has cells only in even dimensions such that H*(Y;Z) is generated
by c1(C1), -+ ,c1(¢G) € H2 (Y Z). Then the ring K*(Y) = K(Y) is generated as
a ring by [G1],---,[&] € K(Y).

Proof. Let f; + Y—PV be a classifying map for the bundle ¢, 1 < ¢ < r
where N > 1/2(dim(Y’)). Consider the map f : Y—(P")" which is defined as
fy) = (fi(y):--- f(y)). Then f*: H*((PN)";Z)—H*(Y;Z) is easily seen to
be a surjection. By the naturality of the Atiyah-Hirzebruch [6] spectral sequence it
follows that f* induces a surjection of K groups K((P")")—K(Y). Recall from
[1] that K(PN) = Z[z]/{(zV 1) where 2 = [w] — 1, w being the class of the tauto-
logical line bundle on PV. Hence K((PN)") = Z[z1,---,2]/(z} T, 1 <i < 7).
Since f* is ring homomorphism and since f*(z;) = [(;] — 1, the lemma follows.

(|

Lemma 4.2. Suppose that Y is a complete nonsingular variety over C which
has an algebraic cell decomposition and that H*(Y;Z) is generated as a ring by
H?(Y;Z). Then there exist algebraic line bundles Ci,--- ,Ckx over Y such that
K(Y) is generated as a ring by [(],1 < i < k. In particular, the forgetful map
0 K(Y)—K(Y) is an isomorphism.

Proof. Since Y has an algebraic cell decomposition, the Chow ring is isomorphic
to the cohomology ring H*(Y';Z), which is isomorphic as an abelian group to Z™
where m is the number of cells in Y.

Since A*(Y) is torsion free, it follows that K(Y') is also torsion free. One has
the “topological filtration” on K(Y) and Gr(K(Y)) denotes the associated graded
group of K(Y). See 15.1.5 [13]. Since the map ¢ : A*(Y)—Gr(K(Y)), defined
as [V] — [Oy], is a surjective homomorphism of groups, it follows that K(Y) is a
finitely generated abelian group of rank at most m.

Let ay,---,a; be a Z-basis for H*(Y;Z). Let Dy, ---, D be divisors on Y’
such that [D;] € AY(Y) maps to a; € H*(Y;Z), 1 < i < k. Since the first Chern
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class of O(D;) is a; € H*(Y;Z), for 1 < i < m, it follows that [O(D;)] € K(Y)
generate K(Y') as a ring. Thus, the forgetful homomorphism 0 : (Y)—K(Y) is
surjective.

Since the K(Y) is a free abelian group of rank m, it follows that 6 is an
isomorphism. In particular, K(Y) is generated as ring by [O(D;)] € K(Y), 1 <
i < k. O

Examples of varieties which satisfy the hypothesis of the above lemma are
(complete nonsingular) toric varieties X (A) where A satisfies (), flag varieties
G/ B, where G is semi simple and B C G a Borel subgroup, and smooth Schubert
varieties in G/B.

Our next result gives a description of the K-ring of X. We keep the notations
of the introduction.

Recall the definition of R from §1.

Proposition 4.3. Let X = X(A) be a nonsingular complete toric variety where
A satisfies the property (x). The following relations hold in K(X) and K(X):

(1) [Ovp ] [Ovip, )] =0 if vy, -+ ,v5. do not span a cone of A,

(ii) ngjgd[[’j]<u’uj> =1,

(iii) Set r; = 1 € Z, 1 <4 < n. The homomorphism of rings 6 : R =
R(Z,A)—K(X) = K(X) defnied by z; — [Oy(,,] = (1 — [Ly]) 4s an isomor-
phism.

Proof. Recall that [Oy|.[Oz] = [Oynz| if Y,Z are closed irreducible subvari-
eties of X which meet transversally. Relation (i) follows from the fact that
Vipj)n---nV(p;) =0 if vj, - ,v; does not span a cone of A. Since for

any w € M we have (—u,v;) = >, (4, vp)¢p(vy), it follows that one has a

T-equivariant isomorphism of bundles [T, o Lé,“’vp> >~ [, where L, is the line
bundle corresponding to the piecewise linear function —u : |A| = Ng—R. But
L,, is isomorphic to the trivial line bundle and so (ii) follows.

Now the section s; : X — L, vanishes to order 1 on V(p;). Hence we have an
exact sequence of coherent sheaves for 1 < j < d: O—)L}/—>OX —>(9V(pj)—>0.
Thus [Oy(,,)] = (1 =[LY]) in K(X), i.e., (1=[Oy(,]) = L} . Hence z; — [Oy, ]
defines a ring homomorphism 6 : R—K(X). Since K(X) is free abelian of rank
m and since by Lemma 2.2 R is generated by m elements z(7;),1 < i < m, it
follows that € is an isomorphism, completing the proof. O

Remark 4.4. Suppose 7, -- ,n; are line bundles over Y such that their Whit-
ney sum 7 = @1<i<x? admits a nowhere vanishing section, then, applying the
v*F-operation, we obtain v*(n — k) = 0. On the other hand, ~v*([y] — k) =
Y (@1<i<r([m:]—1)) = [1([n:] —1). Hence, [](1—[n:]) = 0. Thus, one can avoid the
use of the coherent sheaves in the proof of (i) above in the case of K(X(A)) since
we know that the section s = (sj,---,s; ) of the bundle @©1<,<,L; is nowhere
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vanishing whenever vj,,-- - ,v; does not span a cone of A.

Corollary 4.5. (i) The elements [Oy ()] € K(X),1 < i < m, form a Z-basis for
K(X).

(ii) Let L(7;) = [1}0,er, Ly Jor 1 < i < m. Then [L(7)],1 < i < m, form a
Z-basis for K(X).

