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The effective surjectivity of mod / Galois representations of
1- and 2-dimensional abelian varieties with trivial endomor-
phism ring

Takashi Kawamura

Abstract. Mod I Galois representations of 1- and 2-dimensional abelian varieties with trivial
endomorphism ring are surjective for sufficiently large prime I as Serre proved. But he did not
give an effective lower bound of Iq such that they are surjective for I > Iq. We supply an effective
evaluation of Iq by an "elementary" proof of the surjectivity. The proof uses the Masser—Wüstholz
theorem and Kleidman and Liebeck's classification of the maximal subgroups of GL2(F;) and
GSP4(F[).
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1. Introduction and main results

Let A be a principally polarized abelian variety of dimension n over an algebraic
number field K. For a prime / let A\ be the group of /-division points of A,
which is a vector space of dimension 2n over F;. Let \i\ be the group of /-th
roots of unity in the algebraic closure K of K, and let e; : Gk '¦= Q&\(K/K) —>

F;* Aut(/x;) be the cyclotomic character. As A is principally polarized, the Weil
pairing W : Ai x Ai —> /x;, written additively, defines a symplectic form with 2n

vanables, satisfying W(a(P), a(Q)) ei(a)W(P, Q) for (P, Q) £ At x Ai and
o" G Gk- Hence a Galois representation pi : Gk —? GSp2n(F;) is obtained, where

GSp2n(Fi) is the group of symplectic similitudes of dimension 2n with entries in
F i.

Serre [11] proved that when n 2, 6 or odd, and End^ (A) Z, pi is surjective
for sufficiently large /. The proof uses Faltings' theorem and standard theorems of
algebraic groups. Though the result is general, it does not give an effective lower
bound of Iq such that pi is surjective for I > Iq.

Masser and Wüstholz [5] give an effective estimate of Iq when n=\ using their
isogeny estimates [4].
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Le Duff [3] gives a sufficient condition for the surjectivity of pi when n 2

under some assumption on the reduction of abelian varieties. He also suggested
that the explicit calculation of the constants in the refinement of Faltings' theorem
by Masser and Wüstholz [8] should enable one to evaluate Iq effectively. But no
details are given.

The purpose of this paper is to supply an "elementary" proof of the surjectivity
for n 1 or 2, which also gives an effective evaluation of Iq The proof uses the
Masser-Wüstholz theorem [8] and Kleidman and Liebeck's [2] detailed results
about the classification of the maximal subgroups of the finite classical groups,
especially of GSp2(Fi) ^ GL2(Ft) and GSp4(Fi).

Let D{K) be the discriminant of K, and let h{A) be the Faltings height of A,
which is invariant under field extensions.

Main Theorem 1. Let A E be an elliptic curve over an algebraic number field
K of degree d withEndR(E) Z. If I > max(\D(K)\, C(l)[max{48d, /i(£)}]r(1)),
then Pi{Gk) GL2(Fi), where C(l) is a constant C(n) in Theorem 3 of Section 3
when n 1, and t(1) is the constant t given in Theorem 1 of Masser and Wüstholz

[8] when n 1. Explicitly t(1) 2285 • 34 • 52 • 136! x (2276 • 33 • 5 • 136! + I)7 +
21073 • 3 • 17 • 312 • 41 • 528! x (21061 • 17 • 31 • 528! + I)15 < 1025000.

Main Theorem 2. Let A be a two-dimensional principally polarized abelian

variety over an algebraic number field K of degree d with End^-(v4) Z. If
I > m&x(\D(K)\, C(2)[max{3840d, h{A)}]T^), then Pl{GK) GSp4(Fi), where

C(2) is a constant C(n) in Theorem 3 of Section 3 when n 2, and t(2) is the

constant t given in Theorem 1 of Masser and Wüstholz [8] when n 2. Explicitly
t(2) 21074 • 17 • 312 • 528! x (21061 • 17 • 31 • 528! + I)15 + 24183 • 36 • 73 • 11 • 23 •

2080! x (24166 • 33 • 7 • 11 • 2080! + I)31 < 10240000.

2. Enumeration of maximal subgroups of GS'p4(¥i)

We enumerate maximal subgroups of GSp4(Fi) in this section.

Classically, Mitchell determined the maximal subgroups of Sp4(Fi) whose
orders are prime to / [9], and then all the maximal subgroups of Sp4{F{) [10]. But he

gave only their orders and geometric properties, and did not give their structure.
More recently, Aschbacher [1] obtained the classification theorem of the maximal

subgroups of the finite classical groups as follows.

