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Dynamical properties of the space of Lorentzian metrics
Pierre Mounoud

A la mémoire de mon pére

Abstract. We study the mechanisms of the non properness of the action of the group of diffeo-
morphisms on the space of Lorentzian metrics of a compact manifold. In particular, we prove
that nonproperness entails the presence of lightlike geodesic foliations of codimension 1. On
the 2-torus, we prove that a metric with constant curvature along one of its lightlike foliation
is actually flat. This allows us to show that the restriction of the action to the set of non-flat
metrics is proper and that on the set of flat metrics of volume 1 the action is ergodic. Finally,
we show that, contrarily to the Riemannian case, the space of metrics without isometries is not
always open.
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Introduction

We study the action of the group of diffeomorphisms of a compact manifold M,
denoted by Diff(M), on the space of Lorentzian metrics of M, denoted by £(M).
An important motivation is to understand the space of Lorentzian structures, i.e.
the quotient space. In the Riemannian case this action is well understood, thanks
to the work of D. G. Ebin [Eb]. He proved in particular that it is proper.

Even though properness has no reason to hold in the pseudo-Riemannian case,
the situation is rather intricate. On one hand we can single out manifolds for
which this action is indeed proper. On the other hand non properness turns out
to be a very special property. This is related to the works of R. Zimmer [Zi], G.
D’Ambra and M. Gromov [D-Gr], S. Adams and G. Stuck [A-S], or A. Zeghib [Zel]
and [Ze2], about non compact isometry groups of closed Lorentzian manifolds.

Our first result is a generalization of the main theorem of the article [Ze4] by A.
Zeghib which deals with non-equicontinuous sequences of isometries of a compact
Lorentzian manifold. This result enables us to know how the properness fails.
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As we do not want to be too technical in this introduction, we formulate a
weak version of theorem 2.2 as follows.

Theorem. Let K and L be two compact subsets of L(M) (for the C*-topology)
such that {¢ € Diff(M)|p*K N L # 0} is not compact. Then both K and L con-
tain metrics which possess a Lipschitz, codimension 1, totally geodesic and lightlike
foliation.

Recall that a submanifold of (M, k) is lightlike if it is everywhere tangent to
the light cone, i.e. if the restriction of the metric is everywhere degenerate. As in
Zeghib’s theorem, the foliation has a dynamical meaning: its tangent is the set
of “approximately stable vectors” relative to a given sequence of diffeomorphisms.
When K and L are reduced to a point, this theorem describes metrics with non
compact isometry group, it is Zeghib’s theorem.

The third section of this article is devoted to compact Lorentzian surfaces, i.e.
to the torus and the Klein bottle (since the FEuler characteristic must vanish). In
this case we are able to be more precise in the description of the non-properness.
It comes from the fact that the metrics described by the previous theorem have
constant curvature along one of their lightlike foliations. Studying those metrics
we obtain the following global geometric property of Lorentzian tori.

Theorem 3.1. A Lorentzian metric on the torus T2 whose curvature is constant
along one of its lightlike foliations is flat.

Hence, on the torus the non-properness is localized on flat metrics. We still
have to understand the restriction of the action to the set of flat metrics, that we
will denote by F(T?). The volume functional is clearly invariant under the action
of Diff(T?). It is therefore natural to restrict the action to the set of flat metrics of
volume 1, that we denote by F;(T?). Next, in order to obtain a finite dimensional
problem, we take the quotient of this set by the proper action of Diffo(T?), the
group of diffeomorphisms isotopic to the identity. The quotient space is diffeo-
morphic to the set of quadratic forms of signature (1, 1) and of determinant 1, i.e.
to SL(2,R)/SO(1,1). Furthermore, it is well known that Diff* (T?)/Diffo(T?) is
isomorphic to SL(2,Z). Therefore the problem is now to understand the action
of SL(2,Z) on SL(2,R)/SO(1,1). This action being ergodic, we can state the
following (cf. corollary 3.4 and theorem 3.8).

Theorem. 1. The action of Diff(T?) on L(T?)\ F(T?) is C*-proper.

2. The action of Diff(T?) on Fi(T?) is ergodic.

We use the word ergodic because, even if no measure is involved in this infinite
dimensional context, it is nevertheless a good description of the situation.

The last part is devoted to the set Lp(M) of metrics with trivial isometry
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group. This set is dense in £(M) and we want to know whether it is an open set.

Indeed, this is the case when Diff(M) acts properly. Typical examples are the
Klein bottle (cf. corollary 3.5) or a 3-manifold not covered by R® (cf. corollary
2.10). Although Diff(T?) does not act properly, £7(T?) is also open in £(T?).
However, in dimension greater than two, £7(M) may not be open in L(M). A
typical example is given by compact quotients of PSL(2,R).

This article is a part of my doctoral dissertation ([Mo]) written under the
supervision of Jacques Lafontaine. I wish to thank him for his attention throughout
this work. I also wish to thank Abdelghani Zeghib, for the discussions we had and
his suggestions, and Yves Carriere who kindly fixed the proof of lemma 2.2. T thank
also the referees for their constructive remarks.

1. The Riemannian situation

For any (pseudo) metric g, the isometry group Is(M,g) is a Lie group (Myers—
Steenrood). It is compact when M is compact and g Riemannian: indeed the
set of isometries is equicontinuous. With the same kind of arguments, it can be
proved that the natural action of Diff(M) on the space of Riemannian metrics is
proper. In particular, the orbits are closed.

A deeper result of D. Ebin is the slice theorem. It roughly says that any or-
bit of this action has a Diff(M)-invariant tubular neighborhood. An important
consequence is the (lower) semi-continuity of the cardinal and the dimension of
Is(M, g) with respect to g (cf. theorem 8.1 of [Eb]). In particular the set of metrics
without isometries is open.

We shall study all these questions: properness of the action of Diff(M ), behavior
of the orbits, properties of the set of isometry-free metrics, in the Lorentzian case,
and obtain properties very different to those in the Riemannian case.

2. Approximately stable foliations

The action of Diff(M) on L£L(M) is proper (for a given topology) if for any compact
subsets K and L of £L(M) the set {¢ € Diff(M)|p*K N L # 9} is compact. In
fact, as it is more convenient to work with sequences rather than subsets, we will
characterize the non-properness, for the C*-topology, by the existence of two C*-
convergent sequences of metrics, (hy ), .y and (gn ), ., and of a non-equicontinuous
(i.e. not lying in a compact subset) sequence of diffeomorphisms (¢, ),, .y such that
@ hn = gn. We will call such a triple of sequences a C* approzimately isometric
system. We can view the approximately isometric systems as generalizations of the
non-equicontinuous sequences of isometries. To understand the non-properness of
the action we study the dynamic of those systems. Let us start with the definition
(see [Zed]) of an approximately stable vector (relative to a sequence of diffeomor-
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phisms), which will be the key notion of this section.

