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The effective surjectivity of mod [ Galois representations of
1- and 2-dimensional abelian varieties with trivial endomor-
phism ring

Takashi Kawamura

Abstract. Mod [ Galois representations of 1- and 2-dimensional abelian varieties with trivial
endomorphism ring are surjective for sufficiently large prime [ as Serre proved. But he did not
give an effective lower bound of ly such that they are surjective for [ > lg. We supply an effective
evaluation of {g by an “elementary” proof of the surjectivity. The proof uses the Masser—Wiistholz
theorem and Kleidman and Liebeck’s classification of the maximal subgroups of GLs(F;) and
GSpy(Fy).
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1. Introduction and main results

Let A be a principally polarized abelian variety of dimension n over an algebraic
number field K. For a prime [ let A; be the group of [-division points of A,
which is a vector space of dimension 2n over F;. Let p; be the group of [-th
roots of unity in the algebraic closure K of K, and let ¢, : G = Gal(K/K) —
F,* =2 Aut(yy) be the cyclotomic character. As A is principally polarized, the Weil
pairing W . A; x A; — py, written additively, defines a symplectic form with 2n
variables, satisfying W (o (P), o(Q)) = ei(a)W (P, Q) for (P, Q) € A; x A; and
o € Gg. Hence a Galois representation p; : Gxg — GSpa,(F;) is obtained, where
GSpan(Fy) is the group of symplectic similitudes of dimension 2n with entries in
F,.

Serre [11] proved that when n = 2, 6 or odd, and Endz(A) = Z, p; is surjective
for sufficiently large I. The proof uses Faltings’ theorem and standard theorems of
algebraic groups. Though the result is general, it does not give an effective lower
bound of /g such that p; is surjective for [ > ly.

Masser and Wiistholz [5] give an effective estimate of [y when n = 1 using their
isogeny estimates [4].
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Le Duff [3] gives a sufficient condition for the surjectivity of p; when n = 2
under some assumption on the reduction of abelian varieties. He also suggested
that the explicit calculation of the constants in the refinement of Faltings’ theorem
by Masser and Wiistholz [8] should enable one to evaluate [y effectively. But no
details are given.

The purpose of this paper is to supply an “elementary” proof of the surjectivity
for n = 1 or 2, which also gives an effective evaluation of /5. The proof uses the
Masser—Wiistholz theorem [8] and Kleidman and Liebeck’s [2] detailed results
about the classification of the maximal subgroups of the finite classical groups,
especially of GSpa(F;) =2 GLa(F;) and GSps(F).

Let D(K) be the discriminant of K, and let h(A) be the Faltings height of A,
which is invariant under field extensions.

Main Theorem 1. Let A= F be an elliptic curve over an algebraic number field
K of degree d withEnd g (E) = Z. If | > max(|D(K)|, C(1)[max{48d, h(E)}|"™"),
then pi(Gr) = GLo(Fy), where C(1) is a constant C(n) in Theorem 3 of Section 3
when n =1, and 7(1) is the constant T given in Theorem 1 of Masser and Wiist-
holz [8] when n = 1. Erplicitly (1) = 2285 .3%.52.136! x (227°.3%.5. 136! +1)" +
21073 .3.17.31% . 41 - 528! x (21961 17 81 - 528! + 1)15 « 10?5000,

Main Theorem 2. Let A be a two-dimensional principally polarized abelian
variety over an algebraic number field K of degree d with Endg(A) = Z. If
! > max(|D(K)|, C(2)[max{3840d, h(A)}|"®), then p)(Gk) = GSps(F,), where
C(2) is a constant C(n) in Theorem 3 of Section 3 when n = 2, and 7(2) is the
constant T given in Theorem 1 of Masser and Wiistholz [8] when n = 2. Explicitly
7(2) = 21974 . 17. 312 . 528! x (21061 .17.31 . 528! 4 1)15 - 24183 . 36 .78 . 11.23.
2080! x (24166.33 .7.11-2080! 4 1)3! < 10240000,

2. Enumeration of maximal subgroups of G'Sp,(F;)

We enumerate maximal subgroups of GSp4(F;) in this section.

Classically, Mitchell determined the maximal subgroups of Sp4(F;) whose or-
ders are prime to [ [9], and then all the maximal subgroups of Sp4(F,) [10]. But he
gave only their orders and geometric properties, and did not give their structure.

More recently, Aschbacher [1] obtained the classification theorem of the maxi-
mal subgroups of the finite classical groups as follows.