Theorem 1. Let G be a finite almost simple classical group over a finite field F
with its socle Go, and let H be a subgroup of G not containing Go- Then either
H is contained in a member of C(G) U8=1Cj(G) or H G S (G), where Ct(G)
is the collection of subgroups of G which stabilize something and S(G) is that
satisfying the irreducibility conditions. C\(G) are the stabilizers of totally singular
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or non-singular subspaces of V, which is the vector space over F associated with
G. C2(G) are the stabilizers of direct sum decomposition of V into subspaces of
the same dimension. C%(G) are the stabilizers of extension fields of F. C^{G) are
the stabilizers of tensor product decompositions of V into two subspaces. C$(G)
are the stabilizers of subfields of F. Cq(G) are the normalizers of symplecüc-
type r-groups in absolutely irreducible representations. Cr(G) are the stabilizers of
tensor product decompositions ofV into multiple subspaces of the same dimension.
Cg(G) are classical subgroups. The subgroup H of G lies in S(G) if and only if
the following hold.

(a) The socle S of H is a non-abelian simple group.
(b) If L is the full covering group of S, and if p : L —> GL(V) is a representation

of L such that p(L) S (mod scalars), then p is absolutely irreducible.
(c) p(L) can not be realized over a proper subfield of F'.
(d) If p(L) fixes a non-degenerate quadratic form on V, then Go PQn(F).
(e) If p(L) fixes a non-degenerate symplectic form on V, but no non-degenerate

quadratic form, then Go PSpn(F).
(f) If p(L) fixes a non-degenerate unitary form on V, then Go PSUn(F).
(g) Ifp(L) does not satisfy the conditions in (d), (e) or (f), then Go PSLn(F).

Kleidman and Liebeck [2, p. 57, Main Theorem] decided the structure of the
members of C(G), their maximality conditions, and their overgroups in C(G) U

S(G).
By applying Theorem 1 and [2, Main Theorem] to GL^i^i) and GSp^Fi), we

enumerate their maximal subgroups.

Proposition 1. When I > 5, a maximal subgroup of GL2{F{) is conjugate to one

of the following five subgroups.
(1) SLi2(Fi) x (maximal subgroup of (Si)),
(2) Borel subgroup,

(3) normalizer of the split Cartan subgroup (Fi* x Fi*) x S2,

(4) normalizer of the nonsplit Cartan subgroup Fp* • Z2, and
(5) Q8 • As x ($!> GL2(F3) x (Ji),

where S\ is the element expressed as diag(yU, 1) with respect to a basis of Fi2, /j,

being a generator of F/*. For groups G and H, G • H denotes the extension of G
by H. Zi is the cyclic group of order 2, Q$ is the quaternion group, and Dn is
the dihedral group of order n.

Proposition 2. When I > 3, a maximal subgroup of GSp±(Fi) is conjugate to

one of the following seven subgroups.
(1) Spi{F{) x (maximal subgroup of {Ô2)),

(2) maximal parabolic subgroup,
(3) (SX2(F,) x SX2(F,)) x S2 x (ö2),

(4) GL2{Fi)» Z2 x (ö2),
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(5) SL2(FP) x (52),
(6) GU2(Fp) x (ö2), and
(7) D8 o Q8 • O4-(F2) x (52),

where 52 is the element expressed as diag(^i, /x, 1, 1) with respect to a symplectic
basis of F]A. o denotes the central product, and O4~ is the ^-dimensional orthogonal

group with Witt defect 1.

Proof. Proposition 1 is well-known, so we prove only Proposition 2. The socle Go

of G GSp4(F[) is Sp4(F[). Therefore the maximal subgroup containing Go is

given by (1). If Go <jL H, then Go n H is contained in a subgroup on the table [2,

p. 72, Table 3.5.C] of Kleidman and Liebeck.
By applying Theorem 1 and [2, Main Theorem] to Sp4(F[), we see from [2,

Table 3.5.C] that the set S(Sp4(Fi)) is empty, and C^Sp^Fi)) (i 4, 5, 7, 8)
are also empty. The same table shows that a maximal subgroup of Sp4(Fi) is

conjugate to a maximal parabolic subgroup in Ci(Sp4(Fi)), (SL2(Fi) xSL2(Fi)) x
S2 and GL2(F;) • Z2 in C2(SPi(Fi)), SL2(FP) and GU2(FP) in C3(SPi(Fi)), or
D8oQ8» O4-(F2) in C6(Sp4(Fi)).