Definition 2.1. Let (¢, ),,cy be a sequence of diffeomorphisms.

— A vector v € T, M is said to be approximately stable if there exists a conver-
gent sequence (v, ), oy With limit v, such that the sequence (Dyy,(vy)), o is
bounded. We will denote by AS(¢,,) the set of approximately stable vectors
of (¢n),cn and by AS(z, (¢y,)) its intersection with T, M.

We say that v is strongly approximately stable if in addition Dy, (vy,) — 0.

— A vector v € T, M is called punctually approximately stable if in addition
the sequence (vy,),, .y stays in the same tangent vector space T, M. We will
denote by PAS(p,) the set of punctually approximately stable vectors of
(@n)pen and by PAS(x, (v,)) its intersection with T, M.

The goal of this section is to prove the following theorem. It is a generalization
of the main theorem of the article [Ze4] of A. Zeghib, which describes the dynamical
properties of the non-equicontinuous sequences of Lorentzian isometries. If we
compare the statements we see that the dynamical properties are mainly the same.
It gives us a “localization” of the non-properness.

Theorem 2.2. Let (hy,, gn, ¢n) be a C* approzimately isometric system (with k >
2) on a compact manifold M and let go, be the limit of (gn),,c- Then there exists a
subsequence (¢n),cr Of (#n),cn such that the set of approzimately stable vectors
AS(¢y,) is the tangent bundle of a codimension 1 Lipschitz foliation, called the
approximative stable foliation of (¢y,) The leaves of the foliation are geodesic
and lightlike relatively to goo.

Replacing (¢n), e by a subsequence if necessary, we can assume that the same
is true for ((b;l)nEN (the foliation AS(p,, 1) will be geodesic and lightlike relatively
to hoo). In this case, if v € TM \ AS(¢y), then Dppv tends to 0o, and converges
projectively to ASL(qﬁ;l). The convergence s uniform on compact subsets of TM\
AS(4n).

Moreover, if (o), cry and (07,),, oy are convergent sequences of functions on M
whose limits are respectively o and o' and such that o), = oy, © ¢y, then o' is

constant along AS*(¢,,) (and o along AS*(¢;1)).

neN-

Demonstration. We start with the following essential proposition. It has been
inspired by proposition 6.13 in [Eb] which shows that the orbits of the action of
Diff(M) on the manifold of Riemannian metrics are closed.

Proposition 2.3. Let M be a connected manifold (not necessarily compact), let
(hn)pen be a C*_convergent sequence of pseudo-Riemannian metrics on M whose
limit is hoo (k > 2), and let (py), o be a sequence of diffeomorphisms of M such
that (@f hp)nen is C*-convergent and tends to go.,. Let us suppose there erist a

convergent sequence (y,) of points of M such that the sequence (vn(zy))

neN neN
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is convergent, and a real number C > 0 such that Vn € N, |Dpy,(2y,)| < C. Then
the sequence (pn), oy admits a C*-convergent subsequence.

The notation |.| refers to any fixed Riemannian metric. We need to suppose
that the sequence (yn(2n)), or is convergent to avoid situations like translations
in vector spaces where every point is sent to infinity with bounded derivative. This
is a typically non compact phenomenon. Hence, if we suppose M compact we can
simplify the statement.

Proof. Denote by x the limit of (x,), .y and by y the limit of (@5, (2)), - Then
the hypothesis |Dyy,(2y,)| < C induces the existence of a convergent sequence of
frames (r,),, oy above (z,,) of limit r,, such that, restricting to a subsequence
if necessary,

neN?

vl = Dppry — 7.,
n—oo
The frames r,, and r;, define a linear map L from T, M to T), M such that Dy (z,,)
tends to L.

Next we want to define a map ¢ : M — M such that a sub-sequence of (¢,),, o
converges to . Of course, we put ¢ (z) = y. Thanks to the following lemma, we
are going to extend + to a neighborhood of z. We denote by €,, (resp. €) the
exponential map of h, (resp. of ©%h,) and by € (resp. €') that of he (resp. goo)-

Lemma 2.4. Let (hy), oy be a CP-convergent sequence of pseudo-Riemannian
metrics whose limit is hoo. Then there erists an open neighborhood U of the zero
section of T'M on which the exponential maps of the metrics h, are all defined.
Furthermore the sequence (€y),, .y converges CF=1 to € on every compact subset

of U.

Proof. The C*~! convergence comes from the fact that the exponential maps
are solutions of differential equations whose coefficients, which are the Christoffel
symbols, converge C*~1. We still have to check that the exponential maps are
all defined at each point on non trivial subsets of the tangent spaces. To prove
this, we adapt proposition 2.1 of A. Romero and M. Sanchez in [R-S]. Let v be a
tangent vector to M, (ay), . and (by), oy be two sequences of real numbers such
that [ay, by] is the domain of ~,, the h,-geodesic stemming from v, and a and b
such that [a,b] is that of v the hoo-geodesic. It is sufficient to show that

limsupa, <a<0<b<liminfb,.

Put A = {t € [0,b[|t < by, for all n but a finite number and ~/, (¢) converge to
~'(¢)}. Using that solutions of differential equations depend continuously on the
initial conditions and on the coefficients of the equations, we see that A is open
and closed in [0, b[ and therefore A = [0,b]. O

Let us continue the proof of proposition 2.3. The following relation holds:



468 P. Mounoud CMH
Relation 2.5. ¢, o€, = €, 0 Dy,,.

According to lemma 2.4, there is an open subset U of T'M on which €,,(¢,(z,))
tends to €(y) and €/, (z,,) tends to €’(z). Restricting to an open subset if necessary,
we can assert that (€/,(z,,))” " tends to (e’(x))_l. As z,, tends to z, there exists a
neighborhood V of « such that, for n sufficiently large, (e;(zn))*l is well defined
on it.

Taking z’ € V', one finds

onle’) = on (€4 (n) o (€4(2)) ! (a"))
= €, (Dn(@a) o (Eh(@a)) " (),

using relation 2.5. However, the sequence of linear maps (D, (2r)), oy converges
to L and therefore
lim_ . (a’) = €(y) 0 Lo (€/(x))"1(="),

which we set to be ¢(2’). By construction, we see that the sequence (¢n ),y
converges, C*~1 to ¢ and that ¢ is a local C* diffeomorphism. Using the fact
that Dy, (2) tends to Di(2’), we repeat the same construction to extend along the
geodesics to the whole manifold. We have constructed a local C*° diffeomorphism
¢ on M. The sequence (), oy converges, a priori, only CF1 1o 9.