Theorem 1. Let G be a finite almost simple classical group over a finite field I
with its socle Go, and let H be a subgroup of G not containing Go. Then either
H is contained in a member of C(G) = U;_,Ci(G) or H € S(G), where C;(G)
is the collection of subgroups of G which stabilize something and S(G) is that
satisfying the irreducibility conditions. C1(G) are the stabilizers of totally singular
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or non-singular subspaces of V', which is the vector space over I associated with
G. C3(G) are the stabilizers of direct sum decomposition of V' into subspaces of
the same dimension. C3(G) are the stabilizers of extension fields of F'. C4(QG) are
the stabilizers of tensor product decompositions of V into two subspaces. Cs(G)
are the stabilizers of subfields of I'. Cg(G) are the normalizers of symplectic-
type T-groups in absolutely irreducible representations. Cr7(G) are the stabilizers of
tensor product decompositions of V' into multiple subspaces of the same dimension.
Cs(Q) are classical subgroups. The subgroup H of G lies in S(G) if and only if
the following hold.

(a) The socle S of H is a non-abelian simple group.

(b) If L s the full covering group of S, and if p: L — GL(V) is a represen-
tation of L such that p(L) = S (mod scalars), then p is absolutely irreducible.

(c) p(L) can not be realized over a proper subfield of F.

(d) If p(L) fizes a non-degenerate quadratic form on 'V, then Go = PQ,(F).

(e) If p(L) fizes a non-degenerate symplectic form on V| but no non-degenerate
quadratic form, then Gy = PSp,(F).

(f) If p(L) fizes a non-degenerate unitary form on V, then Gy = PSU,(F).

(¢) If p(L) does not satisfy the conditions in (d), (e) or (f), then Go = PSL,(F).

Kleidman and Liebeck [2, p. 57, Main Theorem] decided the structure of the
members of C(G), their maximality conditions, and their overgroups in C(G) U
S(G).

By applying Theorem 1 and [2, Main Theorem| to GLo(F;) and GSp,(F)), we
enumerate their maximal subgroups.

Proposition 1. When |l > 5, a mazimal subgroup of GLo(F}) is conjugate to one
of the following five subgroups.

(1) SL2(F;) x (mazimal subgroup of (61)),

(2) Borel subgroup,
(3) normalizer of the split Cartan subgroup = (F;* x F;*) x So,
(4) normalizer of the nonsplit Cartan subgroup = Fj2* @ Zy, and

(5) Qg ® Dg x (01) =2 GLo(F3) x (1),
where &1 4s the element expressed as diag(p, 1) with respect to a basis of F)?, p
being a generator of Fy*. For groups G and H, G e H denotes the extension of G
by H. Zy is the cyclic group of order 2, (Js is the quaternion group, and D, is
the dihedral group of order n.

Proposition 2. When | > 3, a mazimal subgroup of GSps(F}) is conjugate to
one of the following seven subgroups.

) Spa(Fy) x (mazimal subgroup of (d2)),

) mazimal parabolic subgroup,

) (SLQ(Fl) X SLQ(F[)) Dal SQ A <(52>,

4) GLQ(F[) [ ] Z2 el <(52>,

1
2
3

(
(
(
(
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(5) SLa(Fp2) x (d2),

(6) GUa(Fj2) x (d2), and

(7) Dg o QS [} 047(F2) Pl <52>,
where 02 is the element expressed as diag(p, p, 1, 1) with respect to a symplectic
basis of Fy*. o denotes the central product, and O4~ is the 4-dimensional orthog-
onal group with Witt defect 1.

Proof. Proposition 1 is well-known, so we prove only Proposition 2. The socle Gg
of G = GSpa(F)) is Sps(F;). Therefore the maximal subgroup containing Gy is
given by (1). If Gy ¢ H, then Gy N H is contained in a subgroup on the table [2,
p. 72, Table 3.5.C] of Kleidman and Liebeck.