Next by applying Theorem 1 and [2, Main Theorem] to GSp4(Fi), we find
that a maximal subgroup of GSp4(Fi) other than (1) is conjugate to a maximal
parabolic subgroup of GSp4(F[) or (a maximal subgroup of Sp4(F[)) x (S2), that
is, (3), (4), (5), (6) and (7). D

Remark. Explicit realization of these subgroups in GSp4(Fi) {gfJg £i(g)J\
g G GL4(F;), £i{g) G F;*} is as follows. Here

j _ [O2 -E2
\E2 O2

where O2 is the 2x2 zero matrix and E2 is the 2x2 identity matrix.

(3)

)\Oo B
A °2 '

A, B G SL2(Fi) } x

(4)

A O2

O2 (A*)t\-i 4eGI2(F,)
O2 E2

where aj, 6j, c4 and d4 G F; for « 1 and 2 such that (a-i + a2A)(di + d2A) —

(&i + 62A)(ci + c2A) 1, and A G F,2* such that A + A' 0.
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(6)

A B
X2B A

where A and B G M2(F,), A*A - X2BtB E2 and AlB - BlA O2.

(7)

a b ".o4
where a and 6 in F; are chosen such that a?+b2 — 1, and (g) denotes the Kronecker
product.

Remark. The necessary properties of the subgroups are as follows.
(a) It stabilizes a positive-dimensional subspace of Vn := F;2n.
(b) It has a subgroup satisfying (a) whose index is bounded independently of /.

(c) Its commutant is larger than F;.
(d) It has a subgroup satisfying (c) whose index is bounded independently of /.

(2) satisfies (a), (3) and (4) satisfy (b), (5) and (6) satisfy (c), and (7) satisfies

(d).

3. Proof of Main Theorems

Masser and Wüstholz [7, Theorem II] (see also the note at the end of [7] estimated
the degree of an isogeny between abelian varieties over a number field effectively.

Theorem 2. Given positive integers n and d, there are constants n(n) and C(n)
depending only on n with the following property. Let A and A1 he abelian varieties

of dimension n defined over a number field K of degree d. Then if they are
isogenous over K, there is an isogeny over K from A to A' of degree at most

Using Theorem 2, they [8, Theorem 1] (see also the note at the end of [8])
refined Faltings' theorem in the following effective way.

Theorem 3. Given positive integers n and d, there are constants r(n) and C(n)
depending only on n with the following property. Let A be an abelian variety of
dimension n defined over a number field K of degree d. Then there is a positive
integer M < C(n)[max{(i, h(A)}]T(n> such that for any prime I the natural map
EndxiA) —> EndeK{A{) has cokernel killed by M.

Corollary. Suppose M as m Theorem 3. Then for any prime I not dividing M
the natural map Endif(^4) ®zFi —> EndoK(Ai) is an isomorphism.
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Explicitly r(n) n2{A(8n) + 3«(2n)} by [8, Section 6], where

A(n) 16n3(2n - l)k(n){2nk(n) + I}™"1

by [6, Section 5], k(n) being (2n2 + n - l)4n(2n+1){n(2n + 1)}!, and K(n)
10n3A(8n) + 32n2/x(8n) by [7, Section 7], /x(n) being A(n)/(4n) by [6, Sec&ora 6],

Let 0 be a primitive Z-th root of unity. If K n Q(0) Q, then e; is surjective.
The condition on Z is given by the following Lemma.

Lemma. If I > \D{K)\, then K n Q(0) Q.

Proof. The discriminant of Q(0), £>(Q(0)), is ^~2 wnen Z 2 or 1 (mod 4),
and —Z'~2 when Z 3 (mod 4). The discriminant of KDQ(Q) divides the greatest
common divisor of D{K) and D(Q(Q)), which is 1 if Z > \D{K)\. By Minkowski's
theorem K n Q(0) Q

Proof of Main Theorem 1. We prove that Gi := pi{Gk) is not contained in any
maximal subgroups of GZ^F;) in Proposition 1.