Next we look at the sequence of the connections, which is C*~! convergent.
We reproduce the computations done by D. Ebin ([Eb], proposition 6.13). In local
coordinates we represent ¢, by ¢l (z!,...,2™). Let ,I'l; (vesp. ,I"};) denote the
Christoffel symbols of the metric h,, (resp. of ¢kh,). We have

5y — L1 i L1
o (00T (AT e (9eh (9% \ (96 (94
oy ox" oxs s\ at Ozsoz" Oz ox” ’

“

where “—17 indicates matrix inverse. The convergence C*~1 of the sequences of
Christoffel symbols and the convergence C*~2 of the first order derivatives of ¢,
imply the convergence C*~2 of the second order derivatives, hence the convergence
C* of the sequence of diffeomorphisms (¢y,),,y-

We still have to show that ¢ is a diffeomorphism, for this we use the symmetry
of the problem. Using that, asymptotically, the ¢, permute the induced volume

forms of the metrics ho and g, we see that the sequence (Lp; 1)n o satisfies also
the hypothesis of the proposition and so we obtain the existence of ¢»~!. This
conclude the proof of proposition 2.3 Il
Remarks.

1. Proposition 2.3 can be used to prove that on the space of Riemannian met-
rics, the action is C%-proper: indeed when M is compact and if the metrics
are Riemannian, the hypotheses of the proposition are always satisfied.
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2. This proposition has an interesting interpretation: it asserts that the se-
quences of diffeomorphisms we are interested in are nowhere or everywhere
divergent.

As in the proof of A. Zeghib, we first consider the problem in the linear case.
Let us start the proof of theorem 2.2 with the following evident lemma whose proof
is left to the reader.

Lemma 2.6. If (Hy), oy is a convergent sequence of quadratic forms of signature
(m —1,1) on R™ whose limit s H, then there exists a sequence of linear maps
(M), ey of limit 1d such that Hy, ="My, H M,

This lemma shows that the linear approximately isometric systems will have
the same behavior as the non-equicontinuous (non bounded) sequences of linear
isometries. As a consequence, corollary 4.3 from [Ze4] is immediately transposable,
and thus we have the following.

Proposition 2.7. Let (Hy,, Gy, M,) be a linear approzimately isometric system
onR™. Then there exists a subsequence (Ny,), o such that AS(0, Ny,) is a lightlike
hyperplane and moreover AS™ (0, (Ny,)) 4s the set of strongly approzimately stable
vectors. Moreover, there erist C > 0 and a sequence of hyperplanes (P,), o such
that we have the following uniformity condition: ¥n € N, [Ny, | < C.

Thanks to a trivialization of the tangent (measurable but continuous at the
neighborhood of the point considered) we associate to each diffeomorphism a ma-
trix field, C,,(z). We have

PAS(z, (¢n)) = PAS(0,(Cy(z))) = AS(0, (Cr(z))).

Proposition 2.3 tells us that if the sequence (), is non-equicontinuous then,
for all =, the sequence (Cy(z)), o is not bounded. By a diagonal process, we
prove that there exists a subsequence (¢y,),, of (¢n), oy and a dense subset A’
of M such that, for all z € M’, PAS(z, ¢,,) is a hyperplane of T, M that we will
denote by P,. Keeping the same notations for the exponential maps as before, we
can prove the following.

Proposition 2.8. For all x € M’, there exists a neighborhood V,, of 0 in T, M
such that the hypersurface I, = €'(P,NV,,) is geodesic and such that for ally € T,

Proof. Let (P,),, oy be the sequence of hyperplanes in T}, M given by proposition 2.7
applied to the C,(x). We are going to use the fact (c¢f. lemma 2.4) that the
sequences of exponential maps converge. Let y be a point of 7., we first write the
differential of the ¢,, at this point using the exponential maps of the metrics g,
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that we denote, as before, by €,.
= Da(€n(én(a)) 0 én) o D, (€ ()",

according to relation 2.5. We set P, = T, (€,(P,NV,)), with V,, a bounded
neighborhood of 0 in T, M inside the domain in which €], is defined. Tt is clear
that P, — T,7,, but also that D, (€] (z N 1P = P,. Consequently, as the
sequence (€7,),, oy is convergent, |Dq§n‘P,| is bounded. Hence, T),7, C AS(y, ¢n).
However, thanks to proposition 2.3 (following the proof of the fact 6.4 of [Zed]),
we can prove that AS(y, ¢,,) is at most a hyperplane therefore we have equality.

Now, we have to prove that this surface is geodesic. Let ¢ be a path on 7,
between x and y. The neighborhood V,, being bounded, we see that the sequence
(dn) ey, defined by d,, = ¢, o c, is with C"! bounded variation. We denote by 7,
the parallel transport along ¢ for the metric h, and by 7,, the parallel transport
along d,, for the metric g,,. Finally, we denote by P/ the image of P, by 7,, and
by P” the limit of this sequence. We have:

-ty
Dy¢n, =7, 0 Dy o7,

Knowing that the sequence of paths has bounded variation and the sequences of
metrics are C'! convergent, it becomes clear that we have a new sequence of stable
hyperplanes that is P” is approximately stable. Therefore P” = AS(y, ¢, ) and so
P" =T,T,. The surface is therefore geodesic. O

The size of the neighborhood V, depends essentially on the domains on which
the exponential maps are defined. Moreover, two plaques Z, and 7, are either
disjoint or tangent. Thus, the hypotheses of the following lemma (cf. [Zed] and
[Ze3]) are fulfilled.

Lemma 2.9. Let M be a compact manifold endowed with a torsion free connection
and an auziliary norm |.| on TM. Let M’ be a dense subset of M and suppose
given a real number v and for x € M’ a hyperplane P, C T,M and let T, , =
exp(P, N By(r)), where By(r) is the ball of T, M centered at 0 and with radius r.
Also, suppose that 1, , is geodesic and that if two plaques I, , and I, , intersect
at some point, then they are tangent at that point (and hence by geodesibility, the
intersection Ty » NIy, is open in both Ty, and T,,). Then the geodesic plaques
1., extend to a Lipschitz geodesic foliation of M.