By applying Theorem 1 and [2, Main Theorem] to Sp4(F;), we see from [2,
Table 3.5.C] that the set S(Sps(F;)) is empty, and C;(Sps(Fy)) (i =4, 5, 7, 8)
are also empty. The same table shows that a maximal subgroup of Sp4(F;) is
conjugate to a maximal parabolic subgroup in C1(Spa(F¥;)), (SLa(F;)x SLa(F;)) x
SQ and GLQ(F[) L] ZQ in CQ(S]?4(F[))7 SLQ(F[Q) and GUQ(Fp) in Cg(Sp4(FZ)), or
Dg o Qg * 047(F2) in CG(SP4(F1))~

Next by applying Theorem 1 and [2, Main Theorem| to GSp4(F;), we find
that a maximal subgroup of GSp4(F,;) other than (1) is conjugate to a maximal
parabolic subgroup of GSp4(F;) or (a maximal subgroup of Sps(F;)) x (d2), that

O

is, (3), (4), (5), (6) and (7).

Remark. Explicit realization of these subgroups in GSps(F;) = {g'Jg = £,(g).J|
g € GLy(F)), g/(g) € F/*} is as follows. Here

[0y —E,
(%)

where O is the 2 x 2 zero matrix and Fjs is the 2 x 2 identity matrix.

(3)

(8% pesmmal (% 5))
(4)

{(512 ) A GLQ(F”} (T or)) e
(5)

aq an bl bz AZ

a9 )\2 a1 bg )\2 bl /\2
(o5 (6] Cl1 dg)\z . <62>7
cy C1 A2 do dy

where a;, b;, ¢; and d; € Fy for i+ = 1 and 2 such that (ay + asA)(dy + doA\)—
(by + baA)(c1 + coA) =1, and A € Fj2* such that A + Al = 0.
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(6)
e

where A and B € My(F;), A'’A—)’B'B = Fy and A'B — B'A = O,.
(7

() 2))o((20). (3 L) pworwaess

where a and bin F; are chosen such that a®+b*> = —1, and ® denotes the Kronecker
product.

Remark. The necessary properties of the subgroups are as follows.

(a) It stabilizes a positive-dimensional subspace of V;, := F;*".
b) It has a subgroup satisfying (a) whose index is bounded independently of [.
) Its commutant is larger than F;.
) It has a subgroup satisfying (¢) whose index is bounded independently of [.
) satisfies (a), (3) and (4) satisfy (b), (5) and (6) satisfy (c¢), and (7) satis-

3. Proof of Main Theorems

Masser and Wiistholz [7, Theorem 1] (see also the note at the end of [7]) estimated
the degree of an isogeny between abelian varieties over a number field effectively.

Theorem 2. Given positive integers n and d, there are constants k(n) and C(n)
depending only on n with the following property. Let A and A’ be abelian vari-
eties of dimension n defined over a number field K of degree d. Then if they are
isogenous over K, there is an isogeny over K from A to A’ of degree at most

O(n)[max{d, h(A)}]".

Using Theorem 2, they [8, Theorem 1] (see also the note at the end of [8])
refined Faltings’ theorem in the following effective way.

Theorem 3. Given positive integers n and d, there are constants T7(n) and C(n)
depending only on n with the following property. Let A be an abelian variety of
dimension n defined over a number field K of degree d. Then there is a positive
integer M < C(n)[max{d, h(A)}]"™) such that for any prime | the natural map
Endg (A) — Endg, (A1) has cokernel killed by M.

Corollary. Suppose M as in Theorem 3. Then for any prime | not dividing M
the natural map Endg (A) ® z F; — Endg, (4;) is an isomorphism.
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Erplicitly 7(n) = n*>{\(8n) + 3k(2n)} by [8, Section 6], where
A(n) = 160> (2n — Dk(n){2nk(n) + 1} 1

by [6, Section 5], k(n) being (2n® + n — 14"t 0In(2n + )Y, and r(n) =
1073 A (8n) + 320> u(8n) by |7, Section 7], u(n) being A(n)/(4n) by [6, Section 6].

Let {; be a primitive I-th root of unity. If K N Q(¢;) = Q, then ¢, is surjective.
The condition on [ is given by the following Lemma.

Lemma. Ifl > |D(K)|, then KN Q(¢) = Q.

Proof. The discriminant of Q(¢;), D(Q(&)), is I!=2 when [ = 2 or = 1 (mod 4),
and —{'~2 when [ = 3 (mod 4). The discriminant of K NQ(¢;) divides the greatest
common divisor of D(K) and D(Q(¢;)), which is 1 if [ > |D(K)|. By Minkowski’s
theorem K N Q({) = Q. O

Proof of Main Theorem 1. We prove that G; := p;(Gk) is not contained in any
maximal subgroups of GLo(F;) in Proposition 1.
As | > |D(K)|, g is surjective by Lemma, so that

G ¢ SLa(F;) x (maximal subgroup of (d1)).