Proof. This follows from the proof of 4.3 (iii). O

Recall that £; = FE(Lj;) is the line bundle over F(X) with total space £ xp Lj;.
Denote by £(7;) the line bundle E(L(7;)) = £;, ® --- ® L;_, where v; ,--- ,v;,
are the primitive vectors along the edges of 7;. In view of Proposition 4.5 (ii),
the restriction of the bundles £(7;), 1 <4 < m, to the fibre X form a Z-basis for
K*(X) = K°X). Hence, by Theorem 2.7.8 [5], it follows that K(E(X)) is a free
K*(B)-module with basis £(7;), 1 <4 < m. Suppose vj,,---,v;, do not span a
cone of A. The T-equivariant section s = (s;,,--- ,s;.) of L @---®L; is nowhere
vanishing and extends to a nowhere vanishing section F(s) : B(X)—L;, & - ®
L;, . Hence by remark 4.4,

II a-2;,)=0 (7)

1<p<r

Now assume that p : F——B is algebraic and B irreducible, nonsingular and
noetherian over C. Since the T-equivariant sections s; are algebraic, equation (7)
holds in K(E(X)) as well.

For any v € M, the T-equivariant isomorphism of bundles ng j<d L;u’uj> = Ly
yields an isomorphism of vector bundles [], <j<d £§“’”"> =~ F(L,). Since E(L,) =

—(u,vs) : o

ngign & , We get

[T & =) (8)

1<j<d

where &, = ngign 55“’””.
We are now ready to prove the remaining parts of 1.2.

Proof of Theorem 1.2 (ii), (iv). In view of equations (7) and (8), one has a well-
defined homomorphism of K(B)-algebras ¥ : R = R(K*(B),A)—K*(E(X))
defined by z;—(1 — [£;]),1 < j < d.

Since the z(7;),1 < ¢ < m span R by Lemma 2.2 (iv) and since K*(FE(X)) is
a free K*(B) module of rank m, it follows that ¥ is an isomorphism, completing
the proof of (ii).

Now let B be an irreducible, nonsingular, noetherian variety over C and let
p : BE—B be algebraic. Equations (7) and (8) still hold in K(E(X)) since
the equivariant sections s; are algebraic. Proceeding as above, we see that to
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complete the proof of 1.2 (iv), we need only show that [Ogx;y], 1 < i < m,
form a basis for L(F(X)) as a K(B)-module, where V; stands for V(r;). Let
¢ K(B) ® K(X)—K(E(X)) be the L(B)-linear map defined by >, ... b; ®
[Ov,] = Y1 <icm T ) [Opvpyl, 1 < i < m. In view of 4.5 (i), we need only show
that ® is an isomorphism.

We first prove surjectivity of . This is proved by induction on the dimension
of B, assuming only that B is noetherian over C. Without loss of generality we
may assume that B is irreducible. If B is a point, then the result is obvious.
Suppose that dim(B) > 0. Let U be an affine open set in B over which the T-
bundle p : F— B is trivial and let Z = B\ U (with its reduced scheme structure).
Note that Z may not be irreducible but dim(Z;) < dim(B) for each irreducible
component Z;, of Z. By inductive hypothesis, Ko(Z) ® K(X)—K(x~1(Z)) is
surjective homomorphism of abelian groups. Consider the commuting diagram of
abelian groups and their homomorphisms:

Ko(Z)® K(X) — Ko(B)® K(X) — Ko(U) ® K(X) — 0

| ! |
Ko(r7H(2)) — Ko(BE(X)) — Ko(x7'(U)) —0

where the horizontal rows are exact. The top horizontal row is got by tensoring
with K(X) the exact sequence Ko(Z)—Ky(B)—Ko(U)—0. By Prop. 2.13,
Ch. II, (Exp. 0-App.), p. 60, [7], the homomorphism K(U) ® K(X)—K (7~ (U))
is surjective. It follows that the homomorphism & : Kq(B) @ K(X)—Ko(E(X))
is a surjection.

Now we prove that ® is a monomorphism. Suppose ® (Z 1<i<m bi[OVi]) =0
where b; is non-zero for some i. Let p > 1 be the least so that b, # 0. Then,
writing V, for V(7,), we have

0= [OE(VP/)]' ( Z T (b;) - [OE(V;')]) = Z 7T*(bz‘)[OE(VP/)mE(\Q))]

1<i<m p<i<m

=1 (bp) [Opw (o))
since A satisfies property (x').
Denote by 7, the restriction of = to E(V (0p)) and by ¢, the inclusion E(V (o))
C E(X). Then the homomorphism et : K(E(V(0p)))—K(E(X)) maps
Opv ()] =1 € K(E(V(ay))) to [Opw(s,)] € K(E(X)). Also, 7, is an isomor-
phism of varieties. Therefore, applying 7, to the expression 0 = 7*(b,)[Op(v (s,))]
and using the projection formula (§15.1, [13]) we get

0 = 1 (7" (bp) OB (o,)]) = bp-Tatps ([OB(v (o, )])
= bp'ﬂp*([OE(V(vp))]) = by[Op] = bp.
This contradicts our choice of p. Hence we conclude that ® is a monomorphism.
O

Concluding remark 4.6. Parts (iii) and (iv) of the main theorem also hold



554 P. Sankaran and V. Uma CMH

when the base field C is replaced by any algebraically closed field k. Namely, let
B be an irreducible nonsingular noetherian variety over k and let 7 : E——B be
a principal T' bundle where T' = Spec(k[M]). Since any toric variety is defined
over the integers the fan A defines a nonsingular complete k-scheme X = X(A).
Again F(X)— B is a Zariski locally trivial bundle with fibre X. Then IC(E(X))
and A*(F(X)) are isomorphic to R and R respectively.
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