Now, to finish the proof of the first part, we have to show that the tangent to
this foliation is still approximately stable. Moreover, we can prove that AS(¢,) =
PAS(¢y), and also that the set of strongly approximately stable vectors is the
tangent bundle to the 1 dimensional geodesic lightlike foliation ASL((]ﬁn). The
proof of those three points following exactly Zeghib’s proof, we refer to [Ze4].
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We only give the main idea of the proof of the second part of the theorem. It
is exactly the same as the original case (proposition 9.5 of [Zed]). It uses the fact
that if v ¢ AS(¢,) then there exists a sequence of real numbers (a,), . and a
sequence of vectors (u")nEN such that D¢,v = ayu,. Of course, o, — o0 and
therefore | D¢, ()| — 0. The limit of the sequence of vectors is consequently in
ASH(g,h).

Let us show the last part of the theorem. Let z be a point of M, and let (vy,),, o
be a convergent sequence of vectors which tends to v and such that D¢, (v,) — 0,
ie. v € AST(¢,). Let us consider A, = o/, (€,(z).v,) — ol,(z), we have

Ay = 0n($n(€n(®).0s)) — on(dn(z))
= Un(e;(Dqsn vn)) - Un(qsn(x))7

using relation 2.5. If we take (v,,), .y such that v, — v and D¢y (v,) — 0, we
have

lim €. (D (vn)) = lim ¢n(a),

n—oo n—oo

therefore
Un(e;(D(ﬁn”n)) —on(¢n(z)) — 0

n—oo

and therefore A, also converges to 0. However, o, (€,(x).v,) converges to
o’'(€(z).w) and o), (z) converges to o'(z). Therefore, we can assert that o’ is
constant along the g..-geodesic stemming from v, i.e. ASL(qbn) according to what
preceded. Il

In [D-Gr], G. D’Ambra and M. Gromov conjectured that if M is compact
and simply connected then the action is C%-proper. Theorem 2.2 solves the 3-
dimensional case.

Corollary 2.10. Let M be a 3 dimensional compact manifold not covered by R3.
Then the action of the group of diffeomorphisms on L(M) is proper for the C?

topology.

Proof. According to [Ze3], these manifolds do not possess lightlike geodesic folia-
tions of codimension 1 therefore theorem 2.2 finishes the proof. O

This statement can be found without proof in [Ze4].

Since any Lorentzian manifold possess a negative line-field, we see that the
metrics ho and go, of theorem 2.2 have two nowhere collinear line-fields. It triv-
ially gives a topological obstruction. For example, thanks to the famous theorem
of J. F. Adams (see [Ad]) about vector fields on spheres, we have:

Corollary 2.11. If n = 2 mod 4, then the action of Diff(S"~1) on L(S™ 1) is
proper.
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3. On the torus
3.1. Localization of the non properness

There exist (flat) metrics on the torus with non compact isometry group, conse-
quently the action of the group of diffeomorphisms of the torus on £(T?) is not
proper. A priori, the approximately isometric systems (hy,, gn, ¥r ) can have a very
different shape. The point is to understand it.

Even if every Lorentzian surface admits two geodesic lightlike foliations of
(co)dimension 1, theorem 2.2 will enable us to localize precisely the non properness
of the action by showing that the limit metrics ho, and g, are flat. We first show
the following result.

Theorem 3.1. A Lorentzian metric on the torus T? whose curvature is constant
along one of its lightlike foliations is flat.

Let us remark that, of course, the lightlike condition is necessary as the case of
the Clifton—Pohl torus shows (cf. [C-R]). There also exist local counterexamples:
if we take the metric h(z,y) = dady + 2xy® dz?, its curvature is K(z,y) = —z
which is constant along the lightlike direction 9,,.

Proof. We call F the foliation along which the curvature is constant. Accord-
ing to the Gauss—Bonnet theorem [B-N], the curvature has to vanish somewhere.
Therefore there exists a leaf I’ of F such that the curvature, K, vanishes along
F. Two cases have to be considered: the leaf can be compact or not. Let us
suppose the leaf is not compact. If the foliation is conjugated to a linear foliation
then F' is everywhere dense and h., is clearly flat. If this is not the case, F has
some compact leaves (cf. [H-H]). We can thus reduce the problem to a foliation
on an annulus. Therefore we can state (cf. theorem 4.2.15 [H-H]) that the leaf F
is going to accumulate on two compact leaves. We denote by A the Lorentzian
annulus delimited by those leaves. All the leaves of F contained in A are going to
accumulate on the boundary of A. Therefore this annulus is flat.

Lemma 3.2. If A is a flat Lorentzian annulus with lightlike boundary and F is
the lightlike foliation tangent to the boundary, then all the leaves of F are compact.

Proof. Let A be the universal cover of A (topologically Ais a stripe) and « be
a generator of my(A). The flat Lorentzian manifold A is developed by a local
diffeomorphism D : A — R? (where R? is endowed with the Lorentzian metric
zy) which satisfies the following equivariant condition :

Doy=4"0D, (%)
where v’ is a Lorentzian isometry (the holonomy of ). The foliation F is lifted to
a foliation F of A. We can suppose that F is the pull-back by D of the foliation
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of R? by horizontal lines.
Translating the situation if necessary, we have two cases:

a) vy = <())\ 1?>\> , with A € R*

b) 4/ is an horizontal translation.

The case a) is impossible; in fact, the continuous function f(z,y) = zy is /-
invariant and, on the closed superior and inferior half-planes, its only possible
local extremum is 0. According to the condition () and the fact that D is a local
diffeomorphism, the continuous function g = fo D is y-invariant and its only local
extremum is 0. Therefore, it descends to A as a constant function everywhere
equal to 0, which is not possible.

Therefore the only remaining case is b). In this case, the annulus A (for the
same affine structure) admits a flat Riemannian metric, which implies that D is a
diffeomorphism (the structure is complete as A is compact). Consequently, A can
be directly seen as a horizontal stripe of R? and we obtain A by quotienting by a
horizontal translation. Hence, all the leaves of F are closed. (Il

We deduce from this that if F has no dense leaf (we can assume this) then a
leaf F', along which the curvature is zero, has to be compact. Moreover, let us
show that F'is geodesically complete. Let ¢ be a germ of diffeomorphisms at 0 € R
which generates the holonomy of F. According to the article of Y. Carriere and
L. Rozoy [C-R], the completeness of F' is characterized by the divergence of the
two series 2 ¢/(0)* i.e. by |¢/(0)] = 1. But, if |¢/(0)| # 1 then F is attractive
(or repulsive according to the choice of an orientation). A leaf attracted by F’
would be non compact and the curvature would vanish along it. That contradicts
what we just proved. Hence every leaf of F along which the curvature vanishes is
a compact and complete geodesic.