The Borel subgroup stabilizes a one-dimensional subspace W of Vi. If G} is
contained in it, then there is a K-isogeny f : E/W — E/V; = E the degree
of which is {. By Theorem 2 there is a K-isogeny g : E — E/W the degree of
which, say do, is at most C(1)[max{d, h(E)}]*("). The degree of the composition
K-isogeny g o f is dol. On the other hand, as End; (F) = Z, Endg (E/W) = Z.
Thus dgl is the square of an integer, say m. So [ divides m, and [ divides dp,
contradicting the inequality [ > dp.

Next if G C (Fy* x F;*) xS, then there exists a homomorphism ¢ from G to
Sy. Let Ly be K¥er(#1°0) then [L; : K] < 2, and p(Gp, = Gal(K /L)) C F/* x
(d1). Thus Endg,, (Ei) D F,2. On the other hand, as { > C(1)[max{2d, h(E)}]™",
Endg, (F;) = Endy, (F) ®z F; = F; by Corollary. This is a contradiction.

If G; C Fp2* ¢ Zy, then there exists a quadratic extension Lo of K such that
pi(Gr, = Gal(K/Ly)) C Fpp*. Thus Endg, (E;) D Fi2. On the other hand, as
I > C(1)[max{2d, h(E)}]"M), Endg,, (Ei) = Endp, (F) ®z F; =2 F; by Corollary.
Hence a contradiction.

Lastly assume that G; C GL2(F3) % {(61). As g is surjective by Lemma,
G, D (81). Let Lg be K '(0) then [Ls : K] < |GLy(Fs)| = 48, and
pi(Gr, = Gal(K/Lg)) = (81). Thus Endg, (E;) O F;*. On the other hand,
as | > C(1)[max{48d, h(E)}|"", Endg,, (E;) = Endp, (E) ®z F; = F; by Corol-
lary. This is a contradiction.

Proof of Main Theorem 2. We prove that G is not contained in any maximal
subgroups of GSp4(F;) in Proposition 2.
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G ¢ Sps(F;) x (maximal subgroup of (d5)), for ¢; is surjective.

Maximal parabolic subgroups stabilize a one- or two-dimensional subspace of
V,5. So G, is not contained in them similarly as the case of the Borel subgroup in
Main Theorem 1.

Next if Gy C (SLao(F;)x SLa(F;)) xSax (d2), then there exists a homomorphism
@ from Gy to So. Let Ly be KXer(¥200) then [Ly : K| < 2, and p(Gp, =
Gal(f(/L;;)) C (SL2 (Fl) X SLQ(F[)) bl <(52> As (SLQ(F[) XSLQ(F[)) el ((52> stabilizes
two-dimensional subspaces of V5, a contradiction arises similarly as the case of the
Borel subgroup in Main Theorem 1.

G) ¢ GLy(F;)eZyx(02) similarly as the case of (S Lo (F;) xS La(F;)) x5 x{d2),
for GLo(F;) x (d2) stabilizes two-dimensional subspaces of V5.

If Gy C SLa(Fy2) % (02) or Gy C GUs(Fy2) x (d2), then G commutes with F2.
On the other hand, as [ > C(2)[max{d, h(A)}]"*, Endg, (4;) = End g (A)0zF; =
F; by Corollary. Hence a contradiction.

G; ¢ DgoQg e 04 (F3) x (02) similarly as the case of GL2(F3) x (61) in Main
Theorem 1, for |Dg o Qg ¢ Oy (F2)| = 3840.

Remarks. (a) The effective dependence of C(n) on the dimension n remains an
interesting problem [7].

(b) When dim A = 3, the classification of maximal subgroups of GSps(F;) is
also known ([1] and [2, pp. 57 and 72]). When [ > 5, they are
1) Sps(F;) x (maximal subgroup of (ds)),
maximal parabolic subgroup,
SLQ(F[) X Sp4(Fl) el <(53>,

U
b=
¥
=
w
X
&

where 05 is the element expressed as diag(u, u, 1, 1,1,1) with respect to a sym-
plectic basis of F;®. Explicit realization of the subgroups are similar to the two-
dimensional case. (2) and (3) satisfy the property (a) of the remark after Propo-
sition 2, (4) and (5) satisfy (b), and (6) and (7) satisfy (c), so the first seven are
handled similarly as the 2-dimensional case. Only the case (8) seems to be difficult
to treat.
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