As Z > \D{K)\, £i is surjective by Lemma, so that

Gi (jL SIi2(Fi) x (maximal subgroup of (#i)).
The Borel subgroup stabilizes a one-dimensional subspace T^ of V\. If G; is

contained in it, then there is a if-isogeny / : E/W —> i?/Vi i? the degree
of which is Z. By Theorem 2 there is a if-isogeny # : E —> S/T^ the degree of
which, say do, is at most C(l)[max{d, Zi(i?)}]K(1^. The degree of the composition
if-isogeny g o f is dol. On the other hand, as EndR(E) Z, EndK(£;/M/) Z.
Thus doZ is the square of an integer, say m. So Z divides m, and Z divides do,

contradicting the inequality Z > do-

Next if G; C (F;* x F;*) x S2, then there exists a homomorphism tpi from G; to
52. Let Li be ifker(VloW)) then [Li : if] < 2, and ,Oi(GLl := Gal(if/Li)) C F;* x
(Ji). ThusEndGLi(S;) D F;2. On the other hand, as Z > G(l)[max{2d, Zi(S)}]T(1),
EndGL (i?;) EndLl(E) (g)Z F; F; by Corollary. This is a contradiction.

If Gi C F;2* • Z2, then there exists a quadratic extension L2 of K such that
ft(GL2 := Qsl(K/L2)) C F,2*. Thus EndGli2(^) D F,2. On the other hand, as

Z > G(l)[max{2d,/i(£;)}]T(1), EndGL2(Ei) EndL2(E) <g)Z F; F; by Corollary.
Hence a contradiction.

Lastly assume that Gi C GL2(F3) x (Si). As e; is surjective by Lemma,
Gt D (ox). Let_L3 be if(w) 1«<5i») then [L3 : if] < |GL2(F3)| 48, and

ft(GL3 := Gal(if/L3)) (ôj). Thus EndGli3(^) D F;4. On the other hand,

as Z > G(l)[max{48d, h{E)}]T^\ EndGh3{El)= EndL3{E) <g)Z F; F; by Corollary.

This is a contradiction.

Proof of Main Theorem 2. We prove that G; is not contained in any maximal
subgroups of GSp4(Fi) in Proposition 2.
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Gi <f_ Spi(Fi) x (maximal subgroup of (#2)), f°r £i is surjective.
Maximal parabolic subgroups stabilize a one- or two-dimensional subspace of

V2. So G1 is not contained in them similarly as the case of the Borel subgroup in
Mam Theorem 1.

NextifG; C (SL2(Fi)xSL2(Fi))x<S2xi(ô2), then there exists a homomorphism
y2 from Gi to S2. Let L4 be Kker(-^°P'\ then [L4 : K] < 2, and pi{GLi :=
Gal(if/L4)) C (SL2(Fl)xSL2(Fl))x~(S2). ks(SL2(Fl)xSL2(Fl))x(52) st&hW^es
two-dimensional subspaces of V2, a contradiction arises similarly as the case of the
Borel subgroup in Main Theorem 1.

Gi <£ GL2(Fi)»Z2 x (ö2) similarly as the case of (SL2(Fi) xSL2(Ft)) x>S2 x (62),
for GL2{Fi) x (S2) stabilizes two-dimensional subspaces of V2.

If Gi C SL2(Fi2) x (S2) or Gi C GU^F,?) x (J2), then G; commutes with Fp.
On the other hand, as / > G(2)[max{d, h{A)}]T{2\ EndGK (A,) ^ EndK(A)<g)ZF;
F; by Corollary. Hence a contradiction.

G; (f. DsoQs»C>4~(F2) x ((52) similarly as the case of GL2(F3) x (Si) in Main
Theorem 1, for |£>8 oQ8. O4-(F2)| 3840.

Remarks, (a) The effective dependence of C(n) on the dimension n remains an
interesting problem [7].

(b) When dim A 3, the classification of maximal subgroups of GSpe(Fi) is
also known ([1] and [2, pp. 57 and 72]). When / > 5, they are

(1) Spe(Fi) x (maximal subgroup of (S3)),
(2) maximal parabolic subgroup,
(3) SL2(F{) x SP4(F{) x (Ö3),

(4) (SX2(F,) x SL2(Ft) x SL2(Ft)) x S3 x (<53),

(5)GL3(F;).Z2x(<53),
(6) SL2(Fl3) x (<53),

(7) GU3(Fi2) x (<53), and

(8)S'L2(Fi)oO3(Fi)x((53),
where S3 is the element expressed as diag(/x, /x, /x, 1,1,1) with respect to a sym-
plectic basis of F;6. Explicit realization of the subgroups are similar to the two-
dimensional case. (2) and (3) satisfy the property (a) of the remark after Proposition

2, (4) and (5) satisfy (b), and (6) and (7) satisfy (c), so the first seven are
handled similarly as the 2-dimensional case. Only the case (8) seems to be difficult
to treat.
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