If the curvature is not constant around F' we can consider, using a transverse
curve, the closest leaf of F with zero curvature. Again we obtain a Lorentzian an-
nulus A’ (we can also take the closure of a connected component of T?\{K ~1(0)}).
The connected components of the boundary of A’ are complete lightlike geodesics
and the curvature does not vanish inside A’. We are going to use the following
version of the Gauss—Bonnet theorem.

Lemma 3.3. Let A be a Lorentzian annulus with lightlike boundary T' = v U ~,.
Let v; 1 [0,1] = T, ¢ € {1,2} be a parametrization of the boundary. Let Z; be a
vector field along ~y;, tangent to ~y; and parallel. We define \; as the proportionality
coefficient between Z;(0) and Z;(1). Then we have :

/ Kdvh = 1n(>\1/)\2)
A

If the boundary is made of complete geodesics, we have:

/ Kdvh =0.
A
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Proof. Let X be a nowhere vanishing lightlike vector field tangent to the boundary,
X be another lightlike vector field such that (X, X°) = 1 and w be the 1-form
defined by w(v) = h(V,X, X°), where V is the Levi-Civita connection of the
metric. Then:

dw(v,u) = v.w(u) — ww(v) — w([v, ])
— v.h(Vy X, X0) — wh(Vy X, X0) — h(Vy X, X°)
— (Vo VX, X°) + h(V X v, XO) h(VW VX, X
—h(VoX, Vo X") = B(Vy . X, X°)

= h(R(v, )X, X°) + h(V X, Vo X°) — h(V, X, V, XO).

Contrarily to the Riemannian case and to the case where X is timelike (see [B-N]),
we do not have automatically h(V,X,V,X") = 0. Nevertheless, we still have
h(V,X, X% = 0 and so h(V,X,V,X?) = h(V,X, X)h(X, V,X°). Derivating
the equality (X, X°) = 1, we obtain immediately h(V,X, X°) = —h(X, V., X").
Therefore we have
h(V.X,V, X% = h(V, X, X)h(X,V, X
= —h(X, Vo X°)(=h(V, X, X"))
= h(V,X, V. XO).

Hence dw(X, X% = h(R(X, X)X, X% = K and so dw = Kdvj,. According to

Stokes’” theorem, we have :
/ Kdvh = /w
A r

where I' = ~; U ~5 is the boundary of A. Let Z; be a parallel vector field tangent
to v1. Then Z; = pX, and we obtain

VZ1Z1 = (Zl.u)X + u w(Zl)X —

Thus we have w(Z1) = (—Z1.u)/p, and therefore f% w= —Inp(0) +Ing(l) =
—In Ay. Doing the same with ~, yields

/w:hl()\g//\l). O
/g

We can now finish the proof of the theorem. On the annulus A’ we had previ-
ously, we apply lemma 3.3 and find [ 4 K = 0. However K does not vanish inside
A’ and thus we have a contradiction and therefore K = 0 on all T?. (|

This result applies directly to our problem. If, as in the introduction, we denote
by F(T?) the set of flat metrics of the torus, the following is true.

Corollary 3.4. The action of Diff(T?) on £(T?) — F(T?) is C*-proper, k > 2.

Proof. 1t is clear that the statement is a consequence of the following stronger
proposition: if (hy, gn, n) is a C? approximately isometric system on T?, then the
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metrics hoo and geo are flat. According to theorem 2.2, AS™ () and AS™ (1)
are lightlike Lipschitz line-fields (actually, in dimension 2 they are automatically
smooth). We can apply the second part of the theorem to the curvature func-
tions. Indeed, if we denote by K, the curvature of h, and K] the one of g,,
these functions satisfy the relation K, o ¢, = K/ and the C2-convergence of the
sequences of metrics implies the convergence of the sequences of curvature func-
tions. Hence, the curvatures of both h. and g., are constant along a lightlike
foliation. According to the previous theorem these metrics are flat. O

This corollary will be of precious help to study the manifestations of the non
properness of the action of Diff(M) on £(T?). But, on the Klein bottle, it entails
the following interesting result.

Corollary 3.5. Let K be the Klein bottle. The action of Diff(K) on L(K) is
proper.

Proof. We are going to show that the sequences of diffeomorphisms that compose
the approximately isometric systems of the torus can never descend to the Klein
bottle. For this we first show the

Lemma 3.6. Let (hy,, gn, ¢n) be a C?-approzimately isometric system on T? and
let f,, be the lift to R? of p,. Then there exists a sequence (Nn),en of affine maps
of R? such that the sequence (N,, o In)pen converges to the identity map.

Proof. As we permit right or left composition by diffeomorphisms, we can suppose
that the lifts of h,, and of g.,, that we denote by H and G, are quadratic forms
and even that H = G. We denote by H,, (resp. G,,) the lift of the metric h,, (resp.
gn). Of course, f*H, = G, and converges to G. We denote by z, a point of
R? that realizes the maximum of the norm of the second derivative of H, (seen
as a map from R? to GL(2,R?)). Let M,, be the linear map D f,(f, *(z,)). We
know that *M,, H, (x, )M, converges to H, hence from lemma 2.6, M, is close to
an isometry of H. Let us choose a basis of R? such that the metrics are given by

the matrices
T )

We can suppose that M, is close to

/A, 0
0 M/’
with \,, — o0c.

As H,, — H, for the C? topology, it is easy to see that D? (*M, H,,(x)M,) — 0
uniformly if and only if D?(A\2¢,) — 0 uniformly. As ffH, — H, we have
D?(M2c,(z,)) — 0 and as =z, realizes the maximum of the second derivative we
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have the uniform convergence to 0. Now we use again that f}H, — H to show
that D (*M,, Hy,(xn)M,) — 0 and that ‘M, H,(x,)M, — H. We deduce from
this that G/ = M*H, — H for the C* topology. We can define a sequence of
translations (7,),,., such that 7, (M, *(z,)) = 0. The sequence G, = 7tG}, still
converges. We denote by N,, the map (M,, o7,)"*. Therefore (N,, o f,)*G" — G.
However, the sequence of the derivatives of (N, o f,) at f, '(z,) is bounded
and (N, o fn) (' (zn)) = 0. We recognize the hypothesis of proposition 2.3.
Extracting a subsequence if necessary, we can say that the sequence (N, o f,,), oy
is C?-convergent. Its limit is an isometry of H tangent to a translation and
therefore it is a translation. It is not hard, now, to obtain the desired sequence. [J

We continue the proof of the corollary. Taking n sufficiently big, we write
fn = M, oe, with M, linear and ¢,, a diffeomorphism close to the identity. Let
o be the “antipodal” map defined by o(z,y) = (z + 1/2, —y). The fact that f,
actually descends to the Klein bottle can be written f, oo =0 o f,,. We have

M,oe,00=0c0M,o0c,
1
M, oepo000e, = ocoM,,

these equalities being on the torus. We set o/, = €, 0o oe 1. Of course, ¢ and o/,
are close. Then we compute (M,, o0, —o o M, )(z,0) and (M, o0, —ocoM,)(0,y)
which have to be in Z2. It gives immediately that M,, has to be diagonal. Using
again the fact that (f,),.y descends to the quotient and is not equicontinuous,
we see that it is impossible. The sequence cannot descend to the Klein bottle. [

3.2. Action of Diff(T?) on F(T?)

As we announced in the introduction, we are going to prove that the action of
the group of diffeomorphisms on the set of flat metrics of volume 1, denoted by
Fi1(T?), is ergodic (or more correctly that it has the same dynamical properties as
a given ergodic action). If we want to talk about ergodicity, we first have to reduce
the problem to a finite dimensional one. This reduction is done by the following
proposition.

Proposition 3.7. The action of Diffg(T?) on Fi(T?) is proper and Fi(T?)/
Diffo(T?) is diffeomorphic to SL(2,R)/SO(1,1).

Proof. Let us consider an approximately isometric system. To see the properness,
we improve lemma 3.6 by noting that the linear part of the affine maps involved
can be chosen in GL(2,Z). As Diff(T?)/Diff(T?) is isomorphic to GL(2,Z), the
diffeomorphisms of an approximately isometric system cannot stay in Diffo(T?).
Let us show now that the quotient is diffeomorphic to SL(2,R)/SO(1,1), the
space of quadratic forms of signature (1, 1) and of determinant 1. Let h be a flat
metric. As h is complete, there exists a diffeomorphism ¢ such that *h is a



Vol. 78 (2003) Dynamical properties of the space of Lorentzian metrics 477

quadratic form. As Diff(T?)/Diffo(T?) is isomorphic to GL(2,Z), there exists a
unique element N of GL(2,Z) such that ¢ is equivalent to N modulo Diffo(T?).
Thus, ¢ o N~! lies in Diffy(T?) and (¢ o N~1)*h is the only quadratic form in the
Diffo(T?)-orbit of h. O

This proposition implies that the properties of the action of Diff(T?) on F(T?)
are the same as those of the left action of Diff(T?)/Diffo(T?) on the set of quadratic
forms of signature (1,1). We restrict ourself to the action of Difft(T?). As
Diff* (T?)/Diffo(T?) is isomorphic to SL(2,Z), the point is now to understand
the action of SL(2,Z) to SL(2,R)/SO(1,1) and to show that it is ergodic.

The proof will be complete by noting that this action has the same dynamical
properties as the right action of SO(1,1) on SL(2,Z)\SL(2,R). This is due to the
fact that the lifts to SL(2,R) of the invariant sets and functions of those actions
are the same. This third action is well known, it is the action of the geodesic flow
of the unitary tangent bundle of the modular surface SL(2,Z)\H?, where H? is
the hyperbolic plane. This manifold has finite volume and the action is known to
be ergodic. This implies that our action is also ergodic. In particular, almost all
flat orbits of F;(T?) are dense in F1(T?). Therefore we have proved:

Theorem 3.8. The action of Diff(T?) on Fi(T?) is ergodic.

It implies that, on the set of flat metrics, there are no non constant continuous
function invariant by rescaling and by the action of Diff(T?).

Now, to complete the description, we may wonder which are the closed flat
orbits. We can give the following proposition.

Proposition 3.9. The orbit of a flat metric for which all lightlike curves are closed
is C%-closed. Moreover an orbit is C?-closed if and only if it is C°-closed.

Proof. 1t is clear that non-closed orbits always contain an approximately isometric
system whose shape is (h, g, ¢y ), i.e. with (h,),  constant. We are going to
see that such systems do not exist in the case above. We first give the following
lemma.

Lemma 3.10. Let H be a quadratic form of signature (1,1) onR? and (My) e be
a non bounded sequence of automorphisms such that (* M,, H M), oy s convergent.
Then there exists a sequence (I,),, oy in Is(H) such that the sequence (I,* Mn)nEN

is bounded. Moreover there exists an H-lightlike vector v such that M, ‘v tends
to 0.

Proof. The first part of this lemma is trivially deduced from lemma 2.6, and the
second one is an immediate consequence of the shape of the elements of O(1,1).

O
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We suppose that such an approximately isometric system exists. Then by lifting
the system to R?, we can replace the diffeomorphisms by elements of GL(2,7Z),
thanks to lemma 3.6. Set v = (7,1) € AS(y¢,!) and let H be a Lorentzian
quadratic form and (M,), .y be a non bounded sequence in GL(2,Z) such that
(*M,, H M,,),, oy is convergent. We set

M-l 4n Pn
s Trn Sn /)

According to lemma 3.10, we have M, ' = P, 1 -1 where I, € Is(H) and the
sequence (P, ), cy, of elements of GL(2,Z), is convergent. The sequence (1), oy
not being bounded, there exists a subsequence of (M, ), such that M *(v) — 0.
We thus have g, 7+p, — 0. If 7 € Q this sequence is stationary (cf. [H-W]) and so
is the sequence r,, 7+s,, therefore the matrix cannot be invertible. Hence, 7 € R\Q
and A has no compact lightlike geodesics and thus we have a contradiction.

The last assertion is immediate because the non C?-closed orbits involve quad-
ratic forms and linear maps and therefore the convergence can be supposed C°.

O

Remarks.

1. After this proof, we might wonder if, on the torus, the approximately stable
foliations of approximately isometric system always have dense leaves. This
turns out to be false as shown by the example of [Mo| p. 48.

2. A priori the statement of proposition 3.9 is not optimal. Actually, we can
prove that for any flat metric h with non compact lightlike curves there
exists a non equicontinuous sequence of diffeomorphisms (¢y, ), oy such that
the sequence (¢} h),, o is C>-convergent (see [Mo| theorem IV.3). Anyway,
it is not enough to prove that its orbit is not closed, we still have to compare
h with the limit of (¢;,h), -

3. Let us give an example of a non flat orbit which is not C'-closed. Let A
be the Anosov map, that is the torus diffeomorphism induced by the matrix

<? }) Let g4 be an A-invariant Lorentzian (flat) metric on T?, and let

f be a non constant function of the torus. Let X (resp. Y) be a non zero
vector field of the contracting (resp. dilating) direction of A. We disturb g4
along the lightlike contracting direction X (using Y') by defining:

h=gat+ f(Y @Y?),

The metric is still Lorentzian. The sequence (A"*h), . is C'-convergent
and its limit is g4, but h is not flat. Hence, there exist orbits which are not
C'-closed but which are C?-closed.
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4. The set of metrics without isometries

If M is a closed manifold, we recall that, in the Riemannian case, the set of metrics
without non trivial isometries, that we will denote by Lp(M), is an open dense
subset of the space of Riemannian metrics endowed with the C* topology, see [Eb].
This result is a corollary of the slice theorem of Ebin which is now clearly not true
in the Lorentzian case. Anyway, adapting the proof of Ebin (see proposition IV.4.2
of [Mo]) we still have:

Proposition 4.1. The set Lp(M) of metrics without non trivial isometries is
dense in L(M).

The main point is to show that this set is open. Unlike to the Riemannian case
the answer is different according to which manifold we consider.

4.1. A positive result

Thanks to corollary 3.4 and the theorem of D. Ebin, we can give the following
result.

Theorem 4.2. Let M be the 2-torus or a manifold such that Diff(M) acts prop-
erlyt for the C*°-topology, on L(M). Then Lp(M) is an open (dense) set.

Proof. Let M be a manifold as in the statement of the theorem. Let (hy,), .y be a
C° convergent sequence of Lorentzian metrics on M, such that for all n € N the
group of isometries of hy,, Is(hy, ), is non trivial. We are going to show that he, the
limit of the sequence of metrics, also has a non trivial isometry. For this, let ¢,, be
a non trivial element of Is(h,,). If (¢y,), oy is convergent and if its limit is not the
identity map, then we have the result. If the action is proper the sequence has to
be equicontinuous. If we are on the torus and if the sequence is not equicontinuous
then corollary 3.4 tells us that Ao is flat and therefore has a big isometry group.
Consequently, in both cases, we can consider that the sequences of isometries we
consider converge. Furthermore, thanks to corollary 3.4, we know that the metrics
of the torus with non compact isometry groups are flat (more precisely they are
invariant under an Anosov map like the metric g4 of the remark 3. | page 478).
Consequently, the isometry groups of the metrics h,, always contain a compact
subgroup. Therefore we can assume that the ¢, are of finite order p,. Now, we
want to prove that there exists a sequence of integers (k,,),, . such that (cpﬁ")n N
admits a convergent subsequence whose limit is different from the identity.

Let us suppose it is not true, then for any sequence (ky), .y of integers,

@kn — 1d. Let « be a Riemannian metric with trivial isometry group. Then

1 See corollary 2.10 and corollary 3.5.
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we define
Pn

an = 1/py Z (Wﬁ)* a,

k=1

where p,, is the order of ¢,. We have, by construction, ¢y o, = «,,. We are going
to show that o, — «, for the C*-topology. For this denote by ||.||; the norm
which gives the C! topology. We have:

Pn
low —alli < 1/pn > 16k *an — alli < o,
=1

where m,, = sup;<j<, [l¢h*an —all;. For all n € N, there exists an integer
k, such that m, = ||¢k~ *a,, — al|;, therefore m,, —, .o 0 and for all I € Z,
|, — el —=n—oo 0 hence v, —y 0o @, in a C°° way. According to the work of
D. Ebin, for all n sufficiently large, the isometry group of «,, is conjugated to a
subgroup of the isometry group of . That is a contradiction. Consequently A

has at least one non trivial isometry. |

Remarks.

1. This result is still true for manifolds on which the limits of approximately
isometric systems (the metrics hoo and goo) always possess isometries. Of
course the only known example is T?.

2. It is possible to show (cf. [Mo] examples p. 48-49) that, on the torus, the
result is not valid for the C° topology or that we can have a diminution of
the number of isometries for a C°°-convergent sequence of metrics. But we
found more interesting to show what happens to this set on the compact
quotients of PSL(2,R).

4.2. On compact quotients of PSL(2,R)

The goal of this section is to construct a sequence of metrics on a compact manifold
with non trivial isometry groups which converges (C°°) to a metric with trivial
isometry group. We are going to choose the metrics in the set of left-invariant
metrics of PSL(2,R) and look at the situation on a compact quotient. Conse-
quently, we have to determine the isometry groups of left invariant metrics on
PSL(2,R). The isometry groups of left invariant Riemannian metrics on com-
pact simple groups are well known since the works of T. Ochiai and T. Takahashi
(cf. [O-T]) and the works of J. E. D’Atri and W. Ziller (cf. [D’A-Z] theorem 5,
page 24). Adapting some of their results to PSL(2,R), we compute those groups,
and thus the sequence of metrics will appear quite naturally.
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4.2.1. Isometry groups of left invariant metrics of PSL(2,R)

During this paragraph, we will denote by Gy the connected component of the
identity of a group G. We first prove a PSL(2,R) version of the theorem of D’Atri
and Ziller.

Proposition 4.3. Let h be a left invariant, non biinvariant, pseudo-Riemannian
metric on G = PSL(2,R). Then the isometry group of h is generated by the left
translations and a subgroup of the right translations.

Proof. Let Is(h) be the isometry group of h and L(G) the subgroup of Is(h) com-
posed of the left translations.

We first study the connected component of the identity of Is(k) that we denote
by Isg(h). We denote by Int(G) the group of inner automorphisms of G. We are
going to use the following result:

Theorem 4.4 Ochiai and Takahashi (cf. [O-T] theorem 3). Let G be a semisim-
ple Lie group endowed with a left invariant pseudo-Riemannian metric h. Then
Iso(h) C L(G) Int(G) if and only if L(G) is a normal subgroup of Iso(h).

We are going to show that L(G) is a normal subgroup of Isg(h). Let us give
an upper bound for the dimension of Is(h). It is well known that the dimension of
the isometry group of an n dimensional pseudo-Riemannian manifold is at most
n(n+1)/2. Moreover we know that in this case the sectional curvature is constant.
In our case it means that the metric is biinvariant. So, here, the dimension is at
most 5. Moreover, if the isometry group contains a 5 dimensional subgroup it also
implies that the curvature is constant and the metric is biinvariant (it can be proved
directly from a study of the action of the isometry group on the 2-Grassmannian
but it can also be deduced from the systematic study of the isometry groups of
Lorentz 3-manifolds done by C. Bona et B. Coll in [B-C]). Therefore we have dim
Isg(h) = 3 or 4. We denote by J the Lie algebra of Isg(h) and g the subalgebra
of J corresponding to L(G). We want to show that g has to be an ideal of J. If
dim J = 3 it is obvious. Let us study the case where dim J = 4. The Lie algebra
cannot be semisimple. Thus its radical, rad(J), is not trivial and its dimension is
at most 1 because it cannot intersect g which is simple. Let us take two elements
z and y of g and w a non zero element of rad(J). According to Jacobi identity we
have

[z, yl, u] + [[u, z], y] + [[y,u], z] = 0.

However, since rad(J) is a one dimensional ideal, this implies

([, 2], 9] + [ly, u], z] = O,

and therefore [[z,y], ] = 0. As [g, g] = g, we find that g is an ideal of J therefore
Isg(h) can be written L(G) x K, with K a one dimensional subgroup of the group
of right translations whose Lie algebra is rad(J).
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To finish the proof, we use the following theorem of J. E. D’Atri and W. Ziller.
It is not exactly the same statement as the original version (compare with theorem
5 page 24 of [D’A-Z]) but the proof is exactly the same.

Theorem 4.5 (D’Atri and Ziller (cf. [D’A-Z])). Let G be a simple Lie group on
which any left invariant pseudo- Riemannian metric h satisfies Isg(h) C L(G)Int(G).
Let ¢ be an isometry between two non biinvariant left invariant metrics h and h'.
Then ¢ is an automorphism of G.

This theorem implies that Is(h) C Aut(G). To conclude we note that
Int(SL(2,R)) = Aut(SL(2,R))
(cf. [O-V] for example). O

Remark. Thanks to this result finding the isometry group of a left invariant
metric is now a problem of linear algebra. More precisely, we are going to see that
finding the subgroup K is the same as finding the intersection between the isometry
groups of two quadratic forms of R®. Actually, we just want the set of isometries
that fix the neutral element of PSL(2,R). For a metric h we will denote it by
Isot(h, e). Proposition 4.3 entails that if & is a left invariant metric then Isot(h, e)
is contained in Int(PSL(2,R)). For the Killing metric Isot(Killing, ) is the whole
of O(2,1) (see [Sal, proposition 2.3.2.5, for a nice geometric study of the isometry
group of the Killing form), moreover Isotro( Killing, e) (the connected component
of the identity) is the whole group of inner automorphisms. Therefore in order to
know Is(h) it is sufficient to compute SOq(2, 1)NIs(h.), where Is(h.) denotes the
group of linear isometries of the quadratic form obtained by restricting » to T.G.

If we choose a left invariant trivialisation of the tangent bundle, we can repre-
sent the Killing form by a symmetric matrix K and a left invariant metric A by
a matrix H. Hence we can associate to h the endomorphism, Ny, of R® whose
matrix is H K—!. It is well known that both quadratic forms are simultaneously
diagonalizable if and only if N}, is diagonalizable.

From this discussion, and some classical computations, we can deduce the fol-
lowing proposition (see [Mo] for the proof and a more detailed version).

Proposition 4.6. Let h be a left invariant Lorentzian metric on PSL(2,R).
1. If all the eigenvalues of Ny are distinct then Is(h) is isomorphic to
PSL(2,R) X Zs.
2. If Ny, is not diagonalizable and has two distinct eigenvalues or has only
one eigenvalue and a 1-dimensional eigenspace then Is(h) is isomorphic to

PSL(2,R).

The metrics corresponding to the second case possess a left invariant lightlike
geodesic foliation of codimension 1 whose tangent is the lightlike plane that the
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metric and the Killing form have in common. It is not hard to see (thanks to the
precious proposition 3.18 of [C-E]), that left-invariant metrics which possess such
lightlike 2-foliations are those which have a lightlike plane in common with the
Killing form.

4.2.2. On the compact quotients

On some compact manifolds, we want to construct a sequence of metrics (h")n N

with isometry group Zs which tends to a metric hoo With trivial isometry group.
Of course, as we have seen in the proof of theorem 4.2, ho, will possess a lightlike
geodesic foliation of codimension 1. This is quite similar to the situation described
in proposition 4.6. Thus, we try to find our example on PSL(2,R) among left
invariant metrics.

We choose a left invariant trivialisation of the tangent bundle of PSL(2,R)
such that the matrix of the Killing form in it is:

010
100
001

For all » > 1, we define h, as the left invariant metric whose matrix in this
trivialisation is

0 al/n

a 0 v,

1/n~y 6

with «, v et 6 in R%. It is easy to see that, for all n, the matrix Ny, has three
distinct eigenvalues. Hence, according to proposition 4.6, their isometry groups are
all isomorphic to PSL(2,R) x Z/27Z. The sequence of quadratic forms defined by
those matrices converges, therefore the sequence of left invariant metrics converges
C*. We denote the limit by h.,. The matrix associated to h is clearly:

0a0
a 0 vy
0~9d

We notice that Vp,__ is not diagonalizable and has two different eigenvalues, there-
fore, according to proposition 4.6, the isometry group of h., is reduced to the left
translations. Hence, we have already lost an isometry. Let us take the quotient
by a cocompact lattice of PSL(2,R) and see what happens.

Let T" be a cocompact fuschian subgroup of PSL(2,R). We denote by V the
quotient manifold I'\SL(2,R), by ¥ the compact hyperbolic surface I'\H? endowed
with its natural Riemannian metric, by N(I') the normalizer of T in PSL(2,R)
and by h the metric induced on V by a left invariant metric h of PSL(2,R).
Clearly if Is(h) = SL(2,R) x K, we have Is(h) = N(I')/T' x K. But we have a

geometrical interpretation of N(I')/T, it is the isometry group of Y.. However, in
genus greater than 2, there exist (and it is the generic case) hyperbolic surfaces
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with trivial isometry group (see for example [Bu] in the proof of theorem 6.5.3).
If T is a group corresponding to such a surface it satisfies:

NI /T = {e}.
Consequently, since in the case of ho, we have K = {Id}, we have shown that
Is(hoo) = {Id}.

The following statement is therefore proved.

Theorem 4.7. There exist compact manifolds V', of dimension greater than 2 such
that the set of metrics without isometries is not an open subset of L(V) endowed
with the C* topology.

Remark. Thanks to the article [G-L] of M. Guediri and J. Lafontaine, the same
sequence of metrics enables us to see that the set of complete metrics is not closed
in general (it is, of course, not open). It is not a surprise. Indeed, as we saw in
lemma 2.4, the result of [R-S] on the completeness of a geodesic obtained as a limit
can be adapted to the completeness of a metric obtained as a limit.
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